
  

 

Abstract—The legal driver rules in the European Union 

defines a general framework with restrictions in driving time or 

working time between breaks and rest periods.  These 

constraints must be addressed for an evaluation of any vehicle 

trip that met the regulation rules. For many real-world 

applications, the final trips have to satisfy these rules. The set of 

EU rules is the most complex design of trips and extension to 

other rules should be easy following the model we propose here. 

Compared to previous contributions we provide a new mixed 

integer linear program, which includes all the weekly rules to 

schedule when the sequence of visits is fixed. We also provide a 

new benchmark with detailed optimal solutions. Based on a set 

of numerical experiments, we discuss the relevance of different 

simplifications in the model used in the literature. 

I. INTRODUCTION 

In the European Union, road freight transport must comply 
with several legal requirements including speed limits and 
access restrictions for example; the optimization framework 
could precompute and easily include these requirements 
because they focus only on the distance matrix [1]. 
Considering the European drivers rules in the Truck Drivers 
Scheduling is more complex.  Different approaches have been 
used to include respite periods within the vehicle scheduling, 
considering different regulation rules [2]-[5].  Several linear 
formulations for the Truck Driver Scheduling Problem under 
different regulations have been proposed [6]-[9].  Linear 
formulations of such problems are useful, to evaluate 
sequences of visits but also as a part a of solution approach 
designed for routing problems [10]-[11].   

Short respite periods are named breaks and long periods 
rests (more than 9 hours). A shift is the period starting at the 
first activity after a rest and finishing at the beginning of the 
next rest. The working time includes driving periods and 
service activities at the customer location or the depot 
(loading/unloading, cleaning the vehicle, etc). Other periods 
are called periods of availability (POA) or waiting time, 
meaning that the driver is neither working nor taking a break. 

In this paper, the following set of constraints from the EU 
regulation are considered:  

R1. A driver cannot drive a total amount of 4.5h without 

a break of more than 45min referred to as "full break". 

R2. A full break of 45min can be split into two periods, a 

first break of at least 15min (and less than 45 min) and 

a second break of at least of 30min; the breaks should 

be taken in this order. 
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R3. If the total working time of a shift is less than 6h, a 

break of at least 15 minutes has to be scheduled. 

R4. If the total working time of a shift is between 6h and 

9h, a break of 30 min has to be scheduled. 

R5. If the total working time during a shift is greater than 

9h, a break of 45 min is required. 

R6. The maximal driving time in a shift is 9h that could be 

extended to 10h twice per week. 

R7. A shift cannot exceed 24 hours. 

R8. The minimal rest period is 11h, that could be reduced 

to 9h three times per week. Therefore, the sum of 

breaks, POA and working durations is bounded by 13h; 

15h if the rest is reduced to 9h. 

R9. A rest can be taken into two periods, the first an 

uninterrupted period of at least 3h, and the second a rest 

of at least 9h. 

R10. If the shift includes night working time, then the total 

working time in the shift is limited to 10h. 
To the best of our knowledge, different rules have not been 

previously included in linear formulations, such as: split rests, 
working breaks and night work [6]-[9].  In addition, a previous 
work have proposed a different assumption on the night work 
rule, but the night rule of the EU regulation [1].  The paper is 
organized as follows. A literature review on the Truck Driver 
Scheuling Problem (TDSP) is provided in Section II. Section 
III presents the assumptions and the linear formulation. A 
series of experiments on the MILP are developed in Section 
III.  Finally, in section IV conclusions are given. 

II. LITERATURE REVIEW 

Different approaches have been used to include breaks and 

rest periods within the vehicle scheduling, considering 

different regulation rules.  Some of them are interested in 

verify the feasibility of a given schedule.  Archetti and 

Savelsbergh [2] proposed and algorithm with a complexity of 

𝑂(𝑛3) to check feasibility of a driver schedule.  The sequence 

of pick-up and delivery request is done considering time 

windows at the pick-up locations and the United States Hours 

of Service.  Later, Goel and Kok [3] under the same regulation 

rules, developed a method which guarantees to find feasible 

driver schedules if they exists.  This method solves the 

problem in 𝑂(𝑛2) in the case of single time windows.  In the 

event of multiple time windows, the same complexity could 

be attained if the gap between subsequent time windows of 

the same location is at least 10 hours. 
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 Goel [4] presents a breadth-first search (BFS) algorithm 

to find feasible truck driver schedules if they exists under the 

working hours regulation for the EU.  The experiments use 

sequences of customers varying from 3 to 12, and the results 

show that previous methods fail to find feasible solutions half 

of the time when the size of the instances is large.  Another 

result, is that the possibility of taking breaks in two parts does 

not bring a big difference for long distance hauling.   

