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Nonlinear topological photonics is an emerging field aiming at extending the fasci-

nating properties of topological states to the realm where interactions between the

system constituents cannot be neglected. Interactions can trigger topological phase

transitions, induce symmetry protection and robustness properties for the many-body

system. Here, we report on the nonlinear response of a polariton lattice implementing

a driven-dissipative version of the Su-Schrieffer-Heeger model. We first demonstrate

the formation of topological solitons bifurcating from a linear topological edge state.

We then focus on the formation of dissipative gap solitons in the bulk of the lattice

and show that they exhibit robust nonlinear properties against defects, thanks to the

underlying sublattice symmetry. Leveraging on the driven-dissipative nature of the

system, we discover a new class of bulk gap solitons with high sublattice polarization.

We show that these solitons provide an all-optical way to create a non-trivial interface

for Bogoliubov excitations. Our results show that coherent driving can be exploited

to stabilize novel many-body phases and establish dissipatively stabilized solitons as

a powerful resource for nonlinear topological photonics.
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The topology of band structures in periodic systems is related to the existence of a non-

zero Berry phase, and gives rise to fascinating phenomena like anomalous velocity, chiral edge

states that are robust to disorder or topological pumps [1, 2]. First discovered in solid-state

systems, topological physics can also be emulated in artificial lattices, including atomic [3],

photonic [4, 5], mechanical [6], optomechanical [7], and polaritonic [8, 9] systems. These plat-

forms have allowed engineering topological phases hardly achievable in condensed matter,

involving synthetic dimensions [10], disorder effects [11, 12], quasi-crystalline structures [13]

or higher-order multipoles [14, 15]. The physics becomes even richer when inter-particle

interactions are considered [16]. In the weakly interacting regime, nonlinearities can induce

topological phase transitions [17–19], wave-mixing among topological modes [20, 21], en-

able the formation of solitons in a topologically non trivial gap [22–26] or the realization of

Thouless pumping with solitons [27–29]. In the strongly interacting regime, novel symmetry

protected phases may appear [30], and fractional quantum Hall physics can be emulated

with the possible stabilization of multi-particle Laughlin states [31].

Recently, photonic platforms have allowed pushing this exploration beyond the realm of

conservative Hamiltonians, mainly through the engineering of gain and loss. Non-Hermitian

topological systems [32] have led, for example, to the development of topological lasing on

0D [33–36] or 1D [37, 38] edge states, and PT-symmetric phases [39, 40]. Most of these

works on non-Hermitian topology have focused on probing, stabilizing or amplifying the

linear response of the system. These recent advances now offer the possibility to experimen-

tally explore topological photonics in a regime where non-Hermiticity and nonlinearity are

combined [40–43]. Driven-dissipative photonic platforms are particularly suitable to probe

this physics because in addition to the non-Hermiticity of the Hamiltonian, the external

drive can be used to stabilize novel nonlinear solutions going beyond what is possible in

systems subject solely to gain and loss, and to modify the underlying topology [44].

In this article, we investigate the physics of gap solitons in a 1D driven-dissipative topo-

logical lattice. We emulate a nonlinear version of the well-known Su-Schrieffer-Heeger (SSH)

model: a 1D bipartite topological lattice with staggered hopping energies forming a chain of

coupled dimers. [45]. Cavity polaritons are well suited for exploring this nonlinear topologi-

cal physics [8, 9, 34, 46–48]. Indeed, their excitonic fraction provides repulsive interactions,

resulting in a Kerr-type nonlinearity, while their photonic component makes the system in-

trinsically non-Hermitian via loss and possibly gain. Moreover the system can be resonantly
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driven by an external source and reach a steady-state determined by the balance between

drive, dissipation and nonlinearity [49].

We demonstrate the formation of dissipative solitons that bifurcate either from a topolog-

ical interface state or from dimers in the lattice bulk. When excited within the topological

gap, the solitons present tails that are highly sublattice polarized. This endows them with

robustness properties that we probe using an optically controlled non-Hermitian defect (i.e.

a local perturbation to the real and imaginary parts of the potential landscape). We demon-

strate that these solitons are robust to defects located on one sublattice, a property inherited

from the chiral symmetry of the underlying model. The crucial asset brought by the driven-

dissipative character of the system appears when engineering the phase of the driving field.

