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Abstract. We consider smooth solutions to a relaxed Euler system with Oldroyd-type
constitutive laws. This system is derived from the one-dimensional compressible full
Navier-Stokes equations for a Newtonian fluid by using the Cattaneo-Christov model and
the Oldroyd-B model. In a neighborhood of equilibrium states, we construct an explicit
symmetrizer and show that the system is symmetrizable hyperbolic with partial dissipa-
tion. Moreover, by establishing uniform estimates with respect to the relaxation times, we
prove the uniform global existence of smooth solutions and the global-in-time convergence

of the system towards the full Navier-Stokes equations.

Keywords: Full Navier-Stokes equations; Non-Newtonian fluid; Relaxed Euler systems; Ol-

droyd derivative; Global convergence
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1. INTRODUCTION

Euler and Navier-Stokes equations are two important models in fluid dynamics. There are rich
literatures on the mathematical analysis around these equations. We refer to [24], 23] 25] 1T, 26]
and references therein for mathematical results. There are deep relationships between Euler and
Navier-Stokes equations. It is well known that the Euler equations can be derived from Navier-
Stokes equations through the vanishing viscosity limit. Meanwhile, the Navier-Stokes equations
can also be approximated by first-order partial differential equations using different kinds of
constitutive laws for non-Newtonian fluids. These approximate equations are referred to as
relaxed Euler systems or hyperbolic Navier-Stokes equations, see for instance [33, 34}, [16], [30} [10].
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In the paper, we study the global-in-time convergence from relaxed Euler-type equations with
Oldroyd’s constitutive laws to compressible full (non-isentropic) Navier-Stokes equations by
letting relaxation times tend to zero. Let t > 0 be the time variable and x = (zy,- - ,74) € R?

be the space variable. The compressible full Navier-Stokes equations are of the form

Op + div(pu) = 0,
Oy (pu) + div(pu @ u) + Vp = divr, (1.1)
O (pE) + div(puE + up) + divg = div(ur),

in RT x R? where p > 0 is the density, u = (uy, -+ ,uq)" € R? is the velocity, # is the
temperature, p is the pressure function, ¢ € R? is the heat flux, 7 is the stress tensor and
E=e+ %|u|2 is the total energy per unit mass with e being the specific internal energy. The
symbols T and ® represent the transpose and the tensor product, respectively. In , Py U
and 0 are independent variables, e and p are functions of (p,#). In particular, for the ideal
fluid, we have

e =c,0, p = Rpb, (1.2)
which satisfy the thermodynamic equation

Pzep =p — Ope, (1.3)

e

where R and ¢, are positive constants, and e, = g—p etc. Generally speaking, the heat flux ¢

satisfies the following Fourier’s law

q=—kVo, (1.4)

where k > 0 is the heat conduction constant. For Newtonian viscous fluids, the stress tensor 7
takes the form
T = po(u) + A(divu) 1y, (1.5)
with
o(u) = Vu+ (V)T — %(divu)[d.

Here I; denotes the unit matrix of order d. The parameters o > 0 and A > 0 are the shear and
bulk viscosity coefficients, respectively, which are all assumed to be constants.

For the full Navier-Stokes equations with constitutive laws and , the con-
struction of the corresponding relaxed Fuler systems depends on the way how to decompose
the second-order derivatives divr, div(u7) and divg into first-order derivative terms. Clearly,

there are lots of ways to do it, among which the most natural one is to replace ([1.4]) and ((1.5)

by the following Maxwell’s constitutive laws [28]
el0q+q = —rV0, (1.6)

20,7 +7 = po(uw)+ Mdivu)ly, (1.7)
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where ¢1 > 0 and e > 0 are the relaxation times. Equations in together with —
form a relaxed Euler system. Formally, letting (£1,62) — 0 recovers the Navier-Stokes
equations with and . This idea is not recent. It dates back to 1860s, see
for instance [28, [3] 14]. These approximations have not only the mathematical sense but also
physical interpretations. Relation , also known as the Cattaneo’s law, gives rise to heat
waves with finite propagation speed. Relation describes motions of viscoelastic fluids.
The laws are combinations of the Newtonian’s law of viscosity and the Hooke’s law of elasticity:.

