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Abstract: The brown Tunisian seaweed Halopteris scoparia was used as a feedstock for producing
renewable bioethanol, biogas, and biodiesel to demonstrate the proof of concept for the North African
energy sector. A quantitative and qualitative quantification of H. scoparia composition using different
colorimetric methods was completed to highlight its bioconversion potential. These substrate inputs
were subjected to anaerobic fermentation by Saccharomyces cerevisiae to produce bioethanol. The
materials were also used to generate bio-hydrogen and volatile fatty acids during dark fermentation
by a bacterial consortium and using the oleaginous yeast Yarrowia lipolytica. The lipids were extracted
and trans-esterified to Fatty Acid Methyl Esters (FAMEs), and their profiles were then analyzed
with gas chromatography (GC). A significant ratio of the bioethanol, e.g., 0.35 g ethanol/g DW
substrate, was produced without pretreatment, consistent with the theoretical Gay-Lussac yield. The
production of the biohydrogen and lipids were up to 1.3 mL H2/g DW substrate and 0.04 g/g DW
substrate, respectively, from the raw biomass. These results were higher than those reported for other
well-studied seaweeds such as L. japonica. Overall, this work contributes to the current investigations
in Tunisia for producing alternative energies from algae and finding new solutions to the current
energy situation and environmental challenges in Maghreb.

Keywords: Halopteris scoparia; by-product; ethanol; bio-hydrogen; lipid; fermentation

1. Introduction

Macroalgae, commonly referred to as seaweed, are multicellular, macroscopic, eukary-
otic, and autotrophic organisms divided into three categories depending on their thallus
pigmentations (green, red, and brown), which can be harvested from natural resources
but also cultivated [1,2]. Owing to their richness in organic compounds and their ability
to generate bioactive primary and secondary metabolites (e.g., pigments, fatty acids, pro-
teins, polyphenols, enzymes, and carbohydrates), seaweeds are beneficial resources widely
studied over the past decade [3].
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Until recently, several nations have shown a significant interest in the usage and the
exploitation of macroalgae for a variety of reasons, such as the production of polysaccha-
rides, which can possess interesting properties for polymers (biocompatibility, non-toxicity,
and biodegradability), de facto contributing to their high economic worth, especially in a
strong sustainable development context [4]. This is the case for the sulfated polysaccharides,
alginate, and laminarin extracted from brown macroalgae, despite their low mass content
(up to 5% w/w) [5–7]. Other active molecules can be extracted from seaweeds, for instance
phenolic compounds, which can show significant anti-inflammatory or anti-proliferative
characteristics [8]. The macroalgae extracts have many other reported benefits, such as
antitumor, antioxidant and antiviral properties [9,10], causing a rise in seaweed derivatives
on the markets, owing to these numerous health-promoting characteristics [11,12]. Besides,
these products can not only be used in the fields of feed/food, nutraceuticals, and/or
cosmetics, but also as fodder fertilizer and for biofuels’ production, which thus enhance
the blue biotechnologies’ economy [13]. Some of the seaweeds contain essential fatty acids,
such as linolenic (C18:3) and linoleic acids (C18:2) [14]. Lipids and fatty acids produced
by marine macroalgae could be transformed into biodiesel, which has similar qualities to
the conventional diesel fuel and may be used either straight in current diesel engines or
mixed with diesel from petrochemistry. The production of biofuels from seaweed is a green
technology that could minimize environmental damages by limiting the over-exploitation
of fossil fuels, expected to rise by 40% between 2010 and 2040 [15]. This is particularly true
regarding the political stability in Europe and the strong dependence on fossil fuels and gas
in 2022. Many of the studies have reported the contribution of macroalgae as renewable and
economical sources to address climate change issues [16]. Shifting to renewable energies
and/or new ways for making clean energies is, thus, of utmost interest.

Macroalgae have a higher photosynthetic capability than terrestrial plants, as well as
high water and carbohydrate contents [17–20]. Factors such as the productivity, relative
ease of growing, harvesting, and scalability are also major considerations for choosing
a specific seaweed (raw and/or by-products from seaweed processing) as biofuel feed-
stock [17–20]. According to Chen et al. [20], macroalgae may produce a net energy of
11,000 MJ/t dry algae [21], in comparison to 9500 MJ/t from microalgae gasification. Brown
seaweed contains quantities of fermentable sugars (laminarin, fucoidan, alginate, glucan-
like, etc.) without the presence of lignin (as for terrestrial plants). It can thus be used
in the macroalgae-based biorefinery technologies for producing biomethane, bioethanol,
biodiesel, and bio-oils [20,21]. The red, green, and especially brown macroalgae were sub-
jected to fermentation under anaerobic digestion, using different strains such as S. cerevisiae
or P. angophorae to produce ethanol [22]. For instance, L. hyperborean, J. rubens, U. lactuca or
S. latifolium from the Egyptian Mediterranean were characterized as bioethanol feedstock
after fermentation [22]. Note that the various conversion methods are detailed in recent
reviews, such as fermentation, anaerobic digestion, liquefaction, transesterification, or
pyrolysis [20,21]. Aboulkas et al. showed that 24.1% and 44% of bio-oil and biochar can
be obtained prior to a pyrolysis conversion from the Moroccan G. sesquipedale [23]. High
quality biodiesel production was reported after some transesterification steps by using
P. padina from the Abu Qir Bay in North Africa [24].

