
HAL Id: hal-03681222
https://uca.hal.science/hal-03681222

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An optimal triangle projector with prescribed area and
orientation, application to position-based dynamics

Carlos Arango Duque, Adrien Bartoli

To cite this version:
Carlos Arango Duque, Adrien Bartoli. An optimal triangle projector with prescribed area and
orientation, application to position-based dynamics. Graphical Models, 2021, 118, pp.101117.
�10.1016/j.gmod.2021.101117�. �hal-03681222�

https://uca.hal.science/hal-03681222
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


An Optimal Triangle Projector with Prescribed Area and

Orientation, Application to Position-Based Dynamics

Carlos Arango Duque∗, Adrien Bartoli

EnCoV, IGT, Institut Pascal, UMR6602 CNRS Université Clermont Auvergne

Abstract

The vast majority of mesh-based modelling applications iteratively transform the
mesh vertices under prescribed geometric conditions. This occurs in particular in
methods cycling through the constraint set such as Position-Based Dynamics (PBD).
A common case is the approximate local area preservation of triangular 2D meshes
under external editing constraints. At the constraint level, this yields the nonconvex
optimal triangle projection under prescribed area problem, for which there does not
currently exist a direct solution method. In current PBD implementations, the area
preservation constraint is linearised. The solution comes out through the iterations,
without a guarantee of optimality, and the process may fail for degenerate inputs
where the vertices are colinear or colocated. We propose a closed-form solution
method and its numerically robust algebraic implementation. Our method handles
degenerate inputs through a two-case analysis of the problem’s generic ambiguities.
We show in a series of experiments in area-based 2D mesh editing that using optimal
projection in place of area constraint linearisation in PBD speeds up and stabilises
convergence.

Keywords: triangle, optimal projection, area preservation, orientation
preservation, mesh editing, PBD

1. Introduction1

A key mechanism in many mesh-based modelling applications is to transform the2

mesh vertices to meet prescribed geometric conditions. For example, triangular mesh3

smoothing may be achieved by moving the vertices of each triangle by a specifically4
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designed two-step stretching-shrinking transformation [1] or by iteratively applying a5

local smoothing transformation [2]. Another example is 3D volumetric model defor-6

mation, where realism is improved by preserving the volume of the mesh’s tetrahe-7

drons [3, 4]. Position-Based Dynamics (PBD) is a widely used simulation technique8

that directly manipulates the vertex positions of object meshes. It can model various9

object behaviours such as rigid body, soft body and fluids [5]. Due to its simplicity,10

robustness and speed, PBD has become very popular in computer graphics and in the11

video-game industry. In general terms, PBD updates the vertex positions through12

simple integration of the external forces. These positions are then directly subjected13

to a series of constraint equations handled one at a time. If the obtained projection14

minimises the vertex displacement then it is qualified as optimal. For example, the15

projection for vertex distance preservation is a simple problem, which was solved16

optimally [6, 7]. The constraints simulate a wide range of effects like stretching,17

bending, collision, area and volume conservation [7]. Over the years, improvements18

have been proposed to the original formulation of PBD. These include new bending19

constraints from simple geometric principles [8, 9], stability improvement by geomet-20

ric stiffness [10] and faster convergence by constraint reordering [11].21

Mesh editing uses a priori chosen fixed vertices and moving vertices which should22

respect constraints. In 2D triangular mesh editing, local area preservation is a widely23

used constraint. The mesh is deformed until the triangle-wise area variation is min-24

imised. Enforcing this constraint leads to the Optimal Triangle Projection with25

Prescribed Area problem (OTPPA), which we will formally define shortly. OTPPA26

is a difficult problem and has not yet been given a closed-form solution in the litera-27

ture, contrarily to optimal vertex distance preservation. We formally define OTPPA28

as follows. We define the vertices va, vb and vc of a triangle in a 2D space as a 6D29

vector v with:30

v = [va, vb, vc]
> = [xa, ya, xb, yb, xc, yc]

> ∈ R6. (1)

We denote the input triangle ṽ = [x̃a, ỹa, x̃b, ỹb, x̃c, ỹc]
> and the prescribed area Ao.31

We assume Ao > 0 out of practical considerations1. The general OTPPA problem is32

stated as:33

min
v∈R6

C (v) s.t. f(v) = 0, (2)

where C (v) is the least-squares displacement cost:34

C (v) = ‖v − ṽ‖2, (3)

1Ao = 0 implies that the resulting vertices are colinear, in which case they are simply given by
the orthogonal projection of the input vertices onto a best-fit least-squares line to the input vertices.
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and f(v) is the nonconvex area preservation constraint, defined from the triangle35

area function A(v) as:36

f(v) = A(v)− Ao. (4)

Areas are positive quantities. This means that when we calculate the area of a37

triangle using its vertices, we obtain a positive value regardless of their orientation.38

In this formulation, the area constraint is the difference of two non-negative values.39

That is, the area of the triangle is constrained but not its orientation. For instance, v40

could be mirrored or two vertices could be swapped and the area constraint would still41

be satisfied. This could result in undesired triangle inversions in mesh editing. We42

thus introduce a related problem that additionally constrains the triangle orientation.43

We first define the triangle area function as A(v) = |A∗(v)|, where A∗(v) is the signed44

area given by the shoelace formula:45

A∗(v) =
(xa − xc)(yb − ya)− (xa − xb)(yc − ya)

2
. (5)

The signed area is more informative than the area. Specifically, sign(A∗(v)) gives46

the triangle orientation. We use this property to define the additional orientation47

constraint. This leads to the Optimal Triangle Projection with Prescribed Area and48

Orientation problem (OTPPAO), stated as:49

min
v∈R6

C (v) s.t. f(v) = 0 and g(v) = 0, (6)

where g(v) is the orientation preservation constraint:50

g(v) = sign(A∗(v))− s, (7)

and s ∈ {−1, 1} specifies the prescribed orientation. The value chosen for s depends51

on the application. For instance, in PBD, one would choose the orientation of the52

reference mesh triangle, while another possibility would be to preserve the orientation53

of the input triangle by setting s = sign(A∗(ṽ)).54

For both OTPPA and OTPPAO, current PBD implementations linearise the area55

preservation constraint, resulting in suboptimal projection. For OTPPAO, they also56

check and enforce the orientation constraint a posteriori in the inner optimisation57

loop. There also exist implementations based on non-linear optimisation, namely Se-58

quential Quadratic Programming (SQP), which may result in faster convergence [12].59

Similarly to linearisation, these methods may fail to find the global minimum. This60

will be critical when the problem is close to a degenerate configuration admitting61

several solutions. In addition, any iterative method will require an unpredictable62

3



number of iterations to converge, rendering the actual computation time difficult to63

predict. Furthermore, they degenerate for inputs where the vertices are colinear or64

colocated, whereas a reliable solution should handle any input. We can thus expect65

an optimal projection to improve PBD convergence compared to linearisation and66

iterative methods.67

We propose a closed-form method to OTPPAO and OTPPA. Our method for68

OTPPAO handles degenerate inputs through a two-case analysis, guaranteeing it69

to find the optimal solution and returning multiple optimal solutions for ambiguous70

inputs. Our method for OTPPA directly relies on OTPPAO and shares the same71

features. Our method derivation, although thoroughly detailed and relying on some72

complex steps, results in a simple algebraic procedure which can be readily imple-73

mented in any programming language. We use our closed-form method to implement74

PBD, hence dubbed PBD-opt, for mesh editing and compare its performance with75

respect to the existing PBD implementation with linearisation, dubbed PBD-lin. To76

illustrate our proposal, we present a one triangle toy example in Figure 1 in which we77

wish to resize the triangle to half its initial area. PBD-lin takes several iterations to78

reach the prescribed area, whereas PBD-opt achieves it directly. The cost evolution79

shows that PBD-lin starts with a lower cost, but by the time it complies with the80

area constraint, it reaches a larger cost than PBD-opt, indicating convergence to a81

local suboptimal minimum.82

This paper has two parts. In the first part, we derive our closed-form methods.83

We show that they deal with generic ambiguities. We then implement our methods84

as numerically robust algebraic procedures. In the second part, we embed our alge-85

braic procedure for OTTPAO in PBD to form an implementation of PBD-opt. We86

compare its performance in convergence speed and stability with respect to the ex-87

isting PBD-lin in a series of experiments and present some use-cases. We finally give88

a complementary section where we present our solution to OTPPA and specialise89

our methods to cases where one or two triangle vertices are fixed, which is typically90

applicable to triangles at the domain boundary in mesh editing.91

2. Optimal Triangle Projection with Prescribed Area and Orientation92

The derivation of our closed-form method to OTPPAO starts by combining the93

two constraints into a single one related to both triangle area and orientation. We94

then construct the Lagrangian which leads to a nonconvex problem, which we handle95

with two cases. We distinguish and geometrically interpret the two cases based on96

the input vertices. In the first case, we reformulate the problem as a depressed97

quartic equation and solve it analytically. In the second case, we reformulate the98
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Figure 1: Method comparison on a one triangle toy example. (a), PBD-lin resizes the initial triangle
(purple) into smaller intermediary triangles (green) until it reaches a triangle with the prescribed
area (black dashed). (b), PBD-opt directly reaches the prescribed area. (c), Comparison of the
evolution of the cost of PBD-lin and the fixed cost of PBD-opt. (d), Comparison of the evolution
of the prescribed area constraint of PBD-lin and the fixed area of PBD-opt. The cost of PBD-opt
(blue) is constant as it gives a direct solution. The cost of PBD-lin is lower during the first iterations
(yellow) but the area constraint tolerance |(A(v) − Ao| ≤ 10−3 is not yet fulfilled. By the time it
reaches the prescribed area (black dot), the cost of PBD-lin (red) has become larger than the one of
PBD-opt. Furthermore, after 20 iterations the area constraint for PBD-lin is 4.802 ·10−6 compared
to 8.327 · 10−17 in PBD-opt.
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problem as a series of homogeneous equations and find its null space. Based on these99

procedures, we develop a numerically robust algebraic implementation and show the100

results in a series of illustrative examples.101

2.1. Single Constraint Reformulation102

We reformulate OTPPAO by merging the area and orientation constraints into a103

single equivalent constraint:104

f ∗(v) = 0 with f ∗(v) = sA∗(v)− Ao. (8)

We have (f(v) = 0) ∧ (g(v) = 0) ⇔ f ∗(v) = 0. The forward implication is ob-105

tained by rewriting f(v) = 0 as sign(A∗(v))A∗(v) − Ao = 0 and substituting106

s = sign(A∗(v)), as obtained from g(v) = 0, directly giving f ∗(v) = 0. The re-107

verse implication is obtained by rewriting f ∗(v) = 0 as sA∗(v) = Ao, whose absolute108

value gives f(v) = 0 and whose sign gives g(v) = 0. With this new constraint, we109

reformulate OTPPAO as:110

min
v∈R6

C (v) s.t. f ∗(v) = 0. (9)

This reformulation increases compactness but, more importantly, in contrast to the111

previous area constraint, the new constraint does not involve an absolute value.112

More specifically, f ∗(v) is a nonconvex but smooth function of v, meaning that a113

Lagrangian formulation can now be safely constructed.114

2.2. Lagrangian Formulation115

The Lagrangian of the OTPPAO problem (9) is:116

L (v, λ) = C (v) + λf ∗(v), (10)

where λ is the Lagrange multiplier. Setting the gradient to nought we obtain:

∂L

∂λ
= f ∗(v) = sA∗(v)− Ao = 0 (11)

∂L

∂v
=
∂C (v)

∂v
+ λ

∂f ∗(v)

∂v
= 2(v − ṽ) + sλ

∂A∗(v)

∂v
= 0. (12)
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Expanding ∂L
∂v

, we obtain the following six equations:

∂L

∂xa
= 2(xa − x̃a) + s

λ

2
(yb − yc) = 0

∂L

∂ya
= 2(ya − ỹa) + s

λ

2
(xc − xb) = 0

∂L

∂xb
= 2(xb − x̃b) + s

λ

2
(yc − ya) = 0

∂L

∂yb
= 2(yb − ỹb) + s

λ

2
(xa − xc) = 0

∂L

∂xc
= 2(xc − x̃c) + s

λ

2
(ya − yb) = 0

∂L

∂yc
= 2(yc − ỹc) + s

λ

2
(xb − xa) = 0.

We rewrite these equations in matrix form as:117

Xv = ṽ, (13)

where X ∈ R6×6 is given by:118

X =


1 0 0 sλ/4 0 −sλ/4
0 1 −sλ/4 0 sλ/4 0
0 −sλ/4 1 0 0 sλ/4

sλ/4 0 0 1 −sλ/4 0
0 sλ/4 0 −sλ/4 1 0

−sλ/4 0 sλ/4 0 0 1

 . (14)

2.3. Solving with Two Cases119

We want to solve for v from equation (14). We first check the invertibility of X120

from its determinant:121

det(X) =
(3λ2 − 16)

2

256
. (15)

We thus have:122

det(X) = 0 ⇔ |λ| = λo, (16)

where λo correspond to the reciprocal area of a normalised equilateral triangle:123

λo =
4√
3
. (17)
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We show in the next section that this special case is related to input vertices repre-124

senting an equilateral triangle or being colocated. We thus solve system (14) with125

two cases. In Case I, which is the most general one, we have |λ| 6= λo. In Case II,126

we have |λ| = λo.127

2.4. Geometrically Interpreting and Distinguishing the Two Cases128

The problem setting is defined by the input vertices ṽ, the prescribed area Ao129

and orientation s. Most settings are solved by Case I and exceptions are handled130

by Case II. Both cases can be geometrically interpreted and distinguished from each131

other based on three criteria:132

• Linear deficiency of ṽ. This is evaluated as the rank of matrix M ∈ R3×3
133

containing ṽ in homogeneous coordinates as:134

M
def
=

x̃a ỹa 1
x̃b ỹb 1
x̃c ỹc 1

 . (18)

For most configurations rank(M) = 3, which means that the vertices are not135

aligned and represent any given triangle whose area A(ṽ) is non-zero. In con-136

trast, rank(M) = 2 means that the three vertices are colinear, in which case137

A(ṽ) = 0. Finally, rank(M) = 1 means that the three vertices are colocated138

and also implies A(ṽ) = 0.139

• Orientation change of ṽ. This is evaluated by comparing the input vertices140

orientation sign(A∗(ṽ)) and the prescribed orientation s. When the orientation141

of the input vertices is preserved then sign(A∗(ṽ)) = s. On the other hand,142

when the orientation of the input vertices is inverted then sign(A∗(ṽ)) = −s.143

• Scale of A(ṽ) with respect to Ao. This is only useful in the special case144

of an equilateral triangle with preserved orientation. It refers to whether the145

absolute value of the scaled input area |zA∗(ṽ)| is larger than, equal to or146

smaller than the prescribed area Ao for some z ∈ R > 0.147

The interpretation of Cases I and II with the above criteria is given in Table 1148

and summarised by the following Proposition.149

Proposition 1. We define a problem setting as the input vertices ṽ, the prescribed150

area Ao and orientation s. Most settings fall in Case I and are then denoted So.151

Exceptions, handled with Case II, are:152
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• S1: ṽ is a single point153