Considering the Australian standard rules and basic fatigue 

management, Goel et al [5] presented an exact algorithm to 

solve the truck driver-scheduling problem.  In addition, they 

presented four heuristics, based on removing some of the most 

computationally expensive steps of the exact method.  As a 

result, the computational time diminishes, albeit, they did not 

guaranteed feasibility in all cases. 

Among linear model formulations of the TDSP, Goel [6] 

developed a linear model complying with the Australian 

Heavy Vehicle Fatigue Law, in which the objective function 

is to minimize the total duration of the schedule.  Drivers may 

only take rest periods before the service at a given location, 

albeit, they include parking lots or dummy locations with zero 

working time, to take rest periods after completing the 

service.   

Taking under consideration the Canadian Hours of 

Service, Goel et al [7] find the set of feasible schedules for the 

Canadian Truck Driver Scheduling Problem (CAN-TDSP) 

using two heuristics and one enumerative method, the three of 

them based on a dynamic programming approach.  The two 

heuristic approaches presents a good performance in terms of 

computational time, while, the enumerative method is not 

competitive under these criteria.  Later, Goel [8] presents a 

mixed integer programming formulation for the Canadian 

minimum duration truck driver-scheduling problem (CAN-

MDTDSP).  The model is solved using a commercial solver 

CPLEX 12 and compare its results, against an iterative 

version of the dynamic programming algorithm presented in 

Goel et al [7].  Even though, CPLEX 12 offers better solutions 

while solving the mixed integer program, the iterative 

dynamic programming approach requires significantly 

smaller computational time. 

Previous linear formulations considering the EU 

regulation have been proposed.  The minimum duration truck 

driver-scheduling problem (MD-TDSP) is a generic model 

adapted to consider both, the EU and the US Hours of Service 

regulations proposed by Goel [9].  Kok et al [10] present the 

Vehicle Departure Optimization (VDO) with time-dependent 

travel times, which is a post-processing step of the VRPTW 

used as a means to verify the feasibility of a route.  Both 

formulations, assume that breaks and rest periods are taken 

only at customers or suitable locations, which is not the 

general case.   

  Most recent dynamic programming models to generate 

compliant schedules under EU regulation are proposed by [1] 

and [12].  Even though, they consider more rules within their 

models, they propose a simplified version of the night 

working rule, assuming that a rest is taken every night, and do 

not offer optimal solutions for the TDSP.   

To sum up, all MILP formulations work under the 

assumption of taking breaks at customers or suitable 

locations, meaning that they work under non preemptive 

assumptions, and do not consider different rules from the EU 

regulation, particularly the night rule.  On the other hand, 

other algorithms provide feasible schedules considering 

simplifications of the night working rule or even not 

considering it at all. 

III. MIXED INTEGER LINEAR PROBLEM 

A. Data and variables  

 The initial set of data gives the sequence of locations to 
visit with the traveling times and the working times at each 
location. Time window constraints are imposed on the starting 
time of services at customer locations. 

Each activity is modeled through a set of nodes. At each 
node a processing time and a respite period can be assigned in 
this order.  The number of nodes is bounded according to the 
type and the duration of the activity, see table I. 

Figure 1 gives an example of a sequence to evaluate, which 
has 3 customers and includes the depot at both, first and last 
position.  The set of activities 𝐴 corresponds to the service and 
transport activities developed at each location.  As well, a fixed 
number of nodes assigned to each activity composes the set of 
nodes 𝑈.   