By imposing a phase frustration between the phase pattern of the driving field and that

of the Bloch eigenstates, we demonstrate the generation of novel gap solitons that have no

counterpart in conservative systems and show high sublattice polarization in the core. Cru-

cially, we show how the modification of the potential landscape induced by these asymmetric

solitons can effectively split the chain and form a non-trivial interface. This latter aspect is

evidenced through the emergence of a topological edge state in the calculated Bogoliubov

excitation spectrum.

THE NONLINEAR DRIVEN-DISSIPATIVE SSH MODEL

The physics of the polariton nonlinear SSH model can be captured by a discretized Gross-

Pitaevskii equation in presence of drive and dissipation:

i~
d

dt

an
bn

 =
(
E0 − i

γ

2

)an
bn

+ g

|an|2an
|bn|2bn

− J
bn
an

− J ′
bn−1
an+1

+ i

Fa,n
Fb,n

 eiωt (1)

where ψn = [an; bn]T is a spinor describing the wavefunction of the A and B sites in the nth

unit cell; E0 is the on-site energy,γ the polariton linewidth, g the interaction energy, J (J ′)

is the intracell (intercell) coupling energy, and ω/(2π) the driving field frequency which sets

the frequency of the polariton field. The driving field Fn = [Fa,n;Fb,n]T can be engineered

with a specific amplitude and phase on each site, Fα,n = |Fα,n|eiϕα,n .

The topological nature of the SSH model is related to chiral (or sublattice) symmetry,

which imposes identical on-site energies and restricts the coupling terms to sites belonging
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to distinct sublattices, e.g. no next-nearest neighbour coupling. Zero-energy states which

emerge in lattices ending with weak links are protected by this symmetry. They are localised

on a single sublattice, thus presenting well defined sublattice pseudo-spin:

S̃ =

∑
n |an|2 − |bn|2∑
n |an|2 + |bn|2

= ±1, (2)

The sign of the spin reflects the sublattice localization, either on A (+1) or B (-1). The

existence of topological edge states can also be related to the value of the winding numberW

computed over the first Brillouin zone [50] that can take the values 0 (strong link termination)

or 1 (weak link termination). Hereafter, we will show that the specific properties of gap

solitons generated in the nonlinear driven-dissipative SSH model are strongly linked to the

pseudospin evaluated in their core and also in their exponential tails.

To emulate this system with cavity polaritons, we design arrays of coupled micro-pillars

(3 µm diameter), with alternating short (2.2 µm) and long (2.75 µm) center-to-center dis-

tances, see Fig. 1 (a). This corresponds to effective couplings J = 0.49 meV and J ′ =

0.20 meV. At the center of some lattices, we create an interface defect by inserting a pillar

surrounded by two consecutive long center-to-center distances (see Fig. 1 (c)). These arrays

are fabricated by etching an epitaxially grown semiconductor heterostructure that consists

in a planar cavity embedding a quantum well (see Methods for more details).

The linear spectrum of these structures is probed by low temperature (4 K) photolumi-

nescence experiments (see Methods). Imaging the emission with angular resolution enables

observing polaritonic bands in momentum space (see Fig. 1 (b) and (d)). Real space images

are shown in the Supplementary Section S2. The two lowest energy bands take their origin

from the hybridization of the s mode of each pillar and emulate the single-particle SSH model

with a topological gap of 0.45 meV width. The asymmetry of the spectrum with respect to

the center of this gap is attributed to couplings between s and p modes [51]. Interestingly,

when the excitation pump overlaps with an interface defect in Fig. 1 (d), a topological state

is clearly observed within the topological gap and is localized on the interface pillar (See

Fig.S2b in Supplementary materials Section 2).

