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ABSTRACT Shape-from-Template (SfT) solves the registration and 3D reconstruction of a deformable 3D
object, represented by the template, from a single image. Recently, methods based on deep learning have
been able to solve S{T for the wide-baseline case in real-time, clearly surpassing classical methods. However,
the main limitation of current methods is the need for fine tuning of the neural models to a specific geometry
and appearance represented by the template texture map. We propose the first texture-generic deep learning
SfT method which adapts to new texture maps at run-time, without the need for texture specific fine tuning.
We achieve this by dividing the problem into a segmentation step and a registration and reconstruction step,
both solved with deep learning. We include the template texture map as one of the neural inputs in both steps,
training our models to adapt to different ones. We show that our method obtains comparable or better results
to previous deep learning models, which are texture specific. It works in challenging imaging conditions,
including complex deformations, occlusions, motion blur and poor textures. Our implementation runs in
real-time, with a low-cost GPU and CPU.

INDEX TERMS Monocular, 3D model, image registration, 3D reconstruction, wide-baseline, dense,

deformable reconstruction, shape-from-template.

I. INTRODUCTION

Image registration and image-based 3D reconstruction
are fundamental problems extensively studied in Com-
puter Vision. However, solving these problems with
deformable objects remains challenges. In Shape-from-
Template (SfT) [1]-[4], the objective is to reconstruct the
3D shape of a deformable object from a single image and a
reference 3D model of the object, known as the template. The
template is a fundamental component of SfT that provides
prior knowledge via three models. The first model is the
shape model, typically represented as a triangulated 3D mesh,
which gives the shape of the object in a known position
(usually called the reference shape). The second model is
the deformation model that determines how the object may
deform from the reference shape. This is used to combat
the general ill-posedness of 3D reconstruction from a single
image, and it restricts the space of possible solutions to ones
that are physically viable. The third model is the appearance
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model that represents the texture of the object’s surface. This
is required to relate the image with the template’s surface at
the pixel level though the object’s texture. By far, the most
common way to implement the appearance model is with
texture mapping. This approach assigns each point on the
template’s surface to a pixel colour sampled from a discrete
colour map known as the texture map.

The shape model and texture map are usually constructed
with an optical acquisition system. There are two main
approaches: The first approach uses an RGBD camera, where
the depth information is used to construct the shape model
and the RGB information is used to construct the texture
map. The second approach uses several images taken with an
RGB camera of the object in the reference position, which
are then used to build the shape model and texture map
using a combination of Structure-from-Motion (to provide the
relative poses of the camera images) and multi-view stereo (to
densely reconstruct the shape models and to build the texture
map). The second approach is usually preferred in practice
because the same camera can be used for constructing the
template and running SfT [2], [5].
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Using the template and an image of the deformed object,
the general goal of ST is to infer the 3D deformation of the
template so that it matches the image. All three models in the
template (shape, deformation and appearance) are essential
to make SfT accurately solvable. Formally, two challenging
and related problems are solved in SfT. The first challenge is
to register the template to the image (i.e. to determine a dense
spatial correspondence between the image and the template
shape). The second challenge is to reconstruct the template’s
deformed shape (i.e. to determine the depth of each point on
the template’s surface with respect to the camera center).

SfT has numerous practical applications, and an important
one is to facilitate Augmented Reality (AR) with deformable
objects. Figure 1 shows the workflow diagram of a standard
SfT + AR system. In this application, registration is required
to correctly position virtual objects in the image to align with
the deforming object’s surface and reconstruction is required
to correctly orient the virtual objects in 3D.

The texture map is necessary as the purpose of SfT is two-
fold: to register the template to the image and to reconstruct
itin 3D. Both tasks are strongly interdependent, and only the
texture map allows a precise registration at the pixel level
using the specific texture details of the object of interest.
Without a texture map, it would be impossible to exploit
the object’s specific texture characteristics, fundamentally
preventing accurate registration and reconstruction. In prac-
tice, requiring a texture map is not a limitation because it
is obtained as part of template construction using an optical
system as described above.