In order to retrieve the activity 𝑎 related with a node 𝑢, also 
the first and the last node 𝑢 related with an activity 𝑎, three 
vectors are defined 𝑎(𝑢), 𝑓𝑢(𝑎) and 𝑙𝑢(𝑎), respectively.   
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Figure 1.  Modeling data structure.  

All the parameters of the model are listed and the linear 
constraints are given just after. Note that all durations are in 
hours. 

Sets 

𝐴:  Driving and service activities.  
𝑈: Nodes to schedule breaks.  
𝐵 = {15𝑚𝑖𝑛, 30𝑚𝑖𝑛, 45𝑚𝑖𝑛, 3ℎ, 9ℎ, 11ℎ}: Types of break.   

𝐼 = {[0,4], [24,28], … , [144,148]}: Night intervals within a 
week.  

Parameters: 

𝑀: A big number. 

𝑓𝑢(𝑎): First node related to activity 𝑎. 

𝑙𝑢(a): Last node of activity 𝑎. 

𝑐𝑝𝑎: Duration of activity 𝑎. 

𝛿𝑢: 1, if node 𝑢 is driving; 0, otherwise. 



  

𝑎(𝑢): Activity related with the node 𝑢. 

𝑒𝑎: Earliest starting time of the activity 𝑎. 

𝑙𝑎:  Latest starting time of the activity 𝑎. 
𝐵𝐷𝑏 = {0.25, 0.50, 0.75, 3, 9, 11}: Minimal break durations. 
𝐿𝐵𝑖 = {0, 24, … , 144}: Upper bound of the night interval 𝑖. 
𝑈𝐵𝑖 = {4, 28, … , 148}: Upper bound of the night interval 𝑖. 
𝑊𝐿9: Break duration if working time is less than 9h [30min]. 

𝑊𝐺9: Break duration if working time is greater than 9h 

[45min]. 

𝐶𝑊𝑇: Continuous working time without a break [6h]. 

𝑊𝑆𝐵1: Maximal working time in a shift without at least 𝑊𝐿9 

( =  30) minutes of break [6h]. 

𝑊𝑆𝐵2: Maximal working time in a shift without at least 𝑊𝐺9 

(= 45) minutes of break [9h]. 

𝐶𝐷𝑇: Continuous driving time without a break [4.5h]. 

𝑀𝐷𝑅: Regular driving time per shift [9h]. 

𝑀𝐷𝐸: Extended driving time per shift [10h]. 

𝐷𝐸: Maximum number of driving extensions per week [2 

times]. 

𝑅𝐸: Maximum number of rest reductions per week [3 times]. 

𝐷𝐷𝑈: The maximal duration without a rest [24h]. 

𝑀𝑊𝑁: Maximum working time if night work is performed 

[10h]. 

 

Decision variables: 

𝑥𝑢: Starting time of process at node 𝑢. 

𝑦𝑢
𝑏: 1, if at node 𝑢 a break of type 𝑏 takes place after the 

process. 0, otherwise. 

𝐹𝑢:  1, if at node 𝑢 a full break takes place. 0, otherwise. 

𝐸𝑢: 1, if the driving time is extended during one hour. 0, 

otherwise. 

𝐻𝑢: 1, if a rest of 9h is taken without a previous rest of 3h. 0, 

otherwise. 

𝑏𝑢𝑣: 1, if working time between nodes 𝑢 and 𝑣 is greater than 

6h. 0, otherwise. 

𝑐𝑢𝑣: 1, if working time between nodes 𝑢 and 𝑣 is greater than 

9h. 0, otherwise. 

𝑡𝑢𝑣: 1, if working time is performed during the night. 0, 

otherwise. 

𝑟𝑢𝑣: 1, if the starting time between two nodes 𝑢 and 𝑣 is less 

than 𝐷𝐷𝑈 hours. 0, otherwise. 

𝐶𝑃𝑢𝑖: 1, if the activity at node 𝑢 starts before the upper bound 

of the interval 𝑖. 0, otherwise. 

𝐶𝑃𝑃𝑢𝑖: 1, if the activity at node 𝑢 starts after the lower bound 

of the interval 𝑖. 0, otherwise. 

