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We consider smooth solutions to a relaxed Euler system with Oldroyd-type constitutive laws. This system is derived from the one-dimensional compressible full Navier-Stokes equations for a Newtonian fluid by using the Cattaneo-Christov model and the Oldroyd-B model. In a neighborhood of equilibrium states, we construct an explicit symmetrizer and show that the system is symmetrizable hyperbolic with partial dissipation. Moreover, by establishing uniform estimates with respect to the relaxation times, we prove the uniform global existence of smooth solutions and the global-in-time convergence of the system towards the full Navier-Stokes equations.

Introduction

Euler and Navier-Stokes equations are two important models in fluid dynamics. There are rich literatures on the mathematical analysis around these equations. We refer to [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF][START_REF] Lions | Compressible Models[END_REF][START_REF] Majda | Vorticity and incompressible flow[END_REF][START_REF] Feireisl | Dynamics of viscous compressible fluids[END_REF][START_REF] Masmoudi | Examples of singular limits in hydrodynamics[END_REF] and references therein for mathematical results. There are deep relationships between Euler and Navier-Stokes equations. It is well known that the Euler equations can be derived from Navier-Stokes equations through the vanishing viscosity limit. Meanwhile, the Navier-Stokes equations can also be approximated by first-order partial differential equations using different kinds of constitutive laws for non-Newtonian fluids. These approximate equations are referred to as relaxed Euler systems or hyperbolic Navier-Stokes equations, see for instance [START_REF] Racke | Hyperbolic Navier-Stokes equations I: Local well-posedness[END_REF]34,[START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF][START_REF] Peng | Relaxed Euler systems and convergence to Navier-Stokes equations[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF].

In the paper, we study the global-in-time convergence from relaxed Euler-type equations with Oldroyd's constitutive laws to compressible full (non-isentropic) Navier-Stokes equations by letting relaxation times tend to zero. Let t ≥ 0 be the time variable and x = (x 1 , • • • , x d ) ∈ R d be the space variable. The compressible full Navier-Stokes equations are of the form

           ∂ t ρ + div(ρu) = 0,
∂ t (ρu) + div(ρu ⊗ u) + ∇p = divτ, ∂ t (ρE) + div(ρuE + up) + divq = div(uτ ), (1.1) in R + × R d , where ρ > 0 is the density, u = (u 1 , • • • , u d ) ∈ R d is the velocity, θ is the temperature, p is the pressure function, q ∈ R d is the heat flux, τ is the stress tensor and

E = e + 1 2
|u| 2 is the total energy per unit mass with e being the specific internal energy. The symbols and ⊗ represent the transpose and the tensor product, respectively. In (1.1), ρ, u and θ are independent variables, e and p are functions of (ρ, θ). In particular, for the ideal fluid, we have

e = c v θ, p = Rρθ, (1.2) 
which satisfy the thermodynamic equation

ρ 2 e ρ = p -θp θ , (1.3) 
where R and c v are positive constants, and e ρ = ∂e ∂ρ etc. Generally speaking, the heat flux q satisfies the following Fourier's law q = -κ∇θ, (1.4) where κ > 0 is the heat conduction constant. For Newtonian viscous fluids, the stress tensor τ takes the form

τ = µσ(u) + λ(divu)I d , (1.5) 
with

σ(u) = ∇u + (∇u) - 2 d (divu)I d .
Here I d denotes the unit matrix of order d. The parameters µ > 0 and λ > 0 are the shear and bulk viscosity coefficients, respectively, which are all assumed to be constants.

For the full Navier-Stokes equations (1.1) with constitutive laws (1.4) and (1.5), the construction of the corresponding relaxed Euler systems depends on the way how to decompose the second-order derivatives divτ, div(uτ ) and divq into first-order derivative terms. Clearly, there are lots of ways to do it, among which the most natural one is to replace (1.4) and (1.5) by the following Maxwell's constitutive laws [START_REF] Maxwell | IV. on the dynamical theory of gases[END_REF] ε 2 1 ∂ t q + q = -κ∇θ, (1.6)

ε 2 2 ∂ t τ + τ = µσ(u) + λ(divu)I d , (1.7) 
where ε 1 > 0 and ε 2 > 0 are the relaxation times. Equations in (1.1) together with (1.6)-

(1.7) form a relaxed Euler system. Formally, letting (ε 1 , ε 2 ) → 0 recovers the Navier-Stokes equations (1.1) with (1.4) and (1.5). This idea is not recent. It dates back to 1860s, see for instance [START_REF] Maxwell | IV. on the dynamical theory of gases[END_REF][START_REF] Cattaneo | Sulla conduzione del calore[END_REF][START_REF] Cattaneo | Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée[END_REF]. These approximations have not only the mathematical sense but also physical interpretations. Relation (1.6), also known as the Cattaneo's law, gives rise to heat waves with finite propagation speed. Relation (1.7) describes motions of viscoelastic fluids.

The laws are combinations of the Newtonian's law of viscosity and the Hooke's law of elasticity.

The existence of smooth solutions to system (1.1) with Maxwell's constitutive laws (1.6) and

(1.7) and their convergence to the classical non-isentropic Navier-Stokes equations (1.1) with

(1.4) and (1.5) have been studied in previous works. In the case where ε 1 = 0, the authors of [START_REF] Hu | Compressible Navier-Stokes equations with revised Maxwell's law[END_REF] proved the global existence of smooth solutions near constant equilibrium states for fixed ε 2 > 0 and the local-in-time convergence towards the Navier-Stokes equations as ε 2 → 0.

Similar results are obtained in [START_REF] Hu | Compressible Navier-Stokes equations with hyperbolic heat conduction[END_REF] in the case where ε 2 = 0 and ε 1 > 0. In these results, only one of the constitutive laws within (1.6) and (1.7) is used. Hence the systems studied in [START_REF] Hu | Compressible Navier-Stokes equations with hyperbolic heat conduction[END_REF][START_REF] Hu | Compressible Navier-Stokes equations with revised Maxwell's law[END_REF] are of mixed hyperbolic-parabolic type in the sense of Shizuta-Kawashima [START_REF] Kawashima | Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics[END_REF][START_REF] Shizuta | Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation[END_REF].

