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Abstract. It was proved that Euler-Maxwell systems converge globally-in-time to drift-

diffusion systems in a slow time scaling, as the relaxation time goes to zero. The conver-

gence was established to the Cauchy problem with smooth periodic initial data sufficiently

close to constant equilibrium states. In this paper, we establish error estimates between

smooth periodic solutions of Euler-Maxwell systems and those of drift-diffusion systems.

Similar error estimates are also obtained for Euler-Poisson systems in place of Euler-

Maxwell systems. The proof of these results uses stream function techniques together

with energy estimates.

Résumé. Il a été prouvé que des systèmes d’Euler-Maxwell convergent globalement en

temps vers des systèmes de dérive-diffusion dans une échelle de temps lent, lorsque le

temps de relaxation tend vers zéro. La convergence a éte établie au problème de Cauchy

avec données initiales régulières périodiques suffisamment proches d’états d’équilibres con-

stants. Dans cet article, nous établissons des estimations d’erreur entre les solutions

régulières périodiques des systèmes d’Euler-Maxwell et celles des systèmes de dérive-

diffusion. Des estimations d’erreur similaires sont aussi obtenues pour des systèmes

d’Euler-Poisson au lieu des systèmes d’Euler-Maxwell. Nous utilisons des techniques de

fonctions de courant et des estimations d’energies pour la démonstration de ces résultats.

Keywords: Convergence rate, Euler-Maxwell system, Euler-Poisson system, drift-diffusion

system, stream function

AMS Subject Classification (2010) : 35B25, 35K45, 35L45, 35Q35
1



2 Y. Li, Y.J. Peng, L. Zhao

1. Introduction

In this paper, we consider the convergence rate problems in the zero-relaxation-time limits

for Euler-Maxwell and Euler-Poisson systems, which are both important fluid models in

plasma physics. We study these problems in the case of periodic solutions. We establish

the global error estimates between the smooth solutions of the Euler-Maxwell system and

those of the drift-diffusion system. Similar error estimates are also established for the Euler-

Poisson system. In the proof, stream function techniques are used for both Euler-Maxwell

and Euler-Poisson systems.

We first study the global-in-time convergence rate problem for the three-dimensional one-

fluid Euler-Maxwell system for electrons. The Euler-Maxwell system describes the motions

of particles in plasmas, which can be written under the form (see [1, 2, 3])

∂t′ρ+ div(ρv) = 0,

∂t′(ρv) + div(ρv ⊗ v) +∇P (ρ) = −ρ(E + v ×B)− ρv

ε
,

∂t′E −∇×B = ρv, divE = 1− ρ,

∂t′B +∇× E = 0, divB = 0, t > 0, x ∈ T3,

(1.1)

with initial conditions

t′ = 0 : (ρ, v, E,B) = (ρε0, v
ε
0, E

ε
0, B

ε
0)(x), x ∈ T3, (1.2)

where T3 is a torus in R3, x = (x1, x2, x3) ∈ R3 is the space variable, t′ > 0 is the usual time

and ε ∈ (0, 1] is the relaxation time which means the average time required for the state

being relaxed to the equilibrium. Here ρ > 0 is the mass density, v is the velocity field, E is

the electric field and B is the magnetic field, which are all functions of (t′, x). The pressure

function P is supposed to be smooth and strictly increasing, namely

P ′(ρ) > 0, ∀ρ > 0. (1.3)

System (1.1) admits an equilibrium state

(ρ, v, E,B) = (1, 0, 0, Be),

where Be ∈ R3 is an arbitrary constant vector.

There are a lot of physical models with relaxation time [22]. The zero relaxation time

limit is a well-known problem in asymptotic analysis and singular perturbation theories. We

refer to [14, 18] and references therein for the study of this limit from first-order hyperbolic

systems to hyperbolic systems. However, if a slow time scaling is used, the limiting system

may become parabolic (see [16]).
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Here, the slow time is t = εt′. if we introduce

ρε(t, x) = ρ

(
t

ε
, x

)
, vε(t, x) =

1

ε
v

(
t

ε
, x

)
, Eε(t, x) = E

(
t

ε
, x

)
, Bε(t, x) = B

(
t

ε
, x

)
,

then (1.1)-(1.2) becomes

∂tρ
ε + div(ρεvε) = 0,

ε2
(
∂t(ρ

εvε) + div(ρεvε ⊗ vε)
)

+∇P (ρε) = −ρε(Eε + εvε ×Bε)− ρεvε,

ε∂tE
ε −∇×Bε = ερεvε, divEε = 1− ρε,

ε∂tB
ε +∇× Eε = 0, divBε = 0,

(1.4)

with initial conditions

ρε(0, x) = ρε0(x), vε(0, x) =
vε0(x)

ε
, Eε(0, x) = Eε

0(x), Bε(0, x) = Bε
0(x), (1.5)

in which the following compatibility conditions should hold:

divEε
0 = 1− ρε0, divBε

0 = 0. (1.6)

Formally, as ε → 0, if denoting the limits of (ρε, vε, Eε, Bε) as (ρ̄, v̄, Ē, B̄), one gets that

the formal limiting equations of (1.4) are

∂tρ̄+ div(ρ̄v̄) = 0,

v̄ = −Ē −∇h(ρ̄),

∇× B̄ = 0, divB̄ = 0,

divĒ = 1− ρ̄, ∇× Ē = 0,

(1.7)

where h is the enthalpy function satisfying

h′(ρ) =
P ′(ρ)

ρ
.

Consequently, it follows from the third equation in (1.7) that B̄ is a constant vector. And

since ∇ × Ē = 0, there exists a potential function φ̄ satisfying Ē = ∇φ̄. As a result, (1.7)

yields the classical drift-diffusion model
∂tρ̄−∆P (ρ̄)− div(ρ̄∇φ̄) = 0,

∆φ̄ = 1− ρ̄,

ρ̄(0, x) = ρ̄0,

(1.8)

as well as

Ē = ∇φ̄, v̄ = −∇
(
h(ρ̄) + φ̄

)
. (1.9)

In order to ensure the uniqueness of φ̄, we impose

mφ̄(t)
def
=

∫
T3

φ̄(t, x)dx = 0, ∀ t ≥ 0.
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The study of the global-in-time error estimates between the smooth solutions to (1.4)-

(1.5) to those of the drift-diffusion model (1.8) is based on the existence results of the

global smooth solutions to the Euler-Maxwell systems. The Euler-Maxwell system (1.4) is

symmetrizable hyperbolic for ρ > 0, then the problem (1.1)-(1.2) admits a local smooth

solution according to Lax [12] and Kato [9]. We point out that the Euler-Maxwell system

and the Euler-Poisson system are different due to the coupling terms and to the difference

between the Poisson equation and the Maxwell equations. In Chen-Jerome-Wang [3], a

global existence result of weak solutions in a one-dimensional Euler-Maxwell system with

extra relaxation terms was established by using the fractional step Godunov scheme together

with a compensated compactness argument. For smooth initial data, the global existence

of smooth solutions, which are sufficiently close to the equilibrium state, to (1.1)-(1.2) was

proved in [20, 4, 24]. For the relaxation limit problems, the local-in-time and the global-

in-time convergence of (1.1) as ε → 0 were obtained by Hajjej-Peng [6] and Wasiolek [21],

respectively. These results were established for smooth solutions in a torus or in the whole

space. In the local-in-time convergence result, the convergence rate was clearly shown and

it depends on the local existence time [20]. For large time, as we know, no result has been

reached so far.

Now we turn to the global error estimates for the Euler-Poisson system. The Euler-Poisson

system is also an important model that describes the motions of unmagnetized particles in

plasmas or semiconductors. The three-dimensional one-fluid Euler-Poisson system on a torus

T3 can be written as (see [2, 17])
∂t′ρ+ div(ρv) = 0,

∂t′(ρv) + div(ρv ⊗ v) +∇P (ρ) = −ρ∇φ− ρv

ε
,

∆φ = 1− ρ,

(1.10)

with initial conditions

t′ = 0 : (ρ, v) = (ρε0(x), vε0(x)), x ∈ T3. (1.11)

Here ρ, v and P are defined in the same way as in (1.1), φ is the scaled electric potential

satisfying

mφ(t)
def
=

∫
T3

φ(t, x)dx = 0, ∀ t ≥ 0. (1.12)

We define φε0 by

∆φε0 = 1− ρε0.

