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Abstract. It is proved recently that partially dissipative hyperbolic systems converge

globally-in-time to parabolic systems in a slow time scaling, when initial data are smooth

and sufficiently close to constant equilibrium states. Based on this result, we establish

error estimates between the smooth solutions of the hyperbolic systems of balance laws

and those of the parabolic limit systems in one space dimension. The proof of the error

estimates uses a stream function technique together with energy estimates. As applications

of the results, we give five examples arising from physical models.
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1. Introduction

Consider a system of balance laws of the form

∂t′U +
d∑
j=1

∂xjFj(U) = −Q(U)

ε
, (1.1)

with initial condition

U(0, x) = U ε
0 (x), x ∈ Rd. (1.2)

Here U : R+
t′ × Rd

x → S ⊂ Rn is the unknown variable, ε ∈ (0, 1] is a small parameter

standing often for the relaxation time in physical models (see Section 5), t′ > 0 is the usual
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time and x = (x1, · · · , xd) ∈ Rd is the space variable. The vector Q : S → Rn and the flux

function Fj : S → Rn are smooth for all 1 ≤ j ≤ d. The set S is called the state space.

We assume (1.1) is symmetrizable hyperbolic, i.e., there exists a symmetric positive definite

matrix A0(U), called symmetrizer, such that A0(U)F ′j(U) is symmetric for all 1 ≤ j ≤ d and

all U ∈ S.

Usually, the source term Q(U) is of the form

Q(U) =

[
0

q(U)

]
,

where q : S → Rr is a smooth function, 1 ≤ r ≤ n. With the same partition, we denote

U =

[
u

v

]
, u ∈ Rn−r, v ∈ Rr,

as well as the initial data

U ε
0 (x) =

[
uε0(x)

vε0(x)

]
, uε0(x) ∈ Rn−r, vε0(x) ∈ Rr.

We also denote the flux function as Fj =

[
fj

gj

]
, where fj : S → Rn−r and gj : S → Rr are

both smooth functions. More generally, under the same partition, a vector V ∈ Rn and an

n× n matrix M will be denoted by V =

[
V I

V II

]
and M =

[
M11 M12

M21 M22

]
, respectively.

A large number of physical models of the form (1.1) can be found in [29, 20]. The local

existence of smooth solutions to (1.1)-(1.2) is well-known due to Lax [13] and Kato [11], see

also [17]. Under sub-characteristic conditions [16], (1.1) converges formally to a hyperbolic

system as ε → 0. We refer the reader to [16, 2, 9, 1, 30, 24] and references therein for the

mathematical analysis and results.

It is well-known that, generally speaking, smooth solutions of the Cauchy problem (1.1)-

(1.2) exist only locally in time and singularities may appear in finite time. However, the

dissipative structure of the system may prevent the formation of the singularity and lead to

global smooth solutions in a neighborhood of an equilibrium state Ue =

[
ue

ve

]
∈ S for (1.1),

i.e., q(Ue) = 0. The global existence for (1.1)-(1.2) was proved by Hanouzet-Natalini in one

space dimension [6] and was extended by Yong [31] to the case of several space dimensions.

In the proof of these results, they need essentially two main conditions. The first one is a

partially dissipative condition and the second one is the Shizuta-Kawashima condition (SK)

(see [25]) at an equilibrium state.
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When the slow time t = εt′ is introduced and the following change of variables is made

uε(t, x) = u(t′, x), vε(t, x) =
1

ε
v(t′, x), (1.3)

(1.1)-(1.2) becomes 

∂tu
ε +

1

ε

d∑
j=1

∂xjfj(u
ε, εvε) = 0,

ε2∂tv
ε +

d∑
j=1

∂xjgj(u
ε, εvε) = −q(u

ε, εvε)

ε
,

uε(0, x) = uε0(x), vε(0, x) =
vε0(x)

ε
.

(1.4)

Under reasonable conditions on fj and q, system in (1.4) converges formally to parabolic-

type equations as ε → 0 (see [19]). The justification of the local-in-time convergence was

proved in [21]. See also [4] and [12] for a study close to semilinear case. Moreover, in a

neighborhood of an equilibrium state, the uniform global existence with respect to ε and the

global-in-time convergence of the system were obtained in [22].

In the local-in-time convergence result, the convergence rate was well-known shown and

it depends on the local existence time [21]. For large time, it was obtained by Junca-Rascle

[10] for damped Euler system with compactly supported initial data or in the isothermal

case, and by Goudon-Lin [5] for the so-called M1-model in the radiative transfer theory.

Both results hold in one space dimension. However, the convergence rate is a quite open

problem for large time for general systems. In this paper, we study this problem in one

space dimension based on the result in [22]. When the initial data are sufficiently close to

the equilibrium state, we establish the convergence rate for all time by means of energy

estimates. More precisely, for d = 1, (1.4) becomes
∂tu

ε +
1

ε
∂xf(uε, εvε) = 0,

ε2∂tv
ε + ∂xg(uε, εvε) = −q(u

ε, εvε)

ε
,

(1.5)

with initial condition

uε(0, x) = uε0(x), vε(0, x) =
vε0(x)

ε
. (1.6)

We first recall results on the uniform global existence and the global-in-time convergence

of the system established in [22]. Let Ge ⊂ S and Ωe be open sets satisfying Ue ∈ Ge and

Ωe × {0} ⊂ Ge. For the Cauchy problem (1.5)-(1.6), the assumptions needed in [22] are as

follows.

