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Abstract. We compute the center and the Lie algebra of outer derivations of a familiy of
algebras of differential operators associated to hyperplane arrangements of the affine space A3.
The results are completed for 4-braid arrangements and for reflection arrangements associated
to the wreath product of a cyclic group with the symmetric group S3. To achieve this we use
tools from homological algebra and Lie–Rinehart algebras of differential operators.

Introduction

Let V be a finite-dimensional k-vector space over a field k of characteristic zero, S the algebra
of coordinates on V and A a central hyperplane arrangement in V . We assume throughout
the article that A is a free arrangement in the sense given by K. Saito in [Sai80]: we require
that the Lie algebra DerA of derivations of S tangent to A is a free S-module. The algebra
DiffA of differential operators tangent to A, as seen by F. J. Calderon Moreno in [CM99] and by
M. Suárez–Álvarez in [SÁ18], is the subalgebra of End(S) generated by DerA and S. Our results
concern the center and the Lie algebra of outer derivations of DiffA.

The first and simplest example of a free arrangement is the case of a central line arrangement
in V = k2. This case is studied by the first author and M. Suárez-Álvarez in [KSÁ18] when there
are at least 5 lines: a description of the Hochschild cohomology HH• (DiffA), including its cup
product and Gerstenhaber bracket, is given explicitly in detail through a calculation independent
of the methods that we now use. The second and most important family of examples is that
of the braid arrangements Bn, given for n ≥ 2 by the hyperplanes Hij = {x ∈ kn : xi = xj}
with i 6= j: these arrangements are free and have served historically as a proxy to obtain general
results, for instance in V. I. Arnold’s classical article [Arn69].

In virtue of the freeness of A the algebra DiffA is isomorphic to the enveloping algebra of a Lie–
Rinehart algebra (S,L) —see L. Narvaez Macarro’s [NM08] and the first author’s thesis [Kor19]—
and then the spectral sequence introduced by both authors in [KL21] permits the computation
of HH•(DiffA) in terms of the Hochschild cohomology H•(S,DiffA) of S with values on DiffA
and the Lie–Rinehart cohomology of L. This was successfully applied to arrangements of three
lines in [KL21], and, ultimately, to A = B3 —see Corollary 1.29.

The homological approach described above allows us to compute the center of DiffA under
the hypothesis that the Saito’s matrix of the arrangement A is triangular: more generally, we can
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state this result resorting to the hypothesis of triangularizability of Lie–Rinehart algebras that
we give in Definition 1.12.

Theorem A (Theorem 3.4). Let (S,L) be a triangularizable Lie–Rinehart algebra with enveloping
algebra U . The center of U is k.

Let Ar, r ≥ 1, be the arrangement in C3 defined by 0 = xyz(zr − yr)(zr − xr)(yr − xr). This
arrangement is B4 when r = 1. When r ≥ 2, it is the reflection arrangement of the wreath product
of the cyclic group of order r and the symmetric group S3. The homological method yields the
following result.

Theorem B (Corollary 5.5). Let r ≥ 1. For each hyperplane H in Ar let fH be a linear form
with kernel H and ∂H the derivation of DiffAr determined by{

∂H(g) = 0 if g ∈ k[x1, x2, x3];
∂H(θ) = θ(fH)/fH if θ ∈ DerAr.

The Lie algebra of outer derivations of DiffAr together with the commutator is an abelian Lie
algebra of dimension 3r + 3, the numbers of hyperplanes of Ar, and is generated by the classes of
the derivations ∂H with H ∈ Ar.

In the pursuit of HH•(U) a key step is the computation of H•(S,U). We succeeded in its
calculation when • = 0, 1 for a family of Lie–Rinehart algebras that generalizes DerAr. The result
in Corollary 4.6 relates H1(S,U) to the cokernel of the Saito’s matrix — this is an important
object of the theory with a rich algebraic structure studied, for instance, by M. Granger, D. Mond
and M. Schulze in [GMS11].

There are several ways in which the calculations performed in this article can be continued.
In particular, following the methods of J. Alev and M. Chamarie in [AC92] our findings on the
algebra of outer derivations of DiffA can lead to a description of Aut(DiffA) as in [KSÁ18, §7]
and M. Suárez-Álvarez and Q. Vivas’ [SAV15].

The first author is currently a CONICET postdoctoral fellow and received support from BID
PICT 2019-00099. We thank the Université Clermont Auvergne for hosting the first author
in a postdoctoral position at the Laboratoire de Mathématiques Blaise Pascal during the year
2019-2020.

Unadorned Hom and End are taken over k. The set of natural numbers N is that of nonnegative
integers. If n and m are positive integers, we denote by Jn,mK the set of integers k such that
n ≤ k ≤ m, and JmK := J1,mK.

1. Generalities

1.1. Hyperplane arrangements.

Definition 1.1. A central hyperplane arrangement A in a finite dimensional vector space V is a
finite set {H1, . . . ,H`} of subspaces of codimension 1. Choosing a basis of V we may identify the
algebra S(V ∗) of coordinates of V with S = k[x1, . . . , xn]: for each i ∈ J`K let λi ∈ S be a linear
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form with kernel Hi. Up to a nonzero scalar, the defining polynomial Q = λ1 · · ·λ` ∈ S depends
only on A.

Definition 1.2. The set of derivations tangent to the arrangement A is

DerA := {θ ∈ Der(S) : λi divides θ(λi) for every i ∈ J`K } .

This is a Lie–subalgebra and a sub-S-module of the Lie algebra of derivations Der(S) of S.

Definition 1.3. The arrangement A is free if DerA is a free S-module.

Theorem 1.4 (Saito’s criterion, [Sai80, Theorem 1.8.ii]). A family of ` derivations (θ1, . . . , θ`)
in DerA is an S-basis of DerA if and only if the determinant of Saito’s matrix

M(θ1, . . . , θ`) :=


θ1(x1) · · · θ1(x`)

...
...

θ`(x1) · · · θ`(x`)


is a nonzero scalar multiple of Q.

The notion of freeness connects arrangements of hyperplanes with commutative algebra,
algebraic geometry and combinatorics. While not a property of generic hyperplane arrangements,
many of the motivating examples of hyperplane arrangements are free. Saito’s criterion in
Theorem 1.4 is perhaps the most practical way to prove freeness, though there are other methods
to prove this condition —see A. Bigatti, E. Palezzato and M. Torielli’s [BPT20] for a discussion
on the state of the art.

Example 1.5. Let n ≥ 2, E = An the affine space with coordinate ring S = k[x1, . . . , xn]. The
braid arrangement Bn in E has hyperplanes Hij with equation xi − xj = 0, 1 ≤ i < j ≤ n, so
that the defining polynomial is Q =

∏
1≤i<j≤n (xj − xi).

Consider the derivations θ1, . . . , θn of S defined for k ∈ JnK by

θ1(xk) = 1, θi(xk) = (xk − x1) . . . (xk − xi−1) if i ≥ 2.

These derivations satisfy (xk − xj) | θi(xk − xj) for any i, j, k ∈ JnK and therefore belong to
DerBn. The Saito’s matrix (θi(xk)) is triangular and its determinant is Q. By Saito’s Criterion,
DerBn is a free S-module with basis {θ1, . . . , θn}.

Example 1.6. Let n ≥ 1 and E = An+1 be the affine space with coordinate ring S = k[x0, x1, . . . , xn].
As in Example 1.5 above, the arrangement Bn+1 in E has equation

∏
0≤i<j≤n(xi − xj).

Consider the subspace V = {0}×An of E, defined by the equation x0 = 0, and the hyperplanes
H̃ij of V defined by xi − xj = 0 for 1 ≤ i < j ≤ n. We call B̃n the arrangement formed by these
hyperplanes, so that B̃n is defined by equation x1 . . . xn

∏
0≤i<j≤n(xi − xj) = 0. The derivations

α1, . . . , αn of S = k[x1, . . . , xn] defined for k ∈ JnK by

α1(xk) = xk, αi(xk) =
{

0 if i > k;
xk
∏
j<i(xk − xj) if i ≤ k

if i ≥ 2

belong to Der B̃n. Thanks to Saito’s Criterion, (α1, . . . , αn) is a basis of Der B̃n.
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Example 1.7. Let V be a finite-dimensional vector space. We say that σ ∈ GL(V ) is a pseudo-
reflection if σ is of finite order and fixes a hyperplane Hσ of V , and it is a reflection if this order
is 2. A finite subgroup G of the group of automorphisms of V is a (pseudo-) reflection group if it
is generated by (pseudo-) reflections, and the set of reflecting hyperplanes A(G) of a reflection
group G is the reflection arrangement of G. It is a result by H. Terao in [Ter80] that every
reflection arrangement over k = C is free.

Consider the nth braid arrangement Bn of Example 1.5: identifying the reflection with respect
to the plane xi − xj = 0 with the permutation (ij) ∈ Sn we see that Bn = A(Sn).

Example 1.8. Let r, n ≥ 1 and consider the arrangement Anr in V = kn defined by

0 = x1 . . . xn
∏

1≤i<j≤n
(xrj − xri ).