The relaxation limit problem as ε → 0 for smooth solutions of (1.10) has been widely

analyzed by many authors. See [10, 11, 25] for the local-in-time convergence and [19] for

the global-in-time convergence, respectively. The derivation of the limiting system is similar
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to that of the Euler-Maxwell system, see the details in Section 3. However, similarly to the

Euler-Maxwell system, so far there is no result on the global convergence rate for (1.10).

We mention that the global convergence rate was obtained in some other one-dimensional

models. See Junca-Rascle [8] for the isothermal Euler system with damping, Goudon-Lin

[5] for the so-called M1-model in the radiative transfer theory and Li-Peng-Zhao [13] for the

general hyperbolic systems of balance laws. For multi-dimensional models, no result has

been reached by now.

The aim of this paper is to establish error estimates for both the Euler-Maxwell and

Euler-Poisson systems. The main results are given in Theorem 2.1 and Theorem 3.1 for

Euler-Maxwell system and Euler-Poisson system, respectively. We employ stream function

techniques to provide an error estimate for ρε − ρ̄ in L2(R+;L2(T3)). This estimate is not

trivial since it cannot be derived from the classical energy estimates for the Euler-Maxwell

or Euler-Poisson system. For a conservative equation

∂tz + divw = 0, (1.13)

we call ϕ a stream function associated to this equation if ϕ satisfies

∂tϕ = w, divϕ = −z. (1.14)

The existence of stream functions is clear. Indeed, define

ϕ(t, x) = ϕ(0, x) +

∫ t

0

w(τ, x)dτ,

with

divϕ(0, x) = −z(0, x).

Then it is easy to check that ϕ is a stream function.

In one space dimension, the stream function technique was successfully used for obtaining

convergence rates in [8, 5, 13]. In this paper, we need to find an appropriate stream function

for the Euler-Maxwell system. By subtracting the mass equation of the limiting system (1.7)

from that of the original system (1.4), we obtain the following conservative equation

∂t(ρ
ε − ρ̄) + div(ρεvε − ρ̄v̄) = 0.

Hence, the stream function ϕ satisfies∂tϕ = ρεvε − ρ̄v̄,

divϕ = −(ρε − ρ̄).

A natural candidate of the stream function is the error of the electric field ϕ = Eε− Ē, since

div(Eε − Ē) = −(ρε − ρ̄).
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However, since we lose the information of ∂tĒ after taking the limit ε→ 0, we can only get

the information of div(∂tĒ) directly from the limiting system, and as a result, ∂tϕ is not

equal to ρεvε − ρ̄v̄, but takes the following form with some additional divergence free term

K :

∂tϕ = ρεvε − ρ̄v̄ +K.

Here this K may not be uniquely determined. Consequently, we can regard Eε − Ē as the

stream function of the following modified conservative equation

∂t(ρ
ε − ρ̄) + div(ρεvε − ρ̄v̄ +K) = 0. (1.15)

Similar situation occurs for the Euler-Poisson system. It is worth mentioning that the

right choice of K and the energy estimates for the terms containing K are one of the main

difficulties in the proof. This is very different from the classical stream function techniques

in one-dimensional case.

Given an integer k ≥ 3, we want to establish the following error estimates.

(i) For the Euler-Maxwell system,

• for ρ and εv in L∞(R+;Hk−2(T3)),

• for E and B in L∞(R+;Hk−1(T3)),

• for ρ and E in L2(R+;Hk−1(T3)),

• for v and ∇B in L2(R+;Hk−2(T3)).

(ii) For the Euler-Poisson system,

• for ρ and εv in L∞(R+;Hk−2(T3)),

• for ∇φ in L∞(R+;Hk−1(T3)),

• for ρ and ∇φ in L2(R+;Hk−1(T3)),

• for v in L2(R+;Hk−2(T3)).

It is worth mentioning that these estimates are uniform for all ε ∈ (0, 1], contrarily to the

local convergence case where ε should be small [6]. For simplicity, we denote by ‖ · ‖, ‖ · ‖∞
and ‖ · ‖l the usual norms of L2 def

= L2(T3), L∞
def
= L∞(T3) and H l def= H l(T3) for all integers

l ≥ 1, respectively. We will repeatedly use the continuous embedding H2 ↪→ L∞.

This paper is organized as follows. Sections 2 is devoted to the convergence rates in the

zero-relaxation-time limit for the Euler-Maxwell system. In Section 3, similar estimates are

established for the Euler-Poisson system.

2. Convergence Rate for Euler-Maxwell systems

In what follows, we denote by k ≥ 3 an integer and C > 0 a generic constant independent

of ε and any time.
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The study of the error estimates is based on the results on the uniform global existence

and the global-in-time convergence from (1.4)-(1.5) to (1.8)-(1.9) established in [21]. These

results can be stated as follows. Let Ue = (1, 0, 0, Be)
> be an equilibrium state. We denote

U ε = (ρε, εvε, Eε, Bε)>, U ε
0 = (ρε0, v

ε
0, E

ε
0, B

ε
0)>,

where > denotes the transpose of a vector or a matrix. Then there exists a constant δ0 > 0,

which is independent of ε, such that if ‖U ε
0−Ue‖k ≤ δ0, then the periodic problem (1.4)-(1.5)

admits a unique global solution U ε satisfying

‖U ε(t)− Ue‖2
k +

∫ t

0

(
‖ρε(τ)− 1‖2

k + ‖vε(τ)‖2
k

)
dτ ≤ C‖U ε

0 − Ue‖2
k, ∀ t > 0. (2.1)

Moreover, if (ρ̄0 − 1, Ē0) ∈ Hk ×Hk and

(ρε0, E
ε
0, B

ε
0) ⇀ (ρ̄0, Ē0, Be), weakly in Hk,

then

(ρε, Eε, Bε) ⇀ (ρ̄, Ē, Be), weakly- ∗ in L∞(R+;Hk),

vε ⇀ v̄, weakly in L2(R+;Hk),

where (ρ̄, φ̄) is the solution to the periodic problem of the classical drift-diffusion model (1.8)

and (Ē, v̄) satisfy (1.9).

The result on the convergence rate for (1.4)-(1.5) is stated as follows.

Theorem 2.1. Let k ≥ 3 be an integer and (1.3) hold. Let (ρε, vε, Eε, Bε) and (ρ̄, v̄, Ē) be

the unique smooth solutions to (1.4)-(1.5) and (1.8)-(1.9), respectively. Denote Ē0 = Ē(0, ·).

There exists a positive constant δ > 0, independent of ε, such that if

‖ρε0 − 1‖k + ‖vε0‖k + ‖Eε
0‖k + ‖Bε

0 −Be‖k ≤ δ, (2.2)

and for any given positive constants p and C1 independent of ε satisfying

‖vε0‖k−2 + ‖Eε
0 − Ē0‖k−1 + ‖Bε

0 −Be‖k−1 ≤ C1ε
p, (2.3)

then for all ε ∈ (0, 1], there exists a positive constant C2 independent of ε, such that we have

the following estimate

sup
t∈R+

(
‖ρε(t)− ρ̄(t)‖2

k−2 + ε2‖vε(t)− v̄(t)‖2
k−2 + ‖Eε(t)− Ē(t)‖2

k−1 + ‖Bε(t)−Be‖2
k−1

)
+

∫ +∞

0

(
‖ρε(τ)− ρ̄(τ)‖2

k−1 + ‖vε(τ)− v̄(τ)‖2
k−2 + ‖Eε(τ)− Ē(τ)‖2

k−1 + ‖∇Bε(τ)‖2
k−2

)
dτ

≤ C2ε
2p1 ,

where p1 = min (p, 1).
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Remark 2.1. It is not necessary to impose an initial error condition on ρε0 − ρ̄0. Indeed,

(2.3) together with (1.6)-(1.7) implies that

‖ρε0 − ρ̄0‖k−2 ≤ C1ε
p.