• S2: ṽ is an equilateral triangle and sign(A∗(ṽ)) = −s154

• S3: ṽ is an equilateral triangle, A(ṽ)/4 ≥ Ao and sign(A∗(ṽ)) = s155

The proof of Proposition 1 is based on the following five lemmas.156

Lemma 1. S1 ⇐⇒ A(ṽ) = 0 and |λ| = λo.157

Lemma 2. S2 ⇐⇒ A(ṽ) 6= 0 and λ = −λo.158

Lemma 3. S3 ⇒ A(ṽ) 6= 0 and λ ∈
{
λo,−λo +

√
λo
Ao
,−λo −

√
λo
Ao

}
.159

Lemma 4. S3 ⇐ A(ṽ) 6= 0 and λ = λo.160

Lemma 5. Choosing λ = λo leads to the optimal solution for S3.161

The proofs of these lemmas are given in Appendix A.162

Proof of Proposition 1. We recall that Case I occurs for |λ| 6= λo and Case II for163

|λ| = λo. Lemmas 1, 2 and 4 show that S1, S2 and S3 are the only possible settings164

corresponding to |λ| = λo, hence possibly to Case II. This proves that Case I is the165

general case. Lemmas 1 and 2 then trivially prove that S1 and S2 are handled by166

Case II. Finally, lemmas 3 and 5 prove that S3 is also handled by Case II.167

2.5. Case I168

Case I is the most general one. It occurs for |λ| 6= λo, equivalent to det(X) 6= 0.169

From Proposition 1, we have rank(M) ≥ 2, in other words, at least one of the initial170

vertices ṽ is different from the other two (except if the input is an equilateral triangle171

under the conditions of Proposition 1). We follow two steps. We first eliminate the172

vertices from the equations, which leads to a depressed quartic in λ. We then find173

the roots of this quartic using Ferrari’s method and trivially solve for the vertices174

from the initial linear system (13).175
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Case Setting Input det(X) rank(M) A(ṽ) σ2(ṽ)
Number of

s sign(A(ṽ))
solutions

I So non zero

3 non zero

non zero ≤ 4 ±1

2 zero

II S1 zero 1 zero zero ∞ ±1

I So non zero

3

A(ṽ)/4 ≤ Ao

non zero

≤ 4 1

II S3 zero A(ṽ)/4 ≥ Ao ∞ 1

II S2 zero non zero ∞ -1

Table 1: Characteristics of Cases I and II and number of solutions.
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2.5.1. Polynomial Reformulation176

Our reformulation proceeds by expressing the vertices in ṽ as a function of λ177

scaled by the determinant and substituting in the signed area constraint f ∗(v) = 0.178

We start by multiplying equation (13) by the adjugate X∗ of X and obtain:179

det(X)v = X∗ṽ, (19)

where the adjugate is:180

X∗ =
δ

256
Y =

3λ2 − 16

256


λ2 − 16 0 λ2 4sλ λ2 −4sλ

0 λ2 − 16 −4sλ λ2 4sλ λ2

λ2 −4sλ λ2 − 16 0 λ2 4sλ
4sλ λ2 0 λ2 − 16 −4sλ λ2

λ2 4sλ λ2 −4sλ λ2 − 16 0
−4sλ λ2 4sλ λ2 0 λ2 − 16

 ,
(20)

with δ = 3λ2 − 16 and Y ∈ R6×6. We notice the following:181

det(X) =
δ2

256
. (21)

We substitute equations (20) and (21) in equation (19) and obtain:182

δv = Y ṽ. (22)

We observe that the signed area A∗(δv) = δ2A∗(v). Thus, we calculate the signed183

area of both sides of equation (19) and obtain:184

δ2A∗(v) = A∗(Y ṽ). (23)

After some minor manipulations, we obtain:185

A∗(Y ṽ) = a2λ
2 + a1λ+ ao, (24)

where:

a0 = 128((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa))
a1 = −64s(x̃2

a + x̃2
b + x̃2

c + ỹ2
a + ỹ2

b + ỹ2
c − x̃ax̃b − x̃ax̃c − x̃bx̃c − ỹaỹb − ỹaỹc − ỹbỹc)

a2 = 24((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)).

We can rewrite these coefficients more compactly. Concretely, a0 and a2 contain the186

signed area of the input vertices A∗(ṽ), as given by equation (5). Furthermore, a1187
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is proportional to the sum of the variance of the x and y components of the input188

vertices, as σ2(ṽ) = σ2
x(ṽ) + σ2

y(ṽ) where:189

σ2
x(ṽ) =

(x̃a − x̄)2 + (x̃b − x̄)2 + (x̃c − x̄)2

3
, (25)

190

σ2
y(ṽ) =

(ỹa − ȳ)2 + (ỹb − ȳ)2 + (ỹc − ȳ)2

3
, (26)

and x̄ and ȳ are the x and y components of the input triangle’s centroid. We then191

have:192

3

2
σ2(ṽ) = x̃2

a + x̃2
b + x̃2

c + ỹ2
a + ỹ2

b + ỹ2
c − x̃ax̃b− x̃ax̃c− x̃bx̃c− ỹaỹb− ỹaỹc− ỹbỹc, (27)

and thus, a1 = −96sσ2(ṽ). We substitute equation (23) in the signed area con-193

straint (8) multiplied by δ2 and obtain:194

sA∗(Y ṽ)− δ2Ao = 0. (28)

This way, the signed area only depends on the known initial vertices ṽ and prescribed195

sign s. Because the signed area is quadratic in the vertices, and the vertices are196

quadratic rational in λ, the resulting equation is a quartic in λ:197

9Aoλ
4 − 48(2Ao + sA∗(ṽ))λ2 + 96σ2(ṽ)λ+ 256(Ao − sA∗(ṽ)) = 0. (29)

This is a depressed quartic because it does not have a cubic term. We can thus198

rewrite it to the standard form by simply dividing by 9Ao, giving:199

λ4 + pλ2 + qλ+ r = 0, (30)

with:

p = −16(2Ao + sA∗(ṽ))

3Ao
(31)

q =
32σ2(ṽ)

3Ao
(32)

r =
256(Ao − sA∗(ṽ))

9Ao
. (33)

An important question is whether we can further simplify the depressed quartic by200

nullifying one of its coefficients. The possible actions lie in choosing the coordinate201
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frame in which the vertices are expressed using a proper scaled Euclidean transforma-202

tion. Coefficients p and r are linear combinations of the triangle areas A∗(ṽ) and Ao203

and are normalised by Ao. This means that they are scale, rotation and translation204

invariant, and thus cannot be cancelled. Coefficient q is proportional to the variance205

σ2(ṽ) which is also rotation and translation invariant, and thus cannot be cancelled.206

Because it is normalised by the area, it is also scale invariant. Consequently, since207

λ is a root of this polynomial, it is also rotation, translation and scale invariant.208

Therefore, the depressed quartic cannot be simplified. The next step is to solve the209

depressed quartic.210

2.5.2. Solution using Ferrari’s Method211

We have chosen Ferrari’s method [13, 14] to solve the quartic equation2. The212

method details and proof may be found in Appendix C. We here give its main213

steps for the sake of completeness and for the construction of our numerically robust214

procedure in section 2.8. We first extract the resolvent cubic for equation (30). We215

then use Cardano’s formula to extract the real root αo of the resolvent cubic as:216

αo =
3

√
Q2 +

√
Q3

1 +Q2
2 +

3

√
Q2 −

√
Q3

1 +Q2
2 −

p

3
(34)

where:

Q1 = −p
2 + 12r

36
(35)

Q2 =
2p3 − 72rp+ 27q2

432
. (36)

The expansion of Q1 and Q2 does not bring simplified expressions. We note that217

Proposition 1 implies q 6= 0, thus αo 6= 0. We finally use αo to extract the roots of218

the depressed quartic as:219

λ =

s1
√
αo + s2

√
−
(
p+ αo + s1

q√
2αo

)
√

2
, (37)

where s1, s2 ∈ {−1, 1}, leaving four possibilities, hence four roots. Substituting220

these roots in equation (13), we obtain four sets of vertices, at least one of which221

representing an optimal solution to OTPPAO.222

2There are five main types of solution methods for a quartic equation. There does not seem to
exist a consensus as to which one should be preferred in terms of stability [15, 16, 17].
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2.6. Case II223

Case II is a special case. It occurs for |λ| = λo, equivalent to det(X) = 0.224

From Proposition 1, this means that the initial vertices ṽ either are colocated as225

ṽa = ṽb = ṽc or represent equilateral triangles under the conditions of Proposition 1.226

We show that the problem is represented by translated homogeneous and linearly227

dependent equations. We find their null space and then a subset constrained by the228

prescribed area.229

We translate the coordinate system to bring the input triangle’s centroid to the230

origin as ṽ′ = ṽ − v̄, which also translates the unknown vertices to v′ = v − v̄.231

Substituting |λ| = λo in matrix X, we obtain:232

X =



1 0 0 s sign(λ)√
3

0 − s sign(λ)√
3

0 1 − s sign(λ)√
3

0 s sign(λ)√
3

0

0 − s sign(λ)√
3

1 0 0 s sign(λ)√
3

s sign(λ)√
3

0 0 1 − s sign(λ)√
3

0

0 s sign(λ)√
3

0 − s sign(λ)√
3

1 0

− s sign(λ)√
3

0 s sign(λ)√
3

0 0 1


. (38)

We have det(X) = 0, as expected, independently of sign(λ). In addition, all 5 × 5233

minors of X are zero and the leading 4× 4 minor is non-zero:234

det




1 0 0 s sign(λ)√
3

0 1 − s sign(λ)√
3

0

0 − s sign(λ)√
3

1 0
s sign(λ)√

3
0 0 1


 =

4

9
. (39)

This means that rank(X) = 4. Thus, Xv′ = ṽ′ is solvable if and only if ṽ′ lies in235

the column space C(X). The column space can be calculated by factoring X into236

its Singular Value Decomposition (SVD) X = UΣU> (X is symmetric) and taking237

the first rank(X) columns of the unitary matrix U . For each value of s sign(λ), we238

have column spaces expressed as four-dimensional linear subspaces {γ1u
−
1 + γ2u

−
2 +239

γ3u
−
3 + γ4u

−
4 } and {γ1u

+
1 + γ2u

+
2 + γ3u

+
3 + γ4u

+
4 } where γ1, γ2, γ3, γ4 ∈ R and with240
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bases u−1 ,u
−
2 ,u

−
3 ,u

−
4 ∈ R6 and u+

1 ,u
+
2 ,u

+
3 ,u

+
4 ∈ R6 such that:241

[
u−1 u−2 u−3 u−4

]
=


0 λo/4 λo/4 0

λo/4 0 0 λo/4
1/2 −λo/8 λo/4 0
−λo/8 −1/2 0 λo/4
−1/2 −λo/8 λo/4 0
−λo/8 1/2 0 λo/4

 , (40)

and:242

[
u+

1 u+
2 u+

3 u+
4

]
=


λo/4 0 0 λo/4

0 λo/4 λo/4 0
−λo/8 −1/2 0 λo/4

1/2 −λo/8 λo/4 0
−λo/8 1/2 0 λo/4
−1/2 −λo/8 λo/4 0

 . (41)

We have that u−1 ,u
−
2 ,u

+
1 and u+

2 represent centred equilateral triangles of the same243

area of 1
λo

with orientation s sign(λ) and we have that u−3 ,u
−
4 ,u

+
3 and u+

4 represent244

sets of colocated points. The linear combinations γ1u
−
1 + γ2u

−
2 and γ1u

+
1 + γ2u

+
2245

represent equilateral triangles of any area and opposite orientations (or colocated246

points if γ1 = γ2 = 0), whilst γ3u
−
3 + γ4u

−
4 and γ3u

+
3 + γ4u

+
4 represent colocated247

points, hence act as a translation for the vertices of the previous linear combination.248

This shows that the system is solvable if and only if ṽ′ represents an equilateral249

triangle of orientation sign(A∗(ṽ′)) = s sign(λ) or colocated vertices.250

The system Xv′ = ṽ′ is solved by first finding the solutions of the homogeneous251

systemXvh = 0 and translating them by a particular solution vp, obtaining v′ = vh+252

vp. The homogeneous system has an infinite number of solutions which come from253

the null space of X. This can be represented as a two-dimensional linear subspace254

vh = β1v1 + β2v2 where the coefficients β1, β2 ∈ R and with bases v1,v2 ∈ R6 such255

that:256

[
v1 v2

]
=



−1
2

2s sign(λ)
λo

−2s sign(λ)
λo

−1
2

−1
2

−2s sign(λ)
λo

2s sign(λ)
λo

−1
2

1 0
0 1


. (42)

We have that v1,v2 represent centred equilateral triangles of the same area of 3
λo

.257

The linear combination vh = β1v1 + β2v2 generates centred equilateral triangles of258
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any area of orientation −s sign(λ). We then calculate the particular solution vp using259

the pseudo-inverse as:260

vp = X†ṽ′ =



x̃′a
2

+
x̃′b
4

+ x̃′c
4

+ sign(A∗(ṽ′))
ỹ′b−ỹ

′
c

3λo
ỹ′a
2

+
ỹ′b
4

+ ỹ′c
4
− sign(A∗(ṽ′))

x̃′b−x̃
′
c

3λo
x̃′a
4

+
x̃′b
2

+ x̃′c
4
− sign(A∗(ṽ′)) ỹ

′
a−ỹ′c
3λo

ỹ′a
4

+
ỹ′b
2

+ ỹ′c
4

+ sign(A∗(ṽ′)) x̃
′
a−x̃′c
3λo

x̃′a
4

+
x̃′b
4

+ x̃′c
2

+ sign(A∗(ṽ′))
ỹ′a−ỹ′b

3λo
ỹ′a
4

+
ỹ′b
4

+ ỹ′c
2
− sign(A∗(ṽ′))

x̃′a−x̃′b
3λo


. (43)

We then translate the null space with the particular solution and obtain v′ =261

β1v1 + β2v2 + vp. This linear combination generates centred triangles of any area.262

A noticeable property is stated in the following lemma, whose proof is given in Ap-263

pendix A.264

Lemma 6. vp = 0⇒ v′ is an equilateral triangle. The converse is not true.265

The next step is to constrain these triangles to the prescribed area and orientation.266

After some minor algebraic manipulations, we obtain the signed area of the subspace267

as:268

A∗(v′) = (1 + s sign(A∗(ṽ′)) sign(λ))
A∗(ṽ′)

8
− s sign(λ)

3(β2
1 + β2

2)

λo
. (44)

When A∗(ṽ′) 6= 0 we have s sign(λ) = sign(A∗(ṽ′)) thus sign(λ) = s sign(A∗(ṽ′)).269

However, when A∗(ṽ′) = 0 we have sign(A∗(v′)) = −s sign(λ), which implies that270

sign(λ) = −s. Using the orientation constraint (7), we can express v′ as:271

v′ = β1v1 + β2v2 + vp

s.t. (s+ sign(λ) sign(A∗(ṽ′)))
A∗(ṽ′)

8
− sign(λ)

3(β2
1 + β2

2)

λo
− Ao = 0.