Taking r = 1 we see that An1 = B̃n for every n. When r ≥ 2, let G = Cr o Sn be the wreath
product of the cyclic group Cr of order r and the symmetric group Sn. We see that Anr is the
reflection arrangement of G, this is, Anr = A(Cr oSn). There is a well-known basis of DerAnr in
[OT92, §B] that consists of the derivations θ1, . . . , θn of S = k[x1, . . . , xn] defined for 1 ≤ k,m ≤ n
by θm(xk) = x

(m−1)r+1
k . Consider the derivations α1, . . . , αn of S defined for 1 ≤ k ≤ n and

2 ≤ m ≤ n by

α1(xk) = xk, αm(xk) = xk

m−1∏
i=1

(xrk − xri ). (1)

These derivations belong to DerAnr : evidently α1 = θ1, and if m ≥ 2 then

αm = θm − s1θm−1 + . . .+ (−1)m−1sm−1θ1,

where sj =
∑

1≤i1<...<ij≤m−1 x
r
i1
· · ·xrij is the jth elementary symmetric polynomial in variables

xr1, . . . , x
r
m−1 for 1 ≤ j ≤ m− 1. For 1 ≤ k ≤ n(
θm − s1θm−1 + . . .+ (−1)m−1sm−1θ1

)
(xk)

= x
(m−1)r+1
k − s1x

(m−2)r+1
k + . . .+ (−1)m−1sm−1x

k = xk

m−1∏
i=1

(xrk − xri ),

which equals αm(xk). Saito’s matrix (αm(xk)) is diagonal and its determinant is
n∏
k=1

αk(xk) =
n∏
k=1

xk

k−1∏
i=1

(xrk − xri ) = x1 . . . xn
∏

1≤i<k≤n
(xrk − xri ).

It follows from Saito’s criterion that α1, . . . , αn is a basis of DerAnr .

Example 1.9. Let r ≥ 1. The arrangement Ar := A3
r is defined by the nullity of

Q(Ar) := x1x2x3(xr2 − xr1)(xr3 − xr1)(xr3 − xr2).

The basis of DerAr in (1) consist in this case of the derivations α1, α2, α3 of S = k[x1, x2, x3]
with Saito’s matrixx1 x2 x3

0 x2(xr2 − xr1) x3(xr3 − xr1)
0 0 x3(xr3 − xr2)(xr3 − xr1)
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1.2. Lie–Rinehart algebras.

Definition 1.10. Let S and (L, [−,−]) be, respectively, a commutative and a Lie algebra endowed
with a morphism of Lie algebras L→ Der(S) that we write α 7→ αS and a left S-module structure
on L which we simply denote by juxtaposition. We say that the pair (S,L) is a Lie–Rinehart
algebra, or that L is a Lie–Rinehart algebra over S, if the equalities

(sα)S(t) = sαS(t), [α, sβ] = s[α, β] + αS(s)β

hold whenever s, t ∈ S and α, β ∈ L.

If S is a commutative algebra and L is a Lie-subalgebra of the Lie algebra of derivations DerS
that is at the same time an S-submodule then L is an Lie–Rinehart algebra over S. This applies
to our situation of interest:

Proposition 1.11. Let A be a hyperplane arrangement in a vector space V . The Lie algebra of
derivations DerA of A is a Lie–Rinehart algebra over the algebra of coordinates of V .

Definition 1.12. Let n ≥ 1, S = k[x1, . . . , xn] and L be a subset of derivations of S such that
(S,L) is a Lie-Rinehart algebra.

(i) We call L triangularizable if L is a free S-module that admits a basis given by derivations
α1, . . . , αn satisfying the two conditions

αi(xj) = 0 if i > j, α1(x1) · · ·αn(xn) 6= 0.

(ii) We say that L satisfies the Bézout condition if in addition for each k in Jn − 1K, the
element αk(xk) of S is coprime with the determinant of the matrix
αk(xk+1) αk+1(xk+1) 0 · · · 0

...
...

. . . . . .
...

αk(xn−2) αk+1(xn−2) · · · αn−2(xn−2) 0
αk(xn−1) αk+1(xn−1) · · · · · · αn−1(xn−1)
αk(xn) αk+1(xn) · · · · · · αn−1(xn)


Example 1.13. For any n ≥ 2 the Lie–Rinehart algebra DerBn is triangular and satisfies the
Bézout condition with the basis {θ1, . . . , θn} given in Example 1.5. The same goes to Der B̃n with
the basis given in Example 1.6.

Example 1.14. Let r, n ≥ 1. The Lie–Rinehart algebra associated to A(Cr oSn) is triangularizable,
as follows immediately from Example 1.8.

Example 1.15. Let r ≥ 1. The arrangement Ar = A(Cr oS3) from Example 1.9 is triangularizable
thanks to Example 1.8. Moreover, it satisfies the Bézout condition: indeed, α2(x2) = x2(xr2 − xr1)
is coprime with α2(x3) = x3(xr3 − xr1), and the determinant

det
(
α1(x2) α1(x3)
α2(x2) α2(x3)

)
= det

(
x2 x3

x2(xr2 − xr1) x3(xr3 − xr1)

)
= x2x3 (xr3 − xr2)

is coprime with α1(x1) = x1.
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1.3. Differential operators associated to an arrangement. Remember from J. C. McConnell
and J. C. Robson’s [MR01, §15] that the algebra Diff S of differential operators on S = k[x1, . . . , xn]
is the subalgebra of EndS generated by DerS and the set of maps given by left multiplication
by elements of S. Recall as well from [MR01, §5] that if R is an algebra and I ⊂ R is a right
ideal, the largest subalgebra IR(I) of R that contains I as an ideal —the idealizer of I in R—
is {r ∈ R : rI ⊂ I}.

Definition 1.16. Let A be a central arrangement of hyperplanes with defining polynomial Q.
The algebra of differential operators tangent to the arrangement A is

Diff(A) =
⋂
n≥1

IDiff(S)(Qn Diff(S)).

As seen in [CM99] for k = C or in [SÁ18] for k of characteristic zero, if A is free then the
algebra DiffA coincides with the sub-associative algebra of End(S) generated by DerA and the
set of maps given by left multiplication by elements of S.

Example 1.17. The arrangement A = B̃2 in k2 with equation 0 = xy(y−x) admits, by [KL21, §5],
a presentation of DiffA adapted from [KSÁ18]: the two derivations

E = x∂x + y∂y, D = y(y − x)∂y

of k[x, y] form a basis of DerA, and the algebra DiffA is generated by the symbols x, y, D and
E subject to the relations

[y, x] = 0,
[D,x] = 0, [D, y] = y(y − x),
[E, x] = x, [E, y] = y, [E,D] = D.

Given a Lie-Rinehart algebra (S,L), a Lie–Rinehart module —or (S,L)-module— is a vector
space M which is at the same time an S-module and an L-Lie module in such a way that if s ∈ S,
α ∈ L and m ∈M then

(sα) ·m = s · (α ·m), α · (s ·m) = (sα) ·m+ αS(s) ·m.

Theorem 1.18 ([Hue90, §1]). Let (S,L) be a Lie-Rinehart algebra.
(i) There exists an associative algebra U = U(S,L), the universal enveloping algebra of

(S,L), endowed with a morphism of algebras i : S → U and a morphism of Lie algebras
j : L→ U satisfying, for s ∈ S and α ∈ L,

i(s)j(α) = j(sα), j(α)i(s)− i(s)j(α) = i(αS(s)).

(ii) The algebra U is universal with these properties.
(iii) The category of U -modules is isomorphic to the category of (S,L)-modules.

Example 1.19. If S = k[x1, . . . , xn] then the full Lie algebra of derivations L = DerS is a
Lie–Rinehart algebra and its enveloping algebra is isomorphic to the algebra of differential
operators Diff(S) = An, the nth Weyl algebra.
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The following result —[NM08, §12] when k = C and [Kor19, Theorem 2.19] for k of characteristic
zero— is our motivation to consider Lie–Rinehart algebras in the algebraic aspects of hyperplane
arrangements.

Theorem 1.20. Let A be a free hyperplane arrangement on a vector space V and let S be the
algebra of coordinate functions on V . There is a canonical isomorphism of algebras

U(S,DerA) ∼= Diff(A).

Proposition 1.21. For n ≥ 1 there is an isomorphism of algebras

Diff Bn+1 ∼= A1 ⊗Diff B̃n.

Proof. Let n ∈ N, S = k[x0, x1, . . . , xn], T = k[y1, . . . , yn] and observe that the unique morphism
of algebras k[z]⊗ T → S given by z 7→ x0 and yk 7→ xk − x0 if k ≥ 1 is an isomorphism —we are
identifying z with z ⊗ 1 and yk with 1⊗ yk.

The derivations in the basis of DerBn+1 given in Example 1.5 induce derivations θ̃1, . . . , θ̃n+1

on k[z]⊗ T . For 1 ≤ i ≤ n+ 1 and 1 ≤ k ≤ n these derivations satisfy

θ̃1 :
{
z 7→ 1;
yk 7→ 0;

θ̃2 :
{
z 7→ 0;
yk 7→ yk;

θ̃i :
{
z 7→ 0;

yk 7→ yk
∏i−1
j=1(yk − yj)

if i ≥ 3.