We first evidence a topological soliton that bifurcates from a topological interface state

by focusing the pump on a micropillar defining an interface defect. We tune the laser energy

to 180 µeV (approximatively 3γ) above the linear topological edge state and measure the

transmitted signal when scanning the excitation power up and down. As shown in Fig. 1 (e),
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FIG. 1. Implementation of the SSH lattice. a-c, Scanning electron microscope images of SSH

polariton lattices. We highlight some of the micro-pillars with yellow circles and an interface defect

in (c) with a green circle. Inset of (a): Schematic representation of a micro-pillar, composed of a

Fabry-Perot cavity defined by two distributed Bragg reflectors (DBR) and a spacer (orange layer)

embedding a single quantum well (QW). Right: Typical shape of the s and p polariton modes.

b-d, Spectrally resolved photoluminescence intensity measured as a function of momentum k under

non-resonant excitation using an elongated spot centered in the bulk of lattice (a) (as in panel (b))

and around the interface defect in lattice (c) (as in panel (d)). e, Transmitted intensity measured

while ramping the excitation power up (blue circles) or down (red circles) under quasi-resonant

excitation of the interface defect. f, 2D real space image of the transmitted intensity measured

on topological soliton. The excitation pump is localized on the interface state, as sketched on top

of the panel. g, Intensity profiles (integrated along the transverse direction) measured for (grey

line) the topological interface state in the linear regime, and (black line) a topological gap soliton

bifurcating from the interface state.

an hysteresis cycle is observed in the transmitted intensity, as expected in presence of Kerr

nonlinearities. In the high intensity branch of the cycle, we generate a gap soliton that has

the same spatial profile as the linear topological interface state (Fig. 1 (g)). This topological

soliton shows the expected profile: a core self-localized at the defect position surrounded by

two sublattice-polarized exponentially decaying tails.
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BULK GAP SOLITONS

In the following, we address the nonlinear response in the bulk of the SSH lattice, see

Fig.1 (a). We implement a quasi-resonant excitation scheme using an excitation laser that

is spectrally detuned with respect to the energy E0 of the center of the topological gap by

∆E = ~ω−E0 (see Fig. 2 (a)). We focus the pump laser (3.5 µm FWHM) ten unit cells away

from the lattice edges to avoid finite size effects, and measure the transmitted intensity.

We first consider an excitation scheme where the pump frequency is tuned to the center

of the topological gap (∆E = 0) and is spatially aligned with the center of a dimer. This

corresponds, in Eq. (1), to a driving field localized on a single dimer with equal amplitude

and phase on both A and B sites. As we ramp up the driving power, we observe the

formation of gap solitons that are symmetric with respect to the pump and localized on

a discrete number of dimers (see Fig. 2 (b)). When the incident power reaches a first

threshold denoted P1, we observe the formation of a bulk soliton with a core extending over

one-dimer. Above threshold P2, the soliton core extends to three dimers. Looking at the

total transmitted intensity when scanning the power up and down, we evidence bistability

and hysteretic behavior at each nonlinear threshold (see Supplementary Section S3). Each

threshold occurs when the polariton field locally enters the nonlinear regime, i.e. when the

nonlinear blueshift induced by the polariton interaction energy within a dimer overcomes

the spectral detuning between the pump and the top of the lower band. These solitons are

composed of a self-localized core region (grey-shaded areas in Fig. 2) and of exponentially

decaying tails on both sides (white areas). Due to the lattice inversion symmetry, the soliton

pseudospin computed over the entire profile vanishes [52]: S̃tot = −0.10± 0.06 after P1 and

S̃tot = 0.09± 0.04 after P2. Note that variations of the threshold powers are observed when

pumping different dimers. They are due to disorder-induced fluctuations of the on-site

energy. These fluctuations, on the order of 15 µeV, are smaller than the polariton linewidth

(γ ≈ 70 µeV) and do not influence the physics discussed here.

It is insightful to probe how the pseudospin locally varies over the profile. Inside the

soliton core, each dimer shows similar amplitude on both sublattices, leading to a locally

vanishing pseudospin [52] S̃core = −0.03± 0.09 after P1 and S̃core = 0.01± 0.06 after P2, see

Fig. 2 (c-d). In contrast, the evanescent tails are strongly localized on a single sublattice:

the A sublattice on the left, and the B on the right. Consequently, the pseudo-spins S̃L and
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FIG. 2. Generation of topological gap solitons. a, Spectral density of states (DOS) of the

SSH lattice. The drive (purple arrow) is detuned from the center of the topological gap by ∆E.

b, Spatially resolved intensity profiles (integrated along the direction perpendicular to the lattice

and normalized to their maximum value), measured as we ramp up the driving power. Dotted

horizontal red lines mark the P1 and P2 thresholds. c-d, Experimental (solid line) and simulated

(dashed line) spatial profiles of the soliton above (c) P2 and (d) P1 thresholds (corresponding

excitation powers are indicated with dotted black lines in (b)). e, Pseudo-spins S̃L (red full circles)

and −S̃R (blue open circles) measured as a function of ∆E. The amount of optical power available

in the experiment enables exploring positive ∆E values up to 0.1 meV. The grey solid line shows

the values of S̃L obtained using a tight-binding calculation, where the intensity on each site is

convoluted with a Gaussian profile of FWHM 2.7 µm (around the FHWM of the pillar s-mode). f,.