(45)

Because of the area and orientation constraints, and because v1 and v2 are rotated272

copies of each other, the family defined by equation (42) can be generated by scaling273

v1 by:274

φ =
√
β2

1 + β2
2 =

√
λo(sign(A∗(ṽ′))A∗(ṽ′)− 4kAo)

12
, (46)

where k depends on the type of input:275

k =

{
s sign(A∗(ṽ′)) if A∗(ṽ) 6= 0

−1 if A∗(ṽ) = 0,
(47)
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(a) Orientation Preservation
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(b) Orientation Inversion

Figure 2: Case II solutions for an equilateral triangle. (a), represents solutions where the input
orientation is preserved and (b), where it is inverted. The prescribed area Ao is 1/5 of the input
triangle’s area. For both (a) and (b), four solutions corresponding to different values for θ are
shown and assigned a colour for visual representation. The triangle family is generated by a free 2D
rotation followed by a fixed translation in the 6D triangle space, which result in triangles that are
not rotated copies of each other. Nevertheless, they all comply with the area preservation constraint
and have the same cost.

so that the area constraint is met. We can then rotate v1 by some arbitrary angle276

θ. We note that when k = s sign(A∗(ṽ′)) = 1, then φ ∈ R as long as A(ṽ)/4 ≥ Ao277

(which corresponds to setting S3). We define a new basis vector vc as:278

vc = φ
[
−1

2
−ks 2

λo
−1

2
ks 2

λo
1 0

]>
. (48)

We translate it to the original coordinates by vt, which is the addition of the partic-279

ular solution vp and the input’s centroid v̄, and obtain:280

v = R(θ)vc + vt, (49)

where R(θ) is a block diagonal matrix replicating the 2D rotation matrix R(θ) three281

times as R(θ) = diag(R(θ), R(θ), R(θ)). Equation (49) generates an infinite num-282

ber of solutions with an identical cost, as shown by the following lemma, proved283

in Appendix A.284

Lemma 7. All solutions generated by equation (49) have the same cost.285

We illustrate some solutions in Case II with a toy example in Figure 2.286

17



2.7. Properties of the Solutions287

An important property of the solutions to OTPPAO is that they preserve the
centroid of the input triangle ṽ. For Case I, this is shown by substituting the vertices
v from equation (22) in the centroid formula as:

δv̄ =
δ

3

[
xa + xb + xc
ya + yb + yc

]
=

1

3

[
(λ2 − 16)(x̃a + x̃b + x̃c) + 2λ2(x̃a + x̃b + x̃c)
(λ2 − 16)(ỹa + ỹb + ỹc) + 2λ2(ỹa + ỹb + ỹc)

+4sλ(ỹb − ỹc + ỹc − ỹa + ỹa − ỹb)
+4sλ(x̃b − x̃c + x̃c − x̃a + x̃a − x̃b)

]
=

1

3

[
(3λ2 − 16)(x̃a + x̃b + x̃c)
(3λ2 − 16)(ỹa + ỹb + ỹc)

]
=
δ

3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
.

(50)

For Case II, we similarly substitute the vertices v from equation (45) in the centroid
formula and obtain:

v̄ =
1

3

[
xa + xb + xc
ya + yb + yc

]
=

[
(0)β1 + (0)β2s sign(λ) 2

λo

(0)β1s sign(λ) 2
λo

+ (0)β2

]
+

1

3

[
x̃a + x̃b + x̃c + sign(λ) (ỹb−ỹc−ỹa+ỹc+ỹa−ỹb)

λo

ỹa + ỹb + ỹc − sign(λ) (x̃b−x̃c−x̃a+x̃c+x̃a−x̃b)
λo

]

=
1

3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
.

(51)

2.8. Numerical Implementation288

We use the theory developed in the previous sections to construct a numerically289

robust procedure, given in Algorithm 1, to solve OTPPAO. In theory, the first step290

would be to test the input setting and then branch on Case I or Case II accordingly.291

However, round-off errors make the test potentially unreliable. In order to deliver a292

numerically robust solution, both cases must be attempted, and the optimal solution293

chosen a posteriori by inspecting the cost. However, an a priori case selection method294

for time critical but precision tolerant problems is discussed in section 2.9. Algorithm295

1 uses the input vertices ṽ, prescribed area Ao and orientation s as inputs. It also296

uses an area error tolerance E to handle round-off in the area constraint (8). Our297

method could be naturally implemented with precise arithmetic, since it provides298

exact solutions. However, in the context of its use within PBD, as presented in299

section 3, we give it in floating-point arithmetic. Algorithm 1 starts by generating300

the solutions from Case I, then Case II, and chooses the optimal one. For Case I, we301

obtain a list v1 of at most 4 solutions. For Case II, we obtain a single best solution v2,302
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the optimally rotated one, and the basis and offset to generate all solutions following303

equation (49). The overall optimal solution vo is chosen amongst v1 and v2. The304

algorithm returns the optimal solution, along with all the solutions from Case I and305

Case II. This allows the user to deal with possible ambiguities and make the final306

choice depending on application specific priors and constraints.307

Algorithm 1 Optimal Triangle Projection with a Prescribed Area and Orientation

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II optimal triangle,
vc,vt - Case II basis and translation

1: function OTTPAO(ṽ, Ao, s, E = 10−3)
2: v1 ← SolveCase1(ṽ, Ao, s, E) . Compute Case I solutions
3: (v2,vc,vt)← SolveCase2(ṽ, Ao, s, E) . Compute Case II solutions
4: vo ← FindTriangleOfMinimalCost(v1 ∪ {v2}) . Select the optimal

solution
5: return vo,v1,v2,vc,vt
6: end function

Algorithm 2 computes the possible solutions for Case I. It first computes the308

coefficients p, q, r of the depressed quartic equation (lines 2, 3 and 4). Then, it309

uses Ferrari’s method, given by Algorithm 3, to find possible values of the Lagrange310

multiplier in vector λ. Some values in λ may be complex because they do not311

represent a solution or because of round-off error. We thus extract the real part of λ312

(line 8). In theory, the next step would be to verify that λ 6= λo or δ 6= 0, because this313

would create a rank-deficiency and division by zero. However, this cannot be directly314

tested because of round-off error. This is better handled by taking the pseudo-inverse315

δ† = (3λ2 − 16)† (line 10), recalling that 0† = 0. We can then simply check that the316

triangle complies with the area and orientation constraints (line 11).317

Algorithm 4 computes all the possible solutions for Case II. It achieves this by318

returning the rotational solution basis vc (line 10), particular solution vp (line 11)319

and offset v̄ (line 7). With these three components, the user can generate any320

solution by choosing an angle θ in equation (49). All solutions generated this way321

are theoretically equivalent and they all fulfil the area and orientation constraints.322

However, because the input vertices might not be exactly colocated numerically323

(which is the theoretical prerequisite of Case II for a colocated vertices input), one of324

the solutions in the basis may stand out as having a lower score than any other one.325

This solution may be, when the input vertices are close to each other, the optimal326
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Algorithm 2 Closed-form Analytic Solution to Case I of OTPPAO

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v1 - solution list
1: function SolveCase1(ṽ, Ao, s, E)

2: p← −16(2Ao+sA∗(ṽ))
3Ao

. Compute the coefficients of the depressed quartic

3: q ← 32σ2(ṽ)
3Ao

4: r ← 256(Ao−sA∗(ṽ))
9Ao

5: λ← FerrariSolution(p, q, r) . Solve for the four possible Lagrange
multipliers

6: v1 ← ∅ . Create an empty set of solutions
7: for t← 1, . . . , 4 do . Generate and select the triangles
8: λ← Re(λ(t)) . Keep the real part
9: δ ← 3λ2 − 16 . Compute δ

10: v← δ†


(λ2 − 16)x̃a + λ2(x̃b + x̃c) + 4sλ(ỹb − ỹc)
(λ2 − 16)ỹa + λ2(ỹb + ỹc) + 4sλ(x̃c − x̃b)
(λ2 − 16)x̃b + λ2(x̃a + x̃c) + 4sλ(ỹc − ỹa)
(λ2 − 16)ỹb + λ2(ỹa + ỹc) + 4sλ(x̃a − x̃c)
(λ2 − 16)x̃c + λ2(x̃a + x̃b) + 4sλ(ỹa − ỹb)
(λ2 − 16)ỹc + λ2(ỹa + ỹb) + 4sλ(x̃b − x̃a)

 . Compute
the vertices

11: if |sA∗(v)− Ao| ≤ E then . Check the area constraint
12: v1 ← v1 ∪ {v} . Add the vertices to the solution set
13: end if
14: end for
15: return v1

16: end function
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Algorithm 3 Ferrari’s Solution to the Depressed Quartic

Input: p, q, r - coefficients of depressed quartic
Output: λ - set of four roots

1: function FerrariSolution(p, q, r)

2: Q1 ← −p2+12r
36

. Compute Cardano’s formula coefficients

3: Q2 ← 2p3−72rp+27q2

432

4: αo ← 3

√
Q2 +

√
Q3

1 +Q2
2 + 3

√
Q2 −

√
Q3

1 +Q2
2−

p
3
. Compute the real root

of the resolvent cubic
5: λ← ∅ . Create an empty solution set
6: for k1 ← {1, 2} do
7: for k2 ← {1, 2} do

8: λ←
(−1)k1

√
2αo+(−1)k2

√
−
(

2p+2αo+(−1)k1 2q√
2αo

)
2

. Compute the root
9: λ← λ ∪ {λ} . Add it to the solution set

10: end for
11: end for
12: return λ
13: end function

solution, even compared to Case I, owing to numerical round-off error. This solution327

is obtained by finding the optimal rotation for the cost function, the translation328

already being the optimal one, by solving:329

min
R∈SO(2)

‖(Rvc + vt)− ṽ‖2 with R = diag(R,R,R). (52)

This problem has a closed-form solution [18]. We first rearrange vc and ṽ′ into 2× 3330

matrices Vc and Ṽ ′. We then compute the cross-covariance matrix W = VcṼ
′> and331

its SVD W = U1ΣU>2 . The optimal orthogonal matrix, which could potentially332

contain a reflection in addition to the rotation, is U2U
>
1 . In order to preserve the333

triangle orientation we restrict R to be a rotation only by setting R = U2DU
>
1 ,334

where D = diag(1, det(U1U
>
2 )). We finally use R to generate the optimal solution v2335

(line 18).336

337

2.9. A Priori Case Selection338

Exact a priori case selection cannot be done to separate Cases I and II, owing to339

round-off errors. However, an approximate numerical approach can be implemented340
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Algorithm 4 Closed-form Analytic Solution to Case II of OTPPAO

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v2 - optimal triangle, vc,vt - triangle basis and translation
1: function SolveCase2(ṽ, Ao, s, E)
2: if |A∗(v)| ≤ E then . Check the Input’s area
3: k ← s sign(A∗(v)) . Compute k for an equilateral triangle
4: else
5: k ← −1 . Compute k for a single point
6: end if

7: v̄← 1
3

[
x̃a + x̃b + x̃c
ỹa + ỹb + ỹc

]
. Compute the centroid of the input vertices

8: ṽ′ ← ṽ − v̄ . Translate the input vertices

9: φ←
√

λo(sign(A∗(ṽ))A∗(ṽ)−4kAo)
12

. Computes the area constraint parameter

10: vc ← Re(φ)
[
−1

2
−ks 2

λo
−1

2
ks 2

λo
1 0

]>
. Compute the solution basis

11: vp ←



x̃′a
2

+
x̃′b
4

+ x̃′c
4

+ sign(A∗(ṽ))
ỹ′b−ỹ

′
c

3λo
ỹ′a
2

+
ỹ′b
4

+ ỹ′c
4
− sign(A∗(ṽ))

x̃′b−x̃
′
c

3λo
x̃′a
4

+
x̃′b
2

+ x̃′c
4
− sign(A∗(ṽ)) ỹ

′
a−ỹ′c
3λo

ỹ′a
4

+
ỹ′b
2

+ ỹ′c
4

+ sign(A∗(ṽ)) x̃
′
a−x̃′c
3λo

x̃′a
4

+
x̃′b
4

+ x̃′c
2

+ sign(A∗(ṽ))
ỹ′a−ỹ′b

3λo
ỹ′a
4

+
ỹ′b
4

+ ỹ′c
2
− sign(A∗(ṽ))

x̃′a−x̃′b
3λo


. Compute the particular solution

12: Ṽ ′ ← rearrange ṽ′ into a 2× 3 matrix
13: Vc ← rearrange vc into a 2× 3 matrix

14: (U1,Σ, U2)← SVD
(
Ṽ ′V >c

)
. Compute the optimal rotation

15: D ← diag(1, det(U1U2))
16: vt ← vp + v̄ . Compute the translation vector
17: R← U2DU

>
1

18: v2 ← diag(R,R,R)vc + vt . Compute the optimal solution
19: return v2,vc,vt
20: end function
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using a numerical tolerance. First, we design a measure which determines if a triangle341

is equilateral or if its vertices are colocated as, according to proposition 1, this forms342

a necessary condition for Case II. For that, we compute the edge lengths as dab, dac343

and dbc and then the maximum of the absolute edge length differences. Introducing344

a numerical tolerance τ1, this leads to the following necessary condition for Case345

II: max(|dab − dac|, |dab − dbc|, |dac − dbc|) ≤ τ1. Still following proposition 1, we346

compute A(ṽ) and s sign(A∗(ṽ)) to determine if ṽ corresponds to any of the three347

settings of Case II. The detailed implementation of a priori case selection is given in348

Algorithm 5.349

The numerical implementation critically depends on the two tolerance values, τ1350

and τ2. There is thus a risk that this test does not select the optimal solution for all351

inputs, in particular inputs being very close to an equilateral triangle, but not quite352

equilateral, and for which the optimal solution would be given by Case I and not353

Case II. Consequently, any application relying on this method must tune τ1 and τ2354

to maximise the instances of true positive (Case II is selected when C (v1) ≥ C (v2)))355

whilst minimising the instances of false negative selection (Case I is selected when356

C (v1) ≥ C (v2))). Furthermore, if τ1 is very small and Case I is wrongfully selected,357

then we would have λ ≈ λo and the solution would not comply with the constraint358

sA∗(ṽ)− Ao ≤ E, causing significant error.359

2.10. Numerical Examples360

We show the results of our algebraic procedure in a series of illustrative examples361

presented in Tables 2 and 3. Each row represents an example with a different type362

of input. The first column contains the input parameters (input vertices ṽ with area363

A∗(ṽ), prescribed area Ao and orientation s). The second column shows the cost364

C (v) and the generated area A∗(v). For these examples, we opted to show the four365

solutions from Case I and the optimally rotated solution from Case II, and highlight366

the overall optimal solution. The third column shows the input triangle and the367

generated solution triangles. We draw a circle and a square in two of the vertices of368

the triangles to visualise the potential inversions.369

In Table 2, the inputs are random general triangles. For each example we want to370

find the optimal triangle that has the prescribed area and orientation. The first and371

second examples are triangles whose orientation matches the prescribed orientation,372

meaning that sign(A∗(ṽ)) = s, while the third example represents the opposite case,373

meaning that sign(A∗(ṽ)) = −s. The inputs in the second and third examples are374

identical, except for the prescribed orientation s. In all three examples, for Case375

I, we observe that the first and second solutions respect the signed area constraint376

while the third and fourth do not. This happens because the third and fourth roots377
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Algorithm 5 A priori case selection

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, τ1 - case
separator tolerance 1, τ2 - case separator tolerance 2

Output: selected case - case selection variable
1: function CaseSelection(ṽ, Ao, s, τ, E)
2: dab ← |va − vb| . Edge lengths
3: dac ← |va − vc|
4: dbc ← |vb − vc|
5: if max(|dab − dac|, |dac − dbc|, |dab − dbc|) < τ1 then . Case Selection
6: if A(ṽ) < τ2 or s sign(A∗(ṽ)) = −1 or A(ṽ)/4 ≥ Ao then
7: selected case ← 2
8: else
9: selected case ← 1