The Lie algebra DerS is isomorphic to the Lie algebra product Der k[z]×Der B̃n: the derivations
θ̃i with i ≥ 2 correspond to the αi’s in Example 1.6. It follows that the enveloping algebra of the
Lie–Rinehart pair (S,DerBn+1) is isomorphic to the product U(k[z],Der k[z]) × U(T,Der B̃n).
The result is now a consequence of Theorem 1.20 and Example 1.19. �

Definition 1.22. Let n ≥ 1, S = k[x1, . . . , xn] and L a triangularizable Lie–Rinehart algebra
over S with basis (α1, . . . , αn). We say that L satisfies the orthogonality condition if there exists
a family (u1, . . . , un) of elements of U and f ik ∈ S for 1 ≤ k ≤ n and 1 ≤ i ≤ n− 1 such that

uk = αn +
n−1∑
i=1

f ikαi, [uk, xl] = 0 if k 6= l.

Example 1.23. Consider for n ≥ 2 the Lie–Rinehart algebra DerBn from Example 1.5. The family
(u1, . . . , un) of elements of U defined for k ∈ JnK by

uk =
n∑
i=k

(−1)n−i
n∏

j=i+1
(xj − xk) θi

is such that [uk, xl] = 0, whence the orthogonality condition is satisfied. The Lie–Rinehart algebra
Der B̃n from Example 1.6 also satisfies this condition with a similar choice of orthogonal elements.

Let r ≥ 1 and Ar = A(Cr oS3). Let S = k[x1, x2, x3] and L = DerAr be the Lie-Rinehart
algebra associated to Ar. The derivations {α1, α2, α3} given in Example 1.9 make of L a triangular
Lie algebra that satisfies the Bézout condition. We identify the universal enveloping algebra of L
with DiffAr.
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Proposition 1.24. The Lie–Rinehart algebra associated to Ar together with the family {u1, u2, u3}
of elements of DiffAr defined by

u1 = α3 − (xr3 − xr1)α2 + (xr3 − xr1)(xr2 − xr1)α1, u2 = α3 − (xr3 − xr2)α2, u3 = α3

satisfies the orthogonality condition.

Proof. The condition [uk, xl] = 0 if k, l ∈ J3K and l 6= k holds true whenever l < k, so we suppose
that l > k. If k = 3 there is nothing to see; the case k = 2 amounts to the verification that

[u2, x3] = α3(x3)− (xr3 − xr2)α2(x3)
= x3(xr3 − xr2)(xr3 − xr1)− (xr3 − xr2)x3(xr3 − xr1) = 0

and for or k = 1 we have

[u1, x2] = α3(x2)− (xr3 − xr1)α2(x2) + (xr3 − xr1)(xr2 − xr1)α1(x2)
= −(xr3 − xr1)x2(xr2 − xr1) + (xr3 − xr1)(xr2 − xr1)x2 = 0

and

[u1, x3] = α3(x3)− (xr3 − xr1)α2(x3) + (xr3 − xr1)(xr2 − xr1)α1(x3)
= x3(xr3 − xr2)(xr3 − xr2)− (xr3 − xr1)x3(xr3 − xr1) + (xr3 − xr1)(xr2 − xr1)x3 = 0.

�

1.4. Cohomology. Given an associative algebra A the (associative) enveloping algebra Ae is
the vector space A⊗A endowed with the product · defined by (a1 ⊗ a2) · (b1 ⊗ b2) = a1b1 ⊗ b2a2,
so that the category of left Ae-modules is equivalent to that of A-bimodules. The Hochschild
cohomology of A with values on an Ae-module M is

H•(A,M) := Ext•Ae(A,M).

When M = A we write HH•(A) := H•(A,M). C. Weibel’s book [Wei94] may serve as general
reference on this subject.

Definition 1.25 ([Rin63]). Let (S,L) be a Lie–Rinehart algebra with enveloping algebra U and
let N be an U -module. The Lie–Rinehart cohomology of (S,L) with values on N is

H•S(L,N) := Ext•U (S,N).

Remark 1.26 ([Rin63]). In the setting of Definition 1.25 above, suppose that L is S-projective and
let Λ•SL denote the exterior algebra of L over S. The complex HomS(Λ•SL,N) with Chevalley–
Eilenberg differentials computes H•S(L,N).

Theorem 1.27 ([KL21]). Let (S,L) be a Lie–Rinehart algebra with enveloping algebra U , and
suppose that L is an S-projective module. There exist a U -module structure on H•(S,U) and a
first-quadrant spectral sequence E• converging to HH•(U) with second page

Ep,q2 = Hp
S(L,Hq(S,U)).

Proposition 1.28. There are isomorphisms HH•(Diff Bn+1) ∼= HH•(Diff B̃n) for any n ≥ 1.
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Proof. This is a consequence of applying the Künneth’s formula for Hochschild cohomology as
in H. Cartan and S. Eilenberg’s [CE56, XI.3.I] to the isomorphism Diff Bn+1 ∼= A1 ⊗ Diff B̃n in
Proposition 1.21 and the observation that HH0(A1) ∼= k and HHi(A1) ∼= k if i 6= 0. �

Corollary 1.29. The Hilbert series of the Hochschild cohomology of Diff B3 is

h(t) = 1 + 3t+ 6t2 + 4t3.

Proof. Proposition 1.28 particularizes to HH•(Diff B3) ∼= HH•(Diff B̃2), and then [KL21, Corol-
lary 5.8] reads hHH∗(Diff B3) = hHH∗(Diff B̃2) = 1 + 3t+ 6t2 + 4t3. �

2. Combinatorics of the Koszul complex

We let n ≥ 1 and assume throughout this section that (S,L) is a Lie–Rinehart algebra with
S = k[x1, . . . , xn] and L a free S-module with basis (α1, . . . , αn). Let U = U(S,L) be its Lie–
Rinehart enveloping algebra. To compute the Hochschild cohomology of S we use the Koszul
resolution of S available in [Wei94, §4.5].

Lemma 2.1. Let W be the subspace of S with basis (x1, . . . , xn). The complex P• = Se ⊗ Λ•W
with differentials b• : P• → P•−1 defined for s, t ∈ S, q ∈ JnK and 1 ≤ i1 < · · · < iq ≤ n by

bq(s|t⊗ xi1 ∧ · · · ∧ xiq ) =
q∑
j=1

(−1)j+1[(sxij |t)− (s|xij t)]⊗ xi1 ∧ · · · ∧ x̌ij ∧ · · · ∧ xiq

and augmentation ε : Se → S given by ε(s|t) = st is a resolution of S by free Se-modules. The
notation is the usual one: the symbol | denotes the tensor product inside Se and x̌ij means that
xij is omitted.

Through a classical adjunction, the complex HomSe(P•, U) is isomorphic to

Hom(Λ•W,U) ∼= U ⊗Hom(Λ•W, k) =: X•. (2)

We compute the Hochschild cohomology H•(S,U) from the complex (X•, d•). For each q in
J0, nK the basis {x̂k1 ∧ . . . ∧ x̂kq

: 1 ≤ k1 < . . . < kq ≤ n} of Hom(ΛqW, k) dual to the basis
{xk1 ∧ . . . ∧ xkq

} of ΛqW induces a basis of Xq as a U -module.
Write αI := αinn . . . αi11 for each n-tuple of nonnegative integers I = (in, . . . , i1), and call

|I| = in + . . .+ i1 the order of I. A result à la Poincaré-Birkhoff-Witt in [Rin63, §3] assures that
the set {

αI : I ∈ Nn
}

(3)

is an S-basis of U . Moreover, U is a filtered algebra, with filtration (FpU : p ≥ 0) given by the
order of differential operators: FpU = 〈fαI : f ∈ S, |I| ≤ p〉 for each p ≥ 0.

Proposition 2.2. Let q ∈ {0, . . . , n}.
(i) The set formed by αI x̂k1 ∧ · · · ∧ x̂kq

with I ∈ Nn and 1 ≤ k1 < . . . < kq ≤ n is an S-basis
of Xq.

(ii) There is a filtration (FpXq : p ≥ 0) of vector spaces on Xq determined for each p ≥ 0 by

FpX
q = 〈fαI x̂k1 ∧ · · · ∧ x̂kq

: f ∈ S, 1 ≤ k1 < . . . < kq ≤ n, I ∈ Nn such that |I| ≤ p〉.
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Proof. In view of (2), for each q the U -module Xq admits
{
x̂k1 ∧ · · · ∧ x̂kq : 1 ≤ k1 < . . . < kq ≤ n

}
as a basis. The claim follows from this and the S-basis of U in (3) above. �

The differentials dq : Xq → Xq+1 induced by b• : P• → P•−1 satisfy for q = 0, 1

d0 : u 7→
n∑
k=1

[u, xk]x̂k, d1 :
n∑
k=1

ukx̂k 7→
∑

1≤k<l≤n
([uk, xl]− [ul, xk]) x̂k ∧ x̂l.

Given m ∈ JnK we denote by em the n-tuple whose components are all zero except for the (n−m)th,
where there is a 1.