ST needs a deformation model to constrain the solution.
Multiple deformation models have been studied, such as
isometric [4], [6], [7], conformal [2], [8], [9], equiareal [10]
and elastic [11]-[13] deformations. The most popular defor-
mation models to solve SfT are isometry and quasi-isometry,
also known as the as-rigid-as-possible (ARAP) model, which
is a widely used relaxation of isometry. These models prevent
the object from stretching or shrinking, and they make SfT
well-posed in the general case.

SfT is a challenging problem when facing the conditions of
a real application. The challenges are related to: a) the type
and complexity of the object in terms of geometry (volumic
or thin shell), deformations (low or high dimensional), and
texture (rich or poor), b) the imaging conditions (including
illumination changes, occlusions and motion blur) and c)
the baseline (short or wide). In video sequences, there is
temporal continuity between the frames, which corresponds
to the short-baseline case. On the contrary, the wide-baseline
case implies that each input image has to be treated indi-
vidually, without temporal connection to previous images,
due to large camera movements and sudden deformations.
In practice, the wide-baseline conditions are more realistic,
since occlusions and fast camera movements that break the
short-baseline assumptions are frequent.

SfT has been extensively studied over the last decade,
and only very recently, methods based on Deep Neural Net-
works (DNN) have been proposed. We divide classical (i.e.,
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FIGURE 1. Principle of SfT and AR for deformable objects.

non-DNN) SfT methods into two main categories. The first
category of methods decouple ST into a registration followed
by a reconstruction step. The registration step is based on
robust feature-based matching methods that are not specific
to ST [14]-[16]. The reconstruction step is based on shape
inference methods, usually a combination of a non-iterative
step [2], [4] followed by iterative refinement [6]. These
approaches cope with volumic and thin shell objects and work
under wide-baseline conditions. They are limited because
feature-based registration fails under challenging image con-
ditions and poorly textured objects. The second category
of methods perform registration and reconstruction at the
same time [3], [17], [18]. Methods in this category use itera-
tive optimisation and only work in short-baseline conditions,
as they require to be initialized close to the solution. They fail
when the short-baseline tracking conditions are violated due
to occlusions or fast motion. As in the first category, these
methods also fail under challenging imaging conditions and
poorly textured objects.

In recent years, the idea of using learning methods to solve
SfT has been explored. These methods learn the mapping
from the input image to the object 3D deformation [19]—
[22]. They are potentially able to solve SfT in wide-baseline
conditions and without the need to run optimisation at run-
time. However, existing DNN-based SfT methods face four
main limitations at the moment. First, some of them only
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work with a specific template [22], requiring fine tuning for
the specific template shape and texture map. Other works
propose to solve SfT for a variety of texture maps [19]-[21],
learning invariance to these. However, their results are far
from satisfactory, still requiring fine tuning of the network
to a specific template. This is because the templateless prob-
lem is highly ambiguous, making template-invariant meth-
ods unreliable. Second, in terms of template geometry, most
existing methods tackle the thin-shell case [19]-[21], with
the exception of the template-specific method [22]. Third,
in terms of template complexity, most methods require a mesh
with a reduced number of vertices (namely, 73 x 73 in [20],
[21] and 10 x 10 in [19]), which is a strong limitation to work
with complex templates or deformations. Fourth, they work
for a specific camera configuration, not being able to adapt to
dynamical camera parameters at run-time.

To sum up, a general DNN-based ST solution is still miss-
ing, which would work for new templates without the need
of fine tuning. The importance of pursuing such a solution
resides in the complexity of generating training data for SfT,
and the computational resources needed for fine tuning a
network in a new dataset. It is thus a necessary step towards
making DNN-based SfT methods widely applicable.

We make the following contributions to advance the state-
of-the-art of DNN-based SfT. First, we propose the first
DNN-based SfT method that takes the template texture map
as a run-time input. This is used to condition the registration
and reconstruction DNNs on the specific texture of the object
of interest. Importantly, the texture map supplied at run-time
can be completely novel in the sense that it was not (nor
any similar texture map) used in the training data. Previous
DNN-based methods [18—21] that exploit the specific texture
map of an object require their DNNs to be retrained for the
specific texture map (either from scratch or by fine-tuning),
which is highly impractical for real-world applications such
as those running on smartphones. Indeed, the limits of requir-
ing DNN retraining have completely prevented DNN-based
SfT methods from being used in real-world applications.
Our method does not suffer this limitation of texture-specific
training, which is a significant advance of state-of-the-art
towards practical real-world use of DNN-based SfT.