The existence of smooth solutions to system (|1.1]) with Maxwell’s constitutive laws and
and their convergence to the classical non-isentropic Navier-Stokes equations with
and have been studied in previous works. In the case where ¢; = 0, the authors
of [I5] proved the global existence of smooth solutions near constant equilibrium states for
fixed €5 > 0 and the local-in-time convergence towards the Navier-Stokes equations as €5 — 0.
Similar results are obtained in [14] in the case where o = 0 and &; > 0. In these results,
only one of the constitutive laws within and is used. Hence the systems studied
in [14], [15] are of mixed hyperbolic-parabolic type in the sense of Shizuta-Kawashima [19] 39].
The local-in-time convergence is based on the error estimates between the original system and
the limiting system. For the isentropic Navier-Stokes equations with constitutive law , the
author of [42] obtained the local existence and the local convergence to the classical isentropic
Navier-Stokes equations under condition tr(r) = 0, where tr(7) means the trace of matrix
7. In [30], the first author of the present paper constructed approximate systems with vector
variables instead of tensor variables by using Hurwitz-Radon matrices in both compressible
and incompressible cases. He proved the uniform (with respect to e; and e3) global existence
of smooth solutions near constant equilibrium state and the global-in-time convergence of the
systems towards classical isentropic Navier-Stokes equations. He also obtained similar results for
the isentropic Navier-Stokes equations with constitutive law without condition tr(7) = 0.
For the approximation of incompressible isentropic Navier-Stokes equations with constitutive
law , we also refer to [33] 34}, 37, [38, [10].

However, these two constitutive laws and have drawbacks as they do not ensure
Galilean invariance. In other words, these laws lead to paradoxical evolution of thermal waves
in a moving frame, see [7]. To overcome it, the Oldroyd’s upper-convected time derivative (or
simply Oldroyd derivative) should be considered. In this paper, we consider the following two

constitutive laws. The first one is the Cattaneo-Christov model introduced in [6],
g2 (&q +u-Vq¢g—q-Vu+ (divu)q) = —q — kV0, (1.8)

in which the terms on the left-hand side are the Oldroyd derivative. It is proved in [6] that the
constitutive law (1.8)) is Galilean invariant. The second one is the following Oldroyd-B model
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for the tensor variable 7 (see for instance [36], 35, 29, 2] and the references therein)
e2(0, +u - V1 + g(r, V) + 7 = po(u) + AMdivu) Iy, (1.9)

where
9(r,Vu) = 7W () ~ W(u)r, with W(w) = 5 (Vu — (Vu)").

Hence, the relaxed Euler system for (|1.1)) with constitutive laws (1.8]) and ((1.9) is of the form

)
Op + div(pu) =0,
O(pu) + div(pu ® u) + Vp = divr,
+ div(puFE + up) + divg = div(ur),
O(pE) ( ) (ur) (1.10)
e}(8ig+ u- Vg —q- Vu+ (divu)q) = —q — V6,
5(

50T +u- V14 g(1,Vu)) +

= u(Vu + Vu' — E(divu)Id) + A(divu) 1y,

in Rt x RY.

System is very complicated. One can observe that it contains d? + 2d 4 2 equations
for fluids in space R%. So far the symmetrizable hyperbolicity for is unknown in cases
d > 2. This makes it hard to establish the existence results. See classical theories [21, 18], 24].
Moreover, when considering the constitutive laws and at the same time, there are
no apparent dissipative structures for Vu and V6 due to the loss of the elliptic structures for
w and 6. This is different from the situation for the systems treated in [14 [15].

In a recent paper [16], the authors considered in one space dimension. In this case,
system (|1.10]) is reduced to the following form

(

O + Oz (pu) = 0,
O(pu) + O (pu* +p— 1) =0,
E) + 0.(puE +up 4+ q — ut) = 0, (1.11)

A (p
£2(0hq + 10,q) + KO0 = —q,
e3(OT + ud,7) — NOpu = —7,

\

in RT x R, with the initial data

(107u797q77—)|t=0 = (p67u87987q87T5>(x)7 (]']'2)
where € = (£1,2). In the limit as ¢ — 0, we have formally

qg = —kK0,0, T =MN\ou.
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Substituting these relations into (|1.11]), we recover the following one-dimensional non-isentropic

Navier-Stokes equations

Op + 0 (pu) =0,

Oi(pu) + 0p(pu?) + 0pp = Ny, (1.13)

O(pE) + 0p(puE + up) = KOy + A0z (udyu),
in Rt x R. Equations have been widely studied. We refer to [17, 20, 13 27] for the
global existence of smooth solutions. See also [23, [I1] for related topics and references therein.
In , p, u, 8, ¢ and 7 are independent variables, and both the internal energy e and the

pressure function p are functions of (p,0,q,7). In [I6], the authors used the following state

equations for e and p :

15 €
= c,0 =12, =2 2 1.14
p = Rpl — g—%q2 — 8—%7'2. (1.15)
2K0 2\

Equation is based on the results in [§], where the authors rigorously proved that the
constitutive law is consistent with the second law of thermodynamics if and only if the
dependence of e on ¢ is quadratic. Similarly, the quadratic dependence of e on 7 also implies
the compatibility with the second law of thermodynamics. The choice of equation ([1.15)) makes
it consistent with and the state equations — yield formally those for the ideal
fluid as ¢ — 0. For more explanations, see [5, [9, [4T], [16].

Let V., = (1,0,1,0,0)" be an equilibrium state for . Due to the explicit expressions
(L.14) and (1.17), the authors of [16] constructed a strictly convex entropy for system (L.11)),
see Lemma 3.1 in [16] or Lemma 3.1 below. Based on this, they established the global existence

of smooth solutions near V, for fixed e; > 0 and 5 > 0, and the local convergence of the system
towards the classical full Navier-Stokes equations as €1 = €5 — 0. However, the convergence
for large time has not been investigated.