Lemma 2.3. Let a =
∑
|I|=p f

IαI for f I ∈ S with I ∈ Nn. If k ∈ JnK and J = (jn, . . . , j1) ∈ Nn

has order p− 1 then the component of [a, xk] in αJ is
n∑

m=1
(jm + 1)αm(xk)fJ+em .

Proof. If I = (in, . . . , i1) ∈ Nn has order p then

[f IαI , xk] ≡ inf Iαn(xk)αI−en + . . .+ i1f
Iα1(xk)αI−e1 mod Fp−2U.

If there exists a monomial in this expression belonging to SαJ then there exists m ∈ JnK such
that I − em = J . This happens when the component of [f IαI , xk] in αJ is

imαm(xk)f I = (jm + 1)αm(xk)fJ+em ,

and therefore [a, xk] ≡
∑
|J|=p−1

∑n
m=1(jm + 1)αm(xk)fJ+emαJ modulo Fp−2U . �

For g1, . . . , gn ∈ S and f1 = (f1
1 , . . . , f

1
n), . . . , fn = (fn1 , . . . , fnn ) ∈ S×n we let

Ω0(gn, . . . , g1) :=
n∑
i=1

giαi ∈ F1U, Ω1(fn, . . . , f1) :=
n∑
l=1

n∑
i=1

f ikαix̂k ∈ F1X
1.

Proposition 2.4. Let p ≥ 0, u ∈ FpU and ω ∈ FpX1.
(i) If {f I : I ∈ Nn, |I| = p} ⊂ S is such that u ≡

∑
|I|=p f

IαI mod Fp−1U then

d0(u) ≡
∑
|J|=p−1

d0 (Ω0 ((jn + 1)fJ+en , (jn−1 + 1)fJ+en−1 , . . . , (j1 + 1)fJ+e1
))
αJ

modulo Fp−2X
1.

(ii) If ω ≡
∑n
l=1
∑
|I|=p f

I
l α

I x̂i mod Fp−1X
1 for

{
f Il : I ∈ Nn, |I| = p, l ∈ JnK

}
⊂ S then

d1(ω) ≡
∑
|J|=p−1

d1 (Ω1 ((jn + 1)fJ+en , (jn−1 + 1)fJ+en−1 , . . . , (j1 + 1)fJ+e1
))
αJ

modulo Fp−2X
2.

Proof. To prove (i) it suffices to see that the desired equality holds in each coefficient of the
S-basis

(
αJ x̂k : J ∈ Nn, k ∈ JnK

)
of X1 given in Proposition 2.2. Let then J = (jn, . . . , j1) ∈ Nn of

order p−1 and k ∈ JnK. Thanks to Lemma 2.3 the component in αJ x̂k of d0(u) =
∑n
l=1[u, xl]x̂l is

n∑
m=1

(jm + 1)αm(xk)fJ+em . (4)
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On the other hand, given fn, . . . , f1 ∈ S a direct calculation shows that the component in x̂k of
d0 (Ω0 (fn, . . . , f1)) is

∑n
i=1 f

iαi(xk). It follows that the component of

d0 (Ω0 ((jn + 1)fJ+en , . . . , (j1 + 1)fJ+e1
))

in x̂k is equal to (4), which is tantamount to what we wanted to see. The proof of (ii) is completely
analogous. �

3. Cohomologies in degree zero and centers

In this section (S,L) is a triangularizable Lie algebra: S = k[x1, . . . , xn] for some n ≥ 1 and L
is a sub-S-module of derivations of S with a basis given by derivations α1, . . . , αn that satisfy
αi(xj) = 0 if i > j and αi(xi) 6= 0 for every i ∈ JnK. Let U be the enveloping algebra of (S,L).

3.1. The cohomology of S with values on U . The Hochschild cohomology H•(S,U) is the
cohomology of the complex (X•, d•) of (2).

Lemma 3.1. The restriction of d0 : X0 → X1 to F1X
0 has kernel F0X

0.

Proof. It is evident that F0X
0 = S is contained in ker d0. Let u ∈ F1U and f1, . . . , fn ∈ S such

that u ≡
∑n
i=1 f

iαi modulo S. We examine the equations d0(u)(1|xl|1) = 0, that is, [u, xl] = 0
for each 1 ≤ l ≤ n. We first observe that

0 = [u, x1] =
n∑
i=1

f iαi(x1) = f1α1(x1),

and then f1 = 0. Proceeding inductively on k, we assume that u =
∑n
i=k f

iαi and compute

0 = [u, xk] = fkαk(xk) + . . .+ fnαn(xk) = fkαk(xk).

We deduce that fk = 0 and conclude that u ∈ S. �

Proposition 3.2. If p > 0 and u ∈ FpU are such that d0(u) ≡ 0 modulo Fp−2X
1 then u ∈ Fp−1U .

Proof. Let {f I : I ∈ Nn, |I| = p} ⊂ S be such that u ≡
∑
|I|=p f

IαI modulo Fp−1U : thanks to
Proposition 2.4 we have that

d0(u) ≡
∑

|J=(jn,...,j1)|=p−1

d
(
Ω0 ((jn + 1)fJ+en , . . . , (j1 + 1)fJ+e1

))
αJ mod Fp−2X

1.

We deduce that 0 = d0 (Ω0 ((jn + 1)fJ+en , . . . , (j1 + 1)fJ+e1
))

for each J with |J | = p − 1,
provided that p − 1 ≥ 0. Thanks to Lemma 3.1 we deduce that 0 = fJ+eN−2 = . . . = fJ+e−1 .
Since we can write every I ∈ N with |I| = p as I = J + em for some m ∈ JnK we conclude that if
p− 1 ≥ 0 then f I = 0 for every I with |I| = p. �

Proposition 3.3. The inclusion S ↪→ U = X0 induces an isomorphism of graded U-modules
H0(S,U) = S

Proof. Let us write u = u0 + . . .+ up with uq ∈ FqU \ Fq−1U and p ≥ 0 maximal among those q
such that uq 6= 0. As d0(u) = 0 and d0(uq) ∈ Fq−1X

1 for every q ∈ J0, pK we have that d(up) ≡ 0
mod Fp−2X

1, and we may use Proposition 3.2 to see that if p > 0 then up = 0. We conclude
then that p = 0, so that actually u ∈ S. We obtain the result with the evident observation that
every element of S is a 0-cocycle in X•. �
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3.2. The cohomology of U . Our recent calculation of H0(S,U) leaves us just one step away
from the zeroth Hochschild cohomology space of U .

Theorem 3.4. Let (S,L) be a triangularizable Lie–Rinehart algebra with enveloping algebra U .
There is an isomorphism of vector spaces HH0(U) ∼= k.

Proof. As a consequence of the immediate degeneracy of the spectral sequence of Theorem 1.27
there is an isomorphism of vector spaces HH0(U) ∼= H0

S(L,H0(S,U)). In view of Proposition 3.3,
this isomorphism amounts to

HH0(U) ∼= H0
S(L, S) ∼= {f ∈ S : αi(f) = 0 if i ∈ JnK}

Since αi(f) =
∑n
j=1 αi(xj)∂jf for f ∈ S, the condition that αi(f) = 0 if i ∈ JnK means that

(∂1f, . . . , ∂nf) belongs to the kernel of the Saito’s matrix M = (αi(xj))ni,j=1. As this matrix is
triangular and its determinant is nonzero, the condition αi(f) = 0 for all i ∈ JnK is equivalent to
∂jf = 0 for all j ∈ JnK, which is to say that f ∈ k. �

Corollary 3.5. Let r, n ≥ 1. The centers of Diff (A(Cr oSn)) and of Diff Bn are k.

Proof. The algebras considered have been shown to satisfy the hypotheses of Theorem 3.4 in
Examples 1.13 and 1.8. �

4. The first cohomology space H1(S,U)

We now restrict our attention to the case in which n = 3. Let then (S,L) be a Lie-Rinehart
algebra with S = k[x1, x2, x3] and L the free S-module generated by the subset of derivations
{α1, α2, α3} in DerS. We suppose that (S,L) is triangularizable, this is, αi(xj) = 0 if i > j and
α1(x1)α2(x2)α3(x3) 6= 0, and that (S,L) satisfies the Bézout condition:

• the polynomials α2(x2) and α2(x3) are coprime;
• the polynomials α1(x1) and det

(
α1(x2) α1(x3)
α2(x2) α2(x2)

)
are coprime.

Lemma 4.1. Let
{
f il : i ∈ {1, 2} , l ∈ J3K

}
⊂ S and write ω =

∑3
l=1
(
f2
l α2 + f1

l α1
)
x̂l ∈ X1.

If ω is a cocycle then there exist unique elements g11, g12, g22 of S such that g11α1(x1) = f1
1 ,

g12α1(x1) = f2
1 and g22α2(x2) = f2

2 − g12α1(x2). These elements satisfy

ω ≡ d( 1
2g11α

2
1 + g12α2α1 + 1

2g22α
2
2) mod F0X

1.