10: end if
11: else
12: selected case ← 1
13: end if
14: return selected case
15: end function
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of the depressed quartic are complex and the vertices produced by these solutions378

are altered once we extract their real part in Algorithm 2. We also observe that the379

third and fourth solutions of Case I are the same. The reason is that they correspond380

to complex conjugate roots, and thus have the same real part. The solutions given381

by Case II also respect the area constraint. In the first and second examples, the382

vertices of the second solution of Case I and the solution of Case II are close to383

the input vertices, resulting in lower costs, however the solution of Case II is always384

an equilateral triangle. In both examples, the minimal cost is given by the second385

solution of Case I and is considered optimal. In the third example, the resulting386

vertices are not simple inversions of the previous solutions but new solutions that387

are accommodated to the prescribed orientation. In this case an optimal solution is388

also found, albeit at a higher cost.389

In Table 3, the inputs are special configurations. The first example represents a390

flat triangle with colinear input vertices. In this instance, our algorithm behaves as391

expected, similarly to the examples with non-flat triangles, and returns an optimal392

solution (solutions 3 and 4 of Case I return a triangle considerably larger than the393

input triangle). The second example represents an example where all the input394

vertices are colocated (ṽa = ṽb = ṽc). In this instance, Case I solutions are ignored395

and the optimal solution is given by Case II. The solution given by Case II can be396

rotated at any angle but the cost remains constant. The third example is for an397

equilateral triangle whose orientation is the opposite of the prescribed orientation.398

In this example, none of the solutions given by Case I respects the area constraint399

and δ is very small (especially in solutions 3 and 4 of Case I where δ† is close to zero400

and thus returns a triangle 1015 times larger than the input triangle). The optimal401

solution is given by Case II and vc can be rotated at any angle, producing different402

triangles with the cost remaining constant. In the end, our algorithmic procedure403

always computes the optimal solution for all six examples.404

3. Area-based 2D Mesh Editing405

We use our method in triangular 2D mesh editing. The implementation is similar406

to PBD [6] but instead of linearising the area constraint, we perform an optimal407

projection for each triangle in the mesh. The Np mesh vertices are in P ∈ RNp×2
408

and the Nt triangles in M ∈ RNt×3 with prescribed areas Ao ∈ RNt and prescribed409

orientation sign(A∗(ṽ)). The implementation is given in Algorithm 6.410

3.1. Shape Dataset411

For our dataset, we used Distmesh [19] to create a set of synthetic triangular412

meshes. As shown in Figure 3, the shapes ranged from simple convex shapes to413
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Input Output Generated Triangles

Input: Negative
Oriented Triangle

Cost A∗(v)

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.1

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.2

Case I

s = −1 2.820 -0.500

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case II.1

ṽ =


0.666 0.666

0.666 −0.333

−1.333 −0.333


0.334 -0.500

5.065 7.629

-2 -1 0 1 2

-2

-1

0

1

Input

Case I.3

-2 -1 0 1 2

-2

-1

0

1

Input

Case I.4

5.065 7.629

A∗(ṽ) = −1.000 Case II

Ao = 0.500 0.937 -0.500

Input: Positive
Oriented Triangle

Cost A∗(v)

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.1

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.2

Case I

s = 1 2.785 0.500

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case II.1

ṽ =


0.827 −0.100

0.327 0.766

−1.155 −0.667


0.345 0.500

5.078 -7.919

-3 -2 -1 0 1 2

-2

-1

0

1
Input

Case I.3

-3 -2 -1 0 1 2

-2

-1

0

1
Input

Case I.4

5.078 -7.919

A∗(ṽ) = 1.000 Case II

Ao = 0.500 0.875 0.500

Input: Positive
Oriented Triangle

Cost A∗(v)

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.1

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case I.2

Case I

s = −1 2.158 -0.500

-1 -0.5 0 0.5

-0.5

0

0.5

Input

Case II.1

ṽ =


0.827 −0.100

0.327 0.766

−1.155 −0.667


1.041 -0.500

40.35 648.58

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10
Input

Case I.3

-20 -10 0 10 20

-20

-15

-10

-5

0

5

10
Input

Case I.4

40.35 648.58

A∗(ṽ) = 1.000 Case II

Ao = 0.500 1.707 -0.500

Table 2: Numerical examples with single triangles. The left column shows the type of input,
prescribed orientation s, input vertices ṽ, input area A∗(ṽ) and prescribed area Ao. The middle
column shows the cost and area obtained for the triangles computed by our algebraic procedure.
All four solutions from Case I and one solution from Case II are shown, assigned a colour for visual
representation and the optimal solution is highlighted. The right column shows the computed
triangles superimposed with the input triangle.
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Input Output Generated Triangles

Input: Colinear
Vertices

Cost A∗(v)

0 0.5 1

-0.5

0

0.5

Input

Case I.1

0 0.5 1

-0.5

0

0.5

Input

Case I.2

Case I

s = 1 1.621 0.500

0 0.5 1

-0.5

0

0.5

Input

Case II.1

ṽ =


0.000 0.000

0.500 0.000

1.000 0.000


0.647 0.500

88.049 -3318

-40 -20 0 20 40

-40

-20

0

20 Input

Case I.3

-40 -20 0 20 40

-40

-20

0

20 Input

Case I.4

88.049 -3318

A∗(ṽ) = 0.000 Case II

Ao = 0.500 0.762 0.500

Input: Colocated
Vertices

Cost A∗(v)

-0.5 0 0.5

0

0.5

1 Input

Case I.1

-0.5 0 0.5

0

0.5

1 Input

Case I.2

Case I

s = 1 0.000 0.000

-0.5 0 0.5

0

0.5

1 Input

Case II.1

ṽ =


0.000 0.000

0.000 0.000

0.000 0.000


0.000 0.000

0.000 0.000

-0.5 0 0.5

0

0.5

1 Input

Case I.3

-0.5 0 0.5

0

0.5

1 Input

Case I.4

0.000 0.000

A∗(ṽ) = 0.000 Case II

Ao = 0.500 1.075 0.500

Input: Positive Oriented
Equilateral Triangle

Cost A∗(v)

0 0.5 1

0

0.5

1

Input

Case I.1

0 0.5 1

0

0.5

1

Input

Case I.2

Case I

s = −1 0.500 0.108

0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1
Input

Case II.1

ṽ =


0.000 0.000

1.000 0.000

0.500 0.866


0.500 0.108

3.60·1015 5.62·1030

-1 0 1

10 15

-1

0

1

2
10 15

Input

Case I.3

-1 0 1

10 15

-1

0

1

2
10 15

Input

Case I.4

3.60·1015 5.62·1030

A∗(ṽ) = 0.433 Case II

Ao = 0.216 1.000 -0.216

Table 3: Numerical examples with special triangles. The left column shows the type of input,
prescribed orientation s, initial vertices ṽ, input area A∗(ṽ) and prescribed area Ao. The middle
column shows the cost and area obtained for the triangles computed by our algebraic procedure.
All four solutions from Case I and one solution from Case II are shown and assigned a colour for
visual representation. The right column shows the computed triangles superimposed with the input
triangle. In the case of colocated or equilateral input vertices, the generated equilateral triangle
can be rotated arbitrarily without changing the cost.
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Algorithm 6 Prescribed Area Preservation 2D Mesh PBD

Input: P - mesh vertices, M - triangle indices, Ao - prescribed areas, Tc - displace-
ment threshold, E - area error tolerance

Output: P - edited mesh points
1: C ←∞
2: while C ≥ Tc do . Iterate until convergence
3: P̃← P . Copy the mesh vertices
4: for t← 1, . . . , Nt do
5: p←M(t, :) . Indices of the triangle
6: ṽ← P(p, :) . Coordinates of the triangle
7: Ao ← Ao(t) . Prescribed area of the triangle
8: s← sign(A∗(ṽ)) . Orientation of the triangle
9: vo ← OTTPAO(ṽ, Ao, s, E) . Optimal projection

10: P(p, :)← vo . Update mesh points
11: end for
12: C ← 1

Nt

∑Nt
i=1 ‖P̃(i, :)−P(i, :)‖ . Average displacement

13: end while

nonconvex shapes with different levels of complexity. The dataset was divided into414

two subsets: one subset of 8 coarse meshes composed approximately of 100 triangles415

and one subset of 8 fine meshes composed approximately 1000 triangles. The meshes416

were designed so the distances between connected vertices were approximately the417

same. Our method finds the optimal triangle projection and is as such independent418

of the input triangle size. Consequently, meshes with different triangle sizes are419

seamlessly handled. We use the areas of each of the triangles as prescribed areas Ao.420

3.2. Generating Deformation Constraints421

For our experiments we require the magnitude of the initial deformation. Since422

we deal with nonconvex shapes of different levels of complexity, size and orientation,423

we normalise this magnitude with respect to the maximum distance between two424

vertices in the direction of maximum variance. We treat the meshes as 2D point425

clouds and calculate the 95% confidence ellipse that surrounds the vertices [20]. We426

take the maximum distance D as twice the length of the semi-major axis of the427

ellipse. We divide the vertices located at the edge of the polygonal mesh in sets of428

connected vertices that represent a line or curve, as shown in Figure 3. Then, we429

apply an initial deformation by translating a given set of edge vertices in a random430

direction that does not cause self-collision. The magnitude of this translation is a431

fraction of D.432
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Figure 3: Shapes from the coarse subset of our synthetic polygonal mesh dataset. The vertices
located at the edge are divided in sets of connected vertices represented with the same colour.

3.3. Methodology433

We test the effectiveness of PBD-opt by applying an initial deformation to a434

synthetic mesh and measuring the number iterations it takes to converge compared435

to PBD-lin on the exact same generated data. Convergence is achieved when the436

average displacement of the mesh vertices is lower than some displacement threshold437

Tc. We test both methods with the coarse and fine mesh datasets. For each dataset,438

we perform 200 random deformations per mesh (1600 deformations in total). We439

applied initial deformations to the meshes of 5%, 10% and 20% of the maximum inter-440

vertex distance D. We measure the convergence speed as the number of iterations it441

takes to reach three different displacement thresholds Tc at 5%, 2.5% and 1% of D.442

A run stops when a method’s cost reaches the lowest threshold (Tc = 1%) or after it443

reaches a stopping time (104 iterations3).444

We illustrate our methodology with an example presented in Figure 4. The input445

is a circle shaped coarse mesh with an initial random deformation of 10% of maximum446

inter-vertex distance D. As can be seen in Figure 4a, the initial displacement cost of447

3The stopping time choice was arbitrary. However considering that the convergence speed of
PBD-opt was lower than 1000 iterations, the stopping time is sufficiently high for our experiments.
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Figure 4: Displacement cost and area difference comparison of mesh-editing for both PBD-lin (red)
and PBD-opt (blue) across the iterations. (a), displacement thresholds are used to quantify the
evolution of convergence speed (dotted and dashed black lines). (b), area thresholds are used to
quantify the evolution of the constraint convergence speed.

PBD-lin is lower than PBD-opt, however after some iterations the cost of PBD-opt448

becomes lower while the cost of PBD-lin takes many more iterations to converge.449

In Figure 4b, we show the evolution of the triangle area preservation constraint by450

comparing the difference of between the mesh triangle areas and prescribed areas.451

We observe that, by the time PBD-lin reaches convergence, its area difference is452

larger compared to PBD-opt.453

3.4. Results454

Results can be found in Figures 5 and 6. In the left column of each Figure455

we use box plots to compare the median and variability of convergence speed of456

both methods according to their deformation and displacement threshold. Due to457

the large number of outliers obtained, especially with PBD-lin, we decided not to458

include them in the box plots but rather to represent them in stacked bar graphs in459

the right column of each Figure.460

For the coarse database we observe that the median convergence time for PBD-461

opt is higher compared to PBD-lin for a threshold of 5% and relatively similar or462

lower for 2.5% and 1%. However, since all the box plot pairs overlap each other, we463

cannot conclude with 95% confidence that the medians differ. On the other hand, we464

observe that the results of PBD-opt are more stable since they have either similar or465

smaller variances compared to the results of PBD-lin. These differences are further466
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exacerbated when evaluating the fine meshes dataset where the variance of PBD-lin467

is many times higher compared to the variance in PBD-opt.468

For the outlier analysis we must make a distinction between two types of outliers.469

The first type are Slow Convergence (SC) outliers, which surpasses the upper limit470

of the box plot but did not reach the stopping time. The second type are Very Slow471

Convergence (VSC) outliers, which reach the stopping time. For PBD-opt, at most472

2% of the runs were SC outliers and 0% were VSC outliers. However for PBD-lin,473

in the coarse meshes dataset, 10% of the runs were SC outliers. In the fine meshes474

dataset, around 34% of the runs were VSC outliers. This means that PBD-lin has475

a higher risk of getting stuck in iterations whose convergence time would be way476

higher compared to their median convergence speed. PBD-opt, on the other hand,477

provides more stable results with significantly fewer outliers.478

479

3.5. Timing Evaluation480

We experimentally compare the computation time of our method PBD-opt and481

the PBD-lin baseline. Whilst our original implementation used Matlab, the timing482

was done with a C implementation, required for realistic timing assessment. Then,483

we simulated 105 random triangles with normalised vertices ṽ ∈ [0, 1] and measured484

the computation time. For PBD-opt the computation time was found to be 3.57·10−6
485

seconds. The computation time for one iteration of PBD-lin is 3.79 · 10−7 seconds,486

which is an order of magnitude faster than PBD-opt. However, the total compu-487

tation time for PBD-lin depends on the number of iterations required to converge,488

which depends on the area constraint fulfilment, hence on the constraint tolerance.489

Because different applications have different expectations in terms of numerical con-490

straint fulfilment, we ran PBD-lin with a varying constraint tolerance in the interval491

[10−7, 10−2] and measured computation time for each tolerance value. The results492

are presented in Figure 7. As can be seen, the computation time of PBD-lin is in-493

versely related to the constraint tolerance, while the computation time of PBD-opt494

remains fixed, as expected. For low values of the constraint tolerance, which are495

cases where we want to be strict on the area constraint in the result, PBD-lin takes496

longer to converge than the optimal PBD-opt. However, when slack is introduced497

by increasing the constraint tolerance, which are cases where we tolerate some in-498

accuracy in the result of PBD-lin, PBD-lin runs faster than PBD-opt. Note that499

in some instances, PBD-line did not manage to fulfill the constraint (which are the500

VSC outliers from section 3.4) and we omitted these instances from the graph. In501

short, we can say that, in order to achieve a result on par with PBD-opt in terms of502

precision, PBD-lin takes a longer runtime in the cases where it converges properly.503
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Figure 5: Convergence speed results for coarse 2D meshes. The left column shows the statistics
for the number of iterations to reach conversion (omitting outliers). The right column shows the
proportion of Slow Convergence (SC) and Very Slow Convergence (VSC) outliers per method.