Tunisia, with 1300 km of Mediterranean Sea coastlines, aims to develop the exploitation
of macroalgae for creating new operational sectors in energy. Halopteris scoparia, belonging
to the phaeophycean species, is an abundant brown seaweed on the Tunisian north coast,
which is still in the process of having its worth evaluation. To our knowledge, no other
works to date have covered the bioconversion potential of H. scoparia. Thus, this work
aims to provide a proof of concept for using H. scoparia biomass (as well as some of the
by-products generated after the extraction of its high-value biomolecules) as a material to
produce various types of energy vectors [25,26]. Thus, Bioethanol, H2, and lipids were,
respectively, produced by fermentation (Saccharomyces cerevisiae) and dark fermentation
(microbial consortium and Yarrowia lipolytica). The results could contribute to the integration
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of H. scoparia into a global biorefinery conversion process in Tunisia, and more generally
in Maghreb.

2. Materials and Methods
2.1. Algal Biomass

The H. scoparia biomass was gathered in February 2020 from Tabarka city, which is in
the north-west of Tunisia (36◦57′36.223” N and 8◦45′12.018” E). After harvesting, the thalli
were rinsed with distilled water to remove the salts and dried for 20 days at 50 ◦C [27].
The dried samples were then pulverized into a powder size of 16–40 µm using a blender
(Moulinex, France). This item was labeled as the raw seaweed and given the abbreviation
“RSF” (Raw Seaweed Fraction). Two further fractions were employed in this study. They
were generated after the extraction and purification of the polysaccharides and pigments
from the H. scoparia dry biomass [27] and were, respectively, termed “BP1-PS” and “BP2-F”.
The BP1-PS is a by-product obtained from the carbohydrates’ (fucoidan/alginate) extraction.
Briefly, after depigmenting and delipidating the dry biomass (100 g) using acetone (1.4 L)
and methanol (0.6 L) treatment (twice) for 24 h at 25 ◦C, the obtained biomass (75 g) was
treated for 2 h at 60 ◦C with chlorohydric acid (0.1M, pH = 2) to extract the fucoidans, then
filtered and treated with Na2CO3 (3%, pH = 11) at 60 ◦C to extract the alginates, then dried
for 24 h at 50 ◦C [23,24]. The BP2-F is a by-product obtained from the depigmented biomass
with successive treatments, using methanol to remove all of the pigments for a 72 h period
at 25 ◦C under stirring (250 rpm). After filtering, the biomass was collected and dried for
24 h at 50 ◦C [28,29].

2.2. Algal Biomass Characterization and Chemicals Constituents
2.2.1. Carbohydrate Content of the Three Fractions

The nonenzymatic gravimetric technique was used to determine the total polysaccha-
rides of RPS, BP1-PS, and BP2-F (AOAC Official Method 993.21) [30,31]. One hundred mg of
RPS and BP1-PS were depigmented with acetone (1400 mL) then delipidated with methanol
(600 mL) for 14 h at room temperature with moderate stirring. The obtained suspensions
were filtered using a fine mesh strainer with a porosity of 16–40 µm. RPS, BP1-PS and BP2-F
previously depigmented and delipidated were macerated in ultra-pure water (100 mL) for
4 h at 80 ◦C under gentle stirring (400 rpm). Cold ethanol 96% (300 mL, −20 ◦C) was used
to precipitate the polysaccharides fractions. The suspensions were centrifuged at a rate
of 20,000× g for 20 min at 4 ◦C, and the pellets were recovered. The following ethanolic
precipitation cycle was completed three times. After that, the pellets were suspended in
ultra-pure water (50 g/L) and freeze dried. From these fractions, the total carbohydrate
contents were determined using the Dubois colorimetric technique, and the reducing sugars
using the bicinchoninic acid method, both using glucose as standard [32,33].

2.2.2. Phenolic Content

Ultrasound was used to quantify the phenolic chemicals RPS, BP1-PS, and BP2-F
(main fractions from Section 2.1). Ten g of the dried macroalgae were mixed with 200 mL
of acetone (80%) and incubated for 45 min at 4 ◦C, 120 W, and 40 KHz. The suspension
was then centrifuged (5000× g for 10 min at 4 ◦C), and the supernatant was collected and
dried, using a rotary evaporator (Stuart RE300B, Stone, UK) at room temperature [34]. The
total phenolic content was determined using the Folin–Ciocalteu technique, established by
Singleton (1965) and using Gallic acid as the standard [35].

2.2.3. Composition in Chemical Elements

This composition was determined after heating the RPS, BP1-PS, and BP2-F at 550 ◦C
for 6 h. Prior to an acidic treatment with 5 mL chlorohydric acid (37%) and 5 mL nitric acid
(2M), the ions concentrations for the fractions were assessed, using an Atomic Absorption
Spectroscopy (iCETM3300, Thermo Scientific, Waltham, MA, USA) [36].
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2.2.4. Lipid Extraction

The Soxhlet technique was used to determine the total lipids of the RPS, BP1-PS, and
BP2-F. In a nutshell, 500 mg of each of the fractions were inserted in a thimble in a Soxhlet
extractor, along with 170 mL of the hexane in a round-bottomed flask for 4 h at 60 ◦C,
followed by 40 min of solvent distillation. After 30 min of hexane evaporation using a
rotary evaporator at 55 ◦C (Stuart RE300B, Bibby Scientifics, Stone, UK), the round-bottom
flask was placed in an oven to be weighted, and the percentage of lipids that it contained
was determined [37].