The local-in-time convergence is based on the error estimates between the original system and the limiting system. For the isentropic Navier-Stokes equations with constitutive law (1.7), the author of [START_REF] Yong | Newtonian limit of Maxwell fluid flows[END_REF] obtained the local existence and the local convergence to the classical isentropic Navier-Stokes equations under condition tr(τ ) = 0, where tr(τ ) means the trace of matrix τ . In [START_REF] Peng | Relaxed Euler systems and convergence to Navier-Stokes equations[END_REF], the first author of the present paper constructed approximate systems with vector variables instead of tensor variables by using Hurwitz-Radon matrices in both compressible and incompressible cases. He proved the uniform (with respect to ε 1 and ε 2 ) global existence of smooth solutions near constant equilibrium state and the global-in-time convergence of the systems towards classical isentropic Navier-Stokes equations. He also obtained similar results for the isentropic Navier-Stokes equations with constitutive law (1.7) without condition tr(τ ) = 0.

For the approximation of incompressible isentropic Navier-Stokes equations with constitutive law (1.7), we also refer to [START_REF] Racke | Hyperbolic Navier-Stokes equations I: Local well-posedness[END_REF]34,[START_REF] Schöwe | A quasilinear delayed hyperbolic Navier-Stokes system: global solution, asymptotics and relaxation limit[END_REF][START_REF] Schöwe | Blow-up results to certain hyperbolic model problems in fluid mechanics[END_REF][START_REF] Coulaud | Hyperbolic quasilinear Navier-Stokes equations in R 2[END_REF].

However, these two constitutive laws (1.6) and (1.7) have drawbacks as they do not ensure Galilean invariance. In other words, these laws lead to paradoxical evolution of thermal waves in a moving frame, see [START_REF] Christov | Heat conduction paradox involving second-sound propagation in moving media[END_REF]. To overcome it, the Oldroyd's upper-convected time derivative (or simply Oldroyd derivative) should be considered. In this paper, we consider the following two constitutive laws. The first one is the Cattaneo-Christov model introduced in [START_REF] Christov | On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction[END_REF],

ε 2 1 ∂ t q + u • ∇q -q • ∇u + (divu)q = -q -κ∇θ, (1.8) 
in which the terms on the left-hand side are the Oldroyd derivative. It is proved in [START_REF] Christov | On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction[END_REF] that the constitutive law (1.8) is Galilean invariant. The second one is the following Oldroyd-B model for the tensor variable τ (see for instance [START_REF] Saut | Some remarks on the limit of viscoelastic fluids as the relaxation time tends to zero[END_REF][START_REF] Renardy | Mathematical problems in viscoelasticity[END_REF][START_REF] Molinet | Newtonian limit for weakly viscoelastic fluid flows of Oldroyd type[END_REF][START_REF] Bresch | Newtonian limit for weakly viscoelastic fluid flows[END_REF] and the references therein)

ε 2 2 (∂ t τ + u • ∇τ + g(τ, ∇u)) + τ = µσ(u) + λ(divu)I d , (1.9) 
where

g(τ, ∇u) = τ W (u) -W (u)τ, with W (u) = 1 2 ∇u -(∇u) .
Hence, the relaxed Euler system for (1.1) with constitutive laws (1.8) and (1.9) is of the form

                               ∂ t ρ + div(ρu) = 0, ∂ t (ρu) + div(ρu ⊗ u) + ∇p = divτ, ∂ t (ρE) + div(ρuE + up) + divq = div(uτ ), ε 2 1 ∂ t q + u • ∇q -q • ∇u + (divu)q = -q -κ∇θ, ε 2 2 (∂ t τ + u • ∇τ + g(τ, ∇u)) + τ = µ ∇u + ∇u - 2 d (divu)I d + λ(divu)I d , (1.10) in R + × R d .
System (1.10) is very complicated. One can observe that it contains d 2 + 2d + 2 equations for fluids in space R d . So far the symmetrizable hyperbolicity for (1.10) is unknown in cases d ≥ 2. This makes it hard to establish the existence results. See classical theories [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF][START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF][START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF].

Moreover, when considering the constitutive laws (1.8) and (1.9) at the same time, there are no apparent dissipative structures for ∇u and ∇θ due to the loss of the elliptic structures for u and θ. This is different from the situation for the systems treated in [START_REF] Hu | Compressible Navier-Stokes equations with hyperbolic heat conduction[END_REF][START_REF] Hu | Compressible Navier-Stokes equations with revised Maxwell's law[END_REF].

In a recent paper [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF], the authors considered (1.10) in one space dimension. In this case, system (1.10) is reduced to the following form

                       ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + p -τ ) = 0, ∂ t (ρE) + ∂ x (ρuE + up + q -uτ ) = 0, ε 2 1 (∂ t q + u∂ x q) + κ∂ x θ = -q, ε 2 2 (∂ t τ + u∂ x τ ) -λ∂ x u = -τ, (1.11) in R + × R, with the initial data (ρ, u, θ, q, τ )| t=0 = (ρ ε 0 , u ε 0 , θ ε 0 , q ε 0 , τ ε 0 )(x), (1.12) 
where ε = (ε 1 , ε 2 ). In the limit as ε → 0, we have formally q = -κ∂ x θ, τ = λ∂ x u.

Substituting these relations into (1.11), we recover the following one-dimensional non-isentropic Navier-Stokes equations

           ∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 ) + ∂ x p = λ∂ xx u, ∂ t (ρE) + ∂ x (ρuE + up) = κ∂ xx θ + λ∂ x (u∂ x u), (1.13) 
in R + × R. Equations (1.13) have been widely studied. We refer to [START_REF] Kanel | A model system of equations for the one-dimensional motion of a gas[END_REF][START_REF] Kazhikhov | Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas[END_REF][START_REF] Hoff | Global existence for 1d, compressible, isentropic Navier-Stokes equations with large initial data[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heatconductive gases[END_REF] for the global existence of smooth solutions. See also [START_REF] Lions | Compressible Models[END_REF][START_REF] Feireisl | Dynamics of viscous compressible fluids[END_REF] for related topics and references therein.

In (1.11), ρ, u, θ, q and τ are independent variables, and both the internal energy e and the pressure function p are functions of (ρ, θ, q, τ ). In [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF], the authors used the following state equations for e and p :

e = c v θ + ε 2 1 κρθ q 2 + ε 2 2 2λρ τ 2 , (1.14) p = Rρθ - ε 2 1 2κθ q 2 - ε 2 2 2λ τ 2 .
(1.15)

Equation (1.14) is based on the results in [START_REF] Coleman | On the thermodynamics of second sound in dielectric crystals[END_REF], where the authors rigorously proved that the constitutive law (1.8) is consistent with the second law of thermodynamics if and only if the dependence of e on q is quadratic. Similarly, the quadratic dependence of e on τ also implies 2) as ε → 0. For more explanations, see [START_REF] Chen | On second sound in materials with memory[END_REF][START_REF] Coleman | Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids[END_REF][START_REF] Tarabek | On the existence of smooth solutions in one-dimensional nonlinear thermoelasticity with second sound[END_REF][START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF].