𝑁𝑃𝑀𝑢: 1, if there is night work at node  . 0, otherwise. 

𝑡𝑖𝑢𝑖: 1, if the activity at node 𝑢 is developed at the night 

interval 𝑖. 0, otherwise. 

 

Comfort variables: 

𝑝𝑢: Processing time at node 𝑢. 

𝑤𝑜𝑢𝑣: Working time between nodes 𝑢 and 𝑣. 

𝑑𝑢𝑣: Driving time between nodes 𝑢 and 𝑣. 

 

B.  Objective function and constraints. 

 

The objective function (1) is to minimize the completion 

time of the processing time of the last node. 

𝑀𝑖𝑛 𝑧 = 𝑥|𝑈| + 𝑝|𝑈| (1) 

 
Constraints (2) and (3) enforce the sequence between 

activities and nodes, respectively. 

𝑥𝑓𝑢(𝑎) + 𝑐𝑝𝑎 + ∑ ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑢
𝑏

|𝐵|

𝑏=1

𝑙𝑢(𝑎)

𝑢=𝑓𝑢(𝑎)

≤ 𝑥𝑓𝑢(𝑎+1) 

𝑎 = 1, … , |𝐴| − 1 (2) 

𝑥𝑢 + ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑢
𝑏

|𝐵|

𝑏=1

+ 𝑝𝑢 ≤ 𝑥𝑢+1 

 

𝑢 = 1, . . , |𝑈| − 1 

 

(3) 

Only one type of break could take place at each node is 
enforced by constraints (4).    

∑ 𝑦𝑢
𝑏

|𝐵|

𝑏=1

≤ 1 𝑎 = 1, . . , |𝐴| 
 

(4) 

Constraints (5) ensure that service starts in the given time 
window. 

𝑒𝑎 ≤ 𝑥𝑓𝑢(𝑎) ≤ 𝑙𝑎  𝑎 = 1, . . , |𝐴| ;  𝛿𝑛(𝑎) = 0 (5) 

Constraints (6) guarantee a full break after 𝐶𝐷𝑇 hours of 
continuous driving time.  Figure 2 depicts this situation. 

𝑑𝑢𝑣 ≤ 𝐶𝐷𝑇 + 𝑀 ∑ 𝐹𝑤

𝑣−1

𝑤=𝑢

 𝑢, 𝑣 ∈ 𝑈, 𝑢 ≤ 𝑣 
(6) 
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Figure 2.  Compulsory full break after CDT hours of driving.  

Constraints (7)-(9) enforce full breaks, when the break is 
greater or equal 45min (𝑏 ≥ 3), and forbid full break if the 
break is less than 30 min (𝑏 < 2).   

∑ 𝑦𝑢
𝑏

|𝐵|

𝑏=3

≤ 𝐹𝑢 

 

𝑢 = 1, . . , |𝑈| 

 

(7) 

∑ 𝑦𝑢
𝑏

|𝐵|

𝑏=2

≥ 𝐹𝑢 

 

𝑢 = 1, . . , |𝑈| 

 

(8) 

1 − 𝑦𝑢
1 ≥ 𝐹𝑢 𝑢 = 1, . . , |𝑈| (9) 

There is not full break at 𝑣 if a break of 15min or 30min is 
scheduled at 𝑣, and if there is not break less than 45 min 
between [𝑢, 𝑣[ (as the first part of the split) and a full break is 
scheduled just before 𝑢.  This inequalities (10) forbids breaks 
of 30 min to be considered as full break if there is not first part 
of split break.  Note that 𝐹0 = 1 by definition. 

(1 − ∑ 𝑦𝑣
𝑏

2

𝑏=1

) + ∑ ∑ 𝑦𝑤
𝑏

2

𝑏=1

𝑣−1

𝑤=𝑢

+ (1 − 𝐹𝑢−1) ≥ 𝐹𝑣 



  

 

𝑣 = 1, . . , |𝑈|; 𝑢 = 1, … , 𝑣; (10) 

Working time between two nodes has to be less than six 
hours if there is no break in between them, as Constraints (11) 
apply. 