2.2.5. Ash, Moisture, and Protein Contents

The dry weight (DW) of the RPS, BP1-PS, and BP2-F was measured, using the AOAC
technique, by drying 0.5 g of each sample in an air oven at 105 ◦C for 24 h. The ash content
was calculated after drying 50 mg of RPS, BP1-PS, and BP2-F in a furnace at 550 ◦C for 4 h.
The protein content in the RPS, BP1-PS, and BP2-F was quantified, using the Kjeldahl test
and an AOAC International nitrogen conversion factor of 6.25 (method 981.10) [38].

2.3. Fermenting Microorganism, Medium Culture, and Production Process
2.3.1. Ethanol Production

Saccharomyces cerevisiae ATCC 7754 was used to produce bioethanol [39]. The ex-
periment was conducted in 500 mL Erlenmeyer flasks containing 200 mL of culture
medium, described by Kristiansen (1994), and consisting of glucose (50 g/L); yeast extract
(3 g/L); monobasic potassium phosphate (KH2PO4) (5 g/L); ammonium sulfate (NH4)2SO4
(2 g/L); KCl (120 mg/L); CaCl2, 2H2O (60 mg/L); MgCl2, 2H2O (520 mg/L); FeSO4, 6 H2O
(35 mg/L); MnSO4, H2O (3.8 mg/L); CuSO4, 5 H2O (0.5 mg/L); thiamine-chlorohydric
acid (5 mg/L); pyridoxine-chlorohydric acid (6.25 mg/L); nicotinic acid (5 mg/L); D-biotin
(0.125 mg/L); pantothenic acid (6.25 mg/L); myo-inositol (125 mg/L) and traces of ZnSO4,
7 H2O (2.3 µg/L); CoSO4, 4 H2O (2.3 µg/L); NaMoO4, 2 H2O (3.3 µg/L); H3BO3 (7.3 µg/L);
KI (1.7 µg/L); NiSO4, 6 H2O (2.5 µg/L) [40].

The S. cerevisiae was inoculated in snugly closed flasks and fermentation was car-
ried out for 48 h at 30 ◦C under gentle stirring of 200 rpm (INFORS HT, Bottmingen,
Switzerland). The biomass growth was measured at 550 nm. To estimate the ethanol
production, 5 mL were taken and centrifuged at 10,000× g for 5 min at 25 ◦C every 6 h.
Before further investigation, 1 mL of each supernatant was deproteinized with 125 mL of
barium hydroxide solution (0.3 M) combined with 125 mL of zinc sulfate solution (5% w/v)
and centrifuged at 10,000× g for 5 min at 25 ◦C. The ethanol was quantified using a
high-performance liquid chromatography (HPLC) apparatus (1260 Infinity Quaternary
LC system, Agilent Technology, Palo Alto, CA, USA) outfitted with two ionic exclusion
columns in series (Rezex ROA 300 7.8 mm, Phenomenex, Torrance, CA, USA). The samples
were filtered using a cellulose acetate filter (0.2 µm), injected (10 µL), and eluted in an
aqueous sulfuric acid solution (5 mM) mobile phase at a flow rate of 0.7 mL/min and
50 ◦C. The ethanol concentrations were measured using a refractometer (HP 1100 series,
Agilent Technologies, Palo Alto, CA, USA) and an ethanol standard curve (0 to 100 g/L).
The M8620AA OpenLAB Data Store Software A.02.01 was used to analyze the results.

2.3.2. Hydrogen and Volatile Fatty Acid Productions

For biohydrogen generation via anaerobic fermentation, the microbial consortium
was chosen from a sewage treatment facility and treated with 2-bromoethanesulfonate in a
complete medium to minimize the methane production from the archaea and to stabilize
the community [26]. The composition of this culture medium was: K2HPO4 (18 g/L);
KH2PO4 (18 g/L); (NH4)2SO4 (72 g/L); NaCl (12 g/L); MgSO4, 7H2O (1.2 g/L); CaCl2,
2H2O (1.2 g/L); MnSO4,6H2O (0.15 g/L); CoCl2, 6H2O (0.015 g/L); FeSO4, 7H2O (0.4 g/L);
H3BO3, H2O (6 g/L); ZnCl2 (8.2 g/L); NiCl2, 6H2O (2.6g/L); CuCl2, 2H2O (1.5 g/L);
Na2MoO4, H2O (2.6 g/L); FeCl2, 4H2O (75 g/L); hemin (0.12 g/L); biotin (0.24 g/L); PABA
(0.12 g/L); resazurin (0.12 g/L).
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This culture medium was supplemented with glucose at concentration of 20 and
10 g/L in, respectively, the pre-culture and final culture. Other components, such as
L-cysteine (0.6 g/L) and carbonates (Na2CO3) (4.8 g/L), were also added to remove the
oxygen and maintain the pH 6, respectively [41]. The pre-cultures were prepared in flasks
(90 mL) with 10 mL of consortium for 12 h at 30 ◦C with stirring (150 rpm). The cultures
were then degassed and sterilized before being inoculated with 10 mL of inoculum from
pre-cultures, with biomass contents of 10 g/L. The fermentation took place at 30 ◦C with a
stirring rate of 150 rpm [42]. A spectrophotometer (Biomate 3S, UV/vis spectrophotometer,
Thermo Scientific, France) was used to measure the turbidity at 600 nm. After 24 h,
5 mL of the culture broth was sampled and centrifuged at 10,000× g for 5 min at 25 ◦C.
One mL of the obtained supernatant was treated and analyzed by high-performance
liquid chromatography (HPLC), as previously detailed (Section 2.3.1), to quantify the
concentrations of the volatile fatty using acetate (1.25 to 20 g/L), propionate (1 to 20 g/L),
and butyrate (1 to 20 g/L) as the standards.