Second, our proposed architecture is divided into two
neural networks, the segmentation network for pixel-based
detection of the template, and the registration-reconstruction
network to recover the SfT solution. The segmentation
network is crucial to solve SfT in our generic template
approach. We have proposed a new semantic segmentation
architecture that allows us to add the template texture map
as one of the inputs, which clearly differs from the clas-
sical category-level semantic segmentation methods, where
the semantic categories are learned and fixed during train-
ing. The output of the segmentation network is fed into the
registration-reconstruction network.

Third, our DNN models for template segmentation and
registration-reconstruction networks are fully-convolutional
encoder-decoder networks, that use residual structures and
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specific layers, created by us to address SfT. They allow
our method to be computationally efficient. In addition to
our base models, we propose a lightweight architecture for
the registration-reconstruction network that can be used to
run our method in real-time in low-cost GPUs, CPUs and
embedded systems. It is based on a new custom decoding
layer that implements the inverse Block Discrete Cosine
Transform (DCT), which allows us to greatly reduce the
number of network parameters, while easily controlling the
loss of information induced by the new decoding layers.
Our lightweight architecture requires 21.59% of the total
parameters and is 214.65% faster than the base architecture
while being only 19.21% less accurate. This new optimized
architecture based on the DCT can potentially be applied to
other problems different from SfT, effectively reducing the
size of encoder-decoder DNN regression and classification
models. Fourth, our proposed method works independently of
the camera parameters, recovering the correct depth and scale
of the deformed object. This fact eliminates the need to use
the same camera during the training and testing stages, which
affects other methods [19]-[21]. Finally, we show that our
proposed methods outperform, both qualitatively and quanti-
tatively, the representative state-of-the-art methods in terms
of accuracy, speed and number of parameters. Our results
include challenging scenarios in wide-baseline conditions
and effects like motion blur, occlusions, illumination changes
and weak texture. All the data and code presented in this work
will be released for public use.

The rest of this paper is organized as follows. Section II
discusses previous work. Section III describes the ST prob-
lem and the proposed methods with the DNN architectures.
Section IV explains the training process, the loss function,
and the setup carried out. Section V explains the setup,
datasets and methods used for the experiments before show-
ing the obtained results, both graphically and numerically, for
various experimental settings. Finally, section VI gives our
conclusions and future work.

Il. PREVIOUS WORK

We divide the SfT state-of-the-art into two main categories,
the classical SfT methods, which include the vast majority
of existing work, and the DNN-based SfT methods. Before
explaining these two categories, we introduce other vision
problems that are related to SfT. After that we start with
the classical methods, dividing them into two sub-categories,
the decoupled and the integrated methods. The former solves
registration and reconstruction as two independent problems
and the latter solves registration and reconstruction jointly.
Finally, we review the DNN-based methods and categorize
them.

A. VISION PROBLEMS RELATED TO Sfr

There are several vision problems that relate to SfT and
have been recently attempted by DNN methods. These
are /) optical flow computation [23], [24], 2) scene flow
computation [25], [26], 3) monocular depth reconstruction
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[27]-[30], 4) human pose estimation [31], [32] and
5) Shape-from-Shading [33], [34]. None of these meth-
ods or their combination compete with SfT-specific solu-
tions or solve SfT under general conditions. For instance
1) solves registration between frames in a short-baseline
sequence without including depth, 2) solves registration
between frames in 3D, mainly from depth or stereo cameras
and thus has not the same inputs as SfT, 3) solves depth
for a general scene from a single image and is limited to
selected types of scenes (roads or indoor). Besides, it does
not compute the registration with the template, which is fun-
damental in SfT, 4) can be seen as a specialisation of SfT for
a template that represents the human body. The deformation
model in this case is low-dimensional, parametrized with
a few joint angles, favouring the use of learning methods.
In ST, the number of degrees-of-freedom can be much larger
than in the human skeleton, and it changes with the type of
template, which makes it much more challenging than 4).
Finally, 5) uses radiometric models to recover 3D surfaces
from shading cues detected in the images. It requires the scene
to be lit by highly controlled light sources and, as in 3), does
not include registration to the template.