𝑤𝑜𝑢𝑣 ≤ 𝐶𝑊𝑇 + 𝑀 ∑ ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑤
𝑏

|𝐵|

𝑏=1

𝑣−1

𝑤=𝑢

 

𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 ≤ 𝑣 (11) 

In Constraints (12) and (13) between two rests before 𝑢 and 
after 𝑣, the sum of breaks has to exceed 30 (45 resp.) min. if 
the working time exceeds 6 h. (𝑏𝑢𝑣 = 1) (resp. 9h. and 𝑐𝑢𝑣 =
1). 

𝑀 (2 − ∑ 𝑦𝑣
𝑏 − 𝑦𝑢−1

𝑏

|𝐵|

𝑏=5

) + ∑ ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑤
𝑏

|𝐵|

𝑏=1

𝑣−1

𝑤=𝑢

+ 𝑀(1 − 𝑏𝑢𝑣)

≥ 𝑊𝐿9 

𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 ≤ 𝑣 (12) 

𝑀 (2 − ∑ 𝑦𝑣
𝑏 − 𝑦𝑢−1

𝑏

|𝐵|

𝑏=5

) + ∑ ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑤
𝑏

|𝐵|

𝑏=1

𝑣−1

𝑤=𝑢

+ 𝑀(1 − 𝑐𝑢𝑣)

≥ 𝑊𝐺9 

𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 ≤ 𝑣 (13) 

Binary indicators 𝑏𝑢𝑣 and 𝑐𝑢𝑣, which are set to one when 
the working time exceed the their respective limits. 

𝑀 ∗ 𝑏𝑢𝑣 ≥ 𝑤𝑜𝑢𝑣 − 𝑊𝑆𝐵1  𝑢 = 1, . . , |𝑈|; 𝑢 ≤ 𝑣 (14) 

𝑀 ∗ 𝑐𝑢𝑣 ≥ 𝑤𝑜𝑢𝑣 − 𝑊𝑆𝐵2 𝑢 = 1, . . , |𝑈|; 𝑢 ≤ 𝑣 (15) 

Constraints (16) limit the driving time between 𝑢 and 𝑣 to 
𝑀𝐷𝑅 plus the possible extension if a rest precedes 𝑢 and there 
is not rest until 𝑣.   Constraint (17) limit the number of 

extensions.  In addition, note that  𝑦0
𝑏 = 1 by definition. 

𝑑𝑢𝑣 ≤ 𝑀𝐷𝑅 + 𝐸𝑢 + 𝑀 (1 − ∑ 𝑦𝑢−1
𝑏

|𝐵|

𝑏=5

+ ∑ ∑ 𝑦𝑤
𝑏

|𝐵|

𝑏=5

𝑣−1

𝑤=𝑢

) 

𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 ≤ 𝑣 (16) 

∑ 𝐸𝑢

|𝑁|

𝑢=1

≤ 𝐷𝐸 

 
(17) 

As Figure 3 shows, Constraints (18) enforces that between 
the finishing time plus the break of node 𝑣 and the starting time 
of node 𝑢 there is less than 𝐷𝐷𝑈 hours, if there is not a rest 
between 𝑢 and 𝑣 − 1.   

𝑥𝑣 + 𝑝𝑣 + ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑣
𝑏

|𝐵|

𝑏=1

− 𝑥𝑢 ≤ 𝐷𝐷𝑈 + 𝑀 ∑ ∑ 𝑦𝑤
𝑏

|𝐵|

𝑏=5

𝑣−1

𝑤=𝑢

  

𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 < 𝑣 (18) 
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Figure 3.  Compulsory rest each DDU hours.  

Constraints (19) and (20) compute the processing time at 
node 𝑢. 

𝑝𝑢 = 𝑥𝑢+1 − 𝑥𝑢 + ∑ 𝐵𝐷𝑏 ∗ 𝑦𝑢
𝑏

|𝐵|

𝑏=1

   

𝑎 = 1, . . , |𝐴|;  𝑢 = 𝑓𝑢(𝑎), … , 𝑙𝑢(𝑎) − 1 (19) 

𝑝𝑙𝑢(𝑎) = 𝑐𝑝𝑎 − ∑ 𝑝𝑢

𝑙𝑢(𝑎)−1

𝑢=𝑓𝑢(𝑎)

 

𝑎 = 1, . . , |𝐴| (20) 

Constraints (21) and (22) compute the driving time and the 
working time between two nodes 𝑢 and 𝑣, respectively. 