Let V e = (1, 0, 1, 0, 0) be an equilibrium state for (1.11). Due to the explicit expressions 2) as ε → 0. Remark that in these results condition ε 1 = ε 2 is not needed and system (1.11) is not included in the class of systems studied in [START_REF] Peng | Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems[END_REF][START_REF] Peng | Uniform global existence and parabolic limit for partially dissipative hyperbolic systems[END_REF][START_REF] Li | Convergence rate from hyperbolic systems of balance laws to parabolic systems[END_REF][START_REF] Zhao | Convergence rate from systems of balance laws to isotropic parabolic systems, a periodic case[END_REF]. The proof of the results is based on uniform estimates with respect to the time and the relaxation parameters.

We use the strictly convex entropy given in [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF] for the L 2 estimate. A key step is to find an appropriate symmetrizer of system (1.11) for higher-order estimates. It is well-known that the second-order derivative of a strictly convex entropy provides a symmetrizer for a system of conservation laws [START_REF] Godunov | An interesting class of quasi-linear systems (Russian)[END_REF][START_REF] Boillat | Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques[END_REF]. However, this result cannot be applied to (1.11) because it is a non-conservative system.

It is worth mentioning that the global existence result in the present paper is different from that obtained in [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF], which is not uniform with respect to ε 1 and ε 2 . More precisely, there are terms ∂ t q and ∂ t τ in the definition of the energy in [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF]. Because of boundary layers in the limit as ε → 0, such an energy cannot be uniformly bounded with respect to the relaxation parameters. In order to avoid this situation, in the proof of our results, the energy contains only terms of derivative of solutions with respect to x.

Theorem 1.1. (Uniform global existence) Let s ≥ 2 be an integer and

(ρ ε 0 -1, u ε 0 , θ ε 0 -1, q ε 0 , τ ε 0 ) ∈ H s (R).
There exist two positive constants δ and C, independent of ε 1 and ε 2 , such that if

ρ ε 0 -1 s + u ε 0 s + θ ε 0 -1 s + ε 1 q ε 0 s + ε 2 τ ε 0 ≤ δ, then for all ε 1 , ε 2 ∈ (0, 1], the Cauchy problem (1.11)-(1.12) together with (1.14)-(1.15) admits a unique global smooth solution (ρ ε , u ε , θ ε , q ε , τ ε ) satisfying ρ ε -1, u ε , θ ε -1, q ε , τ ε ∈ C(R + ; H s (R)) ∩ C 1 (R + ; H s-1 (R)), and 
ρ ε (t) -1 2 s + u ε (t) 2 s + θ ε (t) -1 2 s + ε 2 1 q ε (t) 2 s + ε 2 2 τ ε (t) 2 s + t 0 ∂ x ρ ε (t ) 2 s-1 + ∂ x u ε (t ) 2 s-1 + ∂ x θ ε (t ) 2 s-1 + q ε (t ) 2 s + τ ε (t ) 2 s dt ≤ C ρ ε 0 -1 2 s + u ε 0 2 s + θ ε 0 -1 2 s + ε 2 1 q ε 0 2 s + ε 2 2 τ ε 0 2 s , ∀ t ≥ 0, (1.16) 
where

• k denotes the usual norm of H k (R). Theorem 1.2. (Global convergence) Let ε = (ε 1 , ε 2 ) and (ρ ε , u ε , θ ε , q ε , τ ε ) be the global solution obtained in Theorem 1.1, then there exist functions (ρ, ū, θ) ∈ L ∞ (R + ; H s (R)) and (q, τ ) ∈ L 2 (R + ; H s (R)), such that, as ε → 0 up to subsequences, (ρ ε , u ε , θ ε ) (ρ, ū, θ) weakly- * in L ∞ (R + ; H s (R)), (1.17) (q ε , τ ε ) (q, τ ) weakly in L 2 (R + ; H s (R)), (1.18) 
where (ρ, ū, θ) is the solution to the one-dimensional full compressible Navier-Stokes equations (1.13) for the ideal fluid (1.2), with initial value (ρ 0 , ū0 , θ0 ) which is the weak limit of (ρ ε 0 , u ε 0 , θ ε 0 ) up to subsequences. Moreover, q = -κ∂ x θ, τ = λ∂ x ū.

The rest of the paper is organized as follows. In the next section, we prove results on the hyperbolic structure for system (1.11). These results are crucial in the proof of the above theorems. Section 3 is devoted to uniform global estimates. The proof of the theorems are completed in the last section.

Symmetrizable hyperbolicity

In what follows, s ≥ 2 denotes an integer. Let ε = (ε 1 , ε 2 ) and C be a generic positive constant independent of ε and any time. We assume that

ε 1 , ε 2 ∈ (0, 1]. For a integer k ≥ 1, we denote by • k , • and • ∞ the norms of the usual Sobolev spaces H k (R), L 2 (R) and
L ∞ (R), respectively. The inner product in L 2 (R) is denoted by •, • . In the proof we will frequently use the fact that the embedding from

H l (R) to L ∞ (R) is continuous for all integers l ≥ 1.
For simplicity, the dependence of solution on the parameters ε 1 and ε 2 is not expressed explicitly. We want to write (1.11) into a first-order quasilinear system of variables (ρ, u, θ, q, τ ).

First, it is clear that by using (1.15) and the first equation in (1.11), the second equation in (1.11) is equivalent to

ρ(∂ t u + u∂ x u) + p ρ ∂ x ρ + p θ ∂ x θ + p q ∂ x q + (p τ -1)∂ x τ = 0.
Similarly, by using the first two equations in (1.11), the third equation in (1.11) is equivalent to

ρ∂ t e + ρu∂ x e + (p -τ )∂ x u + ∂ x q = 0. (2.1)
This equation can be further treated by using equations (1.3), (1.14) and (1.15). Indeed,

ρ∂ t e = ρe θ ∂ t θ + ρe ρ ∂ t ρ + ρe q ∂ t q + ρe τ ∂ t τ = ρe θ ∂ t θ + ρe ρ ∂ t ρ + ρ 2q κθρ (-ε 2 1 u∂ x q -q -κ∂ x θ) + ρ τ λρ (-ε 2 2 u∂ x τ -τ + λ∂ x u) = ρe θ ∂ t θ + ρe ρ ∂ t ρ - 2q θ ∂ x θ - 2ε 2 1 uq κθ ∂ x q - 2q 2 κθ - ε 2 2 uτ λ ∂ x τ - τ 2 λ + τ ∂ x u, and 
ρu∂ x e = ρue θ ∂ x θ + ρue ρ ∂ x ρ + ρue q ∂ x q + ρue τ ∂ x τ = ρue θ ∂ x θ + ρue ρ ∂ x ρ + 2ε 2 1 uq κθ ∂ x q + ε 2 2 uτ λ ∂ x τ,
hence,