B. CLASSICAL DECOUPLED SFT METHODS

The decoupled methods first obtain registration and then
3D reconstruction as two independent processes. The advan-
tage of this approach is the reduction of complexity. The
main drawback is that it does not include the constraints
existing between registration and reconstruction. It usually
solves wide-baseline registration using feature-based match-
ing methods like SURF [35] and SIFT [36], which are
then cleaned from mismatches using specific methods for
deformable registration [14], [37]. Feature-based registration
methods fail with repetitive or poorly textured objects and
challenging image conditions, such as motion blur, strong
viewpoint distortion or low resolution images. As a con-
sequence, these methods are limited in challenging scenar-
ios. The decoupled methods are usually categorised by the
deformation model, isometry being the most common one.
In terms of the solver strategy used in the reconstruction
step, these methods typically follow one of the following
approaches: /) the inextensibility model, a convex relaxation
of isometry, and the maximum depth heuristic [1], [6], [38],
[39], 2) local differential geometry [2], [4], and 3) minimi-
sation of a non-convex cost function [6], [40]. Methods in
3) are computationally expensive and require initialisation.
They are mainly used as refinement methods for approaches
in /) or 2), which are convex but less accurate in gen-
eral. Other works study non-isometric deformations, such
as non-linear elasticity [10], [41]-[43], linear elasticity [11],
[12] or angle-preserving conformal models [2]. The main
drawback of all these methods is that they require bound-
ary conditions, usually in the form of 3D known points,
to make the reconstruction problem well posed. Whether
these non-isometric models can solve ST uniquely without
additional cues remains an open question.
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C. CLASSICAL INTEGRATED SFT METHODS

The integrated methods jointly perform registration and
reconstruction. The majority of them are restricted to
short-baseline scenarios, which imply the use of video
streams [3], [17], [44]. They minimize a non-convex cost
function that jointly aligns the 3D solution with diverse
image cues, such as feature point correspondences [3] or
by using a pixel-level photo-consistency model [17], [44].
Integrated methods are effective and can recover complex
deformations, some of them in real-time. However, they fail
when the short-baseline conditions are violated, and require
initialization with a wide-baseline method.

D. DNN-BASED SFT METHODS

DNN-based ST methods have appeared in the last few years.
We establish a difference between monocular reconstruction
methods, that do not use a template but are specialised in
deformable objects [30], [33], [45], and methods that gen-
uinely solve SfT’s registration and reconstruction [19]-[22].
We are interested in methods that belong to the second group.
They are divided by type of output representation (dense or
discrete) and whether they are specific to a template or work
for a generic category of templates.

Regarding the type of output, the majority of methods
represent the SfT solution with the 3D vertex coordinates
of a regular mesh. The mesh vertex count varies between
existing methods. [19] uses 10 x 10 meshes. Their approach
is based on obtaining 2D belief maps for the image posi-
tion of each of the mesh vertices, inspired by DNN-based
human pose computation methods. This approach strictly
limits the amount of vertices. Other approaches [20], [21] use
three-channel 2D maps to model the coordinates of a regular
mesh, reaching 73 x 73 vertex counts. We proposed a different
approach [22], by recovering pixel-level depth and registra-
tion maps, allowing one to represent 3D objects and complex
shapes of arbitrary topologies. In addition we implemented
a post-processing step based on the ARAP model to recover
the hidden parts of the surface, not explicitly reconstructed by
the neural network. This paper is an extension of our previous
work [22]. It uses fundamentally new constraints and scope
but relies on the same parametrisation.

In terms of template specificity, all existing DNN-based
methods are trained for a specific template shape, while they
deal with the template texture map differently. We thus divide
existing DNN-based methods in the following categories: /)
Single-texture methods are trained for a specific template tex-
ture map. They exploit texture information to accurately solve
SfT, and this information is built-in the DNN weights [22].
2) Multi-texture methods work similar to 1), but the DNN is
trained for several texture maps. Although there is currently
no existing method falling in 2), one could easily be created
by combining object detection with several instances of a
method from 7). 3) Texture-agnostic methods are trained
with many texture maps. Hence, they learn to solve SfT
using general image cues that are independent of the texture
map, such as occlusion boundaries and shading [19]-[21].
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FIGURE 2. Geometric model of SfT.