(A1) For all U =

[
u

v

]
∈ Ge,

q(u, v) = 0⇐⇒ v = 0.

(A2) The matrix ∂vq(ue, 0) is invertible.
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(A3) For all u ∈ Ωe, ∂uf(u, 0) = 0.

(A4) For all u ∈ Ωe, ∂vA
11
0 (u, 0) = 0.

(A5) There exists a constant c0 > 0 such that

ξTA0(u, 0)Q′(u, 0)ξ ≥ c0|ξII |2, ∀ ξ =

[
ξI

ξII

]
∈ Rn, ∀u ∈ Ωe,

where | · | denotes the usual Euclidean norm and ”T” denotes the transpose of a vector or a

matrix.

(SK) The kernel of the Jacobian Q′(Ue), Ker(Q′(Ue)), contains no eigenvector of the matrix

F ′(Ue), where F =

[
f

g

]
.

Remark 1.1.

(i) (A1) means that the equilibrium state is of the form (ue, 0), i.e., ve = 0.

(ii) (A2)-(A3) are necessary to derive the limit system as second-order partial differential

equations (see [19, 22]). If we denote A(u, v) = F ′(u, v), (A3) means that A11(u, 0) = 0.

(iii) (A4) is a technical assumption, which is satisfied when the system is semilinear or

n− r = 1. The latter is the case for gas dynamics equations.

(iv) (SK) is a dissipative condition, which implies a time dissipative estimate of ∇U .

Remark 1.2. (A5) is the partially dissipative condition, which implies a time dissipation

estimate of v. Under this condition, it is proved in [30] (see also Proposition 2.1 in [22])

that there is a neighbourhood Ω1 ⊂ Ωe of ue, such that

A12
0 (u, 0) = 0, ∀u ∈ Ω1.

It follows that, for all u ∈ Ω1,

A0(u, 0)Q′(u, 0) =

[
A11

0 (u, 0) 0

0 A22
0 (u, 0)

]
·

[
0 0

0 ∂vq(u, 0)

]
=

[
0 0

0 A22
0 (u, 0)∂vq(u, 0)

]
.

Thus (A5) shows that A22
0 (u, 0)∂vq(u, 0) is a positive definite matrix in Ω1 and

(ξII)TA22
0 (u, 0)∂vq(u, 0)ξII ≥ c0|ξII |2, ∀ ξII ∈ Rr, ∀u ∈ Ω1. (1.7)

Under these assumptions, in a neighbourhood of the equilibrium state, the uniform global

existence of solutions to (1.5)-(1.6) was proved. The solution (uε, vε) satisfies the following

estimate

‖uε(t)− ue‖2k + ε2‖vε(t)‖2k +

∫ t

0

(
‖vε(τ)‖2k + ‖∂xuε(τ)‖2k−1

)
dτ

≤ C
(
‖uε0 − ue‖2k + ‖vε0‖2k

)
, ∀ t ≥ 0, (1.8)
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where ‖ · ‖k denotes the usual norm of the Sobolev space Hk def
= Hk(R) with integer k ≥ 2

and C > 0 is a generic constant independent of ε and t > 0. Moreover, let ū0 ∈ Hk. If

uε0 ⇀ ū0, weakly in Hk,

then

uε ⇀ ū, weakly- ∗ in L∞(R+;Hk),

vε ⇀ v̄, weakly in L2(R+;Hk),

where ū−ue ∈ L∞(R+;Hk) and ū is the unique solution to the Cauchy problem for a system

of second-order partial differential equations∂tū− ∂x{∂vf(ū, 0)[∂vq(ū, 0)]−1∂xg(ū, 0)} = 0,

ū(0, x) = ū0(x),
(1.9)

and

v̄ = −[∂vq(ū, 0)]−1∂xg(ū, 0). (1.10)

In addition, the system in (1.9) is parabolic (see [22] and Lemma 3.1 below). It follows that

the following estimate holds for ū :

‖ū(t)− ue‖2k + ‖∂tū(t)‖2k−2 +

∫ t

0

‖∂xū(τ)‖2k dτ ≤ C‖ū0 − ue‖2k, ∀ t ≥ 0, (1.11)

provided that ‖ū0 − ue‖k is sufficiently small. This together with (1.10) yields

‖v̄(t)‖2k−1 +

∫ t

0

(
‖v̄(τ)‖2k + ‖∂tv̄(τ)‖2k−2

)
dτ ≤ C‖ū0 − ue‖2k, ∀ t ≥ 0. (1.12)

Estimates (1.8) and (1.11)-(1.12) are useful in Sections 3 and 4 for the proof of the conver-

gence rate. We point out that the above results are also valid in several space dimensions.

Moreover, from (1.10) and the initial condition of vε in (1.6), in general there are initial

layers on variable v in the limit process from (1.5)-(1.6) to (1.9)-(1.10).