Soliton profile measured when the laser energy is tuned to the upper trivial gap (∆E = 1.0 meV).

In all panels (b,c,d,f), location of the drive is indicated with a purple arrow in the sketch above. In

panels (c,d,f), red (blue) dashed lines indicate A (B) sites with peaked intensity, while gray areas

represent the extent of the soliton cores.
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S̃R integrated over the left and right soliton tails do not vanish and present opposite signs:

S̃L > 0 and S̃R < 0, see Fig. 2 (c-d).

The spin properties of the bulk soliton tails can be further explored when varying the

laser energy. In Fig. 2 (e), we report the measured spin polarization S̃L and S̃R of the left

and right evanescent tails when varying ∆E within the topological gap. When the laser

energy departs from the center of the topological gap, the tails remain spin-polarized as

long as the laser energy stays within the gap (see Supplemental Section S4 for measured

profiles). It vanishes when the excitation reaches the edges of the topological gap. The

spin polarization of the tails observed in solitons generated in the topological gap is thus

directly linked to the chiral symmetry of the SSH model. To highlight this specific property,

we tune the laser energy to the upper gap separating the s and p bands [53]. The soliton

profile obtained when exciting this trivial gap is presented in Fig. 2(f). Both evanescent

tails present high intensities on all pillars, and thus no spin polarization.

To accurately reproduce the experimental data, we use an effective 1D continuous model,

which allows taking into account the finite size of the lattice pillars and the mixing of s-p

bands. We look for steady-state solutions of the following Gross-Pitaevskii equation:

i~
dψ(x, t)

dt
=

[
− ~2

2m
∇2 − iγ

2
+ V (x) + g|ψ(x, t)|2

]
ψ(x, t) + iF (x)e−iωpt (3)

where m is the polariton mass. The strong and weak links are respectively represented by

barriers of small and large amplitudes in the potential V (x) (see Supplementary Section S5).

Numerical results shown in Fig. 2.(c-d) (and also Fig.S6) reproduce the measured soliton

profiles with their characteristic tails of opposite spin polarization [54]. Note that since the

energy splitting between s and p orbitals is an order of magnitude bigger than the effective

coupling between pillars, the deviation from perfect chiral symmetry induced by the s-p

coupling (which is taken into account in the 1D continuous model) does not significantly

alter the sublattice spin properties of bulk gap solitons.

ROBUSTNESS OF BULK GAP SOLITONS IN THE PRESENCE OF A NON-

HERMITIAN DEFECT

It was theoretically predicted for conservative SSH lattices [23], that these spin-polarized

tails play a crucial role in the robustness properties of solitons in the topological gap, and in
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their interaction with a local defect. Hereafter, we extend this idea to the driven-dissipative

framework, and show that the nonlinear threshold for the lateral growth of the soliton core

is immune to the presence of a defect on one sublattice but not on the other one.

In order to probe the effect of a perturbation, we consider a defect on a pillar belonging

to a dimer neighboring the soliton core. We then monitor how the spatial expansion of

the soliton core is affected by this perturbation. The defect is optically generated by non-

resonantly pumping a pillar belonging to the A or B sublattice with a second laser (see Fig. 3

a). This creates a local reservoir of excitons whose effect is twofold: 1- it locally blueshifts

the pillar on-site energy thus acting as a perturbation on the real part of the potential; and

2- it induces a local gain through stimulated relaxation of excitons toward polariton modes,

thus acting as a perturbation of the imaginary part of the potential. This defect is therefore

intrinsically non-Hermitian.