The purpose of this paper is to study the global convergence of system with state
equations and . The main results of the paper are contained in the following two
theorems. The first theorem shows the uniform global existence of smooth solutions to the
Cauchy problem — near V.. The second one concerns the global convergence of the
solution of to that of the one-dimensional full Navier-Stokes equations for the
ideal fluid as € — 0. Remark that in these results condition ; = &9 is not needed and
system is not included in the class of systems studied in [31], B2, 22] [43]. The proof of the
results is based on uniform estimates with respect to the time and the relaxation parameters.
We use the strictly convex entropy given in [I6] for the L? estimate. A key step is to find
an appropriate symmetrizer of system for higher-order estimates. It is well-known that
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the second-order derivative of a strictly convex entropy provides a symmetrizer for a system
of conservation laws [12] [I]. However, this result cannot be applied to because it is a
non-conservative system.

It is worth mentioning that the global existence result in the present paper is different from
that obtained in [16], which is not uniform with respect to £; and €. More precisely, there are
terms 0;q and 0,7 in the definition of the energy in [I6]. Because of boundary layers in the
limit as ¢ — 0, such an energy cannot be uniformly bounded with respect to the relaxation
parameters. In order to avoid this situation, in the proof of our results, the energy contains

only terms of derivative of solutions with respect to x.

Theorem 1.1. (Uniform global existence) Let s > 2 be an integer and (p§—1,u, 05—1,¢5,75) €
H*(R). There exist two positive constants 6 and C, independent of 1 and eo, such that if

196 = Llls + lluglls + 1165 = Llls + ellgslls + 2l ] < o,

then for all €1,e5 € (0,1], the Cauchy problem (1.11)-(1.12)) together with (1.14)-(1.15) admits

a unique global smooth solution (p°,u®, 0%, q°, %) satisfying

oF—1ut,0°—1,¢°,7 € C(RT; H*(R)) N C’l(R+;HS_1(R)),

and
1™ (8) = 1112 + [l (11 + 16°() = 113 + il )12 + =2l 7= (@)113
t
/O 1027 () Is-1 + 10au” () 151 + 110267 sy + la" (S + I=(#)7) dt
< C (o5 = LUl + Nuglls + 165 = 1S + etllgglls + el 1l5) . V=0, (1.16)
where || - ||x denotes the usual norm of H*(R).

Theorem 1.2. (Global convergence) Let € = (1,€2) and (p°,u®, 6%, ¢°,7¢) be the global solution
obtained in Theorem then there exist functions (p,u,0) € L®(R*; H*(R)) and (q,7) €
L*(R*; H*(R)), such that, as € — 0 up to subsequences,

(p°,us,0°) — (p,u,0) weakly-* in L®(R"; H*(R)), (1.17)
(¢°F,7°) — (q,7) weakly in L*(R"; H*(R)), (1.18)
where (p, 1, 0) is the solution to the one-dimensional full compressible Navier-Stokes equations

([T.13)) for the ideal fluid (1.2)), with initial value (po, o, o) which is the weak limit of (p§, u, 05)

up to subsequences. Moreover,
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The rest of the paper is organized as follows. In the next section, we prove results on the
hyperbolic structure for system (1.11)). These results are crucial in the proof of the above
theorems. Section 3 is devoted to uniform global estimates. The proof of the theorems are

completed in the last section.

2. SYMMETRIZABLE HYPERBOLICITY

In what follows, s > 2 denotes an integer. Let ¢ = (1,e5) and C be a generic positive
constant independent of € and any time. We assume that 1,69 € (0,1]. For a integer k > 1,
we denote by || - ||x, || - || and || - ||ec the norms of the usual Sobolev spaces H*¥(R), L?(R) and
L>(R), respectively. The inner product in L? (R) is denoted by <-, > In the proof we will
frequently use the fact that the embedding from H'(R) to L>(R) is continuous for all integers
[ >1.

For simplicity, the dependence of solution on the parameters ¢; and e, is not expressed
explicitly. We want to write into a first-order quasilinear system of variables (p, u, 0, q, 7).
First, it is clear that by using and the first equation in , the second equation in
(1.11)) is equivalent to

p(Opu + udpu) + ppOup + Pe0i6 + py0uq + (pr — 1)0,7 = 0.

Similarly, by using the first two equations in ((1.11)), the third equation in (1.11]) is equivalent
to

poe + pudze + (p — 7)0,u + 0p,q = 0. (2.1)
This equation can be further treated by using equations (|1.3)), (1.14]) and (1.15). Indeed,

poe = peg0if + pe,Oip + pe,0iq + pe Oyt

2
peaOil + pe,Oip + pﬁj]p(—efuﬁxq —q— KO0) + p)\lp(—eguaﬂ — T+ A0, u)

= pegdf + pe,dup — %axe — ngqamq - i—‘-’; . ggi”amr - T; ¥ 78,u,
and
pudze = pueg0,l + pue,0,p + pue,0,q + pue 0,7
= pueg0y0 + pue,dyp + %&rq + 53%8%7,
hence,

2

2 2
)8960 + pe,(0rp + u0yp) — /s_qH — % + 70 u.