The aim of the present paper is to establish error estimates for uε − ū and vε − v̄. For

this purpose, we introduce an additional condition which links functions f and q (see (H)

in Section 2). The main technique in the proof is the use of a stream function derived

from the first conservation equations in (1.5) and (1.9). This technique is efficient for the

one-dimensional system of conservation laws. It has been successfully used in [10, 5] where

error estimates for the density were proved in L2(R+×R). The particularity of the results in

[10, 5] is that, for the non compactly supported initial data, their limit systems are linear (see

examples given in the last section). Our limit system in (1.9) may not be linear. Moreover,

for the initial data in Hk our error estimates are showed in L2(R+;Hk) ∩ L∞(R+;Hk−1) for

u and in L2(R+;Hk−2) for v. The estimates are uniform for all ε ∈ (0, 1], contrarily to the

local convergence case where ε should be small [21].
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The paper is organized as follows. In the next section, we state the main results of this

paper. Sections 3 and 4 are devoted to the proof of the main results by energy estimates.

In the last section, we give examples of systems which are included in [10, 5].

2. Main results

From (A3), we see that f(u, 0) is constant. It follows that

∂xf(u, v) = ∂x
[
f(u, v)− f(u, 0)

]
.

Hence, we may suppose f(u, 0) = 0 (otherwise, we replace f(u, v) by f(u, v) − f(u, 0)).

Together with (A1), there are smooth matrix functions f1(u, v) of order (n − r) × r and

q1(u, v) of order r × r such that f(u, v) = f1(u, v)v,

q(u, v) = q1(u, v)v,
(2.1)

with f1(u, 0) = ∂vf(u, 0),

q1(u, 0) = ∂vq(u, 0).
(2.2)

By (2.1), (1.5)-(1.6) can be written as
∂tu

ε + ∂x(f1(u
ε, εvε)vε) = 0,

ε2∂tv
ε + ∂xg(uε, εvε) = −q1(uε, εvε)vε,

uε(0, x) = uε0(x), vε(0, x) =
vε0(x)

ε
.

(2.3)

It is easy to see that the formal limit of (2.3) as ε→ 0 is given by
∂tū+ ∂x(f1(ū, 0)v̄) = 0,

∂xg(ū, 0) = −q1(ū, 0)v̄,

ū(0, x) = ū0(x).

(2.4)

By (A2), q1(ū, 0) is invertible when ū−ue is sufficiently small. Then we obtain (1.9)-(1.10).

In the study of the convergence rate, we need an additional assumption.

(H) There exists a constant matrix D, of order (n− r)× r, such that

f1(u, v) = Dq1(u, v), ∀ (u, v) ∈ Ge.

Under this condition, by (2.2), the limit equation in (1.9) for ū becomes

∂tū−D∂xxg(ū, 0) = 0. (2.5)
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It is clear that condition (H) implies that f(u, v) = Dq(u, v). Since f(u, 0) = 0 and q(u, 0) =

0, from the Taylor formula, we have

f1(u, v) =

∫ 1

0

∂vf(u, sv) ds, q1(u, v) =

∫ 1

0

∂vq(u, sv) ds.

Therefore, the condition in (H) is equivalent to∫ 1

0

∂vf(u, sv) ds = D

∫ 1

0

∂vq(u, sv) ds.

The main results of this paper are stated as folows.

Theorem 2.1. (Convergence rate for uε) Let (A1)-(A5), (SK) and (H) hold. Let k ≥ 2

be an integer, (uε, vε) be the unique solution to (1.5)-(1.6) and ū be the unique solution to

(1.9) with initial data ū0 being the weak limit of uε0 in Hk. We define

φε0(x) =

∫ x

0

(
uε0(y)− ū0(y)

)
dy.

There exist positive constants δ, C1 and C2, independent of ε, such that if

‖uε0 − ue‖k + ‖vε0‖k ≤ δ, (2.6)

and

‖φε0‖k ≤ C1ε
α, (2.7)

then for all ε ∈ (0, 1], we have the following estimate

sup
t∈R+

‖uε(t)− ū(t)‖2k−1 +

∫ +∞

0

‖uε(t)− ū(t)‖2kdt ≤ C2ε
α1 , (2.8)

where α > 0 is a constant independent of ε and α1 = min(1, α).

Theorem 2.2. (Convergence rate for vε) Let the assumptions of Theorem 2.1 hold and v̄ be

given by (1.10). We further assume

‖vε0‖k−2 ≤ C1ε
β, (2.9)

with β > 0 being a constant independent of ε. Then for all ε ∈ (0, 1], we have the following

estimate

sup
t∈R+

ε2‖vε(t)− v̄(t)‖2k−2 +

∫ +∞

0

‖vε(t)− v̄(t)‖2k−2 dt ≤ C2ε
2γ. (2.10)

where γ = min(1, α, β).
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3. Proof of Theorem 2.1

In what follows, C > 0 is a generic constant independent of ε and any time. We assume

that the conditions in Theorem 2.1 hold. Then k ≥ 2 is an integer. We denote by ‖ · ‖
the usual norm of L2 def

= L2(R). In the proof of Theorems 2.1-2.2, we use the fact that the

embedding from H l(R) to L∞(R) is continuous for all integer l ≥ 1.