After 24 h of anaerobic fermentation, the biogas volume was quantified using a
Terumo® syringe. Its quality and composition, particularly the biohydrogen concentration,
were determined by a micro-gas chromatograph (Agilent 3000 A, Agilent Technologies,
France) with two channels and a thermal conductivity detector. The hydrogen content was
measured in the first channel, which was outfitted with a 5 Å column at 60 ◦C and 30 psi.
The obtained data were quantified using the Soprane software [26].

2.3.3. Biodiesel Production

The Yarrowia lipolytica (MUCL 28849) was from the BCCM/MUCL (Agro) Industrial
Fungi and Yeasts Collection in Belgium [43]. The Y. lipolytica was kept at 4 ◦C on potato
dextrose agar. The growth medium was made up of: K2HPO4 (3 g/L); Na2HPO4, H2O
(3 g/L); (NH4)2SO4 (3 g/L); MgSO4, 7H2O (1 g/L); ZnSO4, 7H2O (0.040 g/L); FeSO4, 7H2O
(0.016 g/L); MnSO4, H2O (0.0038 g/L); CaCl2, 2H2O (0.023 g/L); CoCl2, 6H2O (0.5 mg/L);
CuSO4, 5H2O (0.0009 g/L); Na2MoO4, 2H2O (0.00006 g/L); and H3BO3 (0.003 g/L), sup-
plemented by 10 mL/L of a mineral stock solution containing MnSO4 (0.38 g/L); H3BO3
(0.3 g/L); ZnSO4, 7H2O (4 g/L); FeSO4, 7H2O (1.6 g/L); CaCl2, 2H2O (2.3 g/L); and 1 ml/L
of metals’ stock solution composed of Na2MoO4, 2H2O (0.06 g/L); CoCl2, 6H2O (0.5 g/L);
and CuSO4, 5H2O (0.9 g/L) [44]. To prevent precipitation, the pH was lowered to 4.5
with orthophosphoric acid 85% before sterilization and subsequently to 6 with KOH 1
M following sterilization. The yeast preculture was prepared by inoculating 200 mL of
medium culture containing glucose (4 g/L) with the Y. lipolytica colonies picked from an
agar plate and keep for 24 h at 30 ◦C in a rotary incubator shaker at 100 rpm (INFORS
HT, Multitron Standard, Switzerland). Ten mL of pre-culture were used to make cultures
with various substrates, RPS, BP1-PS, and BP2-F (2 g/L). Glucose (2 g/L) was used as the
positive control.

The cultures were incubated at 30 ◦C at 200 rpm in the same rotary shaker, and 5 mL of
each culture was collected every 5 h. High pressure homogenization was used to disrupt the
cells in the samples, through a nozzle at 2500 bar pressure (Constant System Limited, Low
March, Daventry NN11 4SD, UK). Half a mL of each collected sample was homogenized
with 4 mL of chloroform, 2 mL of methanol, and 1 mL of distilled water. The mixture was
then separated into an aqueous superior phase and a lower phase containing the extracted
lipids by a centrifugation for 10 min at 2000× g. The organic phase was then pooled in
pre-weighed tubes in 1 mL increments. After evaporating the solvent, the lipids were
recovered using a speed-vacuum at 40 ◦C for 120 min until reaching a constant weight.
The lipids were suspended in chloroform and kept at −20 ◦C. The transesterification was
completed, and the fatty acid methyl esters’ profile was analyzed, using the method of
Morrison and Smith [36]. One hundred mL of the sample were combined with 800 mL of
MeOH/BF3 (14%) and placed in a water bath at 100 ◦C for 15 min. After cooling the mixture,
1.5 mL of water was mixed with 750 mL of hexane containing heptadecane, 1% (v/v) was
added, and 1 mL of the mixture was finally injected and analyzed by gas chromatography
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(HP6890, Hewlett Packard, Palo Alto, CA, USA) equipped with a Supelco SPB-5 (Supelco
Inc., Bellefonte, PA, USA) capillary column (30 m × 0.32 mm × df 0.25 mm), using nitrogen
as a gas vector at 0.80 mL/min and flame ionization as a detector (280 ◦C). The rise in the
temperature was from 170 ◦C to 220 ◦C, at a rate of 3 ◦C/min, for 3 min. The injector was
set at 250 ◦C. The identification of the methyl esters was made by comparing the retention
times with known standards. The obtained data were analyzed using MestReNova 7.1.