ρ∂ t e + ρu∂ x e = ρe θ ∂ t θ + ρue θ - 2q θ ∂ x θ + ρe ρ (∂ t ρ + u∂ x ρ) - 2q 2 κθ - τ 2 λ + τ ∂ x u.
Combining the last equation with (1.3), (2.1) and the first equation in (1.11), we have

ρe θ ∂ t θ + θp θ ∂ x u + ρue θ - 2q θ ∂ x θ + ∂ x q = 2q 2 κθ + τ 2 λ .
Therefore, system (1.11) is equivalent to

                       ∂ t ρ + ∂ x (ρu) = 0, ρ(∂ t u + u∂ x u) + p ρ ∂ x ρ + p θ ∂ x θ + p q ∂ x q + (p τ -1)∂ x τ = 0, ρθe θ ∂ t θ + θ 2 p θ ∂ x u + (ρuθe θ -2q)∂ x θ + θ∂ x q = 2q 2 κ + θτ 2 λ , ε 2 1 (∂ t q + u∂ x q) + κ∂ x θ = -q, ε 2 2 (∂ t τ + u∂ x τ ) -λ∂ x u = -τ.
(2.2)

Let D 0 (ε) be a diagonal matrix defined by

D 0 (ε) = diag 1, 1, 1, ε 2 1 , ε 2 2 .
Then system (2.2) is written as

D 0 (ε)V t + A(V )∂ x V + BV = F (V ), (2.3) 
where

V = (ρ, u, θ, q, τ ) , F (V ) = 0, 0, 1 ρθe θ 2q 2 κ + θτ 2 λ , 0, 0 , and 
A(V ) =          u ρ 0 0 0 pρ ρ u p θ ρ pq ρ pτ -1 ρ 0 θp θ ρe θ u -2q ρθe θ 1 ρe θ 0 0 0 κ ε 2 1 u 0 0 -λ 0 0 ε 2 2 u          , B =          0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1          .
We define

A 0 (V ) = Ã0 (V )D 0 (ε), Ã(V ) = Ã0 (V )A(V ), with Ã0 (V ) =          θ 2 p ρ p θ 0 0 0 0 0 ρ 2 θ 2 p θ 0 0 0 0 0 ρ 2 θe θ p θ -1 κ (ρ 2 qe θ ) 0 0 0 - ε 2 1 κ ρ 2 qe θ 1 κ (ρθp θ + 2ρqp q ) 0 0 0 0 0 1 λ ρθ 2 p θ (1 -p τ )          .
Then straightforward calculations give

A 0 (V ) =          θ 2 p ρ p θ 0 0 0 0 0 ρ 2 θ 2 p θ 0 0 0 0 0 ρ 2 θe θ p θ - ε 2 1 κ (ρ 2 qe θ ) 0 0 0 - ε 2 1 κ (ρ 2 qe θ ) ε 2 1 κ ρθp θ + 2ρqp q 0 0 0 0 0 ε 2 2 λ ρθ 2 p θ (1 -p τ )          , Ã(V ) =          uθ 2 p ρ p θ ρθ 2 p ρ p θ 0 0 0 ρθ 2 p ρ p θ ρ 2 uθ 2 p θ ρθ 2 p 2 θ ρθ 2 p θ p q ρθ 2 p θ (p τ -1) 0 ρθ 2 p 2 θ J 1 ρθp θ + ρ 2 uθe θ p q 0 0 ρθ 2 p θ p q ρθp θ + ρ 2 uθe θ p q J 2 0 0 ρθ 2 p θ (p τ -1) 0 0 ε 2 2 λ ρuθ 2 p θ (1 -p τ )         
, where

J 1 = ρ 2 uθe θ p θ -2ρqp θ -ρ 2 qe θ , J 2 = ε 2 1 κ ρu(θp θ + 2qp q ) -ρq .
It is clear that A 0 (V ) and Ã(V ) are symmetric. Let T > 0 and

N = ρ -1, Θ = θ -1, W = N, u, Θ, ε 1 q, ε 2 τ .
We denote

E (t) = W (t, •) 2 s , E T = sup 0≤t≤T E (t). (2.4) 
In Theorem 1.1, estimate (1.16) implies that E T is uniformly sufficiently small when E (0) is, although the L ∞ (0, T ; H s (R)) norm of q and τ may not be uniformly small with respect to ε 1 and ε 2 . The following result shows that A 0 (V ) is positive definite when E T is sufficiently small. (1.12). Then there exist constants δ > 0 and c 1 > 0, independent of ε 1 and ε 2 , such that if

E 1/2 T ≤ δ, we have c 1 ≤ ρ, θ, p ρ , p θ , e θ ≤ C, (2.5) 
p q s ≤ Cδε 1 , p τ s ≤ Cδε 2 , qp q s ≤ Cδ, (2.6) 
and A 0 (V ) is positive definite and then system (2.2) is symmetrizable hyperbolic.

Proof. When E T is sufficiently small, ρ and θ are sufficiently close to 1, then they have uniform positive upper and lower bounds. From the state equations (1.14) and (1.15), we have

p ρ = Rθ, p θ = Rρ + ε 2 1 2κθ 2 q 2 , e θ = c v - ε 2 1 κρθ 2 q 2 , (2.7) 
which imply (2.5) since ε 1 q ∞ ≤ E T which is sufficiently small. Besides,

p q = - ε 2 1 κθ q, p τ = - ε 2 2 λ τ, qp q = - ε 2 1 κθ q 2 , (2.8) 
imply (2.6).

Moreover,

ρ 2 θe θ p θ - ε 2 1 κ (ρ 2 qe θ ) - ε 2 1 κ (ρ 2 qe θ ) ε 2 1 κ ρθp θ + 2ρqp q = ε 2 1 ρ 3 e θ κ θ 2 p 2 θ - ε 2 1 q 2 κ (2p θ + ρe θ ) .
Then (2.5) implies that the above determinate is positive for sufficiently small E T . From (2.6) and ε 2 ≤ 1, we also have p τ s ≤ Cδ. Therefore, A 0 (V ) is positive definite from its explicit expression.