2.1. Proof of Theorem 2.1. Let (ρε, vε, Eε, Bε) be the unique smooth solution to (1.4)-

(1.5), and (ρ̄, v̄, Ē) be the unique solution to the drift-diffusion model (1.8). For a multi-index

α = (α1, α2, α3) ∈ N3, we denote

∂α =
∂|α|

∂xα1
1 ∂x

α2
2 ∂x

α3
3

with |α| = α1 + α2 + α3,

and (ρα, vα, Eα, Bα) = (∂αρε, ∂αvε, ∂αEε, ∂αBε),

(ρ̄α, v̄α, Ēα, B̄α) = (∂αρ̄, ∂αv̄, ∂αĒ, ∂αB̄).

We first prove the following result.

Lemma 2.1. Assume ‖ρ̄0−1‖k is sufficiently small. Then the solution (ρ̄, v̄, Ē) to (1.8)-(1.9)

satisfies

‖ρ̄(t)− 1‖2
k +

∫ t

0

‖ρ̄(τ)− 1‖2
k+1 dτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0, (2.4)

‖v̄(t)‖2
k−1 + ‖∂tv̄(t)‖2

k−3 +

∫ t

0

(
‖v̄(τ)‖2

k + ‖∂tv̄(τ)‖2
k−2

)
dτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0. (2.5)

and

‖Ē(t)‖2
k + ‖∂tĒ(t)‖2

k−1 +

∫ t

0

(
‖Ē(τ)‖2

k+1 + ‖∂tĒ(τ)‖2
k

)
dτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0. (2.6)

Proof. Let n̄ = ρ̄− 1 and α ∈ N3 be a multi-index with |α| ≤ k. From (1.8), for any t > 0,

we have ∂tn̄− div
(
P ′(ρ̄)∇n̄

)
− div(ρ̄∇φ̄) = 0,

∆φ̄ = −n̄, mφ̄(t) = 0.
(2.7)

Applying ∂α to the first equation in (2.7) and taking the inner product with ∂αn̄ in L2, it

holds

1

2

d

dt
‖∂αn̄‖2 +

〈
P ′(ρ̄)∂α(∇n̄), ∂α(∇n̄)

〉
+ 〈∂α(∇φ̄),∇(∂αn̄)〉

=
〈
P ′(ρ̄)∂α(∇n̄)− ∂α(P ′(ρ̄)∇n̄), ∂α(∇n̄)

〉
− 〈∂α(n̄∇φ̄),∇(∂αn̄)〉, (2.8)

where 〈·, ·〉 is the inner product in L2. By the Poisson equation in (2.7), we have

〈∂α(∇φ̄),∇(∂αn̄)〉 = ‖∂αn̄‖2.

Since P is strictly increasing and ρ̄ is close to 1, there is a constant P1 > 0 such that〈
P ′(ρ̄)∂α(∇n̄), ∂α(∇n̄)

〉
≥ P1‖∂α(∇n̄)‖2.
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Then applying the Poincaré inequality to the Poisson equation in (2.7) yields

‖∇∂αφ̄‖ ≤ C‖∂αn̄‖. (2.9)

By the Moser-type inequalities [15], we obtain〈
P ′(ρ̄)∂α(∇n̄)− ∂α(P ′(ρ̄)∇n̄), ∂α(∇n̄)

〉
− 〈∂α(n̄∇φ̄),∇(∂αn̄)〉 ≤ C‖n̄‖k‖n̄‖2

k+1.

Thus, adding (2.8) for all α ∈ N3 with |α| ≤ k yields

1

2

d

dt
‖n̄‖2

k + ‖n̄‖2
k + p1‖∇n̄‖2

k ≤ C‖n̄‖k‖n̄‖2
k+1.

Since ‖n̄‖k is sufficiently small, integrating the above inequality over [0, t] yields (2.4).

As a consequence of (2.4) together with (2.9), we obtain

‖Ē(t)‖2
k +

∫ t

0

‖Ē(τ)‖2
k+1dτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0. (2.10)

On the other hand, for a multi-index β with |β| ≤ k − 1, (1.9) gives

‖∂β v̄‖ ≤ C‖n̄‖|β|+1. (2.11)

Applying ∂t∂
β to both sides of the Poisson equation in (2.7) leads to

∆∂t∂
βφ̄ = div∂β(ρ̄v̄).

It follows from (1.9) and (2.11) that

‖∂t∂βĒ‖ ≤ C‖∂β(ρ̄v̄)‖ ≤ C‖n̄‖|β|+1. (2.12)

By (2.4), this implies that

‖∂tĒ(t)‖2
k−1 +

∫ t

0

‖∂tĒ(τ)‖2
kdτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0.

Combining this inequality with (2.10) yields (2.6).

Similarly, (2.4) together with (2.11) implies

‖v̄(t)‖2
k−1 +

∫ t

0

‖v̄(τ)‖2
kdτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0. (2.13)

For a multi-index γ with |γ| ≤ k − 3, applying ∂t∂
γ to the equation for v̄ in (1.9) yields

∂t∂
γ v̄ = −∂γ(h′′(ρ̄)∇ρ̄∂tρ̄+ h′(ρ̄)∇∂tρ̄+ ∂tĒ).

Since ∂tρ̄ = −div(ρ̄v̄), by (2.4) and (2.11), we obtain

‖∂t∂γ v̄‖ ≤ C‖v̄‖|γ|+2 + ‖∂tĒ‖|γ|,

which, together with (2.13), implies (2.5). �

From (1.8)-(1.9), we have

div∂t∇φ̄ = −∂tρ̄ = div(ρ̄v̄),
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which implies that there exists a function H̄ such that∂t∇φ̄− ρ̄v̄ = ∇× H̄,

divH̄ = 0.
(2.14)

In order to make H̄ uniquely determined, we add a restriction condition

mH̄(t) =

∫
T3

H̄(t, x)dx = 0, ∀ t ≥ 0. (2.15)

The estimate for H̄ is as follows.

Lemma 2.2. The solution H̄ to (2.14)-(2.15) satisfies

H̄ ∈ L∞(R+;Hk) and ∂tH̄ ∈ L2(R+;Hk−1).

Proof. Taking the rotation operator to both sides of the first equation in (2.14), we have

∆H̄ = ∇× (ρ̄v̄), ∀ t ≥ 0. (2.16)

which, by Lemma 2.1, implies ∇H̄ ∈ L∞(R+;Hk−1). Besides, by using (1.7) and (1.9), it is

easy to see that

∂t(ρ̄v̄) = (∂tρ̄)v̄ + ρ̄∂tv̄ = −div(ρ̄v̄)v̄ + ρ̄∂tv̄,

which implies that ∂t(ρ̄v̄) ∈ L2(R+;Hk−2). Taking the time derivative to both sides of the

equation (2.16), we obtain

∆∂tH̄ = ∇× ∂t(ρ̄v̄).

For a multi-index β ∈ N3 with |β| ≤ k− 2, applying ∂β to both sides of the above equation,

and making the inner product of the resulting equation with ∂β∂tH̄, we have

‖∇∂β∂tH̄‖2 ≤ C|
〈
∂β∂tH̄,∇× ∂t∂β(ρ̄v̄)

〉
| ≤ C|

〈
∇× ∂β∂tH̄, ∂t∂β(ρ̄v̄)

〉
|

≤ 1

2
‖∇∂β∂tH̄‖2 + C‖∂t∂β(ρ̄v̄)‖2,

here we have used the Young’s inequality and the fact div∂tH̄ = 0. This implies that

∂t∇H̄ ∈ L2(R+;Hk−2). Then applying the Poincaré inequality to H̄ and ∂tH̄ ends the

proof. �

Now we have the following uniform estimate with respect to ε.