𝑑𝑢𝑣 = ∑ 𝑝𝑤

𝑣

𝑤=𝑢|𝛿𝑢=1

 𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 < 𝑣 (21) 

𝑤𝑜𝑢𝑣 = ∑ 𝑝𝑤

𝑣

𝑤=𝑢

 𝑢, 𝑣 = 1, . . , |𝑈|, 𝑢 < 𝑣 (22) 

 

Constraints (23) establish the conditions for a split daily 
rest.  There is a rest of 9h at node 𝑣 and a rest at node 𝑢, if 
between ]𝑢, 𝑣[ a break of 3h takes place, the rest of 9h taken a 
v is not a reduced rest, but the first part of a split daily rest. 

𝑦𝑣
5 + ∑ 𝑦𝑢

𝑏

|𝐵|

𝑏=5

− ∑ ∑ 𝑦𝑤
𝑏

|𝐵|

𝑏=4

𝑣−1

𝑤=𝑢+1

≤ 𝐻𝑣 + 1 

𝑢 = 1, . . , |𝑈|; 𝑢 ≤ 𝑣 (23) 

 

Constraints (24) limits the number of reduced rests (𝑦𝑢
5 =

1) up to 𝑅𝐸. 

∑ 𝐻𝑢

|𝑈|

𝑢=1

≤ 𝑅𝐸 

 
(24) 

Goel night rule constraints (25)-(27): night working is 
forbidden.  

Constraints (25) and (26) indicate if a node 𝑢 starts before 
the upper bound 𝑈𝐵𝑖  or after the lower bound 𝐿𝐵𝑖  of interval 𝑖, 
respectively. 

𝑀 ∗ 𝐶𝑃𝑢𝑖 ≥ 𝑈𝐵𝑖 − 𝑥𝑢 𝑢 = 1, . . , |𝑈|;𝑖 = 1, . . , |𝐼| (25) 

𝑀 ∗ 𝐶𝑃𝑃𝑢𝑖 ≥ 𝑥𝑢 + 𝑝𝑢 − 𝐿𝐵𝑖 
𝑢 = 1, . . , |𝑈|; 
𝑖 = 1, . . , |𝐼| 

(26) 

 

 



  

Constraints (27) forbid night work. 

𝐶𝑃𝑢𝑖 + 𝐶𝑃𝑃𝑢𝑖 = 1 𝑢 = 1, . . , |𝑈|;𝑖 = 1, . . , |𝐼| (27) 

EU night rule constraints (25)–(26) and (30)-(32): Night 
working limits shift working time to 10h.  

Constraints (28) enforce the working time between 𝑢 and 
𝑣 to be less than 𝑀𝑊𝑁 hours, if between the starting time of 
𝑢 and the finishing time of 𝑣 some night work (𝑡𝑢𝑣 = 1) has 
been performed and there are less than 𝐷𝐷𝑈 hours elapsed 
between 𝑢 and 𝑣 (𝑟𝑢𝑣 = 1).  The value of 𝑟𝑢𝑣 is set by 
Constraints (32).  The value of 𝑡𝑢𝑣 is set by Constraints (29)-
(31) where 𝑡𝑖𝑢𝑖 means that u starts before the upper bound 𝑈𝐵𝑖 , 
finishes after the lower bound 𝐿𝐵𝑖  and the processing time is 
greater than 0. 