2q

pose + pudze = peydyd + (,oueg ey
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Combining the last equation with ([1.3]), (2.1)) and the first equation in (1.11)), we have
2 2¢> T2
peg0:0 + OpeO,u + (pueg — —q)aﬁ + 0,q = el + —.
0 KO A
Therefore, system ([L.11]) is equivalent to

(

Op + 0x(pu) =0,

p(atu + uaa:u) + pp@zp + pG@we + pqa;tq + (pT - 1)a$7_ =0,
p0egdi0 + 0*pOu + (pubeg — 2q)0,0 + 00,q = % + %,
5%(atq + uazQ) + I{aaﬁ = —q,

\83(8”— + u0,T) — AOyu = —T.

Let Dy(e) be a diagonal matrix defined by
Do(e) = diag (1,1,1,£7,&3) .
Then system ([2.2)) is written as

Do(e)V; + A(V)O,V + BV = F(V),

where
1 /2¢*> 072 ’
V= 0 T F(V)=1{0,0,— (=~ +—),0,0
ot FW) = (0000 (20 T 00)
and
u op 0 0 0 000O0TO O
By omo el 00000
AV)y=10 2 y—2¢ L o [, B=[00000
peg pbeq  peg
0 O K €%u 0 00010
0 —A 0 sgu 00 O0O0°1
We define
Ao(V) = Ay(V)Do(e),  A(V) = Ag(V)A(V),
with
92ppp9 0 0 0 0
0 p*0%py 0 0 0
Ag(V) = 0 0 p*0eqpo —+(p°qeq) 0
62
0 0  —pges ~(pbpo + 2pqpy) 0
0 0 0 0 3 (p0pe(1 = pr))
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Then straightforward calculations give

0*p,pg 0 0 0 0
0 020%py 0 0 0
Ao(V) = 0 0 p*Oeopo —%(PQC]%) 0 ,
0 0 —Z(p%qes) L (pbpo + 2pap,) 0
0 0 0 0 = (p02po(1 — pr)
ub?p,ps  p0>p,pe 0 0 0
p0?pype  pPub’py pb*p; PB*popq p0*pe(pr — 1)
A(V) = 0 p0*p2 Jp pOpy + p*ubeqp, 0 :
0 p0popg  pOpe + pPubegp, Jo 0
0 ptpe(pr — 1) 0 0 = (pubpy(1 — p,))

where
2

£
= p*ubeopy = 2pqpo — p*aeo,  Jo = —(pulbps + 24py) — pa)-
It is clear that Ag(V) and A(V) are symmetric. Let T > 0 and

N=p—-1, 06=0-1, W= (N,u,@,glq,ng)T.

We denote
E) =W, )2 &= sup E(t). (2.4)

0<t<T
In Theorem [1.1] estimate (1.16]) implies that & is uniformly sufficiently small when &(0) is,
although the L>(0,T; H*(R)) norm of ¢ and 7 may not be uniformly small with respect to &

and 9. The following result shows that Ay(V') is positive definite when & is sufficiently small.

Lemma 2.1. Let W € C([0,T]; H*(R)) be the smooth solution to (2.2)) with (1.14)-(1.15) and

(1.12). Then there exist constants 6 > 0 and c¢; > 0, independent of €, and €5, such that if
éaTl/Q <4, we have
¢ < pveappap% ep < Ca (25)

Hqus < Céey, ||p7||s < Coes, ||qpq||s < 9, (2,6)

and Ao(V') is positive definite and then system (2.2)) is symmetrizable hyperbolic.

Proof. When &7 is sufficiently small, p and 6 are sufficiently close to 1, then they have uniform
positive upper and lower bounds. From the state equations (1.14)) and (1.15]), we have

g2 g2
= R0 =Rp+ ——¢" =cy— ——¢° 2.7
Py o= Bpt o ted o= pd (2.7)
which imply (2.5) since ||e1¢|| < & which is sufficiently small. Besides,

2 2 2
€1 €9 €1 9

s .= ——27, — L4 2.8

Pq /i@q P )\T P /i@q (2.8)
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which imply .
Moreover,
p*Beqpg —%(02%9)
—L(p2qes) = (pBpo + 2pgpy)
Then implies that the above determinate is positive for sufficiently small &r. From
and 5 < 1, we also have ||p;||s < Cd. Therefore, Ag(V) is positive definite from its explicit

22 3¢ £22
- 1/?i 6 (92293 _ 1—5(2}99 + peg)) .

expression. O

Applying the theory on the symmetrizable hyperbolic system Lemma implies the local
existence of smooth solutions to the Cauchy problem (2.2 with ( - and - from

the classical iteration technique and fixed point theorems, see for instance [21, 18], 24].