Lemma 2.3. It holds∫ t

0

(
‖Eε(τ)‖2

k−1 + ‖∇Gε(τ)‖2
k−2

)
dτ ≤ C‖U ε

0 − Ue‖2
k, ∀ t ≥ 0, (2.17)

where Gε = Bε −Be.
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Proof. Let t > 0 and

Eε = −ε2∂tv
ε − f ε, (2.18)

in which

f ε = ε2(vε · ∇)vε +∇h(ρε) + vε + ε(vε ×Bε).

Since ε ∈ (0, 1], from (2.1), we obtain∫ t

0

‖f ε(τ)‖2
k−1dτ ≤ C‖U ε

0 − Ue‖2
k. (2.19)

For a multi-index β ∈ N3 with |β| ≤ k − 1, applying ∂β to both sides of (2.18), we obtain

Eβ = −ε2∂tvβ − ∂βf ε.

Taking the inner product of the above equation with Eβ in L2 yields

‖Eβ‖2 = −
〈
Eβ, ∂

βf ε
〉
− ε2 〈∂tvβ, Eβ〉 ,

in which by the Young’s inequality,∣∣〈Eβ, ∂βf ε〉∣∣ ≤ 1

2
‖Eβ‖2 + C‖∂βf ε‖2,

and by (1.4) and the Moser-type inequalities,

ε2 〈∂tvβ, Eβ〉 = ε2 d

dt
〈vβ, Eβ〉 − ε2 〈vβ, ∂tEβ〉

= ε2 d

dt
〈vβ, Eβ〉 − ε

〈
vβ,∇×Gβ + ε∂β(ρεvε)

〉
≥ ε2 d

dt
〈vβ, Eβ〉 − C‖vε‖2

k − ν‖∇Gε‖2
k−2,

where ν > 0 is a sufficiently small constant to be determined later. Hence,

2ε2 d

dt
〈vβ, Eβ〉+ ‖Eβ‖2 ≤ Cν‖∇Gε‖2

k−2 + C‖∂βf ε‖2 + C‖vε‖2
k.

Summing up all |β| ≤ k − 1, integrating over [0, t], and noticing (2.1) and (2.19), we have∫ t

0

‖E(τ)‖2
k−1dτ ≤ −2ε2

∑
|β|≤k−1

〈vβ(T ), Eβ(T )〉+ C‖U ε
0 − Ue‖2

k + Cν

∫ t

0

‖∇Gε(τ)‖2
k−2dτ

≤ C‖U ε
0 − Ue‖2

k + Cν

∫ t

0

‖∇Gε(τ)‖2
k−2dτ. (2.20)

For a multi-index γ ∈ N3 with |γ| ≤ k − 2, applying ∂γ to the equation for ∂tE
ε in (1.4),

we obtain

∇×Gγ = ε∂tEγ − ε∂γ(ρεvε),
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where Gγ = ∂γGε. Taking inner product with ∇×Gγ in L2, and using the equations for Eε

and Bε in (1.4), the Cauchy-Schwarz inequality and the Moser-type inequalities, we have

‖∇ ×Gγ‖2 =
d

dt
〈εEγ,∇×Gγ〉 − 〈Eγ, ε∇× ∂tBγ〉 − 〈ε∂γ(ρεvε),∇×Gγ〉

≤ d

dt
〈εEγ,∇×Gγ〉 − 〈∇ × Eγ, ε∂tBγ〉+

1

2
‖∇ ×Gγ‖2 + C‖vε‖2

k

≤ d

dt
〈εEγ,∇×Gγ〉+ ‖∇ × Eγ‖2 +

1

2
‖∇ ×Gγ‖2 + C‖vε‖2

k,

which implies

‖∇ ×Gγ‖2 ≤ 2
d

dt
〈εEγ,∇×Gγ〉+ 2‖∇ × Eγ‖2 + C‖vε‖2

k.

Since divGε = 0, summing up all |γ| ≤ k− 2, integrating over [0, t] and using (2.1), we have∫ t

0

‖∇Gε(τ)‖2
k−2dτ ≤ 2

∑
|γ|≤k−2

〈εEγ(T ),∇×Gγ(T )〉+ C

∫ t

0

‖Eε(τ)‖2
k−1dτ + C‖U ε

0 − Ue‖2
k

≤ C

∫ t

0

‖Eε(τ)‖2
k−1dτ + C‖U ε

0 − Ue‖2
k.

Substituting this inequality into (2.20), we have∫ t

0

(
‖Eε(τ)‖2

k−1 + ‖∇Gε(τ)‖2
k−2

)
dτ ≤ C‖U ε

0 − Ue‖2
k,

provided that ν is sufficiently small. This proves (2.17). �

For convenience, we denote

(N ε, wε, F ε, Gε) = (ρε − ρ̄, vε − v̄, Eε − Ē, Bε −Be),

and

(Nα, wα, Fα, Gα) = (∂αN ε, ∂αwε, ∂αF ε, ∂αGε).

Subtracting the first equation in (1.7) from the mass equation in (1.4), we have

∂tN
ε + div(ρεvε − ρ̄v̄) = 0.

From (1.4), (1.8)-(1.9) and (2.14), we have

divF ε = divEε − divĒ = −N ε, (2.21)

and

∂tF
ε = ∂tE

ε − ∂tĒ = (ρεvε − ρ̄v̄) +
1

ε
∇×Gε −∇× H̄. (2.22)

According to the definition in the introduction (see (1.13)-(1.14)), F ε is a stream function

of (1.15) with the corresponding K = ε−1∇×Gε −∇× H̄.

Now we turn to the estimates for (N ε, wε, F ε, Gε).
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Lemma 2.4. It holds

sup
t∈R+

(
‖N ε(t)‖2

k−2 + ‖F ε(t)‖2
k−1 + ‖Gε(t)‖2

k−1

)
+

∫ +∞

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1 + ‖∇Gε(τ)‖2

k−2

)
dτ ≤ Cε2p1 ,

where p1 is defined in Theorem 2.1.

The proof of Lemma 2.4 follows from a series of lemmas that we give the details as follows.

Let T > 0. To begin, we subtract the equation for v̄ in (1.9) from the second equation in

(1.4), leading to

ε2 (∂t(ρ
εvε) + div(ρεvε ⊗ vε)) + ∇P (ρε)−∇P (ρ̄)

= −(ρεEε − ρ̄Ē)− ερε(vε ×Bε)− (ρεvε − ρ̄v̄).

For all α ∈ N3 with |α| ≤ k−1, applying ∂α to the above equation, taking the inner product

with Fα in L2 and integrating over [0, T ], we have

0 =

∫ T

0

ε2 〈Fα, ∂α∂t(ρεvε)〉 dt+

∫ T

0

〈Fα, ∂α(ρεvε − ρ̄v̄)〉 dt

+

∫ T

0

〈Fα, ∂α (∇(P (ρε)− P (ρ̄)))〉 dt+

∫ T

0

〈Fα, ∂α(ρεF ε)〉 dt

+

∫ T

0

〈
Fα, ∂

α(N εĒ)
〉
dt+

∫ T

0

〈
Fα, ε

2∂α (div(ρεvε ⊗ vε)) + ε∂α(ρεvε ×Bε)
〉
dt

def
= I1 + I2 + I3 + I4 + I5 + I6, (2.23)

with the natural correspondence for I1, I2, I3 ,I4, I5 and I6, of which the estimates are given

by a series of lemmas as follows. In lemmas 2.5-2.8, the parameters p1 and δ are defined in

Theorem 2.1, and µ > 0 is a sufficiently small constant to be chosen in Lemma 2.9.

Lemma 2.5. (Estimate of I1) For all |α| ≤ k − 1, it holds

|I1| ≤ Cε2p1 +
1

4
‖Fα(T )‖2 + µ

∫ T

0

‖∇Gε(τ)‖2
k−3dτ. (2.24)

Proof. Recall that

I1 =

∫ T

0

ε2 〈Fα, ∂α∂t(ρεvε)〉 dt.