Proof. The components in x̂1∧x̂2 and x̂1∧x̂3 of dω = 0 tell us that α1(xj)f1
1 +α2(xj)f j1 = α1(x1)f1

j

for j ∈ {2, 3}. We can arrange these two equations as(
α1(x2) α2(x2)
α1(x3) α2(x3)

)(
f1

1
f2

1

)
= α1(x1)

(
f1

2
f1

3

)
(5)

and then Cramer’s rule tells us that if i ∈ {1, 2} then f i1 det M̃ = α1(x1) det M̃i, where M̃ is the
matrix on the left hand of (5) and M̃i is the matrix obtained by replacing the ith column of M̃ by(
f1

2
f1

3

)
. It follows that α1(x1) divides f i1 —because it is coprime with det M̃ in view of the Bézout

hypothesis— and then there exist g11 and g12 in S such that g1iα1(x1) = f i1.
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Let u1 := 1
2g11α

2
1 + g12α2α1 and ω̃ := ω − d(u1), and write ω̃ =

∑3
l=1
(
f̃2
l α2 + f̃1

l α1
)
x̂l. Since

d(u1) : x1 7→ [u, x1] ≡ g11α(x1)α1 + g12α1(x1)α2 mod S

= f2
1α1 + f2

1α2,

x2 7→ [u, x2] ≡ g11α1(x2)α1 + g12α2(x2)α1 + g12α1(x2)α2 mod S (6)

we have f̃1
1 = f̃2

1 = 0. Now, the equation dω̃ = 0 in x̂1 ∧ x̂2 and x̂1 ∧ x̂3 tells us, as in (5), that
f̃1

2 = f̃1
3 = 0, and in x̂2 ∧ x̂3 that α2(x2)f̃2

3 = α2(x3)f̃2
2 . Thanks to the Bézout condition there

exists g22 ∈ S such that g22α2(x2) = f̃2
2 ; in view of (6), f̃2

2 is equal to f2
2 − g12α1(x2). Put

u2 := 1
2g22α

2
2. We see that d(u2)(x1) = 0 and that

d(u2)(x2) = [u2, x2] ≡ g22α2(x2)α2 mod S

= f̃2
2α2.

The difference ω̄ := ω̃ − d(u2) is therefore a coboundary with no component modulo S in x̂1 nor
in x̂2, so we can write ω̄ ≡

(
f1α1 + f2α2

)
x̂3 mod F0X

1. Now, the equations that come from
ω̄ being a coboundary are 0 = f1α1(x1) in x̂1 ∧ x̂3, from which f1 = 0, and 0 = f2α2(x2) in
x̂2 ∧ x̂3, whence finally ω̄ ∈ F0X

1. We have in this way obtained that ω ≡ d(u1 + u2) mod F0X
1,

as desired. �

Proposition 4.2. Let p ≥ 0 and ω ∈ FpX
1, and let

{
f

(i3,i2,i1)
l : l ∈ J3K, i3, i2, i1 ≥ 0

}
⊂ S

such that

ω ≡
3∑
l=1

∑
i1+i2+i3=p

f
(i3,i2,i1)
l α(i3,i2,i1)x̂l mod Fp−1X

1. (7)

If ω is a cocycle and f (p,0,0)
1 = f

(p,0,0)
2 = f

(p,0,0)
3 = 0 then ω ∈ Fp−1X

1.

Proof. Let us prove by descending induction on i from p to 0 that

the cocycle ω is cohomologous modulo Fp−1X
1 to a cocycle of the form (7) with

f
(i3,i2,i1)
l = 0 if l ∈ J3K and i3 ≥ i.

(8)

Our hypotheses give us the truth of (8) for i = p. Suppose now that (8) is true for p, . . . , i
and assume, without loss of generality, that ω is of the form (7) with f

(i3,i2,i1)
l = 0 if l ∈ J3K,

i1 + i2 + i3 = p and i3 ≥ i.

Lemma 4.3. Let q ∈ {0, . . . , p − i + 1}. The cocycle ω is cohomologous modulo Fp−1X
1 to

a cocycle of the form (7) with f
(i−1,p−i+1,0)
l = . . . = f

(i−1,p−i+1−q,q)
l = 0 and f

(i3,i2,i1)
l = 0 if

i1 + i2 + i3 = p and i3 ≥ i for every l ∈ J3K.

The auxiliary result above implies at once the truth of the inductive step of the proof of (8),
thus demonstrating Proposition 4.2. �

Proof of Lemma 4.3. Suppose that q = 0. Equation dω = 0 in its component (i − 1, p − i, 0)
reads, thanks to Proposition 2.4,

0 = d
(

Ω1(if (i,p−i,0), (p− i+ 1)f (i−1,p−i+1,0), f (i−1,p−i,1))
)
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and the inductive hypothesis (8) tells us that f (i,p−i,0) = 0. Applying now Lemma 4.1 in we
obtain that there are g11, g12, g22 ∈ S such that

g11α1(x1) = f
(i−1,p−i,1)
1 , g12α1(x1) = (p− i+ 1)f (i−1,p−i+1,0)

1 ,

g22α2(x2) = (p− i+ 1)f (i−1,p−i+1,0)
2 − g12α1(x2)

Let v = ( 1
2g11α

2
1 + 1

(p−i+1)g12α2α1)α(i−1,p−i,0) and write ω̃ = ω − d(v), so that there exists{
f̃

(i3,i2,i1)
l

}
⊂ S such that

ω̃ ≡
n∑
l=3

∑
i1+i2+i3=p

f̃
(i3,i2,i1)
l α(i3,i2,i1)x̂l mod Fp−1X

1.

Recall that d(v) : xl 7→ [v, xl] for l ∈ J3K. Since

[v, x1] ≡ (g11α1(x1)α1 + 1
(p−i+1)g12α1(x1)α2)α(i−1,p−i,0) mod Fp−1U

= f
(i−1,p−i,1)
1 α(i−1,p−i,1) + f

(i−1,p−i+1,0)
1 α(i−1,p−i+1,0),

we have that f̃ (i−1,p−i,1)
1 = f̃

(i−1,p−i+1,0)
1 = 0. Moreover, as [v, x2], [v, x3] ∈

⊕
i3<i

Sα(i3,i2,i1) the
coefficients f̃ (i3,i2,i1)

l are equal to f (i3,i2,i1)
l and therefore to zero if i1 + i2 + i3 = p, i3 ≥ i and

l ∈ J3K.
We now look at equation dω̃ = 0, again in its coefficient of α(i−1,p−i,0) to obtain that

0 = d
(
Ω1(0, (p− i+ 1)f̃ (i−1,p−i+1,0), f̃ (i−1,p−i,1))

)
. This equation in its component in x̂1 ∧ x̂2

tells us, thanks to (5), that f̃ (i−1,p−i,1)
2 = f̃

(i−1,p−i,1)
3 = 0. On the other hand, applying Lemma 4.1

we get g ∈ S such that gα2(x2) = (p− i+ 1)f̃ (i−1,p−i+1,0)
2 . Let now λ = 1/(p− i+ 2)(p− i+ 1)

and ṽ = λgα(i−1,p−i+2,0). Since [ṽ, x1] = 0,

[ṽ, x2] ≡ λg(p− i+ 2)α2(x2)α(i−1,p−i+1,0) mod Fp−1U

= λ(p− i+ 1)f̃ (i−1,p−i+1,0)
2 (p− i+ 2)α(i−1,p−i+1,0)

= f̃
(i−1,p−i+1,0)
2 α(i−1,p−i+1,0)

and [ṽ, x3] ∈
⊕

i3<i
Sα(i3,i2,i1), the difference ω̃ − d(ṽ) is a cohomologous modulo Fp−1X

1 to a
cocycle η =

∑n
l=3
∑
i1+i2+i3=p h

(i3,i2,i1)
l α(i3,i2,i1)x̂l with h

(i3,i2,i1)
l = 0 if i1 + i2 + i3 = p, i3 ≥ i

and l ∈ J3K and h(i−1,p−i,1)
l = h

(i−1,p−i+1,0)
l = 0 if l ∈ {1, 2}. Applying Lemma 4.1 one final time

we obtain g̃11, g̃12, g̃22 ∈ S such that g̃11α1(x1) = (p− i+1)h(i−1,p−i+1,0)
1 , g̃12α1(x1) = h

(i−1,p−i,1)
1

and g̃22α2(x2) = (p− i+ 1)h(i−1,p−i,1)
2 − g̃12α1(x2) —and therefore g̃11, g̃12 and g̃22 must be equal

to 0— and that satisfy

Ω1(0, (p−i+1)h(i−1,p−i+1,0), h(i−1,p−i,1)) ≡ d( 1
2 g̃11α

2
1 + g̃12α2α1 + 1

2 g̃22α
2
2) mod F0X

1.

It follows that h(i−1,p−i+1,0) = h(i−1,p−i,1) = 0, and therefore that η ≡ 0 mod Fp−1X
1. This

finishes the proof of the base step of Lemma 4.3.

We finally deal with the inductive step of Lemma 4.3. Let q, i and ω be as in the statement.
The component in α(i−1,p−i−q,q) of equation dω = 0 yields

0 = d
(

Ω1
(
if (i,p−i−q,q), (p− i− q + 1)f (i−1,p−i−q+1,q), (q + 1)f (i−1,p−i−q,q+1)

))
.
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Now, our inductive hypotheses of (8) and of Lemma 4.3 tell us, respectively, that f (i,p−i−q,q) = 0
and that f (i−1,p−i−q+1,q) = 0, and therefore our equation above reduces to

0 = d
(

Ω1
(

0, 0, f (i−1,p−i−q,q+1)
))

.