We start with a preliminary result, which is proved in Lemma 2.2 in [22].

Lemma 3.1. Let (A1)-(A3) and (SK) hold. There is a neighbourhood Ω2 ⊂ Ω1 of ue, such

that (1.9) is parabolic in the sense that

∂vf(u, 0)[∂vq(u, 0)]−1∂ug(u, 0)

is a positive definite matrix for all u ∈ Ω2, namely, there exists a constant c1 > 0 such that

ηT∂vf(u, 0)[∂vq(u, 0)]−1∂ug(u, 0)η ≥ c1|η|2, ∀ η ∈ Rn−r, ∀u ∈ Ω2.

We remark that under condition (H), the above inequality is equivalent to

ηTD∂ug(u, 0)η ≥ c1|η|2, ∀ η ∈ Rn−r, ∀u ∈ Ω2. (3.1)

Subtracting (2.5) from the first equation in (2.3), we have

∂t(u
ε − ū) + ∂x [f1(u

ε, εvε)vε +D∂xg(ū, 0)] = 0.

Then there exists a stream function φε satisfying
∂tφ

ε = −
[
f1(u

ε, εvε)vε +D∂xg(ū, 0)
]
,

∂xφ
ε = uε − ū,

φε(0, x) =

∫ x

0

(
uε0(y)− ū0(y)

)
dy.

For all integer l with 0 ≤ l ≤ k, we introduce

(ul, vl) = (∂lxu
ε, ∂lxv

ε), (ūl, v̄l) = (∂lxū, ∂
l
xv̄), φl = ∂lxφ

ε.

Then 
∂tφ

l = −∂lx
[
f1(u

ε, εvε)vε +D∂xg(ū, 0)
]
,

∂xφ
l = ul − ūl,

φl(0, x) = ∂lxφ
ε(0, x).

(3.2)

Lemma 3.2. For all T > 0, we have

‖φl(T )‖2 +

∫ T

0

〈ul − ūl, D∂lx[g(uε, εvε)− g(ū, 0)]〉dt ≤ Cε2α1 , ∀ 0 ≤ l ≤ k, (3.3)

where α1 is defined in Theorem 2.1 and 〈·, ·〉 stands for the inner product in L2(R).
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Proof. Since δ > 0 is sufficiently small, (1.8) together with (2.6) implies that (uε, εvε) ∈ Ge

and (uε−ue, εvε) is uniformly small with respect to ε in L∞(R+×R). In addition, the weak

convergence of uε0 to ū0 in Hk implies that ‖ū0 − ue‖k ≤ δ. By (1.11), we have ū ∈ Ω2 and

ū− ue is sufficiently small.

Let 0 ≤ l ≤ k. Applying ∂lx to the second equation in (2.3), we have

ε2∂tv
l + ∂l+1

x g(uε, εvε) = −∂lx
[
q1(u

ε, εvε)vε
]
.

Taking the inner product of this equality with DTφl in L2(R) and integrating over [0, T ], we

get

0 =

∫ T

0

〈φl, ε2D∂tvl +D∂l+1
x g(uε, εvε) + ∂lx(Dq1(u

ε, εvε)vε)〉dt

:= I1 + I2 + I3, (3.4)

with the natural correspondence of I1, I2 and I3, which are treated term by term as follows.

First, since D is a constant matrix,

I1 = ε2
∫ T

0

〈φl, D∂tvl〉dt

= ε2
∫ T

0

d

dt
〈φl, Dvl〉dt− ε2

∫ T

0

〈∂tφl, Dvl〉dt.

For all ε ∈ (0, 1], we use (1.8), (1.11), (2.7) and (3.2) to obtain∣∣∣∣ε2 ∫ T

0

d

dt
〈φl, Dvl〉dt

∣∣∣∣ = ε2
∣∣〈φl(T ), Dvl(T )〉 − 〈φl(0), Dvl(0)〉

∣∣
≤ 1

4
‖φl(T )‖2 +

1

4
‖φl(0)‖2 + Cε2

≤ 1

4
‖φl(T )‖2 + Cε2α1

and

ε2
∣∣∣∣∫ T

0

〈∂tφl, Dvl〉dt
∣∣∣∣ ≤ ε2

∫ T

0

∣∣〈∂lx(f1(uε, εvε)vε +D∂xg(ū, 0)
)
, Dvl〉

∣∣dt
≤ Cε2.