Taking the integration by parts with respect to time, we have

I1 =

∫ T

0

d

dt
ε2 〈Fα, ∂α(ρεvε)〉 dt−

∫ T

0

ε2 〈∂tFα, ∂α(ρεvε)〉 dt, (2.25)
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in which∣∣∣∣∫ T

0

d

dt
ε2 〈Fα, ∂α(ρεvε)〉 dt

∣∣∣∣ ≤ 1

4
‖Fα(T )‖2 +

1

4
‖Fα(0)‖2 + Cε4‖vε(T )‖2

k−2 + Cε2‖vε0‖2
k−1

≤ 1

4
‖Fα(T )‖2 + Cε2p1 . (2.26)

By using (2.1), (2.6), (2.22), the Cauchy-Schwarz inequality and the Moser-type inequalities,

the last term on the right hand side of (2.25) is estimated as∣∣∣∣∫ T

0

ε2 〈∂tFα, ∂α(ρεvε)〉 dt
∣∣∣∣

≤
∣∣∣∣∫ T

0

ε 〈∇ ×Gα, ∂
α(ρεvε)〉 dt

∣∣∣∣+ ε2

∣∣∣∣∫ T

0

〈∂α(ρεvε), ∂α(ρεvε)〉 dt
∣∣∣∣

+

∣∣∣∣ε2

∫ T

0

〈
∂tĒα, ∂

α(ρεvε)
〉
dt

∣∣∣∣
≤

∣∣∣∣∫ T

0

ε 〈∇ ×Gα, ∂
α(ρεvε)〉 dt

∣∣∣∣+ Cε2.

It remains to estimate the first term on the right-hand side of the above inequality. When

|α| = 0, by (2.1) and the Young’s inequality, we have∣∣∣∣∫ T

0

ε 〈∇ ×Gε, ρεvε〉 dt
∣∣∣∣ ≤ µ

∫ T

0

‖∇ ×Gε(τ)‖2dτ + Cε2

= µ

∫ T

0

‖∇Gε(τ)‖2dτ + Cε2,

where µ > 0 is sufficiently small and to be determined later. For 1 ≤ |α| ≤ k − 1, by using

vector formulas, we obtain∣∣∣∣∫ T

0

ε 〈∇ ×Gα, ∂
α(ρεvε)〉 dt

∣∣∣∣ =

∣∣∣∣∫ T

0

〈εGα,∇× ∂α(ρεvε)〉
∣∣∣∣

≤ µ

∫ T

0

‖∇Gε(τ)‖2
k−2dτ + Cε2.

Combining (2.25), (2.26) and these two estimates above yields (2.24). �

Lemma 2.6. (Estimate of I2) For all |α| ≤ k − 1, it holds

I2 ≥
1

2
‖Fα(T )‖2 +

1

4
‖Gα(T )‖2 − Cε2p1

−Cδ sup
0≤t≤T

‖Gε(t)‖2
k−1 − Cµ

∫ T

0

‖∇Gε(τ)‖2
k−2dτ. (2.27)

Proof. Recall that

I2 =

∫ T

0

〈Fα, ∂α(ρεvε − ρ̄v̄)〉 dt.

Noticing (2.14) and (2.22), we have

∂α(ρεvε − ρ̄v̄) = ∂tFα −
1

ε
∇×Gα +∇× ∂αH̄.
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Then using (1.4), (2.1), (2.3), the Cauchy-Schwarz inequality and Lemma 2.2, we have

I2 =

∫ T

0

(
1

2

d

dt
‖Fα(t)‖2 −

〈
∇× Fα,

1

ε
Gα − ∂αH̄

〉)
dt

=

∫ T

0

1

2

d

dt
‖Fα(t)‖2dt+

∫ T

0

〈
ε∂tGα,

1

ε
Gα

〉
dt

−
∫ T

0

(
d

dt

〈
εGα, ∂

αH̄
〉
−
〈
εGα, ∂t∂

αH̄
〉)

dt

=
1

2
‖Fα(T )‖2 +

1

2
‖Gα(T )‖2 − 1

2
‖Fα(0)‖2 − 1

2
‖Gα(0)‖2

−
∫ T

0

d

dt

〈
εGα, ∂

αH̄
〉
dt+

∫ T

0

〈
εGα, ∂t∂

αH̄
〉
dt

≥ 1

2
‖Fα(T )‖2 +

1

2
‖Gα(T )‖2 − Cε2p1 −

∫ T

0

d

dt

〈
εGα, ∂

αH̄
〉
dt+

∫ T

0

〈
εGα, ∂t∂

αH̄
〉
dt.

Since ρ̄ ∈ L∞(R+;Hk) and v̄ ∈ L∞(R+;Hk−1), we obtain that H̄ is continuous at t = 0. As

a result, by the Young’s inequality∣∣∣∣∫ T

0

d

dt

〈
εGα, ∂

αH̄
〉
dt

∣∣∣∣ ≤ ε
∣∣〈Gα(T ), ∂αH̄(T )

〉
|+ ε|

〈
Gα(0), ∂αH̄(0)

〉∣∣
≤ 1

4
‖Gα(T )‖2 + Cε2p1 .

It suffices to prove the following∣∣∣∣∫ T

0

〈
εGα, ∂t∂

αH̄
〉
dt

∣∣∣∣ ≤ Cε2 + Cδ sup
0≤t≤T

‖Gε(t)‖2
k−1 + µ

∫ T

0

‖∇Gε(τ)‖2
k−2dτ. (2.28)

Actually, for 1 ≤ |α| ≤ k − 1, (2.28) obviously holds by noticing (2.17) and Lemma 2.2.

When α = 0, it needs a little more calculations. Since divGε = 0, there exists a function χε

such that ∇× χε = Gε,

divχε = 0.

In order to make χε uniquely determined, we add a restriction condition∫
T3

χε(t, x)dx = 0, ∀ t ≥ 0.

Noticing divχε = 0, using (2.1) and the Poincaré inequality, we immediately have

‖χε(t)‖k−1 ≤ C‖∇χε(t)‖k−1 = C‖Gε(t)‖k−1, ∀ t > 0. (2.29)
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Consequently, in view of the expression for H̄ in (2.14), using (1.8)-(1.9) and taking integra-

tion by parts, we have

〈
εGε, ∂tH̄

〉
=

〈
ε∇× χε, ∂tH̄

〉
=

〈
εχε,∇× ∂tH̄

〉
=

〈
εχε, ∂t(∂t∇φ̄− ρ̄v̄)

〉
= −

〈
εdivχε, ∂ttφ̄

〉
− 〈εχε, ∂t(ρ̄v̄)〉

= −〈εχε, (∂tρ̄)v̄ + ρ̄∂tv̄〉

= 〈εχε, div(ρ̄v̄)v̄〉+
〈
εχε, ρ̄∂t(∇(h(ρ̄) + φ̄))

〉
= 〈εχε, div(ρ̄v̄)v̄〉 −

〈
εχε,∇ρ̄∂t(φ̄+ h(ρ̄))

〉
= 〈εχε, div(ρ̄v̄)v̄〉 −

〈
εχε,∇ρ̄∂tφ̄

〉
− 〈εχε,∇ρ̄∂th(ρ̄)〉 .

Now we estimate the three terms on the right-hand side of the above. First,

|ε 〈χε, div(ρ̄v̄)v̄〉 | ≤ Cε‖Gε‖k−1‖v̄‖2
k−1.

Noticing the Poisson equation in (2.7) and using the Poincaré inequality and the estimate

(2.12), we obtain

∣∣ε 〈χε, ∂tφ̄∇ρ̄〉∣∣ ≤ Cε‖χε‖k−1‖∇ρ̄‖‖∂t∇φ̄‖ ≤ Cε‖Gε‖k−1‖ρ̄− 1‖2
k−1.

Finally, using (1.8) and the Cauchy-Schwarz inequality, we have

|〈εχε,∇ρ̄∂th(ρ̄)〉| = |〈εχε,∇ρ̄h′(ρ̄)div(ρ̄v̄)〉| ≤ Cε‖Gε‖k−1‖(‖ρ̄− 1‖2
k−1 + ‖v̄‖2

k−1).