3. UNIFORM GLOBAL ESTIMATES

Let T'> 0 and W = (N,u,0,e1q,e>7)" be the unique local smooth solution to (2.2)) with
(1.14)-(1.15) and (1.12), defined on [0,7]. We assume that & defined in (2.4)) is sufficiently

small. This gives rise to the rational assumption that

1 1

1
—1<=. |#-1l< = a 3.1

We want to establish the uniform global estimate for W with respect to the parameters ; and

€, and the time T'. For this purpose, we introduce the following dissipative energy
2(t) = 10N (O)ll:1 + [10zu(®)[3_1 + 100 [3-1 + la@®)l5 + I @)

3.1. L?-estimate. The L? estimate relies on the existence of a strictly convex entropy and its

corresponding entropy flux.

Lemma 3.1. For system ([2.2)), there exists a strictly convex entropy n and its corresponding

entropy flux ¥ satisfying

q T
Oom(W) + 9, ¥ (W) + 5 + i 0, (3.2)
where
(W) = Riplnp—p+1)+ Spu +cop0 —mo— 1)+ 2 (1= L) 21 S22,
TR, /TP ACEET) AT
and
L 1
v(Ww) = Rp(lnp—l)u+§pu +cvpu(9—ln9—1)+(p—7)u+<1_5>q

eu

2
+$<1 219>q TN
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In addition, if & is sufficiently small, the following L*-energy estimate holds
t
1(p =1, u,0 = 1,21q. £27) (1) ]|* + /0 (a@)I* + [l @)1*) at’
< C(llpo = 11" + lluoll* + 6o — LI* + efllaoll* + e2llmol*) . V€ [0,7].  (3.3)

Proof. The entropy-entropy flux identity (3.2]) was established in [16]. We now prove (3.3). By
the Taylor’s expansion at (p,d) = (1,1) and (3.1)), we have

Copf o 1, R 2 R
o0 —o—1)=2Le?> ¢ 02 np—p+1)=-2N?> N2,
cup( n ) 202@ _90@ R(plnp—p+1) 7Y 23

where p is between p and 1, and 6 is between 6 and 1. By Lemma this implies that there

exists a constant ¢y > 0, such that
[ W[* < (W) < CIWF,
where |-| is the Euclidean norm in R®. Integrating (3.2) over [0, ¢] for ¢ € [0, 7] implies (3.3). O

3.2. Higher order estimates. Let [ be an integer with 1 <[ < s. Applying 9. to both sides
of the equation (12.3)) yields

Do()0,(OLV) + A(V)0,(0LV) + 0L(BV) = oL F (V) + K,
where
K = AWV vV — 0L(A(V)O,V).
Then,
Ag(V),(0LV) + A(V)D,(8LV) + Ag(V)OL(BV) = Ag(V)OLE (V) + Ay (V) K,

Taking the inner product of the above system with 0LV in L*(R), we have

i(AO(V)ﬁiV, LV +2(Ay(V)OL(BV),0LV) (3.4)

= (9, A(V)OLV, 0LV + (0, A(V)OLV, OLV) + 2{ Ag(V)OLF (V), 0LV ) + 2{ Ag(V) K, 0L V7).
We deal with term by term in a series of lemmas as follows.

Lemma 3.2. There exists positive constants c3 and c4 such that
2[(Ap(V)OL(BV),0LV)| > e5||0Lq? + cal| ] — CE* (1), (3.5)
Proof. By the definition of Ay(V) and B together with (2.8)), we have

- 2 6 2 H2
A(VOL(BV) — (0,0,0,—pz696;q,pp92 PaPa sy, P ol

1—p, ’
3 p>0§c7) ,

which implies that

(A(V)OL(BV), V) = < %y, al@> <Mal al>

JJ’JJ J?’J?
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0%pe(1 — p,
+ <—p poll = p )83167', 8i7> :
A
Obviously,
PPaco o o z ! 1/
— 0:0,0,0 )| < C|9:0ll<llall|0zall < CE:72(2).

0
For the second term, noticing that i has a uniform lower bound when & is sufficiently

K

2pqpq

small. Besides, the last estimate in (2.6 implies that

exists a positive constant c3 such that

pOpg + 2pqp
2 <7q8iq,8iq> > cs]|kq]l*.

is small and consequently, there

1
Similarly, (3.1)) implies that 1 —p, > 7 Therefore, there exists a positive constant ¢, such that

2 1 —
2<ﬂiﬂﬁy—£ﬂag;d;>;z@uxjw.