𝑤𝑜𝑢𝑣 ≤ 𝑀𝑊𝑁 + 𝑀[2 − 𝑡𝑢𝑣 − 𝑟𝑢𝑣] 

𝑢, 𝑣 = 1, . . , |𝑈|; 𝑢 ≤ 𝑣 (28) 

𝑀 ∗ 𝑡𝑢𝑣 ≥ ∑ 𝑡𝑖𝑢𝑖

𝑣

𝑤=𝑢

 

𝑢, 𝑣 = 1, . . , |𝑈|; 
𝑢 ≤ 𝑣; 𝑖 =

1, . . , |𝐼| 

(29) 

𝑡𝑖𝑢𝑖 ≥ 𝐶𝑃𝑢𝑖 + 𝐶𝑃𝑃𝑢𝑖 + 𝑁𝑃𝑀𝑢 − 2 
𝑢 = 1, . . , |𝑈|; 

𝑖 = 1, . . , |𝐼| 

(30) 

𝑀 ∗ 𝑁𝑃𝑀𝑢 ≥ 𝑝𝑢 

𝑢 = 1, . . , |𝑈|; 

𝑖 = 1, . . , |𝐼| 

(31) 

𝑀 ∗ 𝑟𝑢𝑣 ≥ 𝐷𝐷𝑈 − [𝑥𝑣 − 𝑥𝑢 ] 
𝑢, 𝑣 = 1, . . , |𝑈|; 

𝑢 ≤ 𝑣 
(32) 

 

C.  Assumptions and improvements. 

Following the EU rules, we made some assumptions.  Each 
activity can be split into an unlimited number of pieces of any 
duration. Several breaks or rests can be processed without any 
working time in between. Break and rest periods durations are 
not restricted to a limited set of values. Without loss of 
generality, the schedule starts and ends with a rest at the depot. 

We compute an upper bound on the number of nodes per 
activity depending on its type (service or transport) and 
duration.  If a driving activity is less than 4.5h then optimality 
requires 1 split of the activity for a rest or no split and 1 
additional split for the night, in some cases to cover the night 
it is necessary to schedule more than one rest or break 
consecutively. It is easy to state that any break can be 
scheduled before or after the activity without loss of 
generality. Similar reasoning gives Table 1 for different values 
of service and driving activities.  The number of nodes is the 
number of nodes for split plus one.  For long activities, some 
split nodes model rest and break for a shift included in the 
activity.   

We identified the longest possible sequence of breaks in an 
optimal solution: a break (< 9ℎ) → a rest (≥ 9ℎ) → the first 
part of split break (3ℎ) →  the first part of split break (<
45𝑚𝑖𝑛).  The first break is imposed by respite at of the first 
shift. The two last breaks may initiate split rests and breaks. 
We can show that such series of breaks and rest do not have to   
be scheduled in optimal solution only at the beginning of an 
activity.  Therefore, the number of nodes per activity is 

increased by 3 and the processing times of the three first nodes 
of an activity are set to zero.   

TABLE I.  MAXIMUM NUMBER OF NODES BY TYPE OF ACTIVITY AND 

DURATION 

Activity  Duration 
Maximum number 

of nodes 

Service < 6ℎ 3 

 < 13ℎ 4 

 Otherwise 
𝑐𝑝𝑎

3
+ 3 

Transport < 4.5ℎ 3 

 < 9ℎ 4 

 Otherwise 
𝑐𝑝𝑎

3
+ 3 

 

For R5 the cumulated duration of break can be reached by 
two breaks of 20 and 25 minutes. Therefore the duration of 
break could be optimally set with values different than lower 
bounds of break durations. An additional continuous variable 
𝐷𝑢 is ranged by break duration interval of the type of break 
scheduled at node 𝑢. However, minimal respite durations to 
satisfy constraints usually provide optimal solutions; one 
example (Instance 41) has been built where optimality is not 
reach in this case.   

Finally, the number of constraints is reduced by limiting 
the pairs of nodes u and v in the domain of the constraints for 
which the working or driving time between their activities 
ensures that the constraint does not apply.  For instance, 
constraint (6) should exclude the nodes for which the 
cumulated driving time between 𝑎(𝑢) + 1 and 𝑎(𝑣) − 1 is 
greater than 4.5h.   

IV. NUMERICAL EXPERIMENTS 

A.  Instances  

We propose a new set of instances PGLT available at 

https://perso.isima.fr/~igpenaar/Lyon_IEEE_2021/. The total 

number of instances is 41 and the size of the instances varies 

from 3 to 15 customers. In addition, we derived one instance 

from each route of the solutions of the routing problem 

provided by [1]. This set of 157 instances is named GOEL. 