32



Convergence threshold

P
e
rc

e
n
ta

g
e
 o

f 
o
u
tl
ie

rs

Percentage of outliers for an

initial deformation of 5%

PBD-opt SC outliers

PBD-lin SC outliers

PBD-lin VSC outliers

Convergence threshold

P
e

rc
e

n
ta

g
e

 o
f 

o
u

tl
ie

rs

Percentage of outliers for an

initial deformation of 10%

PBD-opt SC outliers

PBD-lin SC outliers

PBD-lin VSC outliers

Convergence threshold

P
e
rc

e
n

ta
g
e

 o
f 
o

u
tl
ie

rs

Percentage of outliers for an

initial deformation of 20%

PBD-opt SC outliers

PBD-lin SC outliers

PBD-lin VSC outliers

Figure 6: Convergence speed results for fine 2D meshes. The left column shows the statistics for the
number of iterations to reach conversion (omitting outliers). The right column shows the proportion
of Slow Convergence (SC) and Very Slow Convergence (VSC) outliers per method.
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Figure 7: Computation time comparison.

However, whilst PBD-opt has a fixed computation budget, PBD-lin can trade-off504

runtime and accuracy.505

3.6. Use-cases506

We present a series of use-cases where the triangle area and orientation constraints507

are combined with additional elements such as forces and other constraints that may508

be used in mesh editing. The selected elements are pin constraints (some selected509

vertices are fixed during the deformation), edge length preservation and gravity. For510

each use-case, we apply an initial deformation to a synthetic mesh, apply PBD-opt511

and the additional forces and constraints until it converges, and compare it to PBD-512

lin on the same generated data. Similarly to section 3.3, convergence is achieved513

when Tc = 1%. The notation for the different use-cases is shown in Figure 8. Note514

that the initial displacement and pin constraints are applied to specific vertices,515

whilst area, orientation, distance preservation constraints and gravity are applied516

to all the vertices in the mesh. For each use-case we present the initial state, the517

resulting deformation using both methods, the evolution of the convergence speed,518

area constraint satisfaction and total displacement as shown in Figures 9, 10 and 11.519

Our selected use-cases are as follows:520

• Use-case 1. In this use-case, area and orientation must be preserved and521

some pin constraints are applied. The results are shown in Figure 9. As can be522

seen, PBD-opt converges faster than PBD-lin, while maintaining overall a lower523

constraint satisfaction error. We also observe that under PBD-opt the mesh524

vertices have an initial fast displacement until they reach a plateau, while under525
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PBD-lin they keep moving in further iterations. In this use-case, we observe526

that some triangles of PBD-lin reach a local minimum, as evidenced by the527

unexpected deformation seen in the lower right side of the mesh, which makes528

the overall process converge slower and have a higher constraint satisfaction529

error.530

• Use-case 2. In this use-case, area, orientation and edge length must be pre-531

served. The results are shown in Figure 10. As can be seen, the overall de-532

formation, speed of convergence, constraint satisfaction and total displacement533

are almost the same for PBD-opt and PBD-lin. This is explained by the edge534

length preservation constraint, which has a strong impact on the deformation,535

making the area constraint less significant and resulting in very rigid deforma-536

tions.537

• Use-case 3. In this use-case, area and orientation must be preserved, some pin538

constraints are applied and gravity is added. Gravity is implemented as a small539

displacement added to every non-pinned vertices of magnitude 9.8·10−4 at every540

iteration. Due to this constant displacement, it is unlikely that the simulation541

reaches convergence at Tc = 1%, and we thus stopped the simulation after 300542

iterations. For both PBD-opt and PBD-lin, the cost and total displacement543

are very similar, however, PBD-opt has an overall lower constraint satisfaction544

error. The convergence profile for PBD-opt decreases consistently, while PBD-545

lin increases after iteration 200. Lastly, the simulation result is much more546

visually pleasing for PBD-opt than PBD-lin.547

4. Conclusion548

We have identified two problems related to finding the closest triangle to an549

input triangle under a prescribed area constraint (the OTPPA problem) and under a550

prescribed area and orientation constraints (the OTPPAO problem). We have given551

a detailed analysis and a closed-form solution to both of these problems for the first552

time. We have then developed a numerically robust algebraic implementation. We553

have used it within Point-Based Dynamics, resulting in a 2D triangular mesh editing554

procedure which has been shown to be faster and more stable than the existing555

method.556

Our method forms a basis to solve further related problems in the 3D space.557

For a triangle in the 3D space, we can trivially apply a rigid transformation to take558

this triangle to one of the basis planes, calculate the optimal projection with our559
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Figure 8: Use-case initial deformation and constraint notation.
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Figure 9: Results for use-case 1, with area and orientation preservation and pin constraints. The
first row shows (from left to right) the initial deformation and constraints, the results from PBD-opt
and PBD-lin. The second row shows the evolution of convergence speed, area constraint satisfaction
and total displacement.
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Figure 10: Results for use-case 2, with area, orientation and distance preservation. The first row
shows (from left to right) the initial deformation and constraints, the results from PBD-opt and
PBD-lin. The second row shows the evolution of convergence speed, area constraint satisfaction
and total displacement.
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Figure 11: Results for use-case 3, with area and orientation preservation, pin constraints and gravity.
The first row shows (from left to right) the initial deformation and constraints, the results from
PBD-opt and PBD-lin. The second row shows the evolution of convergence speed, area constraint
satisfaction and total displacement.
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proposed 2D method and transform the vertices back to the original plane. A more560

complex extension would be for a tetrahedron in the 3D space and the constraint of a561

prescribed volume. This problem can be formulated similarly to OTTPAO. However,562

it differs by the constraint it involves. While the area constraint in OTTPAO leads563

to a quadratic equation, the volume constraint leads to a cubic equation. Therefore,564

while OTTPAO provides an initial step towards solving this problem, the extension565

is not a trivial one and forms the subject of future work.566

Appendices567

Appendix A. Proof of Lemmas568

Proof of Lemma 1. We start with the forward implication: S1 ⇒ A(ṽ) = 0 and569

|λ| = λo. In S1, ṽ represents a single point. This implies A(ṽ) = 0 and σ2(ṽ) = 0.570

Replacing these values in the depressed quartic equation (30) causes the coefficients p571

and r to become constants, and coefficient q to vanish (also the orientation constraint572

vanishes). The depressed quartic thus transforms into a bi-quadratic:573

λ4 − 32

3
λ2 +

256

9
= 0, (A.1)

whose solutions are:574

|λ| = λo. (A.2)

We now turn to the reverse implication: S1 ⇐ A(ṽ) = 0 and |λ| = λo. We substitute575

|λ| = λo in equation (28), giving:576

s sign(A∗(ṽ)) sign(λ)λoA(ṽ)− σ2(ṽ) = 0. (A.3)

Since A(ṽ) = 0, then the only solution that satisfies equation (A.3) for any given577

value of s sign(A∗(ṽ)) sign(λ) is with σ2(ṽ) = 0, which implies that the input triangle578

is collapsed into a single point, hence to S1.579

Proof of Lemma 2. We start with the forward implication: S2 ⇒ A(ṽ) 6= 0 and580

λ = −λo. In S2, ṽ represents an equilateral triangle and orientation inversion. This581

implies A(ṽ) 6= 0 and sign(A∗(ṽ)) = −s.582

First, we show that λ is scale invariant; the invariance to rotation and translation583

is trivial. In Case I (when |λ| 6= λo), λ has a varying value, depending on the in-584

puts. Specifically, it is resolved from the depressed quartic equation (30). Inspecting585

this quartic, we trivially see that its coefficients are scale, rotation and translation586

invariant. This proves that lambda, which is a root of this polynomial, is also scale,587
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translation and rotation invariant. In Case II, (when |λ| = λo), λ has a fixed absolute588

value. In setting S1, we have shown in section 2.6 that sign(λ) = −s, which is thus589

scale invariant. In settings S2 and S3, we have shown that sign(λ) = s sign(A∗(ṽ))590

and since sign(A∗(ṽ)) is not affected by positive scaling, rotation or translation, then591

S2 and S3 are also scale invariant.592

Since λ is rotation, translation and scale invariant, we can safely perform a sim-
ilarity transformation to ṽ to simplify the problem. We bring one of its vertices to
the origin and another one to the x-axis, scaled to normalise their distance, giving
ṽ′ = [0, 0, 1, 0, 1/2, sign(A∗(ṽ))

√
3/2]> where sign(A∗(ṽ)) determines the orientation

of the triangle. We obtain A∗(ṽ′) = sign(A∗(ṽ))
√

3
4

and σ2(ṽ′) = 1, thus the coeffi-
cients of the depressed quartic equation (30) become:

p = −32Ao − 4
√

3

3Ao
(A.4)

q =
32

3Ao
(A.5)

r =
256Ao + 64

√
3

9Ao
. (A.6)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −

(
32Ao + 2

√
3

9A0

)2

(A.7)

Q2 =

(
32Ao + 2

√
3

9A0

)3

, (A.8)

making
√
Q3

1 +Q2
2 = 0 and the real root αo of Cardano’s resolvent cubic to become:593

αo = 2

(
32Ao + 2

√
3

9Ao

)
+

32Ao − 4
√

3

9Ao
=

32

3
. (A.9)

We finally use αo to extract the roots of the depressed quartic:594

λ =

s1

√
2λo + s2

√
−λo

(
s1+1
Ao

)
√

2
, (A.10)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:595

λ ∈

{
−λo,−λo, λo − i

√
λo
Ao
, λo + i

√
λo
Ao

}
. (A.11)
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Considering only the real roots we have λ = −λo.596

We now turn to the reverse implication: S2 ⇐ A(ṽ) 6= 0 and λ = −λo. We597

substitute λ = −λo in equation (28), giving:598

−s sign(A∗(ṽ))λoA(ṽ)− σ2(ṽ) = 0. (A.12)

Since A(ṽ) 6= 0 and σ2(ṽ) > 0 then equation (A.12) can only be solved when599

sign(A∗(ṽ)) = −s. We perform the same similarity transformation used at the begin-600

ning of the proof to the unknown input triangle ṽ giving ṽ′ = [0, 0, 1, 0, x̃′c, ỹ
′
c]
> where601

one of the vertices remains unknown. We then have A∗(ṽ′) = ỹ′c
2

or602

sign(A∗(ṽ′))A(ṽ′) = ỹ′c
2

and σ2(ṽ′) = 2
3
(x̃′2c + ỹ′2c − x̃′c + 1) which we substitute in603

equation (A.12) and obtain:604

x̃′2c + ỹ′2c − x̃′c +
√

3sỹ′c + 1 = 0, (A.13)

which we rewrite as:605 (
x̃′c −

1

2

)2

+

(
ỹ′c +

√
3

2
s

)2

= 0. (A.14)

This is the equation of a single point, making ṽ′ an equilateral triangle606

ṽ′ = [0, 0, 1, 0, 1/2,−
√

3s/2]>, where s determines the orientation of the triangle.607

Since ṽ′ was a similarity transformation of ṽ, then ṽ is also an equilateral triangle608

when sign(A∗(ṽ)) = −s, which corresponds to S2.609

Proof of Lemma 3. In S3, ṽ represents an equilateral triangle with A(ṽ)/4 ≥ Ao and
no orientation inversion. This implies A∗(ṽ) 6= 0 and sign(A∗(ṽ)) = s. We perform
the same similarity transformation to ṽ as in lemma 2, thus the coefficients of the
depressed quartic equation (30) become:

p = −32Ao + 4
√

3

3Ao
(A.15)

q =
32

3Ao
(A.16)

r =
256Ao − 64

√
3

9Ao
. (A.17)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao − 4

9A0

)2

(A.18)

Q2 = −
(

32Ao − 4

9A0

)3

, (A.19)
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making
√
Q3

1 +Q2
2 = 0. After some factoring we obtain the real root αo of Cardano’s610

resolvent cubic as:611

αo = −2
3

√(
32Ao − 8sA∗(ṽ′)

3Ao

)3

+
32Ao + 8sA∗(ṽ′)

3Ao
. (A.20)

Since sign(A∗(ṽ)) = s and A∗(ṽ′) = sign(A∗(ṽ))A(ṽ′), then αo ∈ R only when612

A(ṽ′)/8 ≥ Ao. Under this condition, we obtain αo = 32. Substituting in equation613

(37) we obtain:614

λ =

s1

√
2λo + s2

√
λo

(
s1−1
Ao

)
√

2
(A.21)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:615

λ ∈

{
−λo −

√
λo
Ao
,−λo +

√
λo
Ao
, λo, λo

}
. (A.22)

Thus, we have two roots where |λ| 6= λo (which correspond to solutions for Case I)616

and there exists at least one solution λ = λo for S3 (which correspond to the solution617

of Case II).618

Proof of Lemma 4. We substitute λ = λo in equation (28), giving:619

s sign(A∗(ṽ))λoA(ṽ)− σ2(ṽ) = 0. (A.23)

Since A(ṽ) 6= 0 then equation (A.23) can only be solved when sign(A∗(ṽ)) = s.620

We perform the same similarity transformation to ṽ as in lemma 2, substitute621

sign(A∗(ṽ′))A(ṽ′) and σ2(ṽ′) in equation (A.23) and obtain:622

x̃′2c + ỹ′2c − x̃′c +
√

3sỹ′c + 1 = 0, (A.24)

which we rewrite as:623 (
x̃′c −

1

2

)2

+

(
ỹ′c +

√
3

2
s

)2

= 0. (A.25)

This is the equation of a single point making ṽ′ an equilateral triangle624

ṽ′ =
[
0, 0, 1, 0, 1/2,−

√
3s/2

]>
where s determines the orientation of the triangle.625

Since ṽ′ was a similarity transformation of ṽ, then ṽ is also an equilateral triangle626

when sign(A∗(ṽ)) = s for any value A(ṽ) (including A(ṽ′)/4 ≥ Ao) which corre-627

sponds to S3.628
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Proof of Lemma 5. We perform the same similarity transformation to ṽ as in lemma629

2 and obtainA∗(ṽ′) = sign(A∗(ṽ))
√

3
4

= sign(A∗(ṽ))
λo

. We relax the condition of S3 where630

A(ṽ′)
4
≥ Ao by reformulating Ao = 1

zλo
where z is a scaling factor z > 0 ∈ R. We631

substitute this in equation (A.22) and extract the roots :632

λ =
[
−λo − λo

√
z,−λo + λo

√
z, λo, λo

]>
. (A.26)

We start with the solution given by Case I where |λ| 6= λo. We compact both values633

as λ = −λo + s3λo
√
z where s3 ∈ {−1, 1}. We substitute this in equation (22) and634

obtain:635

v′ =
[√

z−s3
2
√
z

√
3(
√
z−s3)

6
√
z

√
z+s3
2
√
z

√
3(
√
z−s3)

6
√
z

1
2

√
3(
√
z+2s3)

6
√
z

]>
. (A.27)

We calculate the cost of the solution of Case I by substituting this and ṽ′ in equation636

(3) and obtain:637

C1(v′) =
(
√
z − s3)2

z
(A.28)

Now we turn to the solution given by Case II where λ = λo. We calculate the basis638

vector v′c, the particular solution v′p and substitute them in equation (49) and obtain:639

v′ =



1
4
−
√

3
√
z−4

12
√
z√

3
12
−
√
z−4

4
√
z

3
4
−
√

3
√
z−4

12
√
z√

3
12

+
√
z−4

4
√
z

1
2

+
√

3
√
z−4

6
√
z√

3
3


. (A.29)

We calculate the cost of the solution of Case II by substituting this and ṽ′ in equation640

(3) and obtain:641

C2(v′) =
1

2
− 1

z
(A.30)