Applying the theory on the symmetrizable hyperbolic system, Lemma 

Uniform global estimates

Let T > 0 and W = (N, u, Θ, ε 1 q, ε 2 τ ) be the unique local smooth solution to (2.2) with

(1.14)-(1.15) and (1.12), defined on [0, T ]. We assume that E T defined in (2.4) is sufficiently small. This gives rise to the rational assumption that

|ρ -1| ≤ 1 2 , |θ -1| ≤ 1 2 , |p τ | ≤ 1 2 . ( 3.1) 
We want to establish the uniform global estimate for W with respect to the parameters ε 1 and ε 2 and the time T . For this purpose, we introduce the following dissipative energy

D(t) = ∂ x N (t) 2 s-1 + ∂ x u(t) 2 s-1 + ∂ x Θ(t) 2 s-1 + q(t) 2 s + τ (t) 2 s .
3.1. L 2 -estimate. The L 2 estimate relies on the existence of a strictly convex entropy and its corresponding entropy flux.

Lemma 3.1. For system (2.2), there exists a strictly convex entropy η and its corresponding entropy flux Ψ satisfying

∂ t η(W ) + ∂ x Ψ(W ) + q 2 κθ 2 + τ 2 λθ = 0, (3.2) 
where

η(W ) = R(ρ ln ρ -ρ + 1) + 1 2 ρu 2 + c v ρ(θ -ln θ -1) + ε 2 1 κθ 1 - 1 2θ q 2 + ε 2 2 2λ τ 2 ,
and

Ψ(W ) = Rρ(ln ρ -1)u + 1 2 ρu 3 + c v ρu(θ -ln θ -1) + (p -τ )u + 1 - 1 θ q + ε 2 1 u κθ 1 - 1 2θ q 2 + ε 2 2 2λ uτ 2 .
In addition, if E T is sufficiently small, the following L 2 -energy estimate holds

(ρ -1, u, θ -1, ε 1 q, ε 2 τ )(t) 2 + t 0 q(t ) 2 + τ (t ) 2 dt ≤ C ρ 0 -1 2 + u 0 2 + θ 0 -1 2 + ε 2 1 q 0 2 + ε 2 2 τ 0 2 , ∀ t ∈ [0, T ]. (3.3)
Proof. The entropy-entropy flux identity (3.2) was established in [START_REF] Hu | Hyperbolic compressible Navier-Stokes equations[END_REF]. We now prove (3.3). By the Taylor's expansion at (ρ, θ) = (1, 1) and (3.1), we have

c v ρ(θ -ln θ -1) = c v ρ 2 θ2 Θ 2 ≥ 1 9 c v Θ 2 , R(ρ ln ρ -ρ + 1) = R 2ρ N 2 ≥ R 3 N 2 ,
where ρ is between ρ and 1, and θ is between θ and 1. By Lemma 2.1, this implies that there exists a constant c 2 > 0, such that

c 2 |W | 2 ≤ η(W ) ≤ C|W | 2 ,
where

|•| is the Euclidean norm in R 5 . Integrating (3.2) over [0, t] for t ∈ [0, T ] implies (3.3).
3.2. Higher order estimates. Let l be an integer with 1 ≤ l ≤ s. Applying ∂ l x to both sides of the equation (2.3) yields

D 0 (ε)∂ t (∂ l x V ) + A(V )∂ x (∂ l x V ) + ∂ l x (BV ) = ∂ l x F (V ) + K l ,
where

K l = A(V )∂ l+1 x V -∂ l x (A(V )∂ x V ). Then, A 0 (V )∂ t (∂ l x V ) + Ã(V )∂ x (∂ l x V ) + Ã0 (V )∂ l x (BV ) = Ã0 (V )∂ l x F (V ) + Ã0 (V )K l .
Taking the inner product of the above system with ∂ l x V in L 2 (R), we have

d dt A 0 (V )∂ l x V, ∂ l x V + 2 Ã0 (V )∂ l x (BV ), ∂ l x V (3.4) = ∂ t A 0 (V )∂ l x V, ∂ l x V + ∂ x Ã(V )∂ l x V, ∂ l x V + 2 Ã0 (V )∂ l x F (V ), ∂ l x V + 2 Ã0 (V )K l , ∂ l x V .
We deal with (3.4) term by term in a series of lemmas as follows.

Lemma 3.2. There exists positive constants c 3 and c 4 such that

2 Ã0 (V )∂ l x (BV ), ∂ l x V ≥ c 3 ∂ l x q 2 + c 4 ∂ l x τ 2 -CE 1/2 T D(t). (3.5)
Proof. By the definition of Ã0 (V ) and B together with (2.8), we have

Ã0 (V )∂ l x (BV ) = 0, 0, 0, - ρ 2 qe θ κ ∂ l x q, ρθp θ + 2ρqp q κ ∂ l x q, ρθ 2 p θ (1 -p τ ) λ ∂ l x τ , which implies that Ã0 (V )∂ l x (BV ), ∂ l x V = - ρ 2 qe θ κ ∂ l x q, ∂ l x Θ + ρθp θ + 2ρqp q κ ∂ l x q, ∂ l x q ρθ 2 p θ (1 -p τ ) λ ∂ l x τ, ∂ l x τ .
Obviously,

ρ 2 qe θ κ ∂ l x q, ∂ l x Θ ≤ C ∂ l x Θ ∞ q ∂ l x q ≤ CE 1/2 T D(t).
For the second term, noticing that ρθp θ κ has a uniform lower bound when E T is sufficiently small. Besides, the last estimate in (2.6) implies that 2ρqp q κ is small and consequently, there exists a positive constant c 3 such that

2 ρθp θ + 2ρqp q κ ∂ l x q, ∂ l x q ≥ c 3 ∂ l x q 2 .
Similarly, (3.1) implies that 1 -p τ ≥ 1 2 . Therefore, there exists a positive constant c 4 such that

2 ρθ 2 p θ (1 -p τ ) λ ∂ l x τ, ∂ l x τ ≥ c 4 ∂ l x τ 2 .
Combining all these estimates yields (3.5).

Lemma 3.3. It holds

∂ t A 0 (V )∂ l x V, ∂ l x V ≤ CE 1/2 T D(t). (3.6) 
Proof. We denote

V = V 1 V 2 , V 1 =     N u Θ     , V 2 = q τ , and 
A 0 (V ) = A 11 0 (V ) A 12 0 (V ) A 21 0 (V ) A 22 0 (V ) , Ã(V ) = Ã11 (V ) Ã12 (V ) Ã21 (V ) Ã22 (V ) , where                                      A 11 0 (V ) =     θ 2 p ρ p θ 0 0 0 ρ 2 θ 2 p θ 0 0 0 ρ 2 θe θ p θ     , A 12 0 (V ) = A 21 0 (V ) =     0 0 0 0 - ε 2 1 κ ρ 2 qe θ 0     , A 22 0 (V ) = ε 2 1 κ (ρθp θ + 2ρqp q ) 0 0 ε 2 2 λ ρθ 2 p θ (1 -p τ )
.