2.4. Statistical Analyses

All the statistics were determined using the statistical software SigmaPlot 12.5 (Systat
Software, SPSS Inc., Chicago, IL, USA). Data were expressed as mean ± standard deviation
of three replicates. A t-test and post hoc procedures (Tukey test) were performed to compare
the data and analyze the pairwise differences. The differences were considered significant
for p < 0.05.

3. Results and Discussion
3.1. Chemical Constituents
3.1.1. Ash, Moisture, Proteins, Fats, and Phenolic Contents

The H. scoparia biomass and by-product compositions are given in Table 1. A quali-
tative study of H. scoparia shown that the raw biomass contains 3% fat and 7% proteins.
According to the literature, the protein content in brown algae can range from 3% to
15% [45], but the fat content is around 5%, as with the total lipids content in A. nodosum,
4.46% [46]. The ash and moisture contents of the dried H. scoparia were, respectively, 43%
and 7%, which is consistent with previous studies reporting that the ashes could vary from
24% to 49% and the moisture between 4% and more than 18%, depending on the season and
the genus of the brown seaweed [47–49]. For instance, H. scoparia presented a low moisture
content which agreed with the values reported for Undaria pinatifida, a seaweed used for
biofuel production [50]. Furthermore, this macroalgae had 4.4% of phenolic content which
is close to the content found for another brown Tunisian seaweed, e.g., Cystoseira compressa,
with a value of 4.8% [51,52]. It is noteworthy that the harvesting period is an important
parameter that can indirectly affect the macroalgal biomass availability and its biochemical
composition [53].

Table 1. H. scoparia (RPS) and by-products’ composition after carbohydrate (BP1-PS) and fucoxanthin
(BP2-F) extractions.

Composition %
(w/w)

H. scoparia
(RPS)

By-Product after
Carbohydrate Extraction

(BP1-PS)

By-Products after
Fucoxanthin Extraction

(BP2-F)

Fat 2.92 ± 0.28 1.5 ± 0.52 0.93 ± 0.6
Protein 6.53 ± 0.56 1 ± 0.5 0.87 ± 0.71

Ash 42.63 ± 2.2 47.34 ± 1.4 35.41 ± 2.5
Moisture 6.79 ± 0.16 7.57 ± 0.16 9.06 ± 0.45

Phenolic content 4.4 ± 0.005 0.43 ± 0.0003 0.29 ± 0.0005

This biochemical composition provides information that could be useful in performing
the appropriate pretreatments to make H. scoparia more suitable for energy production.
According to Suutari et al., the protein level can impact the microbial bioconversion of
macroalgae [54]. For example, a high protein content (7–20%) can reduce the biohydrogen
production [55]. Furthermore, it has been shown that the bioconversion of macroalgae
with a high soluble protein content can produce toxic ammonia [55]. In the case of brown
macroalgae, the microbial degradation of the constitutive proteins was inhibited, due
to their cellular localization and linkages with cell wall polysaccharides [56]. Hou et al.
reported that the bioethanol production after macroalgae bioconversion was correlated with
their carbohydrate contents, rather with their protein contents [57]. In addition, because of
the low lipid concentrations, the production of biofuels from H. scoparia primarily depends
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on their carbohydrate conversion to bioethanol production, and secondly on their fatty
acids’ transesterification capacity to produce biodiesel.

The ash content from H. scoparia seemed to be high and reflected its mineral content.
It can provide functional micronutrients serving to enhance biological conversion, such as
anaerobic digestion [58]. In this regard, in comparison to the thermal conversion, biological
processing is the most ideal conversion procedure for algae since the algae are the most
tolerant of ash content [59]. Regarding the literature, the high quantity of ash increases the
onset of the pyrolysis process and then the bio-oil yields. So, H. scoparia could produce
a low bio-oil yield via fast pyrolysis behavior, due to its high content of ash. According
to Bae et al., some of the pretreatments are beneficial for ash reduction [60], but excessive
quantities of ash (> 20%) can generate slagging and fouling, which is a key issue for biofuels
production [61].

3.1.2. Composition in Chemical Elements

H. scoparia (RPS) contains macro-, microelements, and heavy metals (Table 2). Accord-
ing to the literature, the levels of these elements can significantly change depending on
the species [45]. H. scoparia contained lower levels of different micro-, macroelements, and
heavy metals than in the F. vesiculosus or other French edible macroalgae that are considered
suitable for food. This composition highlighted the low food potential of this seaweed
and encouraged investigating its bioconversion potential [61]. Note that H. scoparia also
contained alkali metals, such as K and Na. According to Ross et al., these elements derived
from the macroalgae biomass may cause problems with fouling and slagging in gasification
and biohydrogen production [62]. The high alkali metal concentrations may also cause the
inhibition of bioethanol production [62]. Thus, it is of the utmost importance to identify
and quantify these various chemical elements, which allows the determination of whether
a particular pretreatment must be applied to the seaweed to reduce the concentration of
ash and undesirable chemical elements [62].