Combining all these estimates, we arrive at

∣∣〈εGε, ∂tH̄
〉∣∣ ≤ Cε‖Gε‖k−1(‖ρ̄− 1‖2

k−1 + ‖v̄‖2
k−1).

Integrating the above over [0, T ], noticing the estimates (2.4), (2.5) and (2.29) and using the

Young’s inequality, we have∣∣∣∣∫ T

0

〈
εGε, ∂tH̄

〉
dt

∣∣∣∣ ≤ C

∫ T

0

‖Gε‖2
k−1(‖ρ̄− 1‖2

k−1 + ‖v̄‖2
k−1)dt

+Cε2

∫ T

0

(‖ρ̄− 1‖2
k−1 + ‖v̄‖2

k−1)dt

≤ Cδ sup
0≤t≤T

‖Gε(t)‖2
k−1 + Cε2,

which implies (2.28) and therefore ends the proof. �
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Lemma 2.7. (Estimate of I3) For all |α| ≤ k − 1, there exists a positive constant c1 > 0,

such that

I3 ≥ c1

∫ T

0

‖Nα(τ)‖2dτ − Cδ
∫ T

0

‖N ε(τ)‖2
k−1dτ. (2.30)

Proof. Recalling and using (2.21) yield

I3 =

∫ T

0

〈Fα, ∂α (∇(P (ρε)− P (ρ̄)))〉 dt

= −
∫ T

0

〈divFα, ∂
α(P (ρε)− P (ρ̄))〉 dt

=

∫ T

0

〈Nα, ∂
α(P (ρε)− P (ρ̄))〉 dt.

We use the Taylor’s formula to obtain

P (ρε)− P (ρ̄) =

∫ 1

0

P ′(ρ̃ε(s))N εds.

where

ρ̃ε(s) = ρ̄+ sN ε.

From (2.1) and (2.4), it is easy to show that ρ̃ε(s)− 1 is sufficiently small in L∞(R+ × T3),

uniformly with respect to ε ∈ (0, 1] and s ∈ [0, 1]. Besides, we have

∂α(P (ρε)− P (ρ̄)) =

∫ 1

0

P ′(ρ̃ε(s))Nαds

+

∫ 1

0

(∂α (P ′(ρ̃ε(s))N ε)− P ′(ρ̃ε(s))Nα) ds.

First, noticing (2.1), (2.2), (2.3) and (2.4), it is easy to find that when δ is sufficiently small,

ρ̃ε are uniformly bounded from below for all ε ∈ (0, 1] and s ∈ [0, 1]. Thus the continuity

and monotonicity of the pressure function P (ρ) imply that there exists a positive constant

c1 > 0, such that ∫ 1

0

〈Nα, P
′(ρ̃ε(s))Nα〉 ds ≥ 2c1‖Nα‖2. (2.31)

Then, noticing δ is sufficiently small, the weak convergence from (ρε0, E
ε
0) to (ρ̄0, Ē0) implies

that

‖ρ̄0 − 1‖k + ‖Ē0‖k ≤ δ.

Hence, by the Moser-type inequalities, we have

‖∂α (P ′(ρ̃ε(s))N ε)− P ′(ρ̃ε(s))Nα‖ ≤ Cδ‖N ε‖k−1,

which, along with the Cauchy-Schwarz inequality, implies∫ 1

0

〈Nα, ∂
α (P ′(ρ̃ε(s))N ε)− P ′(ρ̃ε(s))Nα〉 ds ≥ −c1‖Nα‖2 − Cδ‖N ε‖2

k−1. (2.32)

Thus, combining (2.31) and (2.32) yields (2.30). �



18 Y. Li, Y.J. Peng, L. Zhao

Lemma 2.8. (Estimates of I4, I5 and I6) For all |α| ≤ k−1, there exists a positive constant

c2 > 0, such that

I4 + I5 + I6 ≥ c2

∫ T

0

‖Fα(τ)‖2dτ − Cδ
∫ T

0

‖N ε(τ)‖2
k−1dτ − Cε2. (2.33)

Proof. Recall that

I4 =

∫ T

0

〈Fα, ∂α(ρεF ε)〉 dt,

I5 =

∫ T

0

〈
Fα, ∂

α(N εĒ)
〉
dt,

I6 =

∫ T

0

〈
Fα, ε

2∂α (div(ρεvε ⊗ vε)) + ε∂α(ρεvε ×Bε)
〉
dt.

First, due to (2.1) and (2.2), we notice that when δ is sufficiently small, ρε are uniformly

bounded from below, which implies that there exists a positive constant c2 > 0, such that

〈Fα, ρεFα〉 ≥ 4c2‖Fα‖2.

As a result, by using the Moser-type inequalities, the Young’s inequality and the Cauchy-

Schwarz inequality, we obtain

I4 =

∫ T

0

〈Fα, ∂α(ρεF ε)〉 dt =

∫ T

0

〈Fα, ρεFα〉 dt+

∫ T

0

〈Fα, ∂α(ρεF ε)− ρεFα〉 dt

≥ 4c2

∫ T

0

‖Fα(τ)‖2dτ − c2

∫ T

0

‖Fα(τ)‖2dτ

−C
∫ T

0

‖∂α(ρεF ε)− ρεFα‖2dt

≥ 3c2

∫ T

0

‖Fα(τ)‖2dτ − Cδ
∫ T

0

‖F ε(τ)‖2
k−1dτ.

Similarly, we have

|I5| ≤ c2

∫ T

0

‖Fα(τ)‖2dτ + Cδ

∫ T

0

‖N ε(τ)‖2
k−1dτ,

|I6| ≤ c2

∫ T

0

‖Fα(τ)‖2dτ + Cε2.

These estimates imply (2.33) provided that δ > 0 is sufficiently small. �

Since I2 + I3 + I4 + I5 + I6 = −I1, combining (2.21), (2.23) and Lemmas 2.5-2.8, and

summing up all |α| ≤ k − 2, it follows

‖N ε(T )‖2
k−2 + ‖F ε(T )‖2

k−1 + ‖Gε(T )‖2
k−1 +

∫ T

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1

)
dτ

≤ Cε2p1 + Cδ sup
0≤t≤T

‖Gε(t)‖2
k−1 + Cµ

∫ T

0

‖∇Gε(τ)‖2
k−2dτ,
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provided that δ is sufficiently small. Taking the superior limit with respect to T , we have

sup
t∈R+

(
‖N ε(t)‖2

k−2 + ‖F ε(t)‖2
k−1 + ‖Gε(t)‖2

k−1

)
+

∫ +∞

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1

)
dτ

≤ Cε2p1 + Cµ

∫ +∞

0

‖∇Gε(τ)‖2
k−2dτ, (2.34)

provided that δ is sufficiently small.

The proof of Lemma 2.4 will be completed provided that we prove the following result.

Lemma 2.9. It holds ∫ +∞

0

‖∇Gε(τ)‖2
k−2dτ ≤ Cε2p1 . (2.35)

Proof. Let T > 0. The Maxwell equations in (1.4) can be rewritten as

ε∂tF ε −∇×Gε = ερεvε − ε∂tĒ,

ε∂tG
ε +∇× F ε = 0, divGε = 0.

For a multi-index γ ∈ N3 with |γ| ≤ k − 2, applying ∂γ to the above yields

ε∂tFγ −∇×Gγ = ε∂γ(ρεvε)− ε∂tĒγ,

ε∂tGγ +∇× Fγ = 0, divGγ = 0.