Applying to this situation Lemma 4.1 we obtain g ∈ S such that gα1(xl) = f
(i−1,p−i−q,q+1)
l for

l ∈ J3K. Let v = 1
(q+2)gα

(i−1,p−i−q,q+2) and write ω̃ = ω − d(v): let
{
f

(i3,i2,i1)
l

}
⊂ S such that

ω̃ ≡
∑n
l=3
∑
i1+i2+i3=p f̃

(i3,i2,i1)
l α(i3,i2,i1)x̂l modulo Fp−1X

1. As

[v, x1] ≡ gα1(x1)α(i−1,p−i−q,q+1) = f
(i−1,p−i−q,q+1)
1 α(i−1,p−i−q,q+1) mod Fp−1U

and if j ∈ {2, 3} then

[v, xj ] ∈ Sα(i−2,p−i−q,q+2) ⊕ Sα(i−1,p−i−q−1,q+2) ⊕ Sα(i−1,p−i−q,q+1) ⊕ Fp−1U,

we obtain that f̃ (i3,i2,i1)
l = 0 whenever i3 ≥ i and f̃

(i−1,p−i+1,0)
l = . . . = f̃

(i−1,p−i+1−q,q)
l = 0 for

every l ∈ J3K and, in addition, that f̃ (i−1,p−i−q,q+1)
1 = 0. As a consequence of this, the component

in α(i−1,p−i−q,q) of equation dω̃ = 0 reduces to 0 = d
(
Ω1 (0, 0, f̃ (i−1,p−i−q,q+1))) . The element g̃

that is provided for this situation by Lemma 4.1 satisfies g̃α1(xl) = f̃
(i−1,p−i−q,q+1)
l for l ∈ J3K:

it follows that g = 0 and hence f̃ (i−1,p−i−q,q+1)
l = 0 for l ∈ J3K and ω̃ ≡ 0 mod Fp−1X

1. This
finishes the proof of Lemma 4.3. �

From this point on we demand to (S,L) that in addition it satisfy the orthogonality condition:
that there be a family u1, u2, u3 of elements of U that can be written as uk = α3 +h2

kα2 +h1
kα1 for

some
{
hik : k ∈ J3K, i ∈ J2K

}
⊂ S and such that [uk, xl] = 0 whenever k 6= l. The idea is that that

we can add to any cocycle in FpX
1 an S-linear combination of upkx̂k to remove its components

in the maximum power of α3 and in this way obtain a cocycle that falls in the hypotheses of
Proposition 4.2.

Corollary 4.4. Let {u1, u2, u3} be the family that makes (S,L) satisfy the orthogonality condition.
(i) The cochains ηpk = upkx̂k ∈ FpX1 defined for p ≥ 0 and k ∈ J3K are cocycles.

(ii) Every cocycle in X1 is cohomologous to one in the S-submodule of X1 generated by
{ηpk : k ∈ J3K, p ≥ 0}.

Proof. Let us denote by Z1 the S-module generated by {ηpl : l ∈ J3K, p ≥ 0}. We prove by
induction on p ≥ 0 that if ω ∈ FpX1 is a cocycle then there exist z ∈ Z1 and u ∈ U such that
ω = d0(u) + z. We first observe that F0(X1) = F0(Z1) because x̂l = η0

l , and then for p = 0 we
have that ω ∈ F0(X1) ⊂ Z1.

Assume now that p > 0 and let
{
f Il : l ∈ J3K, I ∈ N3} ⊂ S such that ω ≡

∑3
l=1
∑
|I|=p f

I
l α

I x̂l

mod Fp−1X
1. Defining z =

∑3
l=1 f

(p,0,0)
l ηpl we see that the cocycle ω̃ := ω− z has its components

in αpx̂1, α
px̂2, α

px̂3 equal to zero, and applying Proposition 4.2 we deduce that ω̃ is a coboundary
modulo Fp−1X

1: let u ∈ U and ω′ ∈ Fp−1X
1 be such that ω̃ = d0(u) + ω′. The inductive

hypothesis tells us that there exist u′ ∈ U and z′ ∈ Z1 such that ω′ = d0(u′) + z′, and thus
ω = ω̃ + z = d0(u+ u′) + (z + z′), as we wanted. �

Proposition 4.5. Let p ≥ 0.
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(i) Let ω ∈ FpX
1 be a cocycle, so that there exist {f1, f2, f3} ⊂ S and u ∈ U such that

ω ≡
∑3
l=1 flη

p
l + du modulo Fp−1X

1. The cocycle ω is equivalent to a coboundary modulo
Fp−1X

1 if and only if
∑3
l=1 flx̂l is a coboundary.

(ii) The unique S-linear map γp : F0X
1 → FpX

1 such that x̂l 7→ ηpl if 1 ≤ l ≤ 3 induces an
isomorphism of S-modules

FpH
1(S,U)/Fp−1H

1(S,U) ∼= F0H
1(S,U).

Proof. Suppose that ω0 =
∑n
l=1 flx̂l is a coboundary and let v ∈ U such that d0(v) = ω0. Thanks

to Proposition 3.2 we may assume that v ∈ F1X
1 and write v ≡ g3α3 + g2α2 + g1α1 mod S for

some g3, g2, g1 ∈ S. In view of Proposition 2.4 there exist f I0 ∈ F0X
1 such that we may write

d0
(

g3

p+ 1α
p+1
3 + g2αp3α2 + g1αp3α1

)
≡ d0 (v)αp3 +

∑
i3<p

f
(i3,i2,i1)
0 α(i3,i2,i1) mod Fp−1X

1.

It follows that the difference ω−d0
(
g3

p+1α
p+1
3 + g2αp3α2 + g1αp3α1

)
is a cochain whose components

in αp3x̂1, α
p
3x̂2, α

p
3x̂N are zero. Applying Proposition 4.2 we see that ω is equivalent to a coboundary

modulo Fp−1X
1.

Reciprocally, let u ∈ U such that d0(u) = ω. Thanks to Proposition 3.2 we know that
u ∈ Fp+1U : let us write u ≡

∑
|K|=p+1 h

KαK with {hK : K ∈ N3, |K| = p+ 1} ⊂ S. Taking into
account Proposition 2.4 again we see that

d0(u) ≡ d
(

Ω0
(

(p+ 1)h(p+1,0,0), h(p,1,0), h(p,0,1)
))

αp3 +
∑
i3<p

f
(i3,i2,i1)
0 α(i3,i2,i1)

modulo Fp−1X
1 for some f I0 ∈ F0X

1. The equality of this to ω implies, looking at the components
in αp3x̂1, α

p
3x̂2, α

p
3x̂3, that d

(
Ω0 ((p+ 1)h(p+1,0,0), h(p,1,0), h(p,0,1))) =

∑3
l=1 flx̂l. This completes

the proof of the first item.
Now, the truth of the first item implies two things: first, that the composition F0X

1 →
FpX

1/Fp−1X
1 of γp with the projection to the quotient descends to cohomology and, second, that

the map induced in cohomology by this composition is a monomorphism. It is also surjective
thanks to Corollary 4.4(ii). �

Recall that the filtered S-module F•H1(S,U) has a graded associated S-module Gr•H1(S,U) =⊕
p≥0 GrpH1(S,U) given by GrpH1(S,U) := FpH

1(S,U)/Fp−1H
1(S,U). We have just seen

that GrpH1(S,U) is isomorphic as an S-module to F0H
1(S,U) for any p ≥ 0: we claim that we

can make it an isomorphism of graded S-modules.
Given p ≥ 0, the map γp : F0X

1 → FpX
1 induces an isomorphism of S-modules F0H

1(S,U) ∼=
GrpH1(S,U) that shifts the polynomial degree in 3(p− 1): indeed, for each l ∈ J3K the class of
ηl ∈ X1, which has polynomial degree 2, is sent to the class of ηpl , which has polynomial degree
3p− 1. On the other hand, the morphism of S-modules γ : F0(H1(S,U))⊗ k[α3]→ GrH1(S,U)
such that [ηl]⊗αp3 7→ [ηpl ] for l ∈ J3K and p ≥ 0 does respect the graduation and is an isomorphism
because so is each γp. In addition to this, we observe that

F0(H1(S,U)) = S ⊗ 〈x̂1, x̂2, x̂3〉
Sd0(α1) + Sd0(α2) + Sd0(α3)

∼= cokerM.

We summarize our findings in the following statement.
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Corollary 4.6. Let S = k[x1, x2, x3] and L a free S-submodule of DerS generated by derivations
α1, α2, α3 in such a way that (S,L) is a triangularizable Lie–Rinehart algebra that satisfies the
Bézout and orthogonality conditions. Let U be the Lie–Rinehart enveloping algebra of L. There is
an isomorphism of S-graded modules

H1(S,U) ∼= cokerM ⊗ k[α3],

where M is the Saito’s matrix of (S,L).