These estimates imply that

|I1| ≤
1

4
‖φl(T )‖2 + Cε2α1 . (3.5)

Similarly,

I2 =

∫ T

0

〈φl, D∂l+1
x g(uε, εvε)〉dt

= −
∫ T

0

〈∂xφl, D∂lxg(uε, εvε)〉dt

= −
∫ T

0

〈ul − ūl, D∂lxg(uε, εvε)〉dt. (3.6)
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For I3, we use again (3.2) to obtain

I3 =

∫ T

0

〈φl, ∂lx
(
f1(u

ε, εvε)vε
)
〉dt

= −
∫ T

0

〈φl, ∂tφl +D∂l+1
x g(ū, 0)〉dt

=
1

2
‖φl(0)‖2 − 1

2
‖φl(T )‖2 +

∫ T

0

〈ul − ūl, D∂lxg(ū, 0)〉dt. (3.7)

Thus, since −I2 − I3 = I1, combining (3.4)-(3.7) and using (2.7) and (3.2), we get (3.3). �

Lemma 3.3. (L2-estimate) It holds∫ +∞

0

‖uε(t)− ū(t)‖2 dt ≤ Cε2α1 . (3.8)

Proof. With l = 0, (3.3) gives∫ T

0

〈uε − ū, D(g(uε, εvε)− g(ū, 0))〉dt ≤ Cε2α1 . (3.9)

We use the Taylor formula to obtain

g(uε, εvε)− g(ū, 0) =

∫ 1

0

[
∂ug(Ũ ε(s))(uε − ū) + ∂vg(Ũ ε(s))(εvε)

]
ds, (3.10)

where

Ũ ε(s) =
(
ū+ s(uε − ū), εsvε

)
.

From (1.8) and (1.11), it is easy to show that Ũ ε(s)−Ue is sufficiently small in L∞(R+×R),

uniformly with respect to ε ∈ (0, 1] and s ∈ [0, 1]. Therefore, noticing (3.1), the continuity

of ∂ug implies that there is a constant c2 > 0 independent of ε such that∫ T

0

∫ 1

0

〈uε − ū, D∂ug(Ũ ε(s))(uε − ū)〉dsdt ≥ 2c2

∫ T

0

‖uε(t)− ū(t)‖2dt. (3.11)

Moreover, by the Young inequality,∫ T

0

∫ 1

0

〈uε − ū, D∂vg(Ũ ε(s))(εvε)〉dsdt ≥ −c2
∫ T

0

‖uε(t)− ū(t)‖2dt− Cε2.

It follows from (3.10) that∫ T

0

〈uε − ū, D(g(uε, εvε)− g(ū, 0))〉dt ≥ c2

∫ T

0

‖uε(t)− ū(t)‖2dt− Cε2,

which implies (3.8) from (3.9) by letting T → +∞. �

The proof of Theorem 2.1 follows from the following estimate.

Lemma 3.4. (Higher order estimates) It holds

sup
t∈R+

‖uε(t)− ū(t)‖2k−1 +

∫ +∞

0

‖uε(t)− ū(t)‖2k dt ≤ Cε2α1 . (3.12)
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Proof. For all integer l with 1 ≤ l ≤ k, we need to control the integral in (3.3). From (3.10)

we obtain

∂lx
[
g(uε, εvε)− g(ū, 0)

]
=

∫ 1

0

∂ug(Ũ ε(s))(ul − ūl)ds

+

∫ 1

0

[
∂lx
(
∂ug(Ũ ε(s))(uε − ūε)

)
− ∂ug(Ũ ε(s))(ul − ūl)

]
ds

+

∫ 1

0

∂lx
[
∂vg(Ũ ε(s)(εvε))

]
ds.

Similarly to (3.11), we have∫ T

0

∫ 1

0

〈ul − ūl, D∂ug(Ũ ε(s))(ul − ūl)〉dsdt ≥ 2c2

∫ T

0

‖ul(t)− ūl(t)‖2dt.

By the Moser-type inequalities, we also have∥∥∥∥∫ 1

0

[
∂lx
(
∂ug(Ũ ε(s))(uε − ūε))

)
− ∂ug(Ũ ε(s))(ul − ūl)

]
ds

∥∥∥∥ ≤ C‖uε − ūε‖l−1,∥∥∥∥∫ 1

0

∂lx
[
∂vg(Ũ ε(s)(εvε))

]
ds

∥∥∥∥ ≤ Cε‖vε‖l.

Hence, by the Young inequality, these estimates imply that∫ T

0

〈ul − ūl, D∂lx(g(uε, εvε)− g(ū, 0))〉dt

≥ 2c2

∫ T

0

‖ul(t)− ūl(t)‖2dt− C
∫ T

0

‖ul(t)− ūl(t)‖
(
‖uε(t)− ūε(t)‖l−1 + ε‖vε(t)‖l

)
dt

≥ c2

∫ T

0

‖ul(t)− ūl(t)‖2dt− C
∫ T

0

‖uε(t)− ū(t)‖2l−1dt− Cε2α1 . (3.13)

It follows from (3.3) that∫ T

0

‖ul(t)− ūl(t)‖2dt ≤ C

∫ T

0

‖uε(t)− ū(t)‖2l−1dt+ Cε2α1 .

By Lemma 3.3 and an induction argument on l, we obtain∫ T

0

‖ul(t)− ūl(t)‖2dt ≤ Cε2α1 , ∀ 0 ≤ l ≤ k.

Adding these inequalities for all 0 ≤ l ≤ k and letting T → +∞ yields∫ +∞

0

‖u(t)− ū(t)‖2kdt ≤ Cε2α1 .

Therefore, (3.13) implies that∫ T

0

〈ul − ūl, D∂lx(g(uε, εvε)− g(ū, 0))〉dt ≥ −Cε2α1 .