Taking the inner product of the first equation with ∇×Gγ in L2, and using the Moser-type

inequalities, the Young’s inequality and the Cauchy-Schwarz inequality, we have

‖∇ ×Gγ‖2 = 〈ε∂tFγ,∇×Gγ〉 −
〈
ε∂γ(ρεvε − ∂tĒ),∇×Gγ

〉
=

d

dt
〈εFγ,∇×Gγ〉 − 〈∇ × Fγ, ε∂tGγ〉 −

〈
ε∂γ(ρεvε − ∂tĒ),∇×Gγ

〉
≤ d

dt
〈εFγ,∇×Gγ〉+ ‖∇ × Fγ‖2 +

1

2
‖∇ ×Gγ‖2 + Cε2‖vε‖2

k−2 + Cε2‖∂tĒ‖2
k−2,

which implies

‖∇ ×Gγ‖2 ≤ 2
d

dt
〈εFγ,∇×Gγ〉+ 2‖∇ × Fγ‖2 + Cε2‖vε‖2

k−2 + Cε2‖∂tĒ‖2
k−2.
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Summing up all |γ| ≤ k − 2, integrating over [0, T ], and using (2.1), (2.3), (2.6) and (2.34),

we obtain that there exists a constant c̃ > 0, such that∫ T

0

‖∇ ×Gε(τ)‖2
k−2dτ

≤ Cε
∑
|γ|≤k−2

〈Fγ(T ),∇×Gγ(T )〉 − Cε
∑
|γ|≤k−2

〈Fγ(0),∇×Gγ(0)〉+ Cε2

+C

∫ T

0

‖∇ × F ε(τ)‖2
k−2dτ

≤ Cε2‖F ε(T )‖2
k−2 + C‖Gε(T )‖2

k−2 + Cε2p1 +
c̃µ

2

∫ T

0

‖∇Gε(τ)‖2
k−2dτ

≤ Cε2p1 +
c̃µ

2

∫ T

0

‖∇Gε(τ)‖2
k−2dτ.

Since divGε = 0, by choosing µ < 1/c̃, we arrive at∫ T

0

‖∇Gε(τ)‖2
k−2dτ ≤ Cε2p1 .

Since T is arbitrary, this proves (2.35). �

The proof of Theorem 2.1 follows from the following estimate.

Lemma 2.10. It holds

sup
t∈R+

ε2‖wε(t)‖2
k−2 +

∫ +∞

0

‖wε(t)‖2
k−2dt ≤ Cε2p1 . (2.36)

Proof. The second equation in (1.4) is equivalent to

ε2∂tv
ε + ε2(vε · ∇)vε +∇h(ρε) = −Eε − εvε ×Bε − vε.

Subtracting the equation for v̄ in (1.9) from the above equation, we have

ε2∂tw
ε + wε = Rε

1, (2.37)

where

Rε
1 = −ε2(vε · ∇)vε −∇(h(ρε)− h(ρ̄))− F ε − εvε ×Bε − ε2∂tv̄.

Let T > 0. For all α ∈ N3 with |α| ≤ k − 2, applying ∂α to (2.37), taking the inner product

with wα in L2 and integrating over [0, T ], we get

‖εwα(T )‖2 +

∫ T

0

‖wα(τ)‖2dτ ≤ C

∫ T

0

‖∂αxRε
1(τ)‖2dτ + ‖εwα(0)‖2. (2.38)

The Taylor’s formula gives

h(ρε)− h(ρ̄) =

∫ 1

0

h′(ρ̄+ sN ε)N εds.
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We write the term εvε ×Bε as

εvε ×Bε = εvε ×Gε + εvε ×Be.

Since k ≥ 3, we use the Moser-type inequality for the quadratic term

‖∂α(uv)‖ ≤ C‖u‖k−1‖v‖k−1, ∀u, v ∈ Hk, |α| ≤ k − 1.

Therefore, for |α| ≤ k − 2, we have

‖∂α(vε ×Gε)‖ ≤ C‖vε‖k‖Gε‖k,

ε‖∂α(vε · ∇)vε‖ ≤ C(ε‖vε‖k)‖vε‖k,

and by (2.1) and (2.4),

‖∂α∇(h(ρε)− h(ρ̄))‖ ≤ C‖N ε‖k−1.

Thus, using (2.1) and (2.5) together with Lemma 2.4, we obtain∫ T

0

‖∂αRε
1(τ)‖2dτ ≤ Cε2p1 .

Besides, (2.3) implies

‖εwα(0)‖2 ≤ Cε2p1 .

Substituting these estimates into (2.38) and summing up all |α| ≤ k − 2, we arrive at

‖εwε(T )‖2
k−2 +

∫ T

0

‖wε(τ)‖2
k−2dτ ≤ Cε2p1 ,

which implies (2.36) since T > 0 is arbitrary. �

3. Convergence rate for Euler-Poisson system

In what follows, we denote by k ≥ 3 an integer and C > 0 a generic constant independent

of ε and any time.

3.1. Statement of the problem. Similarly to section 2, we introduce a slow time t = εt′

and the following parabolic scaling,

ρε(t, x) = ρ

(
t

ε
, x

)
, vε(t, x) =

1

ε
v

(
t

ε
, x

)
, φε(t, x) = φ

(
t

ε
, x

)
,

then (1.10)-(1.11) becomes
∂tρ

ε + div(ρεvε) = 0,

ε2 (∂t(ρ
εvε) + div(ρεvε ⊗ vε)) +∇P (ρε) = −ρε∇φε − ρεvε,

∆φε = 1− ρε, mφε(t) = 0,

(3.1)
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with initial conditions

ρε(0, x) = ρε0(x), vε(0, x) =
vε0(x)

ε
, φε(0, x) = φε0(x), (3.2)

in which φε0 is defined by

∆φε0 = 1− ρε0.

Let (ρ̄, v̄, φ̄) be the formal limit of (ρε, vε, φε) as ε → 0. It is easy to see that it is also

governed by the the drift-diffusion model (1.8) with

v̄ = −∇h(ρ̄)−∇φ̄. (3.3)

The study of the error estimates is based on the results about the uniform global existence

and the global-in-time convergence of the system established in [19, 7, 23]. These results can

be stated as follows. Let Ve = (1, 0, 0)> be an equilibrium state. We denote

V ε = (ρε, εvε,∇φε)>, V ε
0 = (ρε0, v

ε
0,∇φε0)>.

There exists a constant δ0 > 0, which is independent of ε, such that if ‖V ε
0 −Ve‖k ≤ δ0, then

the periodic problem (3.1)-(3.2) admits a unique global solution V ε satisfying

‖V ε(t)− Ve‖2
k +

∫ t

0

‖vε(τ)‖2
kdτ ≤ C‖V ε

0 − Ve‖2
k, ∀ t > 0. (3.4)

Moreover, if

ρε0 ⇀ ρ̄0, weakly in Hk,

then

(ρε,∇φε) ⇀ (ρ̄,∇φ̄), weakly- ∗ in L∞(R+;Hk),

vε ⇀ v̄, weakly in L2(R+;Hk).

Moreover, by the Poincaré inequality, the estimate below for φ̄ holds

‖φ̄(t)‖2
k+1 + ‖∂tφ̄(t)‖2

k +

∫ t

0

(
‖φ̄(τ)‖2

k+2 + ‖∂tφ̄(τ)‖2
k+1

)
dτ ≤ C‖ρ̄0 − 1‖2

k, ∀ t > 0. (3.5)

The result on the convergence rate for (3.1)-(3.2) is stated as follows.

Theorem 3.1. Let k ≥ 3 be an integer, (1.3) and (1.12) hold. Let (ρε, vε, φε) and (ρ̄, v̄, φ̄)

be the unique smooth solutions to (3.1)-(3.2) and (1.8)-(1.9), respectively. Assume

‖ρε0 − 1‖k + ‖vε0‖k ≤ δ, (3.6)

and

‖vε0‖k−2 + ‖∇(φε0 − φ̄0)‖k ≤ C3ε
q, (3.7)
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for some positive constants δ, q and C3 independent of ε, where δ is sufficiently small. Then

for all ε ∈ (0, 1], there exists a positive constant C4 independent of ε, such that the following

estimate holds

sup
t∈R+

(
‖ρε(t)− ρ̄(t)‖2

k−2 + ε2‖vε(t)− v̄(t)‖2
k−2 + ‖∇φε(t)−∇φ̄(t)‖2

k−1

)
+

∫ +∞

0

(
‖ρε(t)− ρ̄(t)‖2

k−1 + ‖∇φε(t)−∇φ̄(t)‖2
k−1 + ‖vε(t)− v̄(t)‖2

k−2

)
dt ≤ C4ε

2q1 ,

where q1 = min(q, 1).