Recall that the cokernel of M has a rich algebraic structure — see M. Granger, D. Mond and
M. Schulze’s [GMS11].

5. Computation of HH1(U)

The spectral sequence in Theorem 1.27, regardless of its degeneracy, gives us an strategy
to obtain the first Hochschild cohomology space HH•(U) of the enveloping algebra U of a Lie–
Rinehart algebra (S,L): indeed, HH1(U) is isomophic to H1

S(L,H0(S,U)) ⊕H0
S(L,H1(S,U)).

In Sections 3 and 4 we computed H0(S,U) and H1(S,U) when (S,L) is as in Corollary 4.6,
which is the conclusion of Section 4. In this section we describe their L-module structure and use
it to compute their respective Lie–Rinehart cohomology spaces for the case in which (S,L) is
associated to a hyperplane arrangement of the form Ar = A(Cr oS3) as in Example 1.9.

5.1. The L-module structure on H•(S,U). Let (S,L) be a Lie-Rinehart pair with enveloping
algebra U . Let us describe the construction in [KL21] that gives an L-module structure to the
Hochschild cohomology H•(S,U) of S with values on U .

Fix α ∈ L and an Se-projective resolution ε : P• → S. Let α• be an αeS-lifting of αS : S → S

to P•, that is, a morphism of complexes α• = (αq : Pq → Pq)q≥0 such that ε ◦ α0 = αS ◦ ε and
for each q ≥ 0, s, t ∈ S and p ∈ Pq

αq((s⊗ t) · p) = (αS(s)⊗ t+ s⊗ αS(t)) · p+ (s⊗ t) · p.

The endomorphism α]• of HomSe(P•, U), defined for each q ≥ 0 to be

α]q(φ) : p 7→ [α, φ(p)]− φ ◦ αq(p) whenever φ ∈ HomSe(Pq, U) and p ∈ Pq,

allows us to define the map ∇•α : H•(S,U)→ H•(S,U) as the unique graded endomorphism such
that

∇qα([φ]) = [α]q(φ)],

where [-] denotes class in cohomology. The final result is that α 7→ ∇qα defines an L-module
structure on Hq(S,U) for each q ≥ 0.

5.2. The liftings. From now on we work on the Lie–Rinehart algebra associated to Ar and put
E := α1, D := α2 and C := α3. The commuting relations in L are determined by the rules

[E,C] = (2r + 1)C, [E,D] = (r + 1)D,
[D,C] = r(xr3 + xr2 − xr1),

(9)

as a straightforward calculation shows.
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Proposition 5.1. The rules

D1(1|x1|1) = 0,

D1(1|xk|1) =
∑
s+t=r

xsk|xk|xtk −
∑

s+t=r−1
xsk|x1|xt1xk − xr1|xk|1 if k = 2, 3

define a De-lifting of D : S → S.

Proof. It is evident that d1 ◦D1 and D0 ◦ d1 coincide at 1|x1|1; if k = 2, 3 then d1 ◦D1(1|xk|1) is∑
s+t=r

xsk(xk|1− 1|xk)xtk −
∑

s+t=r−1
xsk(x1|1− 1|x1)xt1xk − xr1xk|1 + xr1|xk

=
(
xr+1
k − xkxr1

)
|1− 1|

(
xr+1
k − xkxr1

)
,

which equals D0 ◦ d1(1|xk|1) = D0(xk|1 − 1|xk) = D(xk)|1 − 1|D(xk) because xk(xrk − xr1)
is D(xk). �

Proposition 5.2. For every p ≥ 0 we have that

D]
1(ηp1) ≡ pr(xr3 + xr2 − xr1)ηp1 + rxr−1

1 x2η
p
2 + rxr−1

1 x3η
p
3 mod Fp−1X

1 mod Im d0

D]
1(ηp2) ≡ ((1− p)xr1 + (p− r − 1)xr2 + pxr3) ηp2 mod Fp−1X

1,

D]
1(ηp3) ≡ ((1− p)xr1 + pxr2 + (p− r − 1)xr3) ηp3 mod Fp−1X

1.

Proof. Recall from Corollary 4.4 the cocycle ηpl = upl x̂l for each l ∈ J3K that is such that ul
commutes with every xj with j 6= l. The commuting relations (9) in L give

[D,u3] = [D,C] = r(xr3 + xr2 − xr1)C = r(xr3 + xr2 − xr1)u3

and

[D,u2] = [D,C − (xr3 − xr2)D]
= r(xr3 + xr2 − xr1)C − (rxr3(xr3 − xr1)− rxr2(xr2 − xr1))D
= r(xr3 + xr2 − xr1) (C − (xr3 − xr2)D) = r(xr3 + xr2 − xr1)u2.

It follows that if l = 2, 3 then [D,upl ] ≡ p(xr3 + xr2 − xr1)upl modulo Fp−1U . We can now compute

D]
1(ηpl )(1|x1|1) = [D, ηpl (1|x1|1)]− ηpl ◦D1(1|x1|1) = [D, 0]− ηpl (0) = 0;

D]
1(ηpl )(1|xl|1) = [D, ηpl (1|xl|1)]− ηpl ◦D1(1|xl|1)

= [D,upl ]− η
p
l

( ∑
s+t=r

xsl |xl|xtl −
∑

s+t=r−1
xsl |x1|xt1xl − xr1|xl|1

)
≡ p(xr3 + xr2 − xr1)upl − ((r + 1)xrl − xr1)upl mod Fp−1U

and for m 6= 1, l

D]
1(ηpl )(1|xm|1) = [D, ηpl (1|xm|1)]− ηpl ◦D1(1|xm|1)

= [D, 0]− ηpl

( ∑
s+t=r

xsm|xm|xtm −
∑

s+t=r−1
xs1|x1|xt1xm − xr1|xm|1

)
= 0.
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With this information at hand we are able to see that

D]
1(ηp2) ≡ ((1− p)xr1 + (p− r − 1)xr2 + pxr3) ηp2 mod Fp−1X

1,

D]
1(ηp3) ≡ ((1− p)xr1 + pxr2 + (p− r − 1)xr3) ηp3 mod Fp−1X

1.

Let us now consider the action of D on ηp1 . To begin with, we have

[D,up1] ≡ pup−1
1 [D,u1] mod Fp−1U

= pup−1
1 [D, (C − (xr3 − xr1)D + (xr3 − xr1)(xr2 − xr1)E)]

= pup−1
1

(
r(xr3 + xr2 − xr1)C − rxr3(xr3 − xr1)D

+D ((xr3 − xr1)(xr2 − xr1))E − (r + 1)(xr3 − xr1)(xr2 − xr1)D
)

and we observe that D]
1(ηp1)(1|x1|1) = [D,up1]− ηp1(D1(1|x1|1)) = [D,up1]. On the other hand, if

m ∈ {2, 3} then

D]
1(ηp1)(1|xm|1) = [D, ηp1(1|xm|1)]− ηp1(D1(1|xm|1))

= [D, 0]− ηp1

( ∑
s+t=r

xsm|xm|xtm −
∑

s+t=r−1
xs1|x1|xt1xm − xr1|xm|1

)
≡ rxr−1

1 xmu
p
1.

From these computations we see that the cocycle

D]
1(ηp1)− pr(xr3 + xr2 − xr1)ηp1 − rxr−1

1 x2η
p
2 − rx

r−1
1 x3η

p
3

has component zero in Cpx̂1, Cpx̂2 and Cpx̂3, and then Proposition 4.2 tells us that D]
1(ηp1) is

cohomologous modulo Fp−1X
1 to pr(xr3 + xr2 − xr1)ηp1 + rxr−1

1 x2η
p
2 + rxr−1

1 x3η
p
3 . �

5.3. Invariants of H1(S,U) by the action of L. We already have explicit descriptions of
H1(S,U), in Section 4, and of the action of L thereon, in Subsection 5.1 above: the next step is
to calculate the intersection of the kernels of the actions of E, D and C on H1(S,U).

Proposition 5.3. H0
S(L,H1(S,U)) = 0.

Proof. Recall that the polynomial grading on S induces a grading on S, on U and on the
cohomology H•(S,U). Since the derivation E induces the linear endomorphism ∇1

E of H1(S,U)
that sends the class of an homogeneous element a of degree |a| to the class of |a|a it follows that
ker∇1

E = H1(S,U)0, where H1(S,U)0 is the subspace of H1(S,U) formed by elements of degree
zero. Remember that if k ∈ J3K then |uk| = |α3| = 2r, and therefore |ηk| = 2r − 1. In view of our
calculation in Corollary 4.6 this means that

ker∇1
E = H1(S,U)0 ∼=


S1⊗〈x̂1,x̂2,x̂3〉

k(x1x̂+x2x̂2+x3x̂3) ⊕ 〈η1, η2, η3〉 if r = 1;
S1⊗〈x̂1,x̂2,x̂3〉

k(x1x̂+x2x̂2+x3x̂3) if r ≥ 2.
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We begin by supposing that r ≥ 2. We observe that if f1, f2, f3 ∈ S1 then

D]
1

(∑
fix̂i

)
=
∑(

D(fi)x̂i + fiD
]
1(x̂i)

)
=
∑

D(fi)x̂i + f1r
(
xr−1

1 x2x̂2 + xr−1
1 x3x̂3

)
+ f2(xr1 − (r + 1)xr2)x̂2

+ f3(xr1 − (r + 1)xr3)x̂3

= D(f1)x̂1 +
(
D(f2) + f1rx

r−1
1 x2 + f2(xr1 − (r + 1)xr2)

)
x̂2

+
(
D(f3) + f1rx

r−1
1 x3 + f3(xr1 − (r + 1)xr3)

)
x̂3

belongs to the homogeneous component of degree r of F0H
1(S,U), which is precisely(

S ⊗ 〈x̂1, x̂2, x̂3〉
Sd0(E) + Sd0(D) + Sd0(C)

)
r

= Sr+1 ⊗ 〈x̂1, x̂2, x̂3〉
Srd0(E) + kd0(D) .