B.  Results  

All the experiments have been achieved on an Intel® 

Core™i5-8400 at 2.81 GHz under Windows 10, using C++ 

and Gurobi 8.1.1. A limit on the computation time has been 

imposed after two hours. 

The first experiment aims to compare EU-Setting (model 

(1)-(26); (28)-(32)) against G-Setting (model (1)-(27)) over 

the two sets of instances.  Note that the solutions obtained 

with G-Setting on GOEL instances differ from the solutions 

provided by a heuristic - according to our objective - in [1]. 

The improvement is more than one hour for 15.3% of the 

routes for one day to one week. 

The results are presented in Table II and Table III.  Table 

II presents four types of statistics for each of the two set of 

instances under the two set of settings.  And in table III, EU-

https://perso.isima.fr/~igpenaar/Lyon_IEEE_2021/


  

Settings is the base scenario and its performance is compared 

against G-Settings by computing three different statistics. 

From Table II, solutions with both settings are close in 

average but Table III, shows that EU-Setting allows to find 

better schedules for one half of instances and the 

improvements can reach 8.5 hours. Moreover, for PGLT 

instances, G-Setting is infeasible for 7 instances which are 

feasible with EU-Setting.  Nevertheless, G-Setting is solved 

faster (almost 100 times) than EU-Setting with our 

formulations.  

TABLE II.  EU-SETTING VS. G-SETTING 

 PGLT GOEL 

Statistic EU-Setting G-Setting EU-Setting G-Setting 

Avg. 

completion 

time  (h) 

33.7 34.4 103.8 104.2 

Avg. CPU 

time (s) 
238.7 2.4 119.7 3.5 

Max. CPU 

time(s) 
7200.0 18.6 7200.0 35.3 

Infeasible  7 14 0 0 

TABLE III.  MILP UNDER EU-SETTING PERFORMANCE 

Statistic PGLT GOEL 

Instances improved (%) 46.3 50.3 

Avg. GAP (%) 1.7 1.4 

Maximum difference(h) 3.2 8.5 

  

The second experiment has two treatments. The First 

execute the MILP under EU-Setting using the completion 

time (COM) as objective function and compare its results 

adding the optimal makespan (UBM) as an upper bound 

constraint (COM+UBM).  The second treatment uses the 

makespan (MKS) as objective function and compare its 

results adding the optimal completion time (UBC) as an upper 

bound constraint (MKS+UBC).  This experiment only use the 

PGLT instances, because computational running times using 

GOEL were excessively high. Table IV presents the results. 

TABLE IV.  MILP UNDER EU-SETTING ADDING THE  MAKESPAN 

AND THE COMPLETION TIME AS UPPER BOUNDS 

Statistic COM+UBM MKS+UBC 

Number of instances 

with different objective 

function value 

9 9 

Avg. GAP (%) 1.7 2.7 

Max. GAP (%) 16.9 30.0 

 

For both treatments, in nine instances it was not possible to 

achieve the same optimal value obtained without the upper 

bound constraint.  The quality of the solution in both cases 

diminishes 1.7% and 2.7% on average and in the worst case, 

this reduction could be of 16.9% and 30.0% respectively.  In 

this regard, when minimizing the completion time it is not 

possible to guarantee a solution with the minimum makespan 

and the opposite.         

V. CONCLUSION 

A new MILP formulation for the truck driver scheduling 
problem under the European Union drivers rules is presented.  
The model extends previous formulations considering rules 
like: split daily rests, working breaks and night work.  Two 
different assumptions for the night work rule are considered, 
in order to compare its results with a previous algorithm in the 
literature.  Results show a good performance obtaining equal 
solutions in 66.2% of the instances.  Different experiments 
indicates that there is not a significant difference in the 
solutions between the two assumptions for the night constraint, 
even though, Goel night assumption is more flexible with the 
drivers.  In addition, the Goel night rule assumption highly 
improves the total execution time of the model.  Finally, the 
model results could lead to develop handcrafted algorithms in 
order to solve efficiently the problem.  
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