To calibrate the real part of this perturbation, we measure the spectral shift of the

ground-state emission from a single micro-pillar presenting the same characteristics as the

ones forming the chain (see Fig. 3 (b)). For the imaginary part, we evaluate the lasing

threshold in the same pillar (Pth ∼ 0.6 mW), which enables estimating the gain induced by

the non-resonant pump creating the defect (see Supplementary Section S7).

The evolution of the spatial profile of solitons as we ramp up the resonant pump power is

displayed in Fig. 3 (d)-(g) for different amplitudes and positions of the defect. For compari-

son, the case with no defect is shown in Panel (c). We first monitor the soliton core expansion

in presence of a defect located on a B sublattice site, where the soliton tail intensity presents

local maxima (see panels (d)-(f) and Supplementary Section S7 for the calculated profiles).

As the defect breaks the system spatial symmetry with respect to the excitation spot, and

locally reduces the laser detuning, the soliton core expansion becomes asymmetric. It is

first favored toward the defect at power P ∗2 . At a higher power, close to power P2 measured

without defect, the soliton eventually recovers a symmetric profile. We observe in Fig. 3 (h)

that P ∗2 strongly varies with the defect amplitude. For instance, a defect as small as 20 µeV

(less than a tenth of the detuning between the pump laser and the top of the lower s-band)

is sufficient to reduce P ∗2 by a factor of two with respect to P2. In the simulated curve

shown in Fig. 3 (h), this strong sensitivity is well accounted for by including both calibrated

values of the real and imaginary parts of the perturbation (see Supplementary Section S7

and Fig.S8).
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This high sensitivity to defects located on the B sublattice contrasts with what we mea-

sure when the defect is localized on the A sublattice, where the amplitude of the tails van-

ishes. In that case, the second nonlinear expansion simultaneously occurs toward the right

and left dimer, regardless of the defect amplitude (see Fig. 3 (g)-(h)) and for a power close

to the one measured in absence of defect. This difference in sensitivity to defects located on

A or B sublattice is a direct consequence of the spin polarization of the soliton tails. These

results demonstrate that the lattice chiral symmetry provides solitons in the topological gap

with high robustness against non-Hermitian defects located on one sublattice. This would

also apply to the topological solitons discussed earlier, which bifurcate from a topological

edge state. Moreover, as discussed in Ref. [34], linear topological edge states at zero energy

are immune to disorder in the SSH lattice coupling constants, as long as the topological gap

remains open. These properties still hold for the gap solitons discussed here.

GENERATING SPIN POLARIZED GAP SOLITONS USING PHASE-ENGINEERED

DRIVE

The bulk solitons we have considered so far present a globally vanishing pseudospin, like

in conservative systems [52]. Hereafter, we show how we can depart from this family of

unpolarized solutions thanks to the driven-dissipative nature of polaritons. To do this, we

turn to an excitation scheme where two pillars of a dimer are driven with two beams with

same amplitude and tunable phase difference ∆ϕ = ϕA − ϕB (see sketch above Fig. 4 (a)).

In Eq. (1), this corresponds to a driving field still localized on a single dimer with equal

amplitude on both sublattices, but different phases. We select a total excitation power

P > P2 in order to obtain a three-dimer soliton when ∆ϕ = 0. Fig. 4 (a) presents the

evolution of the intensity distribution along the lattice upon increasing ∆ϕ. A sequence

of abrupt switchings is revealed between distinct regimes where the soliton core changes

size. Close to ∆ϕ = π, the driving field becomes orthogonal to the Bloch modes, strongly

reducing light injection into the lattice and explaining why the system switches to the linear

regime.

Interestingly, for non-zero values of ∆ϕ, the soliton exhibits a non-zero total sublattice

polarization, which reaches a maximum close to |S̃Tot| = 0.5 in the vicinity of ∆ϕ = π (see

Fig. 4 (b)). Remarkably, the soliton core is then localized on a single site of the driven
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FIG. 4. Spin-polarized solitons. a, Spatially resolved intensity profiles (integrated along the

direction perpendicular to the lattice and normalized to their maximum value), measured as a

function of ∆ϕ for a total excitation power P > P2 (P = 80 mW). The driven dimer is depicted

on top (purple circles). The white vertical dashed line indicates the center of the driven dimer.

b, Measured (symbols) and calculated (dashed line) soliton global pseudospin as a function of