It follows that if ∇1
D ([
∑
fix̂i]) =

[
D]

1 (
∑
fix̂i)

]
is zero in cohomology there must exist g ∈ Sr

and µ ∈ k such that

D]
1

(∑
fix̂i

)
= g(x1x̂1 + x2x̂2 + x3x̂3) + µ (x2(xr2 − xr1)x̂2 − x3(xr3 − xr1)x̂3) . (10)

Let us write fi = fi,1x1 + fi,2x2 + fi,3x3 with fi,j ∈ k for i, j ∈ J3K. Up to the addition of
coboundary that is a scalar multiple of d0(E) = x1x̂1 +x2x̂2 +x3x̂3 we may suppose that f1,1 = 0.
In x̂1 we have D(f1) = gx1, or, in other words,

f1,2(xr+1
2 − x1x

r
2) + f1,3(xr+1

3 − x1x
r
3) = gx1.

The components in xr+1
2 and in xr+1

3 of this equality read f1,2 = 0 and f1,3 = 0: this implies that
g = 0, and of course that f1 = 0. Next, equation (10) in x̂2 yields the equality in Sr+1

D(f2) + f2(xr1 − (r + 1)xr2) = µ(x2(xr2 − xr1)).

In xr+1
1 and xr+1

3 we have f2,1 = 0 and f2,3 = 0, and what remains is −rf2,2x
r+1
2 = µ(x2(xr2 −

xr1). It follows that µ = 0 and therefore f2 = 0; analogously, f3 = 0. We conclude that
ker∇1

D|H1(S,U)0 = 0 when r ≥ 2.

Let us now suppose that r = 1 and compute the kernel of the restriction of ∇1
D to H1(S,U)0.

Let then f1, f2, f3 ∈ S and λ1, λ2, λ3 be such that ∇1
D ([
∑
fix̂i + λiηi]) is zero in cohomology.

Since

H1(S,U)1 ∼=
S2 ⊗ 〈x̂1, x̂2, x̂3〉

S1(x1x̂+ x2x̂2 + x3x̂3) + k(x2(x2 − x1)x̂2 + x3(x3 − x1)x̂3)

⊕ S1〈η1, η2, η3〉
k(x1η1 + x2η2 + x3η3) ⊕ 〈η

2
1 , η

2
2 , η

2
3〉

there exist µ1, µ2 ∈ k and g ∈ S1 such that

D]
1

(∑
fix̂i + λiηi

)
= g(x1x̂+ x2x̂2 + x3x̂3) + µ2(x2(x2 − x1)x̂2 + x3(x3 − x1)x̂3)

+ µ1(x1η1 + x2η2 + x3η3)
(11)
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We know from Proposition 5.2 that modulo S D]
1(η1) ≡ (x3 +x2−x1)η1 +x2η2 +x3η3, D]

1(η2) ≡
(−x2 + x3)η2 and D]

1(η3) ≡ (x2 − x3)η3 and since D]
1(
∑
Sx̂i) ⊂ S the equality (11) implies that

λ1(x3 + x2 − x1)η1 + (λ1x2 + λ2(−x2 + x3)) η2 + (λ1x3 + λ3(x2 − x3)) η3

= µ1(x1η1 + x2η2 + x3η3)

This is an equality in
⊕3

i=1 S1ηi. In S1η3 we have λ3x2 + (λ1 − λ3)x3 = µ1x3, so λ3 = 0 and
λ1 = µ1. In S1η2 an analogous argument shows that λ2 = 0 and λ1 = µ1 again, and finally in
S1η1 we have

λ1(x3 + x2 − x1) = λ1x1.

It follows that λ1 = µ1 = 0. Consider now what is left of (11): it is precisely (10) replacing r by
1. The same argument, therefore, allows us to see that ker∇1

D|H1(S,U)0 = 0 when r = 1.

We conclude that H0
S(L,H0(S,L)) ⊂ ker

(
∇1
D : H1(S,U)0 → H1(S,U)1

)
= 0, from which

H0
S(L,H1(S,L)) = 0 independently of r ≥ 1. �

Corollary 5.4. Let r ≥ 1 and Ar = A(Cr oS3). If (S,L) is its associated Lie–Rinehart algebra
and U its enveloping algebra then HH1(U) ∼= H1

S(L, S). In particular, the dimension of HH1(U)
is 3r + 3, the number of hyperplanes of Ar.

Proof. Thanks to Theorem 1.27 HH1(U) ∼= H1
S(L,H0(S,U))⊕H0

S(L,H1(S,U)); Proposition 3.3
tells us that H0(S,U) = S and Proposition 5.3 above that the second summand is zero. �

Let f ∈ S1 be a linear form whose kernel is one of the hyperplanes in A3. It is a direct
verification that there is a unique derivation ∂f : U → U such that{

∂f (g) = 0 if g ∈ S;
∂f (θ) = θ(f)/f if θ ∈ DerAr.

Fix as well k = C and factorize the defining polynomial Q(Ar) = x1x2x3
∏

1≤i<j≤3(xrj − xri ) as

Q(Ar) = x1x2x3

r−1∏
j=0

(x2 − e2jπi/rx1)(x3 − e2jπi/rx1)(x3 − e2jπi/rx2) (12)

Corollary 5.5. The Lie algebra of outer derivations of DiffAr together with the commutator is
an abelian Lie algebra of dimension 3r + 3 generated by the classes of the derivations ∂f with f
in a linear factor of (12).

Proof. We claim that the classes of ∂f , with f one of the linear factors in (12), are linearly
independent in OutDer(U). Indeed, let u ∈ U and λf ∈ k be such that∑

λf∂f (v) = [u, v] for every v ∈ U . (13)

Evaluating (13) on each v = g ∈ S we obtain that the left side vanishes and therefore u ∈ H0(S,U),
which is equal to S in view of Proposition 3.3. Write u =

∑
j≥0 uj with uj ∈ Sj . Evaluating

now (13) on E we obtain that
∑
f∈A λf = −

∑
j≥0 juj . In each homogeneous component Sj with

j 6= 0 we have juj = 0 and therefore u ∈ S0 = k and, when j = 0,
∑
f λf = 0.

Evaluating the left hand side of (13) on C gives
∑
f λf∂f (C). Now, if ∂f (C) = C(f)/f =

∂3(f)C(x3)/f is nonzero then ∂3(f) 6= 0 and thus f is a factor of C(x3): let us, then, factor



THE HOCHSCHILD COHOMOLOGY H(S, U) 22

C(x3) by x3 and fl,j = x3 − e2jπi/rxl for l = 1, 2 and j ∈ J0, r − 1K, and in this way reformulate
the evaluation of (13) at C as the nullity of

∑
f∈A

∂3(f)C(x3)/f = λx3(xr3 − xr2)(xr3 − xr1) +
∑
l=1,2

r−1∑
j=0

λfl,j
x3(xr3 − xr2)(xr3 − xr1)/fl,j .

Fix now l ∈ J2K and j ∈ J0, r − 1K and apply the morphism of algebras εl,j : S → k[x1, x2] that
sends x3 to e2kπi/rxl: since εl,j ((xr3 − xrl′)/fj′,l′) = 0 whenever l 6= l′ and j 6= j′ we obtain that

εl,j :
∑
f∈A

∂3(f)C(x3)/f 7→ λfl,j
x3(xr3 − xr2)(xr3 − xr1)/fl,j .

As the expression at which we evaluated εl,j was zero, it follows that λfl,j
= 0 and, immediately,

that also λx3 = 0.
We observe that the indexes that survive in the sum

∑
λf∂f are x1, x2 and fj = x2−e2jπi/rx1

with j ∈ J0, r − 1K; evaluating at D we obtain

∑
λf∂f (D) = λx2(xr2 − xr1) +

r−1∑
j=0

λfj
x2(xr2 − xr1)/fj .

Reasoning as above we get that λx2 = λfj
= 0 for every j. Recalling now that

∑
f∈A λf = 0 we

see that λx1 = 0 as well.
The classes of ∂f with f a linear factor in (12) span OutDerU because the dimension of

OutDerU ∼= HH1(U) is, thanks to Corollary 5.4, precisely |A|. The composition ∂f ◦ ∂g : U → U

is evidently equal to zero for any f, g ∈ A, as a straightforward calculation shows, and therefore
the Lie algebra structure in OutDerU vanishes. �
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