Table 2. Composition in chemical elements of H. scoparia (RPS).

Chemical Elements mg/kg DW 1

P 29.950 ± 0.008
Ca 19.919 ± 0.003
K 15.689 ± 0.037

Na 10.350 ± 0.097
Mg 8137.5 ± 0.056
Fe 3946.75 ± 0.023
Mn 51.5 ± 0.005
Ni 23.75 ± 0.008
Zn 23.55 ± 0.012
Cu 6.95 ± 0.01
Pb 4 ± 0.01

1 DW: dry weight.

3.1.3. Sugars’ Contents

As shown in Table 3, the total carbohydrate content in H. scoparia (RPS) represented
133.9 g/kg, which was much higher than for the carbohydrates’ content reported from
S. vulgare (31.03± 6.59 g/kg) [46], or from C. barbata (9.6 g/kg) [47]. Note that the brown sea-
weeds were reported as showing a higher content of carbohydrates during the spring [48].
The BP1-PS and BP2-F fractions were still composed of carbohydrates with, respectively,
79.02 ± 0.03 g/kg and 113.20 ± 0.04 g/kg. The significant difference (p < 0.05) between
each fraction comes from the extraction methodology, where the BP2-F (obtained after
pigment extraction) was not depleted in carbohydrates in comparison to the BP1-PS. These
carbohydrate contents, as well as the reducing sugars’ values for the by-products, were still
close to the quantities reported for raw brown macroalgae, such as Sargassum obtusifolium
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and Rosenvingea nhatrangensis (123 and 12.6 g/kg, respectively) [49], which highlights their
potential as feedstock materials for fermentation, etc.

Table 3. Total and reducing sugars contents.

Samples (g/kg DW) Total Sugars (g/kg) Reducing Sugars (g/kg)

RPS 133.9 ± 0.12 39.5 ± 0.05
BP1-PS 79.02 ± 0.03 15.73 ± 0.09
BP2-F 113.20 ± 0.04 15.26 ± 0.02

3.2. Biofuels’ Production from H. scoparia and By-Products of Extraction
3.2.1. Production of Bioethanol

The RPS, BP1-PS and BP2-F were subjected to solid state fermentation and used as
substrates to generate bioethanol from Saccharomyces cerevisiae ATCC7754. This strain
was selected owing to its ability to produce important ethanol concentrations, regarding
its low sensibility to a high concentration of ethanol, high selectivity for fermentable
sugars such as glucose, galactose, and mannose during fermentation, and the capacity to
produce a low quantity of by-products [50,51]. Figure 1 shows the evolution of bioethanol
production simultaneously with the consumption of fermentable sugars from the RPS,
BP1-PS and BP2-F fractions for 72 h. According to the theoretical yield of Gay-Lussac for
ethanol production from glucose (0.51 g ethanol/g glucose), around 5.2 g/L of ethanol was
produced for the positive control.
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Due to their content of reducing sugars (Table 3), each of the other substrates allowed
the production of ethanol, with concentrations ranging from 0.65 to 0.72 g/L during the
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three days of fermentation, without a significant difference (p > 0.05). This corresponded
to 0.35, 0.345, and 0.325 g ethanol/g DW for RPS, BP1-PS, and BP2-F, respectively. The
difference between the ethanol production from BP1-PS and BP2-F was explained by the
slight difference in the initial content of the reducing sugars. The difference between
the yield of ethanol produced from BP1-PS and BP2-F and the yield of RPS could be
due to the phenolic compounds present in RPS, which is higher than those of the two
by-products (4.4%). Chen et al. showed that the phenolic compounds can affect the
fermentation ability of S. cereviseae and reduce ethanol production due to their antimicrobial
properties [63]. These results were higher than those reported for the untreated macroalgae
Saccharina japonica (0.281 g ethanol/g DW) or Laminaria japonica (0.28 g ethanol/g DW) [52].
According to Obata et al., this change could be explained by the difference in the constitutive
fermentable sugar characteristics of each macroalgae [64].

Better results were reported for the pretreated (mechanical, acid pretreatments, and enzy-
matic hydrolysis) brown seaweed materials from Sargassum vulgar or Padina tetrastromatica,
with some yields close to 0.38 and up to 0.66 g ethanol/g DW [12]. For instance, washing,
drying, milling, and heating (121 ◦C for 20 min in an autoclave) macroalgae can be efficient
in releasing fermentable biomolecules, by breaking down the outer layer of the cell wall
and increasing the surface area [53,54]. Combining the mechanical pretreatment with the
use of enzymes can also reduce the generation of fermentation inhibitors [65,66]. Thus,
further experiments should be planned to enhance the ethanol production by pretreatment,
in particular RPS for more exposing and/or generating of fermentable polymers, oligo- and
monomers [65–67]. Other studies highlighted that not only the enzymatic steps can affect
the fermentation yields, since additional elements can change the bioethanol production.
Mutripah et al. showed that an acid hydrolysis of the seaweed using 0.2 M H2SO4 before
treatment at 121 ◦C for 15 min allowed the generation of the reducing sugars’ content
of about 60 g/kg DW [68]. P. australis was also composed of around 145 g/kg DW total
carbohydrates, which was close to the values for H. scoparia (133 g/kg DW). However,
the use of the H. scoparia biomass as a fermentation substrate resulted in a higher ethanol
yield (0.35 g ethanol/g DW) than that reported for P. australis (0.002 g ethanol/g DW). This
finding could be due to the high level of 5-HMF and levulinic acid obtained after hydrolysis
using H2SO4, which could inhibit the fermentation process [68]. It clearly shows the impor-
tance of choosing the appropriate hydrolysis pretreatment for significantly enhancing the
bioethanol production. Using various enzymes in the mix, such as recombinant alginate
lyases, oligo-alginate lyases, and cellulases, can increase the ethanol yields, as reported for
the M. pyrifera biomass [69]. The authors confirmed that enzymatic treatments could be
sufficient for increasing glucose liberation, avoiding the fermentative issues caused by acid
and/or thermal pretreatment [69].