We compare the cost of both solutions C1(v′) ≥ C2(v′) and obtain:642

(
√
z − s3)2

z
≥ 1

2
− 1

z
(A.31)

After some minor manipulations we obtain:643

z − 4s3

√
z + 6

2z
≥ 0 (A.32)
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We substitute
√
z = a where a > 0 ∈ R and obtain the quadratic expression:644

a2 − 4s3a+ 6

2a2
≥ 0 (A.33)

which represents an upward opening parabola which is always positive for any value645

of a and thus z. This implies that C1(v′) ≥ C2(v′) for any value z including z > 4.646

Since ṽ′ was a similarity transformation of ṽ, then C1(v) ≥ C2(v). This means647

that in S3 the solution provided by case II has the lowest cost, thus is the optimal648

solution.649

Proof of Lemma 6. We start with the forward implication: vp = 0⇒ v′ is an equilat-650

eral triangle. From equation (43), we have that vp = 0 when ṽ′ = 0 (trivial solution)651

or when ṽ′ = 0 is in the kernel of X†. From the properties of the pseudo-inverse we652

have that ker(X†) = ker(X>). Since X is symmetric then ker(X†) = ker(X) = vh, as653

given in equation (42). Recall from section 2.6 that the system Xv′ = ṽ′ is solvable if654

and only if ṽ′ represents an equilateral triangle of orientation sign(A∗(ṽ′)) = s sign(λ)655

or colocated vertices. Still from section 2.6, we have that vh is an equilateral triangle656

of orientation sign(A∗(vh)) = −s sign(λ), which contradicts the previous statement.657

This leaves us with vp = 0 only when ṽ′ = 0, which represents a set of colocated658

points centred in the origin. We then calculate v′ from equation (45) and obtain:659

v′ =



−β1
2

+ 2β2 sign(A∗(ṽ))
λo

−2β1 sign(A∗(ṽ))
λo

− β2
2

−β1
2
− 2β2 sign(A∗(ṽ))

λo
2β1 sign(A∗(ṽ))

λo
− β2

2

β1

β2


. (A.34)

We can then easily show that the inter-vertex distances are equal, and thus that v′

is an equilateral triangle:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
√

3β2
1 + 3β2

2

Dbc =
√

(x′b − x′c)2 + (y′b − y′c)2 =
√

3β2
1 + 3β2

2

Dac =
√

(x′a − x′c)2 + (y′a − y′c)2 =
√

3β2
1 + 3β2

2 .
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We now turn to the reverse implication: vp = 0 6⇐ v′ is an equilateral triangle, for660

which we simply provide a counterexample to the positive implication. We use the661

equilateral triangle ṽ′ = [0, 0, 1, 0, 1/2, sign(A∗(ṽ))
√

3/2]> where A(ṽ′)/4 = Ao and662

sign(A∗(ṽ)) = s. We calculate its particular solution with equation (43) and obtain:663

vp =



1
4

sign(A∗(ṽ))
3λo
3
4

sign(A∗(ṽ))
3λo
1
2

4 sign(A∗(ṽ))
3λo


, (A.35)

which implies that vp 6= 0. We substitute A(ṽ′)/4 = Ao and sign(A∗(ṽ)) = s in
the constraint equation (45) and obtain β2

1 = −β2
2 . This implies that the constraint

is fulfilled when β1 = β2 = 0 thus v′ = vp. We easily show that the inter-vertex
distances are equal:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
1

2

Dbc =
√

(x′b − x′c)2 + (y′b − y′c)2 =
1

2

Dac =
√

(x′a − x′c)2 + (y′a − y′c)2 =
1

2
,

thus v is an equilateral triangle despite vp 6= 0.664

Proof of Lemma 7. Our proof shows that the cost is invariant to the value chosen for665

angle θ. We start by translating the coordinate system to bring the input’s centroid666

to the origin as ṽ′ = ṽ− v̄, which also translates the unknown vertices to v′ = v− v̄.667

Thus, the cost becomes the translated least-squares displacement cost:668

C ′(v′) = ‖v′ − ṽ′‖2. (A.36)

We then continue with the case where ṽ is a single point. This implies A(ṽ) = 0 and669

k = −1. The particular solution v′p can be verified to vanish, from equation (43).670
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We calculate the basis vector v′c from equation (48), leading, from equation (49), to:671

v′ =



2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

−φ sin(θ)
2
− 2φ sign(A∗(ṽ)) cos(θ)

λo

−2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

−φ sin(θ)
2

+ 2φ sign(A∗(ṽ)) cos(θ)
λo

φ cos(θ)
φ sin(θ)


. (A.37)

We calculate the cost by substituting ṽ and ṽ′ in equation (A.36):672

C ′(v′) = Aoλo(sin
2(θ) + cos2(θ)), (A.38)

which simplifies to C ′(v′) = Aoλo and is thus independent of θ.673

We continue with the case where ṽ is an equilateral triangle. This implies that674

A(ṽ) 6= 0 and k = s sign(A∗(ṽ)). We perform the same similarity transformation to675

ṽ as in lemma 2 and obtain A∗(ṽ′) = sign(A∗(ṽ))
√

3
4

= sign(A∗(ṽ))
λo

. We calculate the676

basis vector v′c from equation (48), the particular solution v′p from equation (43) and677

substitute them in equation (49), leading to:678

v′ =



1
4

+ 2φ sign(A∗(ṽ)) sin(θ)
λo

− φ cos(θ)
2

sign(A∗(ṽ))
3λo

− φ sin(θ)
2
− 2φ sign(A∗(ṽ)) cos(θ)

λo
3
4
− 2φ sign(A∗(ṽ)) sin(θ)

λo
− φ cos(θ)

2
sign(A∗(ṽ))

3λo
− φ sin(θ)

2
+ 2φ sign(A∗(ṽ)) cos(θ)

λo
1
2

+ φ cos(θ)
4 sign(A∗(ṽ))

3λo
+ φ sin(θ)


. (A.39)

We calculate the cost by substituting v′ and ṽ′ in equation (A.36):679

C ′(v′) =
1

4
+

sin2(θ) + cos2(θ)

4
− s sign(A∗(ṽ))

Ao(sin
2(θ) + cos2(θ))

λo
, (A.40)

which simplifies to C ′(v′) = 1
2
− s sign(A∗(ṽ))Ao

λo
and is thus independent of θ.680

Appendix B. Optimal Triangle Projection with Prescribed Area681

In OTPPA, only the prescribed area needs to be preserved. This means that682

a solution may freely choose the orientation which minimises the cost, as long as683
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the area constraint is satisfied. Consequently, we expect that OTPPA has a larger684

set of local extrema than OTPPAO and hence more candidate algebraic solutions.685

Specifically, OTPPA is stated as:686

min
v∈R6

C (v) s.t. f(v) = 0. (B.1)

The area constraint in OTPPA is technically more complex to handle than the signed
area constraint in OTPPAO, because it involves an absolute value. Fortunately, a
solution may be obtained by exploiting a reformulation in terms of two rounds of
OTPPAO. Similarly to OTPPAO, we start by replacing A(v) by A∗(v) in the area
constraint f(v), expressing f as the disjunction of two cases:

f(v) = 0 ⇔
(
f+(v) = 0

)
∨
(
f−(v) = 0

)
with (B.2)

f+(v) = A∗(v)− Ao (B.3)

f−(v) = −A∗(v)− Ao. (B.4)

We seek a solution which satisfies either f+ or f−. This can be achieved by solving687

OTPPAO for s = 1 and s = −1, and simply selecting the minimal cost solution a688

posteriori. We present the numerically robust procedure in Algorithm 7.689

Algorithm 7 Optimal Triangle Projection with Prescribed Area

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II triangle set,
vc,vt - Case II basis and translations sets

1: function OTPPA(ṽ, Ao, s, E = 10−3)
2: v−1 ← SolveCase1(ṽ, Ao,−1, E) . Compute Case I solutions
3: v+

1 ← SolveCase1(ṽ, Ao, 1, E)
4: (v−2 ,v

−
c ,v

−
t )← SolveCase2(ṽ, Ao,−1, E) . Compute Case II solutions

5: (v+
2 ,v

+
c ,v

+
t )← SolveCase2(ṽ, Ao, 1, E)

6: v1 ← v−1 ∪ v+
1 . Add the vertices to the solution set

7: v2 ← {v−2 } ∪ {v+
2 }

8: vc ← {v−c } ∪ {v+
c }

9: vt ← {v−t } ∪ {v+
t }

10: vo ← FindTriangleOfMinimalCost(v1 ∪ v2) . Select the optimal
solution

11: return vo,v1,v2,vc,vt
12: end function
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Appendix C. Ferrari’s Method for the Depressed Quartic Roots690

We give Ferrari’s method for solving the depressed quartic equation λ4 − pλ2 +691

qλ+ r = 0 ([13]).692

Lemma 8. If λ4 + pλ2 + qλ+ r = 0 and q 6= 0 then there exists an αo 6= 0 such that693

λ =
s1
√

2αo+s2

√
−
(

2p+2αo+s1
2q√
2αo

)
2

, where s1, s2 ∈ {−1, 1}.694

Proof of Lemma 8. First, one adds and subtracts p2

4
to the depressed quartic equa-695

tion and rewrites it as:696 (
λ2 +

p

2

)2

= −qλ− r +
p2

4
. (C.1)

The equality to the original quartic can be verified by simple expansion. One then697

introduces a variable factor α into the left-hand side by adding 2λ2α + pα + α2 to698

both sides. Grouping the coefficients by powers of λ in the right-hand side gives:699 (
λ2 +

p

2
+ α

)2

= 2αλ2 − qλ+

(
α2 + αp+

p2

4
− r
)
. (C.2)

A quadratic expression ax2 + bx+ c is considered a perfect square when its discrim-700

inant b2 − 4ac = 0 vanishes, allowing one to rewrite it as (
√
ax+

√
c)2. We use this701

idea to choose a value for α such that the bracketed expression in the right-hand side702

of equation (C.2), which is a quadratic in λ, becomes a perfect square. Specifically,703

vanishing the discriminant gives:704

q2 − 8α

(
α2 + αp+

p2

4
− r
)

= 0. (C.3)

Upon expanding, it forms a cubic equation in α, called the resolvent cubic of the705

quartic equation:706

8α3 + 8pα2 + (2p2 − 8r)α− q2 = 0. (C.4)

This equation implies α 6= 0. Indeed, α = 0 would imply q = 0, contradicting our707

hypothesis q 6= 0. A real root αo 6= 0 is obtained from Cardano’s formula, given in708

section Appendix D. Substituting in equation (C.2), we obtain:709 (
λ2 +

p

2
+ αo

)2

=

(
λ
√

2αo −
q

2
√

2αo

)2

. (C.5)
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This equation is of the form M2 = N2, which can be rearranged as M2 −N2 = 0 or710

(M +N)(M −N) = 0:711 (
λ2 +

p

2
+ αo + λ

√
2αo −

q

2
√

2αo

)(
λ2 +

p

2
+ αo − λ

√
2αo +

q

2
√

2αo

)
= 0. (C.6)

This is easily solved by applying the quadratic formula to each factor, leading to:712

λ =

s1
√
αo + s2

√
−
(
p+ αo + s1

q√
2αo

)
√

2
, (C.7)

where s1, s2 ∈ {−1, 1}.713

Appendix D. Cardano’s Method for the Cubic Roots714

We consider the cubic equation:

ax3 + bx2 + cx+ d = 0 with a 6= 0.

Its solutions are:

x1 = S1 + S2 −
b

3a

x2 = −S1 + S2

2
− b

3a
+
i
√

3

2
(S1 − S2)

x3 = −S1 + S2

2
− b

3a
− i
√

3

2
(S1 − S2),

where:

S1 =
3

√
Q2 +

√
Q3

1 +Q2
2

S2 =
3

√
Q2 −

√
Q3

1 +Q2
2

Q1 =
3ac− b2

9a2

Q2 =
9abc− 27a2d− 2b3

54a3
,

48



and D = Q3
1 + Q2

2 is the discriminant of the equation. For a, b, c, d ∈ R, three cases
can occur:

(1) : ifD > 0, one root is real and two are complex conjugates

(2) : ifD = 0, all roots are real, and at least two are equal

(3) : ifD < 0, all roots are real and unequal.

Appendix E. Formulation for Restricted Cases715

Our original formulation assumes that the three triangle vertices are free to move.716

However, there exist cases when one or two of the vertices are fixed. Typically, this717

occurs for triangles lying on the domain boundary in mesh editing. We here adapt718

the proposed optimal projection formulation to these cases.719

Appendix E.1. One Fixed Vertex720

Appendix E.1.1. A Two Case Formulation721

We assume that vc is fixed. Thus, we have v = [u, x̃c, ỹc] and ṽ = [ũ, x̃c, ỹc], where722

the moving vertices are represented by u = [xa, ya, xb, yb] ∈ R4 and the corresponding723

input vertices by ũ = [x̃a, ỹa, x̃b, ỹb] ∈ R4. We take ∂L
∂u

= 0 which is formed by the724

first four equalities of equation (12), which we rewrite in matrix form Xu = b as:725 
4 0 0 sλ
0 4 −sλ 0
0 −sλ 4 0
sλ 0 0 4



xa
ya
xb
yb

 = 4


x̃a + sλ

4
(ỹc)

ỹa − sλ4 (x̃c)
x̃b − sλ4 (ỹc)
ỹb + sλ

4
(x̃c)

 . (E.1)

We check the invertibility of X from its determinant:726

det(X) = (λ2 − 16)
2
. (E.2)

We thus have:727

det(X) = 0 ⇔ |λ| = 4. (E.3)

We will see that the particular case of det(X) = 0 may occur in practice. We thus728

solve system (E.1) with two cases. In Case I, which is the most general, we have729

|λ| 6= 4. In Case II, we have |λ| = 4. Similarly to the general case in section 2.3, the730

following lemmas establish the relationship between the Lagrange multiplier and the731

linear deficiency of the input vertices.732

Proposition 2. Most settings (input vertices ṽ, prescribed area Ao and orientation733

s) correspond to Fo and fall in Case I. Exceptions handled with Case II are:734
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• F1: ṽ is a single point735

• F2: ṽ is a right isosceles triangle and sign(A∗(ṽ)) = −s736

• F3: ṽ is a right isosceles triangle, A(ṽ)/4 ≥ Ao and sign(A∗(ṽ)) = s737

The proof of Proposition 2 is based on the following five lemmas.738

Lemma 9. F1 ⇐⇒ A(ṽ) = 0 and |λ| = 4.739

Lemma 10. F2 ⇐⇒ A(ṽ) 6= 0 and λ = −4.740

Lemma 11. F3 ⇒ A(ṽ) 6= 0 and λ ∈
{

4,−4 + 2
√

2
Ao
,−4− 2

√
2
Ao

}
.741

Lemma 12. F3 ⇐ A(ṽ) 6= 0 and λ = 4.742

Lemma 13. λ = 4 leads to the optimal solution for F3.743

The proofs of these lemmas are given in Appendix E.1.4. It is important to clarify744

for Proposition 2, that in the right isosceles triangle, the fixed vertex corresponds to745

the one opposite to the triangle’s hypotenuse.746

Proof of Proposition 2. We recall that Case I occurs for |λ| 6= 4 and Case II for747

|λ| = 4. Lemmas 7, 8 and 10 show that F1, F2 and F3 are the only possible settings748

corresponding to |λ| = λo, hence possibly to Case II. This proves that Case I is the749

general case. Lemmas 7 and 8 then trivially prove that F1 and F2 are handled by750