3.2. Proof of Theorem 3.1. For simplicity, we adopt the similar notations

(N ε, wε, F ε) = (ρε − ρ̄, vε − v̄,∇φε −∇φ̄).

From (3.1) and (1.8), we have

divF ε = ∆φε −∆φ̄ = −N ε.

Then

div(∂tF
ε) = −∂tN ε = div(ρεvε − ρ̄v̄).

Consequently, there exists a function M ε, such that

∂tF
ε = (ρεvε − ρ̄v̄) +∇×M ε.

We conclude that 
F ε = ∇(φε − φ̄),

divF ε = −N ε,

∂tF
ε = (ρεvε − ρ̄v̄) +∇×M ε,

(3.8)

which will be frequently used in the later proof. According to the definition, F ε is a stream

function of (1.15) with corresponding K = ∇×M ε.

For a multi-index α ∈ N3, we denote(ρα, vα, φα) = (∂αρε, ∂αvε, ∂αφε),

(ρ̄α, v̄α, φ̄α) = (∂αρ̄, ∂αv̄, ∂αφ̄),

and

(Nα, wα, Fα) = (∂αN ε, ∂αwε, ∂αF ε).

We start with the following result.

Lemma 3.1. It holds

sup
t∈R+

(
‖N ε(t)‖2

k−2 + ‖F ε(t)‖2
k−1

)
+

∫ +∞

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1

)
dτ ≤ Cε2q1 , (3.9)

where q1 > 0 is defined in Theorem 3.1.
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Proof. Subtracting (3.3) from the second equation in (3.1) leads to

ε2 (∂t(ρ
εvε) + div(ρεvε ⊗ vε)) +∇

(
P (ρε)− P (ρ̄)

)
= −(ρε∇φε − ρ̄∇φ̄)− (ρεvε − ρ̄v̄). (3.10)

Let T > 0. For a multi-index α ∈ N3 with |α| ≤ k − 1, applying ∂α to (3.10), taking the

inner product with Fα in L2 and integrating over [0, T ] , we have

0 =

∫ T

0

ε2 〈Fα, ∂α∂t(ρεvε)〉 dt+

∫ T

0

〈Fα, ∂α(ρεvε − ρ̄v̄)〉 dt

+

∫ T

0

〈Fα, ∂α∇(P (ρε)− P (ρ̄))〉 dt+

∫ T

0

〈Fα, ∂α(ρεF ε)〉 dt

+

∫ T

0

〈
Fα, ∂

α(N ε∇φ̄)
〉
dt+

∫ T

0

ε2 〈Fα, ∂αdiv(ρεvε ⊗ vε)〉 dt

def
= J1 + J2 + J3 + J4 + J5 + J6, (3.11)

with the natural correspondence for J1, J2, J3 ,J4, J5 and J6, which are treated term by

term as follows. First, taking the integration by parts with respect to time in J1, we have

J1 = −
∫ T

0

ε2 〈∂tFα, ∂α(ρεvε)〉 dt+

∫ T

0

d

dt
〈Fα, ∂α(ρεvε)〉 dt.

Noticing (3.8),

∂t∆(φε − φ̄) = −∂tN ε = div(ρεvε − ρ̄v̄),

which implies

‖∂tFα‖ = ‖∂t∂α∇(φε − φ̄)‖ ≤ C‖∂α(ρεvε − ρ̄v̄)‖.

Thus, using (3.4), the Cauchy-Schwarz inequality and the Moser-type inequalities, we have∣∣∣∣∫ T

0

ε2 〈∂tFα, ∂α(ρεvε)〉 dt
∣∣∣∣ ≤ Cε2

∫ T

0

(‖vε(τ)‖2
k−1 + ‖v̄(τ)‖2

k−1)dτ ≤ Cε2,

and similar to (2.26), ∣∣∣∣∫ T

0

d

dt
〈Fα, ∂α(ρεvε)〉 dt

∣∣∣∣ ≤ 1

4
‖Fα(T )‖2 + Cε2q1 .

Hence, we have

|J1| ≤
1

4
‖Fα(T )‖2 + Cε2q1 .

For J2, noticing (3.8), we find that Fα is rotation-free. Hence,

J2 =

∫ T

0

〈Fα, ∂tFα −∇×M ε〉 dt =
1

2
‖Fα(T )‖2 − 1

2
‖Fα(0)‖2 ≥ 1

2
‖Fα(T )‖2 − Cε2q1 .

Similarly, using (2.4), (2.5), (3.4), (3.5), (3.6), (3.7), (3.8), the Young’s inequality, the

Cauchy-Schwarz inequality and the Moser-type inequalities, J3, J4, J5 and J6 can be treated
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in a similar way as in (2.23). Then we have

J3 ≥ c1

∫ T

0

‖Nα(τ)‖2dτ − Cδ
∫ T

0

‖N ε(τ)‖2
k−1dτ,

J4 ≥ 3c2

∫ T

0

‖Fα(τ)‖2dτ − Cδ
∫ T

0

‖F ε(τ)‖2
k−1dτ,

|J5| ≤ c2

∫ T

0

‖Fα(τ)‖2dτ + Cδ

∫ T

0

‖N ε(τ)‖2
k−1dτ,

|J6| ≤ c2

∫ T

0

‖Fα(τ)‖2dτ + Cε2.

Since J2 + J3 + J4 = J1− J5− J6, combining (3.11) and the estimates for Ji (1 ≤ i ≤ 6) and

summing up all |α| ≤ k − 1, it yields

‖F ε(T )‖2
k−1 +

∫ T

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1

)
dτ ≤ Cε2q1 ,

provided that δ is sufficiently small. Besides, from (3.8), we have

‖N ε‖k−2 ≤ ‖∇F ε‖k−2,

which implies

‖N ε(T )‖2
k−2 + ‖F ε(T )‖2

k−1 +

∫ T

0

(
‖N ε(τ)‖2

k−1 + ‖F ε(τ)‖2
k−1

)
dτ ≤ Cε2q1 .

This proves (3.9) since T > 0 is arbitrary. �

The proof of Theorem 3.1 follows from the following estimate.

Lemma 3.2. It holds

sup
t∈R+

‖εwε(t)‖2
k−2 +

∫ +∞

0

‖wε(τ)‖2
k−2dτ ≤ Cε2q1 . (3.12)

Proof. Noticing that the second equation in (3.1) is equivalent to

ε2(∂tv
ε + (vε · ∇)vε) +∇h(ρε) = −∇φε − vε.

Subtracting (3.3) from the above, we obtain

ε2∂tw
ε + wε = Rε

2, (3.13)

where

Rε
2 = −ε2(∂tv̄ + (vε · ∇)vε)− (∇h(ρε)−∇h(ρ̄))− F ε.

Let T > 0. For a multi-index α ∈ N3 with |α| ≤ k − 2, applying ∂α to (3.13), taking the

inner product with wα in L2 and integrating over [0, T ], it yields

‖εwα(T )‖2 +

∫ T

0

‖wα(τ)‖dτ ≤ C

∫ T

0

‖∂αRε
2(τ)‖dτ + ‖εwα(0)‖2. (3.14)
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The two terms on right-hand side of the above inequality are treated similarly as in (2.38),

which gives the following ∫ T

0

‖∂αRε
2(τ)‖dτ ≤ Cε2q1 ,

‖εwα(0)‖2 ≤ Cε2q1 .

Substituting these estimates into (3.14), summing up all |α| ≤ k − 2, it follows

‖εwε(T )‖2
k−2 +

∫ T

0

‖wε(τ)‖2
k−2dτ ≤ Cε2q1 ,

which implies (3.12) since T > 0 is arbitrary. �
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