Combining all these estimates yields (3.5]). O

Lemma 3.3. It holds

(0, A0(V)OLV, 0LV | < C& (). (3.6)
Proof. We denote
N
v=<vl>, Vi=|ul, v2—<q>,
Vs T
S
and
w = (B0 ) aw= (Gt G
Ay (V) AF(V) AR(V) A=(V)
where
( 0°p,po 0 0
At (V) = 0 pps O ,
0 0 p*Oeppo
0 0
AR(V) = (431(V) " = o o,
~(p%gea) 0
AV = <%(p€pe + 200p,) 0 ) |
\ 0 2 (p0%po(1 — pr))
Obviously,

(0, Ao(V)OLV, 0LV ) = (0, AT (V)OLVA, OLVA) + 2 (0, AR (V)OLVa, OLVA) + (0, AZ (V)DL Va, OLVA) .
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From (1.14)) and (1.15)), we see that A}'(V) is a smooth function of (N,©,e%¢?). Moreover,
from (2.2)) together with the Cauchy-Schwarz inequality, we have

IN

10:N |l + 1080 < CE*+C(lldlls + llall? + I7]17),
ol < CE+Cldlls,

10w < CE*+Cllglls + Cllall?.

IN

Hence,
1045 (V)llso < C7" + C (llalls + llall? + I17113).
Moreover,
2gll VAP < (I9LVAIIP + llall2) 194Vill < C &7 (o).
Since &7 is uniformly small, we also have
(lgl2 + 712 1WA )1? < C&2(t) < C&* D (1),
Therefore,
(A (V)OO < C&2 ().
Next, a straightforward calculation yields
(O AF (V)DL Va, 0LV, ) = — <8t(p geq)d.q, 0.0O).
From (2.7, we have
2P
pgeq = c,p’q — /1122 :
Then ([2.2) together with the bound of & yields

2
e
2101 (Paee) oo < CE + Cllal, + Carlirl2

Therefore,

|<(9tA12 GZVQ,@lVﬁ‘

IN

2
€
—10:(p*ge0) /| 02allllOz0

CE (1) + CEY ) + Clerllotall O]

IN

C&EPa).

IN

Finally,

2
+ 2<8,5 (p92p9(1 — pT))QlCT, 8i7>.

(D AZ(V)OLVa, 0LV, = 1 <8t (P90 + 204p4) 0,0, %20) +

Similarly to the estimates above, we have
1/2
3|0k (00po + 2pap,)||, < CEF + Ci(llalls + all2 + I7112)

and
&30 (p0%pe(1 — p)) ||, < €& + Ce3(llalls + llall? + I7lls + [I7112).
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which imply that
(8, AZ(V)OLV,, OLVA)| < CE* (1),

This proves the lemma. l

Lemma 3.4. It holds
(0, A(V)OLV, V)| < C&2 (1), (3.7)

Proof. From and (| and the explicit expression of fl(V), we see that all elements of
A(V) are smooth functlons of (p,u,0,e1q? €37%) except J;. Noticing that J, appears at the
position of the third line and the third column of A(V) and

Haﬂc‘]lHoo < O(Ha:vW”s—l + HqHS)a

we obtain
(0, AV)OLV, 0LV < Cllo.W ]| OLV 1 + [{0:10.0,0.0)|

< CEPD(t) + Cl0. 71| |01

< C&9(t) + Clq||0L0|>

< C&D().
This proves (3.7)). ]
Lemma 3.5. It holds

[(A(V)OLF(V),8LV)| < C&2(t). (3.8)

Proof. By the definition of Ag(V) and F, we have

~ 1 [2¢* 07 e2p?qey 1 [2¢* 07 T
A LRV = 2 L (2 T 1 I 2 | 07" .
(EF) (O’Om Peape. (0969 ( K i A ))’ k % pleg \ K * A 0

It follows that

[ (Ao V),0.V)]

2¢> Ot e2p%qey 1 2¢°> 072
< 2 ! <q” ! 1 ! s A !
: i< (( +50)) )]+ (5 (g (5 +5) )

< C(1058]le + ller0salllleralloo) (lall? + [I7112)
< C&"D(),

which proves (3.8)). O

Lemma 3.6. It holds

(A(V)E, O VY| < C& (). (3.9)
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Proof. Recall that

K, = AWV V — 0L (A(V)O,V).
Similarly to the proof of Lemma it is easy to see that all elements of A(V') are smooth
functions of (p, u, 0, e2¢%, €37°%) except the element at the position of the third line and the third

column. We denote by J;3 this element. Then
2
Jy = u— —L
pheq
and

102 T5[s1 < CCN1W [ s-1 + lglls)-

The only two terms that contain J3 are the following

K

2.2
(0.0, p*espy (0 (J30,0) — J50L10))  and  — <a;q, A (9 (J50,0) — Jga;+1@)>,

which can be treated similarly to the proof of Lemma [3.4] and are obviously bounded by
C&P o).