Obviously,

∂ t A 0 (V )∂ l x V, ∂ l x V = ∂ t A 11 0 (V )∂ l x V 1 , ∂ l x V 1 + 2 ∂ t A 12 0 (V )∂ l x V 2 , ∂ l x V 1 + ∂ t A 22 0 (V )∂ l x V 2 , ∂ l x V 2 .
From (1.14) and (1.15), we see that A 11 0 (V ) is a smooth function of (N, Θ, ε 2 1 q 2 ). Moreover, from (2.2) together with the Cauchy-Schwarz inequality, we have

∂ t N ∞ + ∂ t Θ ∞ ≤ CE 1/2 T + C q s + q 2 s + τ 2 s , ε 2 1 ∂ t q ∞ ≤ CE 1/2 T + C q s , ε 2 1 ∂ t (q 2 ) ∞ ≤ CE 1/2 T + C q s + C q 2 s .
Hence,

∂ t A 11 0 (V ) ∞ ≤ CE 1/2 T + C q s + q 2 s + τ 2 s . Moreover, 2 q s ∂ l x V 1 2 ≤ ∂ l x V 1 2 + q 2 s ∂ l x V 1 ≤ CE 1/2 T D(t)
. Since E T is uniformly small, we also have

q 2 s + τ 2 s ∂ l x V 1 2 ≤ CE T D(t) ≤ CE 1/2 T D(t).
Therefore,

∂ t A 11 0 (V )∂ l x V 1 , ∂ l x V 1 ≤ CE 1/2
T D(t). Next, a straightforward calculation yields

∂ t A 12 0 (V )∂ l x V 2 , ∂ l x V 1 = - ε 2 1 κ ∂ t (ρ 2 qe θ )∂ l x q, ∂ l x Θ .
From (2.7), we have

ρ 2 qe θ = c ν ρ 2 q - ε 2 1 ρq 3 κθ 2 . Then (2.
2) together with the bound of E T yields

ε 2 1 κ ∂ t ρ 2 qe θ ∞ ≤ CE 1/2 T + C q s + Cε 1 τ 2 s .
Therefore,

∂ t A 12 0 (V )∂ l x V 2 , ∂ l x V 1 ≤ ε 2 1 κ ∂ t ρ 2 qe θ ∞ ∂ l x q ∂ l x Θ ≤ CE 1/2 T D(t) + CE 1/2 T q 2 s + C(ε 1 ∂ l x q ∂ l x Θ ) τ 2 s ≤ CE 1/2 T D(t).
Finally,

∂ t A 22 0 (V )∂ l x V 2 , ∂ l x V 2 = ε 2 1 κ ∂ t (ρθp θ + 2ρqp q )∂ l x q, ∂ l x q + ε 2 2 λ ∂ t ρθ 2 p θ (1 -p τ ) ∂ l x τ, ∂ l x τ .
Similarly to the estimates above, we have

ε 2 1 ∂ t (ρθp θ + 2ρqp q ) ∞ ≤ CE 1/2 T + Cε 2 1 q s + q 2 s + τ 2 s , and 
ε 2 2 ∂ t ρθ 2 p θ (1 -p τ ) ∞ ≤ CE 1/2 T + Cε 2 2 q s + q 2 s + τ s + τ 2 s ,
imply that

∂ t A 22 0 (V )∂ l x V 2 , ∂ l x V 2 ≤ CE 1/2 T D(t).
This proves the lemma.

Lemma 3.4. It holds

∂ x Ã(V )∂ l x V, ∂ l x V ≤ CE 1/2 T D(t). (3.7) 
Proof. From (1.14) and (1.15) and the explicit expression of Ã(V ), we see that all elements of Ã(V ) are smooth functions of (ρ, u, θ, ε 2 1 q 2 , ε 2 2 τ 2 ) except J 1 . Noticing that J 1 appears at the position of the third line and the third column of Ã(V ) and

∂ x J 1 ∞ ≤ C( ∂ x W s-1 + q s ), we obtain ∂ x Ã(V )∂ l x V, ∂ l x V ≤ C ∂ x W ∞ ∂ l x V 2 + ∂ x J 1 ∂ l x Θ, ∂ l x Θ ≤ CE 1/2 T D(t) + C ∂ x J 1 ∞ ∂ l x Θ 2 ≤ CE 1/2 T D(t) + C q s ∂ l x Θ 2 ≤ CE 1/2 T D(t).
This proves (3.7).

Lemma 3.5. It holds

Ã0 (V )∂ l x F (V ), ∂ l x V ≤ CE 1/2 T D(t). (3.8) 
Proof. By the definition of Ã0 (V ) and F , we have

Ã0 (V )∂ l x F (V ) = 0, 0, ρ 2 θe θ p θ ∂ l x 1 ρθe θ 2q 2 κ + θτ 2 λ , - ε 2 1 ρ 2 qe θ κ ∂ l x 1 ρθe θ 2q 2 κ + θτ 2 λ , 0 . It follows that Ã0 (V )∂ l x F (V ), ∂ l x V ≤ ρ 2 θe θ p θ ∂ l x 1 ρθe θ 2q 2 κ + θτ 2 λ , ∂ l x Θ + ε 2 1 ρ 2 qe θ κ ∂ l x 1 ρθe θ 2q 2 κ + θτ 2 λ , ∂ l x q ≤ C( ∂ l x Θ ∞ + ε 1 ∂ l x q ε 1 q ∞ )( q 2 s + τ 2 s ) ≤ CE 1/2 T D(t),
which proves (3.8).