Combining the two inequalities above together with (3.3) yields (3.12). �
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4. Proof of Theorem 2.2

In this section, we prove the convergence rate of vε. Let the assumptions in Theorem 2.2

hold. For convenience, we introduce

wε = vε − v̄.

From (2.3) and (2.4), we have

ε2∂tv
ε + q1(ū, 0)vε = −∂xg(uε, εvε)− [q1(u

ε, εvε)− q1(ū, 0)]vε,

ε2∂tv̄ + q1(ū, 0)v̄ = −∂xg(ū, 0) + ε2∂tv̄.

Therefore, wε satisfies

ε2∂tw
ε + q1(ū, 0)wε = Rε, (4.1)

where, by noting vε = wε + v̄,

Rε = Rε
1 − [q1(u

ε, εvε)− q1(ū, 0)]wε,

with

−Rε
1 = ∂x[g(uε, εvε)− g(ū, 0)] + [q1(u

ε, εvε)− q1(ū, 0)]v̄ + ε2∂tv̄.

Recall that A0(ū, 0) is a symmetric positive definite matrix and A12
0 (ū, 0) = 0. Hence,

A22
0 (ū, 0) is also a symmetric positive definite matrix. It follows that there is a constant

c3 > 0 such that

c3‖w‖2 ≤ 〈A22
0 (ū, 0)w,w〉 ≤ C‖w‖2, ∀w ∈ Rr. (4.2)

Similarly, (1.7) implies that

〈A22
0 (ū, 0)q1(ū, 0)w,w〉 ≥ c0‖w‖2, ∀w ∈ Rr. (4.3)

Lemma 4.1. For all T > 0, the solution wε of (4.1) satisfies

c3ε
2‖wε(T )‖2 + 2c0

∫ T

0

‖wε(t)‖2dt

≤
∫ T

0

(
2〈A22

0 (ū, 0)Rε, wε〉+ ε2〈∂tA22
0 (ū, 0)wε, wε〉

)
dt+ Cε2‖wε(0)‖2. (4.4)

Proof. Taking the inner product of (4.1) with A22
0 (ū, 0)wε in L2(R), since A22

0 (ū, 0) is

symmetric, we have

ε2
d

dt
〈A22

0 (ū, 0)wε, wε〉+ 2〈A22
0 (ū, 0)q1(ū, 0)wε, wε〉

= 2〈A22
0 (ū, 0)Rε, wε〉+ ε2〈∂tA22

0 (ū, 0)wε, wε〉.

Integrating this equality over [0, T ] and using (4.2)-(4.3), we obtain (4.4). �
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Lemma 4.2. (L2-estimate) It holds

ε2 sup
t∈R+

‖vε(t)− v̄(t)‖2 +

∫ +∞

0

‖vε(t)− v̄(t)‖2dt ≤ Cε2γ, (4.5)

where γ > 0 is defined in Theorem 2.2.

Proof. We want to apply Lemma 4.1 by estimating the terms on the right-hand side of

(4.4). From (1.11) and the weak convergence of uε0 to ū0 in Hk, we have obviously

‖∂tA22
0 (ū, 0)‖L∞(R+×R) ≤ C‖ū0 − ue‖k ≤ Cδ,

where δ > 0 is defined in (2.6). It follows that, for all ε ∈ (0, 1],

ε2〈∂tA22
0 (ū, 0)wε, wε〉 ≤ Cδ‖wε‖2. (4.6)

For the first term on the right-hand side of (4.4), we use (3.10) to obtain

‖∂x[g(uε, εvε)− g(ū, 0)]‖ ≤ C
(
‖uε − ū‖1 + ε‖vε‖1

)
.

Similarly, by (1.12), we have

‖[q1(uε, εvε)− q1(ū, 0)]v̄ + ε2∂tv̄‖ ≤ C
(
‖uε − ū‖+ ε‖vε‖+ ε2‖∂tv̄‖

)
.

Therefore, by the definition of Rε
1,

‖Rε
1‖ ≤ C

(
‖uε − ū‖1 + ε‖vε‖1 + ε2‖∂tv̄‖

)
.

On the other hand, we also have

‖q1(uε, εvε)− q1(ū, 0)‖L∞(R+×R) ≤ C
(
‖uε − ū‖L∞(R+×R) + ε‖vε‖L∞(R+×R)

)
.

By (1.8), (1.11) and

uε − ū = uε − ue − (ū− ue),

we see that

‖uε − ū‖L∞(R+×R) + ε‖vε‖L∞(R+×R) ≤ Cδ.

It follows that

2‖A22
0 (ū, 0)(q1(u

ε, εvε)− q1(ū, 0))wε‖ ≤ Cδ‖wε‖.

Hence,

2‖A22
0 (ū, 0)Rε‖ ≤ Cδ‖wε‖+ C

(
‖uε − ū‖1 + ε‖vε‖1 + ε2‖∂tv̄‖

)
.