The selection of suitable fungal or microbial strains is a crucial aspect of the fermen-
tation process. Identifying the organisms able to convert heterogeneous sugars is still a
challenge in bioethanol production from macroalgae [70]. Indigenous halotolerant marine
yeast could be used in the fermentation process, considering their tolerance to high con-
tents of salts in ash [71]. It has been outlined that the use of Candida sp. could increase
the ethanol yield by up to 1.76% for the macroalgae Kappaphycus alvarezii, despite the
high salt concentrations [71]. Offei et al. [70] reported that acclimatizing yeasts to higher
concentrations of some substrates was a way of increasing ethanol output. This was ac-
complished employing a two-stage fermentation of the hydrolysates from S. japonica [72].
S. cerevisiae KCCM 1129 was used in the first fermentation stage of S. japonica to convert
the glucose content into ethanol, while P. angophorae KCTC 17574 was utilized in the sec-
ond fermentation stage to convert the mannitol content into ethanol. The acclimatized
P. angophorae KCTC 17574 was able to produce about 0.3 g ethanol/g mannitol, instead of
0.13 g ethanol/g mannitol for the non-acclimatized one.

Moreover, the fermentation technique, which simultaneously used saccharification and
fermentation (SSF), is reported to be a more productive method than splitting hydrolysis
and fermentation (SHF). It saves time, reduces the number of needed unit operations, and
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decreases the contamination issues. The SSF method may enhance the level of bioethanol
production by avoiding end-product inhibition and the potential loss of sugars [73].

3.2.2. Production of Hydrogen and Volatile Fatty Acids

Figure 2 illustrates the volatile fatty acids (VFAs) and the biohydrogen production
of the bacterial consortium for 24 h (dark fermentation), using RPS, BP1-PS, and BP2-F
fractions as the substrates. Glucose was the positive control (1.85 g/L butyrate, 479 mg/L
acetate, 72 mg/L propionate, 40 mL H2/g glucose corresponding to 43% H2 in the total
biogas). The results highlighted that each fraction can be used as feedstocks for generating
biohydrogen, i.e., 1.3 mL H2/g DW (around 1/3 of the yield by using glucose).
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Regarding the literature, these results were lower than those observed, for example,
by using Huzikia husiforme sp. (10.3 mL H2/g DW) [74] or the brown seaweed L. japonica
(58.5 mL H2/g DW) as substrates, noting that pretreatments have been applied (acid,
alkali, or enzymatic hydrolysis step) for generating more sugars to enhance the level of
biohydrogen production [75,76]. However, the yield of H2 produced from H. scoparia
(13 mL H2/g DW) was slightly higher than the one reported from non-treated L. japonica
(10 mL H2/g DW) [77]. The H2 production was coupled in the experiments with two
preferential biosynthesis pathways for the bacterial consortium [20], one producing acetate,
and the second one butyrate. A significant difference (p < 0.05) was observed regarding
the butyrate concentration (612 mg/L) which was two times higher using the RPS than the
BP1-PS and BP2-F fractions. This result comes from the content of reducing sugars, which
represented 39.5 g/kg DW in the RPS. The acetate concentrations were close to 154, 205, and
225 mg/L for BP2-F, BP1-PS, and RPS, respectively, without a significant difference. These
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data were slightly lower than those reported, for example, from L. japonica, P. elliptica, and
E. critina to produce butyric acid (1.9, 2.5, and 2.8 g/L, respectively), acetic acid (4.5, 2.2, and
2.8 g/L, respectively) or propionate (0.6, 0.4, and 0.4 g/L, respectively) [20,74,75]. Having a
balanced C:N ratio of 20–30 should help in increasing the productivity, as reported by some
papers [20,76–78]. According to the literature, many factors, such as pH, can affect the yield
of H2 production from macroalgae. Thus, the optimal pH to produce biohydrogen from
various biomasses can vary between 5.2 to 7, butyrate being the main VFA, produced at
pH 7 [79]. So, the butyrate pathway was preferentially used by our consortium to produce
biogas from H. scoparia; the acetate and propionate being produced in a second step [79].