∆ϕ c, Intensity profile of the soliton measured (solid line) and simulated (dashed line) for a phase

difference ∆ϕ = 1.13 π (indicated by the horizontal dashed line in Panel a). Blue dashed lines mark

B pillars with peaked intensity. d, Calculated Bogoliubov excitation spectrum (bottom panel) when

driving a dimer with ∆E = 0, ∆ϕ = 1.13 and an excitation power corresponding to the maximum

spin polarization of the soliton core. The white dashed ellipse highlights the blueshifted mode, and

the arrow points towards the mode emerging in the gap (see the mode profile in inset). Above

the Bogoliubov spectrum, we show the intensity profile of the bulk soliton (red bars), as well as

an illustrative schematics depicting the chain: the red disc shows the site which eigenmode has

effectively been decoupled from the bands, while the white discs show the remaining semi-infinite

chains together with their respective winding numbers related to the coupling strength at the

termination.

dimer, while the other driven site experiences a destructive interference induced by the

nonlinearity. We show, in Fig. 4 (c), experimental and theoretical spatial profiles of this

soliton for ∆ϕ = 1.13 π. As can be derived analytically (see Supplemental Section 9),
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when assuming perfect destructive interference in one of the two sites of the driven dimer,

the resulting profile is found to be the same as that of a SSH topological edge state. We

emphasize that the novel family of spin-polarized gap solitons we report here does not exist

in conservative or undriven systems, as a phase-patterned driving field is required to stabilize

them (see Supplementary Section 8).

Highly spin-polarized dissipative solitons have striking consequences on the physics of

the underlying excitations. These consequences are related to the nonlinear onsite energy

blueshifts locally induced by the solitons. For ∆ϕ = 1.13 π, the soliton core is localized on

a single site so that the energy of this particular site is strongly shifted and lies above the

upper SSH band. This creates a local potential barrier strongly localized on a single site

and effectively splits the lattice in two semi-infinite SSH chains, one of them showing a weak

link termination (W = 1). This suggests the optical creation of a non-trivial interface. For

a more quantitative analysis of this effect, we compute the Bogoliubov excitation spectrum

of the system (see Methods), in presence of a spin-polarized soliton. We consider a situation

similar to the experimental one, where the soliton is generated at energy ∆E = 0 using

two pumps localized on sites 0 and 1 and ∆ϕ = 1.13 π. The spatial profile of the soliton

(obtained for the excitation corresponding to the optimal destructive interference within

the driven dimer), is shown in the top part of Fig. 4(d), and the spatial profile of the

Bogoliubov modes is shown in the bottom. The Bogoliubov spectrum clearly shows a high

energy mode strongly localized at the soliton core position on site 1 (mode highlighted

with a white dashed ellipse), which is a signature of the large blueshift experienced by this

site. The vanishing amplitude of the Bloch band states at this position hints towards the

fact that the lattice has effectively been split into two parts. Remarkably, we observe the

emergence of a Bogoliubov mode within the topological gap (see arrow), together with its

particle-hole symmetric with respect to the pump energy E = 0 [55]. This mode is localized

on site 0 (weak link termination with W = 1 next to the soliton core), and presents a

strong spin polarization of S̃ = 0.67, thus pointing towards the non-trivial character of the

optically-created interface. Since the soliton does not create an infinite potential barrier,

the emerging topological edge state in the excitation spectrum is not fully spin-polarized as

one would expect otherwise if the optical potential barrier were infinite. These simulations

appeal for further explorations (beyond the scope of the present paper) to experimentally

demonstrate the emergence of an edge state induced by spin-polarized dissipative solitons
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in the topological gap of the SSH lattice.

OUTLOOK

This work provides new perspectives to nonlinear topological photonics. Indeed, we have

shown that the driven-dissipative nature of polaritonic systems provides a general way to

stabilize novel nonlinear solutions that find no equivalent in conservative systems, to engineer

non-Hermitian defects, as well as to reshape the potential landscape probed by Bogoliubov

excitations and to modify its topology [56, 57]. The control over the imaginary part of

the potential could enable the exploration of PT-symmetric phases in nonlinear driven-

dissipative systems [41]. It will also be of the highest interest to extend these ideas in more

complex non-Hermitian landscapes with chiral symmetry like 2D polariton lattices [17, 44,

58, 59] or higher-order topological insulators [60–62].