Applying the Young inequality together with (4.6) yields

2〈A22
0 (ū, 0)Rε, wε〉+ ε2〈∂tA22

0 (ū, 0)wε, wε〉 ≤ c0‖wε‖2 + C
(
‖uε − ū‖2 + ε2‖vε‖21 + ε2‖∂tv̄‖21

)
,

provided that δ is sufficiently small. By Lemma 4.1 and Theorem 2.1, this implies that

ε2‖wε(T )‖2 +

∫ T

0

‖wε(t)‖2dt ≤ Cε2α1 + Cε2‖wε(0)‖2, ∀T > 0.
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Finally, noting (2.9) and

εwε(0) = vε0 − εv̄0,

we obtain (4.5), since T > 0 is arbitrary. �

When k = 2, Lemma 4.2 implies the result in Theorem 2.2. For k ≥ 3, the proof of

Theorem 2.2 is completed by the following estimate.

Lemma 4.3. (Higher order estimates) For k ≥ 3, it holds

ε2 sup
t∈R+

‖vε(t)− v̄(t)‖2k−2 +

∫ +∞

0

‖vε(t)− v̄(t)‖2k−2dt ≤ Cε2γ. (4.7)

Proof. Let l be an integer with 1 ≤ l ≤ k − 2. Applying ∂lx to (4.1) yields

ε2∂t∂
l
xw

ε + q1(ū, 0)∂lxw
ε = ∂lxR

ε + Jεl , (4.8)

where

∂lxR
ε = ∂lxR

ε
1 − ∂lx[(q1(uε, εvε)− q1(ū, 0))wε],

Jεl = q1(ū, 0)∂lxw
ε − ∂lx[q1(ū, 0)wε].

We want to apply Lemma 4.1 to (4.8) by replacing wε by ∂lxw
ε and Rε by ∂lxR

ε+Jεl in (4.1).

By the definition of Rε
1, we have, as in the proof of Lemma 4.2,

‖∂lxRε
1‖ ≤ C

(
‖uε − ū‖k−1 + ε‖vε‖k−1 + ε2‖∂tv̄‖k−2

)
.

Now

−∂lx[(q1(uε, εvε)− q1(ū, 0))wε]

= −(q1(u
ε, εvε)− q1(ū, 0))∂lxw

ε

+ (q1(u
ε, εvε)− q1(ū, 0))∂lxw

ε − ∂lx[(q1(uε, εvε)− q1(ū, 0))wε].

Similarly to the proof in Lemma 4.2, by the regularity of ū, we have

‖(q1(uε, εvε)− q1(ū, 0))∂lxw
ε‖ ≤ Cδ‖∂lxwε‖.

By the Moser-type inequalities, it is clear that

‖(q1(uε, εvε)− q1(ū, 0))∂lxw
ε − ∂lx[(q1(uε, εvε)− q1(ū, 0))wε]‖ ≤ C‖wε‖l−1,

‖Jεl ‖ ≤ C‖wε‖l−1.

Hence,

2‖A22
0 (ū, 0)(∂lxR

ε + Jεl )‖ ≤ C
(
‖uε − ū‖k−1 + ε‖vε‖k−1 + ε2‖∂tv̄‖k−2

)
+ Cδ‖∂lxwε‖+ C‖wε‖l−1.
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It follows from the Young inequality that

2|〈A22
0 (ū, 0)(∂lxR

ε + Jεl ), ∂lxw
ε〉| ≤ C

(
‖uε − ū‖2k−1 + ε2‖vε‖2k−1 + ε2‖∂tv̄‖2k−2

)
+ Cδ‖∂lxwε‖2 + C‖wε‖2l−1.

By (4.6), we also have

ε2〈∂tA22
0 (ū, 0)∂lxw

ε, ∂lxw
ε〉 ≤ Cδ‖∂lxwε‖2.

Applying Lemma 4.1 to (4.8), we have

c3ε
2‖∂lxwε(T )‖2 + c0

∫ T

0

‖∂lxwε(t)‖2dt

≤ C

∫ T

0

(
‖uε − ū‖2k−1 + ε2‖vε‖2k−1 + ε2‖∂tv̄‖2k−2 + ‖wε‖2l−1

)
dt+ Cε2‖wε(0)‖2k−2,

provided that δ is sufficiently small. This together with the result in Theorem 2.1 yields

ε2‖∂lxwε(T )‖2+
∫ T

0

‖∂lxwε(t)‖2dt ≤ C

∫ T

0

‖wε‖2l−1dt+Cε2‖wε(0)‖2k−2+Cε2α1 , ∀ 1 ≤ l ≤ k−2.

By Lemma 4.2 and an induction argument on l, we obtain

ε2‖∂lxwε(T )‖2 +

∫ T

0

‖∂lxwε(t)‖2dt ≤ Cε2‖wε(0)‖2k−2 + Cε2α1 ,

which is true for all 0 ≤ l ≤ k−2. Since T is arbitrary, (4.7) follows from the above inequality

together with (2.9). �

5. Examples

In this section, we give five examples of systems which fulfill all conditions (A1)-(A5),

(SK) and (H). Then Theorems 2.1-2.2 can be applied. In these examples, t > 0 is the slow

time and the systems are expressed after scaling (1.3). For the convergence rate, Example

5.3 with compactly supported initial data or in the isothermal case and Example 5.5 were

studied in [10] and [5], respectively.

Example 5.1. (Wave equation of heat conduction) This concerns a linear equation which

is written as (see [8, 21] and references therein)

ε2∂2ttw − ∂xxw + ∂tw = 0, t > 0, x ∈ R.