On the other hand, each element of Ag(V') is uniformly bounded in L>([0, 7] x R) except for
the element at the position of the third line and the fourth column. This element is —1(p?qey)
which only touches the fourth line of K; in the product Ay(V)K;. Now the only nonzero element
on the fourth line of K; is e?(ud:q — 0%(ud,q)). Then the fourth component of Ag(V)K; is
—%(p%e@(u@fjlq — 0! (ud,q)). By the Moser-type calculus inequalities (see [24] for instance),

we have
e (pPqes(udtq — 0L (udug)), 0L0)| < C&* A (1),
The estimates for the other terms can be easily obtained. This proves (3.9)). 0

3.3. Dissipative estimates for 0,N, 0,u and 0,0.

Lemma 3.7. (Dissipative estimates for 0,0) It holds
s—1
d K
&Y {0,001 0) + 7110:013y < Cv|dzullyy + Cllall; + C&2(1), (3.10)
m=0

where v > 0 is a small positive constant to be determined later.

Proof. Let m be an integer with 0 < m < s — 1. Applying 97" to the fourth equation in (2.2)
and making the inner product of the resulting equation with 9™*'© in L*(R), we have
d
kl|lomte|? = —5%E<8§“q, IO) +£1(0,0010,00q)
— 1 (710,07 (udsg)) — (97q, 071 O).

T

Obviously,

(010,07 (udg)) + (', 071O)| < S0 + Cllal|

T
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Therefore,
d
&2 (900, 071 0) + 06| < £2(0,0,10,9a) + Cllall. (3.11)

By using the third equation in (2.2)) and an integration by parts, we have

2 1
<a;gl (u@ﬁ ML —&cq) ,8;”“(51q)>‘
peg poeq peo

m 2q2 7—2 m—+1
<ax (WQO ; Apea) O (e1)

<a;7 (wxe P iaxq> ,ag+1<slq)>‘

peq pBeg peo

€1 [(8,00710,00q)| < &

+é1

Obviously,

€1

IN

K
2Ol + wlldeully + Cllall; + O (1),

and

€1

o (2L 4 ) o)) < Carllaalllal + Cellergll eI
x [ngee )\pee y Yo 1 — 1 1 S S 1 1 S S
< C&().
Combining these estimates, we arrive at
K
(00710, 079)| < S10.01%, + v|dullZ, + Clall? + O ().
This together with (3.11]) yields

d K
(0, 00 10) + S lop el < vl + Cllall + a2 ).

T

Adding this inequality for all 0 < m < s — 1 yields (3.10)). O

Lemma 3.8. (Dissipative estimates for O,u) It holds
s—1
d, A\
—e5 Y 20T 00 ) + Dll0aulZy < Cr(0uN T + 10:ulZ + 10:0113)
m=0

+C(llgllz + II7) + C& P 2().  (3.12)
where v > 0 is a small positive constant to be determined later.

Proof. For 0 < m < s — 1, applying 0" to the fifth equation in (2.2) and making the inner

product of the resulting equation with 97!y in L*(R), we have
Mo > = 5%%<8§”7‘, O ) — e3(0,00 u, 7' r)
+e5(00  u, O (7)) + (00 u, 0T ).
Obviously,

|30, 0 (ud,7)) + (05, O'T)| < %na;"“un? + 7|2+ C& 2 ().
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Therefore,
d A
=5 (0T O ) + D0 P < e300 e, 07 T) + Ofl7 |3+ O8 " 9(1). (3.13)

By using the second equation in (2.2) and an integration by parts, we have

<am <puaru + ppaxp + p98x9> am+17_> ‘
- P y Y

<8;" (pqé’xq + (pr — 1)&07) ,a$+17>‘
p

< v(l0N2 + 10ulliy + 110:0151) + C(lallZ + [I7I17)-

|£5(0, 00w, 'Y < €3

2
+&5

Substituting this estimate into (3.13) and adding the resulting equation for all 0 < m < s —1

yield (512). -

Lemma 3.9. (Dissipative estimates for 0,N ) It holds

s—1
d m m—+1 R 2
< C0wul?y +110:002) + C(llgll? + I712) + C&* 2 (1), (3.14)

Proof. We first write the second equation in (2.2)) as
Ro 1
dpu + 7amN + ;(puaxu + po0:0 + py0:q + (pr — 1)0,7) = 0.

For m < s—1, applying 9" to the above equation and making the inner product of the resulting

equation with 9™ N in L?(R), we have
m+-1 RO m+-1 d m m+-1 m m+-1
OPHIN, —Or TN ) = —£<0x u, N + (00w, 0,00 N)
p

T p T

- <a;,“ (R—eaxN) _ B iy, a;n+1N> .
p p

Noticing ({3.1]), we have
0
<a;n+1N7 R—@;”+1N> > ?Ha;n-i-lNHQ
p

It is clear that

‘<0m (pu@xu + 90,0 + pg0uq + (pr — 1)(9967) am+1N>'
X p ! &

R M
< SHOTTINT + C(10:ulliy + 0.0 ) + C(lalls + I7115),
and by the Moser-type calculus inequalities,

\<a? (%%N)—%@a;“ﬂfv,az“zvﬂ < ClOI 0N, + ClANE,
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< C&D().
Moreover, by the mass equation in (2.2) and the integration by parts, we obtain

(07w, 007 IN) | = (0w, O (pu))|
< C0zulls (107 (2 Nu+ pdyu)]|)

< Closuliy + e o).