To increase the H2 production, heat pretreatments of the biomass could be of crucial
importance, in particular to liberate specific alditols and sugars, which could be finally
converted into pyruvate, H2, butyric acid, and acetate. This pretreatment step seems
beneficial when considering the difficulty of mannitol fermenting in anaerobic conditions.
Liu et al. showed that the heat pretreatment of L. japonica (200 ◦C) produced a maximum of
H2 yield close to 85.45 mL H2/g DW, in comparison with the untreated biomass (10 mL
H2/g DW) [80]. The relative amount of H2 produced from H. scoparia may also be due to
the low initial substrate concentration (1%). Indeed, many of the studies have reported
the effect of substrate concentrations on H2 production. For example, using L. japonica
(pH = 6), the optimal substrate concentration was 2% to produce the maximum yield of
biohydrogen (75.88 mL H2/g DW) [80]. Thus, further experiments should be planned
to enhance the biohydrogen production from RPS, BP1-PS and BP2-f and by-products
for biofuel production since it can still be considered a potential but mid-term suitable
alternative for energy production.

3.2.3. Biodiesel Production

The time-course measurements of lipids produced by Y. lipolytica are shown in Figure 3.
The positive control allowed the release of 155 mg/L of lipids after 84 h. The RPS, BP1-
PS and BP2-F fractions showed significant differences (p < 0.05) in terms of the lipids’
concentrations, with some values of 30.5, 1.6 and 13.3 mg/L, respectively. These substrates
showed a low potential, probably because of the presence of high nitrogen concentrations
in the media and the unbalanced initial C:N ratio, leading to a low yield in the lipid
contents [76–78]. Moreover, Y. lipolytica is not able to use the VFAs produced in the
medium culture for making intracellular lipids. The total lipids content is the principal
indicator of biodiesel production from macroalgae. Thus, H. scoparia is characterized by
a lipid content close to 3% DW. This low total lipid content was in concordance with the
literature. Song et al. reported that the level of lipids from brown macroalgae was below 5%
DW [81]. In addition, it was observed that the brown macroalgae S. trinodis present 1.25%
of total lipids, highlighting the low potential of this seaweed for biodiesel production [82].
Regarding literature, the fluctuation in the lipids’ levels is influenced by the environmental
conditions as well as the intrinsic potential of macroalgae [82].

It is noteworthy that the compositions of fatty acids, as described in Table 4, were
closely the same for all the fractions with linoleic (C18:2) and oleic (C18:1) acids representing
around 80%, which was consistent with the literature [20]. Liang et al. reported that the
composition of fatty acids from soybean and Jatropha oils used for generating biodiesel
in the United States and European Union was like the composition of fatty acids obtained
from lipids, using H. scoparia as a carbon source [83]. Fei et al. also showed that the profile
of fatty acids, using glucose or VFAs as a carbon source of the lipid accumulation from
C. albidus, was close to the profile given in Table 4 [83].
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Figure 3. Production of lipids by Y. lipolytica fermentation from medium enriched with RPS, BP1-PS,
and BP2-F fractions, and using glucose as positive control.

Table 4. Fatty acids’ composition of lipids produced by Yarrowia lipolytica from RPS, BP1-PS, and BP2-F.

Fatty Acids Composition %

Palmitic acid C16:0 11
Palmitoleic acid C16:1 10

Stearic acid C18:0 1
Oleic acid C18:1 28

Linoleic acid C18:2 51
Linolenic acid C18:3 1

These authors also showed that pretreatments are a crucial step to achieve high yields
of carbohydrates (alginate and mannitol) or VFAs to be used by oleaginous yeast, such
as Y. lipolytica, to produce high quality biodiesel. Indeed, the type of fatty acids and the
ratio between the SFAs (saturated fatty acids) and UFAs (unsaturated fatty acids) play an
important role in determining the quality of biodiesel produced from macroalgae. The
H. scoparia showed a UFAs > SFAs ratio [82]. The SFAs from H. scoparia were higher (11%)
than the SFAs’ contents reported from S. trinodis (1.167%) [82]. High quantities of the SFAs
could also improve the stability of biodiesel, whereas high levels of UFAs may enhance
the biodiesel fluidity. Thus, combining them correctly could lead and serve to producing
biodiesel of a higher quality [82].

4. Conclusions

Transesterification, thermochemical, and biochemical are the principal processes to
convert biomass into biofuels; the choice of one of these technologies still being related
to the so-called bioconversion. Halopteris scoparia, which is an abundant brown seaweed
found in Tunisia, showed a significant potential for being used as feedstock for energy
conversion. Without an optimal run and specific pretreatment, it was possible to produce
ethanol (0.35 g/g DW), H2 (1.3 mL H2/g DW), VFAs (612 mg butyrate/L, 225 mg acetate/L,
11 mg propionate/L) and a small quantity of lipids (30.5 g/L) from the raw macroalgae
fraction (RPS). The feasibility of producing energy vectors by using some of the by-products
from the extraction processes of high value molecules (polysaccharides, pigments) was
also assessed. Further experiments should be planned, for instance by enhancing yields
(e.g., pretreatments for upgrading the saccharification), directing metabolic flux using
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various experimental parameters, or by changing the content of the inputs. Overall, this
work completes the proof of concept for generating alternative and cleaner energy by
setting up new processing sectors or making the concept economically viable of biorefin-
ery from North African brown seaweeds. In addition, the processing of by-products to
energy can reduce environmental impacts and increase the capacity of energy recovery in
power generation.
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