Let us introduce

uε = ∂xw, vε = −∂tw,

then the equation becomes ∂tuε + ∂xv
ε = 0,

ε2∂tv
ε + ∂xu

ε = −vε,
(5.1)
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which is of the form (1.5) with

f(u, v) = q(u, v) = v, g(u, v) = u, D = 1.

Its corresponding parabolic limit equation is

∂tū− ∂xxū = 0, (5.2)

which is a classical heat equation. It is easily checked that conditions (A1)-(A5), (SK) and

(H) are satisfied. Then Theorems 2.1-2.2 can be applied.

Example 5.2. (A generalized discrete two-velocity model) The model is written as (see for

instance [27, 23, 15, 22]) :ε∂tf + ∂xf = ε−1(f + g)ν(g − f),

ε∂tg − ∂xg = ε−1(f + g)ν(f − g), t > 0, x ∈ R,

where ν is a real number and f + g > 0. We show that this system fulfills all conditions in

Theorem 2.1 for ν = −1. To see this, we introduce

uε = f + g, vε =
1

ε
(f 2 − g2).

The equivalent system for ν = −1 is
∂tu

ε + ∂x

(vε
uε

)
= 0,

ε2∂tv
ε +

1

2
∂x

(
(uε)2 + ε2

(vε
uε

)2)
= −2vε

uε
,

(5.3)

which is of the form (1.5) with

f(u, v) =
1

2
q(u, v) =

v

u
, g(u, v) =

1

2

(
(u2 + ε2

(v
u

)2)
, D =

1

2
.

The corresponding limit equation is

∂tū−
1

4
∂xx
(
ū2
)

= 0, (5.4)

which is a nonlinear parabolic equation for ū > 0. It is easily checked that conditions (A1)-

(A5), (SK) and (H) are satisfied. Then Theorems 2.1-2.2 can be applied.

Example 5.3. (Euler equations with damping) The equations in one space variable are of

the form (see [18, 26, 3, 14, 22])∂tρ+ ∂x(ρw) = 0,

ε2
(
∂t(ρw) + ∂x(ρw

2)
)

+ ∂xp(ρ) = −ρw.
(5.5)

Here ε > 0 is the relaxation time, ρ > 0 is the density, w is the velocity and p(ρ) is the

pressure function satisfying

p′(ρ) > 0, ∀ ρ > 0. (5.6)
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System (5.5) is of the form (1.5) with

u = ρ, v = ρw, f(u, v) = q(u, v) = v, g(u, v) =
v2

u
+ p(u), D = 1.

Its corresponding limit equation is

∂tρ̄− ∂xxp(ρ̄) = 0, (5.7)

which is in general a nonlinear parabolic equation under condition (5.6). It is easily checked

that conditions (A1)-(A5), (SK) and (H) are satisfied. Then Theorems 2.1-2.2 can be

applied. For weak solutions, an error estimate for ρ in L2(R+ × R) was obtained in [10]

when the initial data are of compact support or in the isothermal case, i.e., p(ρ) = ρ, which

implies that (5.7) is a linear heat equation.

Example 5.4. (The Euler equations with damping in Lagrangian coordinates) In this exam-

ple (see [7, 22]), let dy = ρdx−ρvdt. Then the Lagrangian coordinates (t, y) are well defined

for ρ > 0 and the Euler equations (5.3) are equivalent to (see [28])∂tτ − ∂yv = 0,

ε2∂tv + ∂yp̃(τ) = −v, t > 0, y ∈ R,
(5.8)

where

τ = 1/ρ, p̃(τ) = p(1/τ).

System (5.8) is still of the form (1.5) with

u = τ, f(u, v) = −q(u, v) = −v, g(u, v) = p̃(u), D = −1.

Condition (5.6) is equivalent to

p̃′(τ) < 0, ∀ τ > 0. (5.9)

The corresponding limit equation is

∂tτ̄ + ∂yyp(1/τ̄) = 0, (5.10)

which is a nonlinear parabolic equation under condition (5.9). It is easily checked that con-

ditions (A1)-(A5), (SK) and (H) are satisfied. Then Theorems 2.1-2.2 can be applied. We

remark that (5.10) is a nonlinear equation even if p is a linear function.

Example 5.5. (The M1 model) This model in one space variable is written as∂tρ+ ∂x(ρw) = 0,

ε2∂t(ρw) + ∂x
(
ρB(εw)

)
= −ρw,

(5.11)
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where ρ > 0 is the density, w is the velocity and B(w) is defined by

B(w) =
1

3
+

2w2

2 + ∆(w)
, ∆(w) =

√
4− 3w2.

This system is of the form (1.5) with

u = ρ, v = ρw, f(u, v) = q(u, v) = v, g(u, v) = uB(v/u), D = 1.

Its corresponding limit equation is

∂tρ̄−
1

3
∂xxρ̄ = 0, (5.12)

which is a linear heat equation. It is easily checked that conditions (A1)-(A5), (SK) and

(H) are satisfied. Then Theorems 2.1-2.2 can be applied. Remark that for smooth solutions

an error estimate for ρ in L2(R+ × R) was obtained in [5].
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