Case II. Finally, lemmas 9 and 11 prove that F3 is also handled by Case II.751

Appendix E.1.2. Case I752

This case occurs for |λ| 6= 4. In other words, this is the case where at least one of753

the initial vertices in ũ is different from the other two and where the rank of the input754

matrix M in equation (18) is rank(M) > 1. Similarly to Case I for three moving755

vertices, the problem is reformulated as a depressed quartic polynomial and the756

roots of this polynomial are found using Ferrari’s method. We start by multiplying757

equation (E.1) by the adjugate X∗ of X and obtain:758

det(X)u = X∗b, (E.4)

where the adjugate is:759

X∗ = δY = λ2 − 16


−4 0 0 sλ
0 −4 −sλ 0
0 −sλ −4 0
sλ 0 0 −4

 , (E.5)
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with δ = λ2 − 16 and Y ∈ R4×4. We note that det(X) = δ2. We substitute this and760

equation (E.5) in equation (E.4) and obtain:761

δu = Y b. (E.6)

We observe that the signed area A∗(δv) = δ2A∗(v). Also that δv = [u, δx̃c, δỹc].762

Thus, we calculate the signed area of δv and obtain after some minor expanding:763

δ2A∗(v) = a2λ
2 + a1λ+ ao, (E.7)

where:

a0 = 128((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)) (E.8)

a1 = −32
(
x̃2
a + x̃2

b + 2x̃2
c + ỹ2

a + ỹ2
b + 2ỹ2

c

)
(E.9)

+ 64(x̃ax̃b + x̃ax̃c + x̃bx̃c + ỹaỹb + ỹaỹc + ỹbỹc) (E.10)

a2 = 8((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa)). (E.11)

We rewrite these coefficients more compactly. Concretely, a0 and a2 contain the764

signed area A∗(ṽ) of the input vertices and a1 contains the sum of the squared765

distances Do of the two moving vertices to the fixed vertex:766

Do(ṽ) = (x̃a − x̃c)2 + (ỹa − ỹc)2 + (x̃b − x̃c)2 + (ỹb − ỹc)2. (E.12)

We substitute equation (E.7) in the signed area constraint (8) multiplied by δ2 and767

obtain:768

sA∗(v)− δ2Ao = 0. (E.13)

This way, the signed area only depends on the known initial vertices ṽ and prescribed769

sign s. Because the signed area is quadratic in the vertices, and the vertices are770

quadratic rational in λ, the resulting equation is a quartic in λ:771

Aoλ
4 − 16(2Ao + sA∗(ṽ))λ2 + 32Do(ṽ)λ+ 256(Ao − sA∗(ṽ)) = 0. (E.14)

This is a depressed quartic because it does not have a cubic term. We can thus772

rewrite it to the standard form by simply dividing by Ao, giving:773

λ4 + pλ2 + qλ+ r = 0, (E.15)

with:

p = −16(2Ao + sA∗(ṽ))

Ao
(E.16)

q =
32Do(ṽ)

Ao
(E.17)

r =
256(Ao − sA∗(ṽ))

Ao
. (E.18)
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This can be solved using Ferrari’s method. We observe that when rank(M) = 2,774

implying A∗(ṽ) = 0, coefficients p and r become constants. However, the equation775

remains a general depressed quartic which can be solved with our procedure.776

Appendix E.1.3. Case II777

Case II occurs for |λ| = 4. From Proposition 2, this means that the initial778

vertices ṽ are colocated as ṽa = ṽb = ṽc or represent right isosceles triangles under779

conditions from Proposition 2. We show that the problem is represented by translated780

homogeneous and linearly dependent equations. We find their null space, particular781

solution and then a subset constrained by the prescribed area.782

We first translate the coordinate system to bring the fixed vertex to the origin783

ũ′ = ũ′− vc translating the unknown vertices to u′ = u− vc. Substituting |λ| = 4 in784

matrix X, we obtain:785

4


1 0 0 s sign(λ)
0 1 −s sign(λ) 0
0 −s sign(λ) 1 0

s sign(λ) 0 0 1

 . (E.19)

This matrix has a rank of two and is thus non-invertible. Thus, Xu′ = ũ′ is solvable786

if and only if ũ′ lies in the column space C(X). The column space can be calculated787

by factoring X into its singular value decomposition (SVD) X = WΣW> and taking788

the first rank(X) columns of the unitary matrix W . For each value of s sign(λ), we789

have column spaces expressed as two-dimensional linear subspaces {γ1w
−
1 + γ2w

−
2 }790

and {γ1w
+
1 +γ2w

+
2 } where γ1, γ2 ∈ R and with bases w−1 ,w

−
2 ∈ R4 and w+

1 ,w
+
2 ∈ R4

791

such that:792

[
w−1 w−2

]
=


0 1√

2
1√
2

0
1√
2

0

0 − 1√
2

 , (E.20)

and:793

[
w+

1 w+
2

]
=


0 1√

2
1√
2

0

− 1√
2

0

0 1√
2

 , (E.21)

We have that when we add a vertex located in the origin to w−1 ,w
−
2 ,w

+
1 and w+

2 , they794

represent right isosceles triangles of the same area of 1
4

with orientation s sign(λ).795

Similarly, adding a vertex located in the origin to the linear combinations γ1w
−
1 +796
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γ2w
−
2 and γ1w

+
1 + γ2w

+
2 represent right isosceles triangles of any area and opposite797

orientations (or colocated points if γ1 = γ2 = 0). This shows that the system is798

solvable if and only if v′ = [u′, 0, 0] ∈ R6 represents a right isosceles triangle of799

orientation sign(A∗(ṽ′)) = s sign(λ) or colocated vertices.800

The system Xu′ = ũ′ is solved by first finding the solutions of the homogeneous801

system Xuh = 0 and translating them by a particular solution up, obtaining u′ =802

uh + up. The homogeneous system has an infinite number of solutions which come803

from the null space of X. This can be represented as a two-dimensional linear804

subspace uh = β1u1 + β2u2 where the coefficients β1, β2 ∈ R and with bases u1,u2 ∈805

R4 such that:806

[
u1 u2

]
=


0 −s sign(λ)

s sign(λ) 0
1 0
0 1

 . (E.22)

We have that u1 and u2 represent two pairs of vertices which form right isosceles807

triangles when adding one third vertex in the origin of the same area 1
4
. The linear808

combination of uh = β1u1 + β2u2 generate right isosceles triangles of any area when809

adding one third vertex in the origin of orientation −s sign(λ). We then calculate810

the particular solution up using the pseudo-inverse as:811

up = X†ũ′ =
1

4


x̃′a + sign(A∗(ṽ′))ỹ′b
ỹ′a − sign(A∗(ṽ′))x̃′b
x̃′b − sign(A∗(ṽ′))ỹ′a
ỹ′b + sign(A∗(ṽ′))x̃′a

 (E.23)

We then translate the null space with the particular solution and obtain u′ = β1u1 +812

β2u2 +up. This linear combination represents pairs of vectors. A noticeable property813

is stated in the following lemma, whose proof is given in Appendix E.1.4.814

Lemma 14. up = 0 ⇒ v′ = [u′, 0, 0] is a right isosceles triangle. The converse is815

not true.816

The next step is to constrain these to the prescribed area and orientation. We have817

v′ = [u′, 0, 0] ∈ R6. After some minor algebraic manipulations, we obtain the signed818

area as:819

A∗(v′) = (1 + s sign(A∗(ṽ′)) sign(λ))
A∗(ṽ′)

4
− s sign(λ)

β2
1 + β2

2

2
. (E.24)

When A∗(ṽ′) 6= 0 we have s sign(λ) = sign(A∗(ṽ′)) thus sign(λ) = s sign(A∗(ṽ′)).820

However, when A∗(ṽ′) = 0 we have sign(A∗(v′)) = −s sign(λ), which implies that821
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sign(λ) = −s. Using the orientation constraint (7), we can express u′ as:822

u′ = β1u1 + β2u2 + up

s.t. (s+ sign(λ) sign(A∗(ṽ′)))
A∗(ṽ′)

4
− sign(λ)

(β2
1 + β2

2)

2
− Ao = 0

(E.25)

Because of the area and orientation constraints, and because u1 and u2 are rotated823

copies of each other, the family defined by equation (E.22) can be generated by824

simply rotating u1 by825

ρ =
√
β2

1 + β2
2 =

√
sign(A∗(ṽ′))A∗(ṽ′)− 4kAo

2
(E.26)

where k depends on the type of input:826

k =

{
s sign(A∗(ṽ′)) if A∗(ṽ) 6= 0

−1 if A∗(ṽ) = 0
(E.27)

so that the area constraint is met and then rotate u1 by some arbitrary angle θ. We827

note that when k = s sign(A∗(ṽ′)) = 1, then ρ ∈ R as long as A(ṽ)/4 ≥ Ao (which828

corresponds to setting F3). We define a new basis vector uc as:829

uc = ρ
[
0 ks 1 0

]
. (E.28)

Finally the triangle vertices are translated to the original coordinates by adding the830

fixed vertex vc, we obtain:831

v =
[
R(θ)uc + up 0 0

]>
+
[
vc vc vc

]>
(E.29)

where R(θ) is a block diagonal matrix replicating the 2D rotation matrix R(θ) two832

times as R = diag(R(θ), R(θ)). Equation (E.29) generates an infinite number of solu-833

tions with the same cost, as shown by the following lemma, proved in Appendix E.1.4.834

Lemma 15. All solutions generated by equation (E.29) have the same cost.835

Appendix E.1.4. Proof of Lemmas836

Proof of Lemma 9. We start with the forward implication: F1 ⇒ A(ṽ) = 0 and837

|λ| = 4. In F1, ṽ represents a single point. This implies A(ṽ) = 0 and Do(ṽ) = 0.838

Replacing these values in the depressed quartic equation (30) causes the coefficients p839
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and r to become constants, and coefficient q to vanish (also the orientation constraint840

vanishes). The depressed quartic thus transforms into a bi-quadratic:841

λ4 − 32λ2 + 256 = 0, (E.30)

whose solutions are:842

|λ| = 4. (E.31)

We now turn to the reverse implication: F1 ⇐ A(ṽ) = 0 and |λ| = 4. We substitute843

|λ| = 4 in equation (E.13), giving:844

4s sign(A∗(ṽ)) sign(λ)|A∗(ṽ)| −Do(ṽ) = 0. (E.32)

Since A(ṽ) = 0, then the only solution that satisfies equation (E.32) for any given845

value of s sign(A∗(ṽ)) sign(λ) is with Do(ṽ) = 0, which implies that the input triangle846

is collapsed into a single point, hence to F1.847

Proof of Lemma 10. We start with the forward implication: F2 ⇒ A(ṽ) 6= 0 and
λ = −4. In F2, ṽ represents a right isosceles triangle and orientation inversion. This
implies A(ṽ) 6= 0 and sign(A∗(ṽ)) = −s. We perform a similarity transformation to
ṽ to bring the fixed vertex to the origin and another to the x-axis, scaled to normalise
their distance, giving ṽ′ = [1, 0, 0, sign(A∗(ṽ)), 0, 0]> where sign(A∗(ṽ)) determines

the orientation of the triangle. We obtain A∗(ṽ′) = sign(A∗(ṽ))
2

and Do(ṽ
′) = 2, thus

the coefficients of the depressed quartic equation (E.15) become:

p = −32Ao − 8

Ao
(E.33)

q =
64

Ao
(E.34)

r =
256Ao + 128

Ao
. (E.35)

Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao + 4

3A0

)2

(E.36)

Q2 =

(
32Ao + 4

3A0

)3

, (E.37)

making
√
Q3

1 +Q2
2 = 0 and the real root αo of Cardano’s resolvent cubic to become:848

αo = 2

(
32Ao + 4

3Ao

)
+

32Ao − 8

3Ao
= 32. (E.38)
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We finally use αo to extract the roots of the depressed quartic:849

λ =

s1

√
32λo + s2

√
8
(

1−s1
Ao

)
√

2
(E.39)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:850

λ ∈
{
−4,−4, 4− 2i

√
2

Ao
, 4 + 2i

√
2

Ao

}
. (E.40)

Considering only the real roots we have λ = −4.851

We now turn to the reverse implication: F2 ⇐ A(ṽ) 6= 0 and λ = −4. We substitute852

λ = −4 in equation (E.13), giving:853

−4s sign(A∗(ṽ))A(ṽ)−Do(ṽ) = 0. (E.41)

Since A(ṽ) 6= 0 and Do(ṽ) > 0 then equation (E.41) can only be solved when854

sign(A∗(ṽ)) = −s. We perform the same similarity transformation used at the begin-855

ning of the proof to the unknown input triangle ṽ giving ṽ′ = [1, 0, x′b, y
′
b, 0, 0]> where856

one of the vertices remains unknown. We then have A∗(ṽ′) =
ỹ′b
2

or857

sign(A∗(ṽ′))A(ṽ′) =
ỹ′b
2

and Do(ṽ
′) = x′2b + y′2b + 1. which we substitute in equa-858

tion (E.41) and obtain:859

x′2b + y′2b + 2sy′b + 1 = 0, (E.42)

which we rewrite as:860

x′2b + (y′b + s)
2

= 0. (E.43)

This is the equation of a single point, making ṽ′ a right isosceles triangle ṽ′ =861

[0, 1, 0,−s, 0, 0]> where s determines the orientation of the triangle. Since ṽ′ was862

a similarity transformation of ṽ, then ṽ is also a right isosceles triangle when863

sign(A∗(ṽ)) = −s, which corresponds to F2.864

Proof of Lemma 11. In F3, ṽ represents a right isosceles triangle with A(ṽ)/4 ≥ Ao
and no orientation inversion. This implies A∗(ṽ) 6= 0 and sign(A∗(ṽ)) = s. We
perform the same similarity transformation to ṽ as in lemma 7, thus the coefficients
of the depressed quartic equation (30) become:

p = −32Ao + 8

Ao
(E.44)

q =
32

Ao
(E.45)

r =
256Ao − 128

Ao
. (E.46)
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Substituting these coefficients in Cardano’s formula we obtain:

Q1 = −
(

32Ao − 4

3A0

)2

(E.47)

Q2 = −
(

32Ao − 4

3A0

)3

, (E.48)

making
√
Q3

1 +Q2
2 = 0. After some factoring we obtain the real root αo of Cardano’s865

resolvent cubic as:866

αo = −2
3

√(
32Ao − 8sA∗(ṽ′)

3Ao

)3

+
32Ao + 16sA∗(ṽ′)

3Ao
. (E.49)

Since sign(A∗(ṽ)) = s and A∗(ṽ′) = sign(A∗(ṽ))A(ṽ′), then αo ∈ R only when867

A(ṽ′)/4 ≥ Ao. Under this condition, we obtain αo = 32. Substituting in equation868

(37) we obtain:869

λ =

s1

√
32λo + s2

√
8
(

1−s1
Ao

)
√

2
(E.50)

where s1, s2 ∈ {−1, 1}. We thus have the following roots:870

λ ∈
{
−4− 2

√
2

Ao
,−4 + 2

√
2

Ao
, 4, 4

}>
. (E.51)