METHODS

Sample description

The periodic structure used in this work is etched out of a planar semiconductor microcavity

with nominal quality factor of Q ≈ 75, 000 grown by molecular beam epitaxy. The microcav-

ity is composed of a λ GaAs layer embedded between two Ga0.9Al0.1As/Ga0.05Al0.95As dis-

tributed Bragg reflectors with 28 (top) and 32 (bottom) pairs. A single 15 nm In0.05Ga0.95As

quantum well is inserted at the center of the cavity, resulting in strong exciton-photon

coupling, with an associated 3.2 meV Rabi splitting (measured by probing the polariton

dispersion via angularly resolved photoluminescence as explained in the Supplementary Sec-

tion 1). After the epitaxy, the sample is processed with electron beam lithography and dry

etching into arrays of coupled pillars arranged in a SSH lattice. The exciton-photon detun-

ing, defined as the energy difference between the uncoupled cavity mode at the bottom of

the s-band and the exciton resonance, is of the order of −4.9 meV for all experiments (see

Supplementary Section 1).

Experimental techniques

The sample is held at T = 4 K in a closed-cycle cryostat. Non-resonant photoluminescence

measurements are realized with a single-mode continuous-wave laser at 780 nm. The exci-
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tation spot is elongated (FWHM ∼ 30 µm) by focusing the beam with a cylindrical lens at

the back-focal plane of the excitation objective. The emission is collected through a lens

with NA 0.55 and imaged on the entrance slit of a spectrometer coupled to a charge-coupled

device camera with ∼ 30 µeV spectral resolution. Real- and momentum-space photolumi-

nescence images are realized by imaging the sample surface and the Fourier plane of the

objective, respectively. A polarizer is used to select emission polarized along the long axis

of the lattice. Experiments with quasi-resonant excitation are realized in transmission ge-

ometry, with the excitation (detection) on the epitaxial (substrate) side of the sample and a

spot of 3.5 µm FWHM. The optical defect is created by focusing onto a 3 µm FWHM spot

a 825 nm cw laser on the epitaxial side. For the resonant two-spot experiment (each with

3.5 µm FWHM), the phase difference is controlled with a delay line with one of the mirrors

mounted on a piezoelectric actuator. Error bars in Fig. 3 (h) correspond to the standard

deviation on the measurement of P2 obtained by performing a repeatibility study on the

resonant pump alignment. Error bars in Fig. 4 (b) are calculated by evaluating the impact

of modifications in the area chosen for intensity integration on the pseudo spin calculation.

Numerical methods

We use the 3-rd order Adams-Bashforth method for numerical integration of the nonlinear

Gross-Pitaevskii Eq. (3) with a time step of 10−3 ps. CPU-based parallel computing is

used to evaluate the kinetic energy term via Fast Fourier Transform. The numerical grid of

29 = 512 points allows to describe a lattice of 21 dimers with a step of 0.25 µm. Increasing

the resolution further or considering a longer chain does not change the results. The ramp-

up and ramp-down times are 20 ns, which is a compromise between the required adiabaticity

and simulation time. We have checked that increasing the ramp-up time further does not

change the results. The parameters were as follows: m = 3 × 10−5m0 (m0 is the free

electron mass), γ = 70 µeV , g = 5 µeV · µm2 pumping spot FWHM ≈ 2.8 µm, and the

pumping frequency detuning with respect to the band edge is ≈ 0.2 meV. Other relevant

parameters, such as the potential profile, are provided and discussed in the Supplementary

materials. Bogoliubov spectra were calculated by linearizing the discretized Gross-Pitaevskii

equation around the steady state solution ψs using the ansatz ψn = (ψs
n + δψn) exp(iωt)

with δψn = un exp(−iεt/~) + v∗n exp(iε∗t/~), where ε is the complex-valued energy [63] and

u and v are two components vectors describing the amplitude of the wavefunction of the A

and B sites in the nth unit cell. The spectrum is symmetric with respect to the pump energy
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E = 0 meV, as imposed by particle-hole symmetry. In the graph Fig. 4(d), we display the

energy versus position distribution of the component |un|2 that is associated to the creation

operator. The squared amplitudes corresponding to the A and B sites of the nth unit cell

are associated to site numbers 2n and 2n+ 1, respectively.
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