Combining all these estimates, we arrive at

d R

7 00w OTTIN) + =7 TINE < C([10aulliy + 110:0115-) + C(llalls + II715) + C& (1),

Adding the above estimate for all m < s — 1 yields (3.14)). O

4. PrROOF OF THEOREMS [1.1H1.2|

Lemma 4.1. (Final energy estimate) If & is sufficiently small, then
t
&(t) +/ 2(tdt' <C&0), Vtelo,T]. (4.1)
0
Proof. Combining (3.4)) and Lemmas [3.213.6] and adding for all 1 <[ < s, we arrive at

*d
S S AV V) + eslall’y + eslldur -y < C&2 (1) (42)
=1

Since Ag(V') is positive definite with respect to W, there exists a constant ¢5 > 0, independent

of e and &5, such that

(A(V)DLV, V) = es |0, W
Integrating (4.2) over [0, T] together with ({3.3)) yields
t t
y|W(t)|y§+/ (lg@)|12 + |7 ()12 dt’ < cg<0)+cg;/2/ 2(t)dt (4.3)
0 0

On the other hand, combining the estimates in Lemmas [3.743.9, we have

—_

S—

(00, 92710) — (a0, 0 ) + (9w, 9 N))
m=0

Ra A K
+ 7”@]\7”?_1 + §||6xu||§_1 + Z||5a:@||§_1
< CV||N |2, + Cv+ ) ([0xull2, +110:012-,) + C(llall2 + I7112) + C& 2 (),
where a > 0 is a constant. We choose v > 0 and « > 0 sufficiently small such that

2Cr < %, 8C (v + a) < min(\, k).
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It follows that there is a constant ag > 0, independent of £; and &5, such that

—_

Ss—

4
dt
(

(]

(3(0rq, 071 0) — 20T, 0 ) + a0 u, O INY)
0
ao (|0 N 122, + 110.ull?_, + 18:0]12,)

< C(llal? + I7]1?) + c&* 2(t). (4.4)

3
|

It is clear that
£2(0q, OO) — (07, 97 + (o, IFINY| < O
Integrating over [0, T yields

t
—CIWw®l:+ ao/0 (10N ()2 + 10zu(t) 5y + 10:0() 1) dt’

t t
< cs+C [ (O + ) + ca [ oy
0 0
This inequality together with yields
t t
E(t) + / 2(t)dt' < CE(0) + C&Y* / 2(t)dt,
0 0

which implies (4.1]) since &7 is sufficiently small. [l

Proof of Theorem 1.1l The estimate in Lemma [4.I] shows that the smooth solution W is
uniformly bounded in L*°([0,T]; H*(R)) with respect to € and T'. By the bootstrap principle,
it yields uniformly global solution. In particular, this estimate gives (|{1.16]). 0

Proof of Theorem [1.2} From (L.11)), (p°, v, 6%, ¢°, 7°) satisfies the following system
(
0" + Ou(pPu7) = 0,
Oy(p*u®) + 0:(p°(u®)* + p* = 7°) = 0,
o peEa) + ax(pauaEe + uapa + qe . UET‘S) — 0’ (45)

i
5%(8#]5 + uf :cqs) + Hax‘gs = _qga
e2(0h7 + ufD,7) — NOpuf = —7°,

\

in RT x R, where
. 2 2

£
€ _ ves =1 r.e)2 "2 (e 2’
¢ = e+ P+ ()
¥ = Rt — () (2 (1.6
2k0¢ 2\ ’
1
\Es = e + _(us)Z.

2
The uniform estimate (1.16|) implies that the sequences (p* — 1), (u°). and (6° — 1), are

bounded in L>*(R*; H*(R)) and the sequence (¢°). and (7°). are bounded in L?(RT; H*(R)). Tt
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follows that there exist functions (p,u,0) € L=(R*; H*(R)) and (g,7) € L*(R*; H*(R)), such
that (1.17))-(1.18)) hold. In addition, as € — 0,

e2(0i" +u0,¢°) = 0 in D'(RT x R),

and
e2(0,7° +uf0,7°) = 0 in D'(RT x R).
Moreover, from the first three equations in (4.5)), it is easy to see that (0;p%)., (0:u®). and

(046°). are bounded in L?*(R*; H*~'(R)). Hence, by a classical compactness theorem [40], for
all T > 0, (p°)e, (uf). and (6°). are relatively compact in C([0, T]; H: *(R)). As a consequence,

loc

as € — 0, up to subsequences,

(o 0, 0%) = (5,73,0) stromgly in C((0,T]; Hiy!(R)).

loc

This is sufficient to pass the limit in (4.5))-(4.6) in the sense of distributions and to obtain the
Navier-Stokes equations for the ideal fluid. This ends the proof of Theorem [1.2] 0
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