Thus, we have two roots where |λ| 6= 4 (which correspond to solutions for Case I)871

and there exists at least one solution λ = 4 for F3 (which correspond to the solution872

of Case II).873

Proof of Lemma 12. We substitute λ = 4 in equation (E.13), giving:874

4s sign(A∗(ṽ))A(ṽ)− σ2(ṽ) = 0. (E.52)

Since A(ṽ) 6= 0 then equation (E.52) can only be solved when sign(A∗(ṽ)) = s.875

We perform the same similarity transformation to ṽ as in lemma 8, substitute876

sign(A∗(ṽ′))A(ṽ′) and σ2(ṽ′) in equation (E.52) and obtain:877

x′2b + y′2b − 2sy′b + 1 = 0, (E.53)

which we rewrite as:878

x′2b + (y′b − s)
2

= 0. (E.54)
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This is the equation of a single point making ṽ′ a right isosceles triangle ṽ′ =879

[0, 1, 0, s, 0, 0]> where s determines the orientation of the triangle. Since ṽ′ was880

a similarity transformation of ṽ, then ṽ is also a right isosceles triangle when881

sign(A∗(ṽ)) = s for any value A(ṽ) (including A(ṽ′)/4 ≥ Ao) which corresponds882

to F3.883

Proof of Lemma 13. We perform the same similarity transformation to ṽ as in lemma884

8 and obtain A∗(ṽ′) = sign(A∗(ṽ))
2

. We relax the condition of F3 where A(ṽ′)
4
≥ Ao by885

reformulating Ao = 1
2z

where z is a scaling factor z > 0 ∈ R. We substitute this in886

equation (E.51) and extract the roots :887

λ =
[
−4− 4

√
z,−4 + 4

√
z, 4, 4

]>
. (E.55)

We start with the solution given by Case I where |λ| 6= 4. We compact both values888

as λ = −4 + s34
√
z where s3 ∈ {−1, 1}. We substitute this in equation (E.6) and889

obtain:890

u′ =
[
s3√
z

0 0 s3√
z

]>
. (E.56)

We calculate the cost of the solution of Case I by substituting v′ = [u′, x̃c, ỹc] and ṽ′891

in equation (3) and obtain:892

C1(v′) =
2(
√
z − s3)2

z
(E.57)

Now we turn to the solution given by Case II where λ = 4. We calculate the basis893

vector u′c, the particular solution u′p and substitute them in equation (E.29) and894

obtain:895

v′ =
[

1
2

√
z−4

2
√
z

√
z−4

2
√
z

1
2

0 0
]>
. (E.58)

We calculate the cost of the solution of Case II by substituting this and ṽ′ in equation896

(3) and obtain:897

C2(v′) = 1− 2

z
(E.59)

We compare the cost of both solutions C1(v′) ≥ C2(v′) and obtain:898

2(
√
z − s3)2

z
≥ 1− 2

z
(E.60)

After some minor manipulations we obtain:899

z − 4s3

√
z + 4

2z
≥ 0 (E.61)
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We substitute
√
z = a where a > 0 ∈ R and obtain the quadratic expression:900

(a− 4s3)2

2a2
≥ 0 (E.62)

which represents an upward opening parabola which is always positive for any value901

of a and thus z. This implies that C1(v′) ≥ C2(v′) for any value z including z > 4.902

Since ṽ′ was a similarity transformation of ṽ, then C1(v) ≥ C2(v). This means903

that in F3 the solution provided by case II has the lowest cost, thus is the optimal904

solution.905

Proof of Lemma 14. We start with the forward implication: up = 0 ⇒ u′ is a pair906

of perpendicular vectors of equal length. From equation (E.23), we have that up =907

0 when ũ′ = 0 (trivial solution) or when ũ′ = 0 is in the kernel of X†. From908

the properties of the pseudo-inverse we have that ker(X†) = ker(X>). Since X909

is symmetric then ker(X†) = ker(X) = uh, as given in equation (E.22). Recall910

from Appendix E.1.3 that the system Xu′ = ũ′ is solvable if and only if ṽ′ =911

[ũ′, 0, 0] represents a right isosceles triangle of orientation sign(A∗(ṽ′)) = s sign(λ)912

or colocated vertices. Still from Appendix E.1.3, we have that vh = [uh, 0, 0] is a913

right isosceles triangle of orientation sign(A∗(vh)) = −s sign(λ), which contradicts914

the previous statement. This leaves us with up = 0 only when ũ′ = 0, which915

represents a set of colocated points centred in the origin. We then calculate u′ from916

equation (E.25) and obtain:917

u′ =


−β2

β1

β1

β2

 . (E.63)

We can then easily show that the vertices distances with the origin are equal, and
thus that v′ is an isosceles triangle:

Dab =
√
β2

1 + β2
2

Dac =
√
β2

1 + β2
2 .

Also we can show that v′ is a right isosceles triangle by calculating the inner product918

of its vertices:919

Iab = (x′a × x′b) + (y′a × y′b) = 0. (E.64)

We now turn to the reverse implication: up = 0 6⇐ v′ = [v′, 0, 0] is a right isosceles920

triangle, for which we simply provide a counterexample to the positive implication.921
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We use the right isosceles triangle ṽ′ = [1, 0, 0, sign(A∗(ṽ), 0, 0]> where A(ṽ′)/4 = Ao922

and sign(A∗(ṽ)) = s. We calculate its particular solution with equation (E.23) and923

obtain:924

up =


1
2

0
0
1
2

 , (E.65)

which implies that up 6= 0. We substitute A(ṽ′)/4 = Ao and sign(A∗(ṽ)) = s in the
constraint equation (E.25) and obtain β2

1 = −β2
2 . This implies that the constraint

is fulfilled when β1 = β2 = 0 thus u′ = up. We easily show that the inter-vertex
distances are equal:

Dab =
√

(x′a − x′b)2 + (y′a − y′b)2 =
1

2

Dac =
√

(x′b − x′c)2 + (y′b − y′c)2 =
1

2
,

and also that the vertices are perpendicular by calculating their inner product:925

Iab = (x′a × x′b) + (y′a × y′b) = 0. (E.66)

Thus, v is a right isosceles triangle despite up 6= 0.926

Proof of Lemma 15. Our proof shows that the cost is invariant to the value chosen927

for angle θ. We start by translating the coordinate system to bring the fixed vertex928

to the origin as ṽ′ = ṽ−vc, which also translates the unknown vertices to v′ = v−vc.929

Thus, the cost becomes the translated least-squares displacement cost:930

C ′(v′) = ‖v′ − ṽ′‖2. (E.67)

We then continue with the case where ṽ is a single point. This implies A(ṽ) = 0 and931

k = −1. The particular solution v′p can be verified to vanish, from equation (E.23).932

We calculate the basis vector v′c from equation (E.28), leading, from equation (E.29),933

to:934

u′ =


−ρ sin(θ)
ρ cos(θ)
ρ cos(θ)
ρ sin(θ)

 . (E.68)

We calculate the cost by substituting ũ and ũ′ in equation (E.67):935

C ′(v′) = 2ρ2(sin2(θ) + cos2(θ)), (E.69)
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which simplifies to C ′(v′) = 2ρ2 and is thus independent of θ.936

We continue with the case where ṽ is a right isosceles triangle. This implies that937

A(ṽ) 6= 0 and k = s sign(A∗(ṽ)). We perform the same similarity transformation to938

ṽ as in lemma 10 and obtain A∗(ṽ′) = sign(A∗(ṽ))
2

. We calculate the basis vector u′c939

from equation (E.28), the particular solution u′p from equation (E.23) and substitute940

them in equation (E.29), leading to:941

u′ =


1
2
− ρ sin(θ)
ρ cos(θ)
ρ cos(θ)

1
2

+ ρ sin(θ)

 . (E.70)

We calculate the cost by substituting v′ and ṽ′ in equation (E.67):942

C ′(v′) =
1

2
+ 2ρ2(sin2(θ) + cos2(θ)), (E.71)

which simplifies to C ′(v′) = 1
2

+ 2ρ2 and is thus independent of θ.943

Appendix E.1.5. Numerical Implementation944

We use the theory developed in the previous sections to construct a numerically945

robust procedure, given in Algorithm 8, to solve OTPPAO with one fixed vertex.946

It uses the input vertices ṽ, prescribed area Ao and orientation s as inputs. It also947

uses an area error tolerance E to handle round-off in the area constraint (8). Similar948

to Algorithm 1, Algorithm 8 starts by generating the solutions from Case I, then949

Case II, and chooses the optimal one. For Case I, we obtain a list v1 of at most 4950

solutions. For Case II, we obtain a single best solution v2, the optimally rotated one,951

the vertices basis and translation to generate all solutions following equation (E.29).952

The overall optimal solution vo is chosen amongst v1 and v2. The algorithm returns953

the optimal solution, along with all the solutions from Case I and Case II.954

Appendix E.2. Two Fixed Vertices955

We assume that vb and vc are fixed. Thus, we redefine v = [va, x̃b, ỹb, x̃c, ỹc]
>

956

where va is the moving vertex. We take ∂L
∂va

= 0 which are essentially the first957

two equalities of equation (12). We rearrange these equations into a set of linear958

equations:959 [
xa
ya

]
=

[
x̃a − sλ

4
(ỹc − ỹb)

ỹa − sλ
4

(x̃b − x̃c)

]
. (E.72)
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Algorithm 8 Optimal Triangle Projection with a Prescribed Area and Orientation
with a Fixed Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: vo - optimal triangle, v1 - Case I triangle set, v2 - Case II optimal triangle,
uc,vt - Case II basis and offset

1: function OTTPAO1(ṽ, Ao, s, E = 10−3)
2: v1 ← SolveCase1OneFixedVertex(ṽ, Ao, s, E) . Case I solutions
3: (v2,vc,uc,vt)← SolveCase2OneFixedVertex(ṽ, Ao, s, E) . Case II

solutions
4: vo ← FindTriangleOfMinimalCost(v1 ∪ {v2}) . Optimal solution
5: return vo,v1,v2,uc,vt
6: end function

We thus solve system (E.72) with two cases. In Case I, which is the most general,
we have vb 6= vc. In Case II, we have vb = vc. The solution for the latter case is
trivial, since no matter what value we give to λ, the non-fixed vertex remains the
same (xa = x̃a and ya = ỹa). For Case I, we substitute the result of equation (E.72)
in v and calculate the signed area constraint (8). The resulting linear equation in λ
is a1λ+ a0 = 0 where:

a0 = 4s ((x̃a − x̃c)(ỹb − ỹa)− (x̃a − x̃b)(ỹc − ỹa))− 8Ao

a1 = −(x̃2
b + x̃2

c + ỹ2
b + ỹ2

c − 2x̃bx̃c − 2ỹbỹc).

We can rewrite these coefficients more compactly. Concretely, a0 contain the area960

A∗(ṽ) of the input vertices and a1 contains the square distance Po between the two961

fixed vertices:962

Po = (x̃b − x̃c)2 + (ỹb − ỹc)2. (E.73)

We solve for λ and obtain:963

λ = 8
sA∗(ṽ)− Ao

Po
. (E.74)

We substitute λ from equation (E.74) in equation (E.72) and obtain:964 [
xa
ya

]
=

[
x̃a
ỹa

]
− 4

sAo + A∗(ṽ)

Po

[
(ỹc − ỹb)
(x̃b − x̃c)

]
. (E.75)

The numerically robust procedure of this solution is given in Algorithm 11.965
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Algorithm 9 Closed-form Analytic Solution to Case I of OTPPAO with One Fixed
Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v1 - solution list
1: function SolveCase1OneFixedVertex(ṽ, Ao, s, E)
2: Do(ṽ))← (x̃a − x̃c)2 + (ỹa − ỹc)2 + (x̃b − x̃c)2 + (ỹb − ỹc)2

3: p← −16(2Ao+sA∗(ṽ))
Ao

. Compute the coefficients of the depressed quartic

4: q ← 32Do(ṽ)
Ao

5: r ← 256(Ao−sA∗(ṽ))
Ao

6: λ← FerrariSolution(p, q, r) . Solve for the four possible Lagrange
multipliers

7: v1 ← ∅ . Create an empty set of solutions
8: for t← 1, . . . , 4 do . Generate and select the triangles
9: λ← Re(λ(t)) . Keep the real part

10: h← (λ2 − 16)† . Compute the inverse denominator

11: u← h


x̃cλ

2 + 4s(ỹb − ỹc)λ− 16x̃a
ỹcλ

2 + 4s(x̃c − x̃b)λ− 16ỹa
x̃cλ

2 + 4s(ỹc − ỹa)λ− 16x̃b
ỹcλ

2 + 4s(x̃a − x̃c)λ− 16ỹb

 . Compute the vertices

12: v = [u, x̃c, ỹc]
13: if |sA∗(v)− Ao| ≤ E then . Check the area constraint
14: v1 ← v1 ∪ {v} . Add the vertices to the solution set
15: end if
16: end for
17: return v1

18: end function

63



Algorithm 10 Closed-form Analytic Solution to Case II of OTPPAO with One
Fixed Vertex

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E - area
error tolerance

Output: v2 - optimal triangle, uc,vt vertices basis and translation.
1: function SolveCase2OneFixVert(ṽ, Ao, s, E)
2: if A(v) ≤ E then . Check the input’s area
3: k ← s sign(A∗(v)) . Compute k for a right isosceles triangle
4: else
5: k ← −1 . Compute k for a single point
6: end if
7: ṽ′ ← ṽ − vc . Translate the input vertices

8: ρ←
√

sign(A∗(ṽ′))A∗(ṽ′)−4kAo
2

. Computes the area constraint parameter

9: uc ← Re(ρ)
[
0 ks 1 0

]>
. Compute the solution basis

10: up ← 1
4


x̃′a + sign(A∗(ṽ))ỹ′b
ỹ′a − sign(A∗(ṽ))x̃′b
x̃′b − sign(A∗(ṽ))ỹ′a
ỹ′b + sign(A∗(ṽ))x̃′a

 . Compute the particular solution

11: Ũ2 ← rearrange ũ′ into a 2× 2 matrix
12: Uc ← rearrange uc into a 2× 2 matrix

13: (U1,Σ, U2)← SVD
(
Ũ2U

>
c

)
. Compute the optimal rotation

14: D ← diag(1, det(U2U
>
1 ))

15: R← U2DU
>
1

16: vt ←
[
up 0 0

]>
+
[
vc vc vc

]>
. Compute the translation vector

17: v2 =
[
R(θ)uc 0 0

]>
+ vt . Compute the optimal solution

18: return v2,uc,vt
19: end function
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Algorithm 11 Optimal Triangle Projection with a Prescribed Area and Orientation
with Two Fixed Vertices

Input: ṽ - input vertices, Ao - prescribed area, s - prescribed orientation, E -
distance error tolerance

Output: vo - optimal triangle
1: function OTTPAO2(ṽ, Ao, s, E = 10−3)
2: Po = (x̃b− x̃c)2 + (ỹb− ỹc)2 . Compute square distance between fixed vertices
3: if Po > E then

4:

[
xa
ya

]
=

[
x̃a
ỹa

]
− 4P †o (sAo + A∗(ṽ))

[
(ỹc − ỹb)
(x̃b − x̃c)

]
5: else

6:

[
xa
ya

]
=

[
x̃a
ỹa

]
7: end if
8: vo ←

[
xa ya x̃b ỹb x̃c ỹc

]>
. Compute the optimal solution

9: return vo
10: end function
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