Lemma 3.6. It holds

Ã0 (V )K l , ∂ l x V ≤ CE 1/2 T D(t). (3.9) 
Proof. Recall that

K l = A(V )∂ l+1 x V -∂ l x (A(V )∂ x V ).
Similarly to the proof of Lemma 3.4, it is easy to see that all elements of A(V ) are smooth functions of (ρ, u, θ, ε 2 1 q 2 , ε 2 2 τ 2 ) except the element at the position of the third line and the third column. We denote by J 3 this element. Then

J 3 = u - 2q ρθe θ , and 
∂ x J 3 s-1 ≤ C( ∂ x W s-1 + q s ).
The only two terms that contain J 3 are the following

∂ l x Θ, ρ 2 θe θ p θ ∂ l x (J 3 ∂ x Θ) -J 3 ∂ l+1 x Θ and -∂ l x q, ε 2 1 ρ 2 qe θ κ ∂ l x (J 3 ∂ x Θ) -J 3 ∂ l+1 x Θ ,
which can be treated similarly to the proof of Lemma 3.4 and are obviously bounded by

CE 1/2 T D(t).
On the other hand, each element of Ã0 (V ) is uniformly bounded in L ∞ ([0, T ] × R) except for the element at the position of the third line and the fourth column. This element is -1 κ (ρ 2 qe θ ) which only touches the fourth line of K l in the product Ã0 (V )K l . Now the only nonzero element on the fourth line of K l is ε 2 1 (u∂ l+1 x q -∂ l x (u∂ x q)). Then the fourth component of Ã0 (V )K l is -

ε 2 1 κ (ρ 2 qe θ )(u∂ l+1
x q -∂ l x (u∂ x q)). By the Moser-type calculus inequalities (see [START_REF] Majda | Compressible fluid flow and systems of conservation laws in several space variables[END_REF] for instance), we have

ε 2 1 ρ 2 qe θ (u∂ l+1 x q -∂ l x (u∂ x q)), ∂ l x Θ ≤ CE 1/2
T D(t). The estimates for the other terms can be easily obtained. This proves (3.9). 

ε 2 1 s-1 m=0 d dt ∂ m x q, ∂ m+1 x Θ + κ 4 ∂ x Θ 2 s-1 ≤ Cν ∂ x u 2 s-1 + C q 2 s + CE 1/2 T D(t), (3.10) 
where ν > 0 is a small positive constant to be determined later.

Proof. Let m be an integer with 0 ≤ m ≤ s -1. Applying ∂ m x to the fourth equation in (2.2) and making the inner product of the resulting equation with

∂ m+1 x Θ in L 2 (R), we have κ ∂ m+1 x Θ 2 = -ε 2 1 d dt ∂ m x q, ∂ m+1 x Θ + ε 2 1 ∂ t ∂ m+1 x Θ, ∂ m x q -ε 2 1 ∂ m+1 x Θ, ∂ m x (u∂ x q) -∂ m x q, ∂ m+1 x Θ .
Obviously,

ε 2 1 ∂ m+1 x Θ, ∂ m x (u∂ x q) + ∂ m x q, ∂ m+1 x Θ ≤ κ 2 ∂ m+1 x Θ 2 + C q 2 s . ε 2 1 d dt ∂ m x q, ∂ m+1 x Θ + κ 2 ∂ m+1 x Θ 2 ≤ ε 2 1 ∂ t ∂ m+1 x Θ, ∂ m x q + C q 2 s . (3.11)
By using the third equation in (2.2) and an integration by parts, we have

ε 2 1 ∂ t ∂ m+1 x Θ, ∂ m x q ≤ ε 1 ∂ m x u∂ x θ + θp θ ρe θ ∂ x u - 2q ρθe θ ∂ x θ + 1 ρe θ ∂ x q , ∂ m+1 x (ε 1 q) + ε 1 ∂ m x 2q 2 κρθe θ + τ 2 λρe θ , ∂ m+1 x (ε 1 q) .
Obviously,

ε 1 ∂ m x u∂ x θ + θp θ ρe θ ∂ x u - 2q ρθe θ ∂ x θ + 1 ρe θ ∂ x q , ∂ m+1 x (ε 1 q) ≤ κ 4 ∂ x Θ 2 s-1 + ν ∂ x u 2 s-1 + C q 2 s + CE 1/2 T D(t),
and

ε 1 ∂ m x 2q 2 κρθe θ + τ 2 λρe θ , ∂ m+1 x (ε 1 q) ≤ Cε 1 ε 1 q s q 2 s + Cε 1 ε 1 q s τ 2 s ≤ CE 1/2 T D(t).
Combining these estimates, we arrive at

ε 2 1 ∂ t ∂ m+1 x Θ, ∂ m x q ≤ κ 4 ∂ x Θ 2 s-1 + ν ∂ x u 2 s-1 + C q 2 s + CE 1/2 T D(t).
This together with (3.11) yields

ε 2 1 d dt ∂ m x q, ∂ m+1 x Θ + κ 4 ∂ m+1 x Θ 2 ≤ ν ∂ x u 2 s-1 + C q 2 s + CE 1/2 T D(t).
Adding this inequality for all 0 ≤ m ≤ s -1 yields (3.10).

Lemma 3.8. (Dissipative estimates for ∂

x u) It holds -ε 2 2 s-1 m=0 d dt ∂ m x τ, ∂ m+1 x u + λ 2 ∂ x u 2 s-1 ≤ Cν( ∂ x N 2 s-1 + ∂ x u 2 s-1 + ∂ x Θ 2 s-1 ) + C q 2 s + τ 2 s + CE 1/2 T D(t), (3.12) 
where ν > 0 is a small positive constant to be determined later.

Proof. For 0 ≤ m ≤ s -1, applying ∂ m x to the fifth equation in (2.2) and making the inner product of the resulting equation with ∂

m+1 x u in L 2 (R), we have λ ∂ m+1 x u 2 = ε 2 2 d dt ∂ m x τ, ∂ m+1 x u -ε 2 2 ∂ t ∂ m+1 x u, ∂ m x τ + ε 2 2 ∂ m+1 x u, ∂ m x (u∂ x τ ) + ∂ m+1 x u, ∂ m x τ .
Obviously,

ε 2 2 ∂ m+1 x u, ∂ m x (u∂ x τ ) + ∂ m+1 x u, ∂ m x τ ≤ λ 2 ∂ m+1 x u 2 + C τ 2 s + CE 1/2 T D(t). Therefore, -ε 2 2 d dt ∂ m x τ, ∂ m+1 x u + λ 2 ∂ m+1 x u 2 ≤ -ε 2 2 ∂ t ∂ m+1 x u, ∂ m x τ + C τ 2 s + CE 1/2 T D(t). (3.13)
By using the second equation in (2.2) and an integration by parts, we have

ε 2 2 ∂ t ∂ m+1 x u, ∂ m x τ ≤ ε 2 2 ∂ m x ρu∂ x u + p ρ ∂ x ρ + p θ ∂ x θ ρ , ∂ m+1 x τ +ε 2 2 ∂ m x p q ∂ x q + (p τ -1)∂ x τ ρ , ∂ m+1 x τ ≤ ν ∂ x N 2 s-1 + ∂ x u 2 s-1 + ∂ x Θ 2 s-1 + C q 2 s + τ 2 s .
Substituting this estimate into (3.13) and adding the resulting equation for all 0 ≤ m ≤ s -1 yield (3.12).