Methods in 3) are significantly less accurate than methods
in /) and 2), producing coarse reconstruction, as shown in
our experiments. Strictly speaking, methods in 3) are not SfT
methods, since they do not use the template texture map to
solve SfT. Our work exploits the template texture map as
in /) and 2), but using it as an input in the DNN. It can
adapt to use new texture maps unseen during training and
thus belongs to a new category of DNN methods, namely
4) Texture-generic methods. We show in Section V that our
method is only slightly less accurate than methods in /) and
2), while being much more applicable and flexible. Methods
in 3), being independent of the texture map, have also high
applicability as in 4). However, they fail to produce accurate
reconstructions in general.

Summarizing, solving SfT with DNNs is a promising
line of research, but the existing methods show impor-
tant limitations. Our proposal can be classified as the first
texture map-generic method, and so belongs to a new
template-generic category of methods. Unlike existing meth-
ods, it exploits the texture map as an additional input to the
DNN, allowing it to adapt to different texture maps at run-
time. Our method uses all the available information, simi-
larly to template-specific methods, thus guaranteeing that the
SET solution is well-posed. In terms of outputs, we use the
same parametrisation as in our previous work [22], which
copes with complex deformations and is not limited by the
vertex count of the output mesh. Finally, we standardise the
camera used during training by following [22], so that it
is not necessary to use the same camera parameters during
training and testing. These advances allow our method to
deal with practical scenarios and contribute significantly to
generic DNN-based SfT.

lll. METHODOLOGY

A. SCENE GEOMETRY

Figure 2 shows the components of the scene geometry in
the SfT problem. Template. It is composed of a known 3D
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surface 7 C R3 and an appearance model represented by a
texture map A1 = (A, A), where A C R2 is a 2D subset
and A: A — (r, g, b) is a function that maps A to RGB
values. In .4 normalized coordinates are used. The known
A : A+—— T parametrisation is a bijection that relates points
of the texture map A to the surface 7.

1) DEFORMATION

The template 7 undergoes an unknown quasi-isometric
deformation that results in the unknown surface S C R3,
represented from 7 by the unknown map ¥: 7 — S.

2) CAMERA PROJECTION

The input image is defined as a colour intensity function that
contains 3 channels 7: R> — (r, g, b), in a discrete pixel
grid. The camera model is represented with the perspective
projection:

(. ,2) —> (f %) = (. V). (1)

<

We assume that the camera is intrinsically calibrated, so we
know its aspect ratio, focal length and radial distortion, which
in SfT methods is a reasonable and ordinary assumption. The
coordinates (i, v) can be easily obtained through the image
coordinates and are known as retinal coordinates.

3) VISIBLE SURFACE REGION AND REGISTRATION MAP

The visible surface S,;; C S is represented by all the
non-occluded areas of the camera image plane. Through the
projection of this region in the image plane, we define a
known bidimensional region Z C R2. 7 and S, are related
by a perspective embedding function X,;s: Z — S, with
Xyis(u,v) = p(u,v) (u,v,1). In this embedding function,
the function p: Z — S, is the unknown depth function that
allows one to obtain the depth of S, for each pixel in camera
coordinates. The registration map 1: Z — A is an injective
map that associates the points of Z to their correspondences
in A.

B. DNN ARCHITECTURE

Figure 3 shows the general diagram of our SfT solution.
It involves two steps. First, we use the Segmentation Network,
that takes as inputs the image and template texture map and
produces a pixel-wise binary segmentation map that classifies
each pixel as background or object. Second, we obtain the
SfT solution with the Registration-Reconstruction Network,
that takes the image, the template texture map, and the
binary mask from the previous step as inputs and obtains
pixel-wise maps that represent the object’s registration and
depth with respect to the template. Third, we use an ARAP
post-processing step to recover the occluded surface parts.

1) SEGMENTATION NETWORK

We propose a DNN model for the segmentation of the
deformed template in the input image, named Deformed Tem-
plate Segmentation Network (DTSNet) and defined with the
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