Lemma 3.9. (Dissipative estimates for ∂

x N ) It holds s-1 m=0 d dt ∂ m x u, ∂ m+1 x N + R 6 ∂ x N 2 s-1 ≤ C ∂ x u 2 s-1 + ∂ x Θ 2 s-1 + C q 2 s + τ 2 s + CE 1/2 T D(t). (3.14) 
Proof. We first write the second equation in (2.2) as

∂ t u + Rθ ρ ∂ x N + 1 ρ ρu∂ x u + p θ ∂ x θ + p q ∂ x q + (p τ -1)∂ x τ = 0.
For m ≤ s-1, applying ∂ m x to the above equation and making the inner product of the resulting equation with ∂ m+1

x N in L 2 (R), we have

∂ m+1 x N, Rθ ρ ∂ m+1 x N = - d dt ∂ m x u, ∂ m+1 x N + ∂ m x u, ∂ t ∂ m+1 x N -∂ m x ρu∂ x u + p θ ∂ x θ + p q ∂ x q + (p τ -1)∂ x τ ρ , ∂ m+1 x N -∂ m x Rθ ρ ∂ x N - Rθ ρ ∂ m+1 x N, ∂ m+1 x N .
Noticing (3.1), we have

∂ m+1 x N, Rθ ρ ∂ m+1 x N ≥ R 3 ∂ m+1 x N 2 .
It is clear that

∂ m x ρu∂ x u + p θ ∂ x θ + p q ∂ x q + (p τ -1)∂ x τ ρ , ∂ m+1 x N ≤ R 6 ∂ m+1 x N 2 + C ∂ x u 2 s-1 + ∂ x Θ 2 s-1 + C q 2 s + τ 2 s ,
and by the Moser-type calculus inequalities,

∂ m x Rθ ρ ∂ x N - Rθ ρ ∂ m+1 x N, ∂ m+1 x N ≤ C ∂ x θ s-1 ∂ x N 2 s-1 + C ∂ x N 3 s-1 CE 1/2 T D(t).
Moreover, by the mass equation in (2.2) and the integration by parts, we obtain

∂ m x u, ∂ t ∂ m+1 x N = ∂ m+1 x u, ∂ m+1 x (ρu) ≤ C ∂ x u s-1 ( ∂ m x (∂ x N u + ρ∂ x u) ) ≤ C ∂ x u 2 s-1 + CE 1/2 T D(t).
Combining all these estimates, we arrive at

d dt ∂ m x u, ∂ m+1 x N + R 6 ∂ m+1 x N 2 ≤ C ∂ x u 2 s-1 + ∂ x Θ 2 s-1 + C q 2 s + τ 2 s + CE 1/2 T D(t).
Adding the above estimate for all m ≤ s -1 yields (3.14). Since A 0 (V ) is positive definite with respect to W , there exists a constant c 5 > 0, independent of ε 1 and ε 2 , such that

A 0 (V )∂ l x V, ∂ l x V ≥ c 5 ∂ l x W 2 .
Integrating On the other hand, combining the estimates in Lemmas 3.7-3.9, we have

s-1 m=0 d dt ε 2 1 ∂ m x q, ∂ m+1 x Θ -ε 2 2 ∂ m x τ, ∂ m+1 x u + α ∂ m x u, ∂ m+1 x N + Rα 6 ∂ x N 2 s-1 + λ 2 ∂ x u 2 s-1 + κ 4 ∂ x Θ 2 s-1 ≤ Cν ∂ x N 2 s-1 + C(ν + α)( ∂ x u 2 s-1 + ∂ x Θ 2 s-1 ) + C q 2 s + τ 2 s + CE 1/2 T D(t),
where α > 0 is a constant. We choose ν > 0 and α > 0 sufficiently small such that 2Cν ≤ Rα 6 , 8C(ν + α) ≤ min(λ, κ).

It follows that there is a constant a 0 > 0, independent of ε 1 and ε 2 , such that

s-1 m=0 d dt ε 2 1 ∂ m x q, ∂ m+1 x Θ -ε 2 2 ∂ m x τ, ∂ m+1 x u + α ∂ m x u, ∂ m+1 x N + a 0 ∂ x N 2 s-1 + ∂ x u 2 s-1 + ∂ x Θ 2 s-1 ≤ C q 2 s + τ 2 s + CE 1/2
T D(t). (4.4)

It is clear that

ε 2 1 ∂ m x q, ∂ m+1 x Θ -ε 2 2 ∂ m x τ, ∂ m+1 x u + α ∂ m x u, ∂ m+1 x N ≤ C W 2 s .
Integrating (4.4) over [0, T ] yields Proof of Theorem 1.2. From (1.11), (ρ ε , u ε , θ ε , q ε , τ ε ) satisfies the following system

-C W (t)
                       ∂ t ρ ε + ∂ x (ρ ε u ε ) = 0, ∂ t (ρ ε u ε ) + ∂ x (ρ ε (u ε ) 2 + p ε -τ ε ) = 0, ∂ t (ρ ε E ε ) + ∂ x (ρ ε u ε E ε + u ε p ε + q ε -u ε τ ε ) = 0, ε 2 1 (∂ t q ε + u ε ∂ x q ε ) + κ∂ x θ ε = -q ε , ε 2 2 (∂ t τ ε + u ε ∂ x τ ε ) -λ∂ x u ε = -τ ε , (4.5) 
in R + × R, where

               e ε = c v θ ε + ε 2 1 κρ ε θ ε (q ε ) 2 + ε 2 2 2λρ ε (τ ε ) 2 , p ε = Rρ ε θ ε - ε 2 1 2κθ ε (q ε ) 2 - ε 2 2 2λ (τ ε ) 2 , E ε = e ε + 1 2 (u ε ) 2 .
(4.6)

The uniform estimate (1.16) implies that the sequences (ρ ε -1) ε , (u ε ) ε and (θ ε -1) ε are bounded in L ∞ (R + ; H s (R)) and the sequence (q ε ) ε and (τ ε ) ε are bounded in L 2 (R + ; H s (R)). It

  the compatibility with the second law of thermodynamics. The choice of equation (1.15) makes it consistent with (1.3) and the state equations (1.14)-(1.15) yield formally those for the ideal fluid (1.
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Lemma 2 . 1 .

 21 Let W ∈ C([0, T ]; H s (R)) be the smooth solution to (2.2) with (1.14)-(1.15) and

3. 3 .

 3 Dissipative estimates for ∂ x N , ∂ x u and ∂ x Θ. Lemma 3.7. (Dissipative estimates for ∂ x Θ) It holds

4 . 0 D+ c 3 ∂ x q 2 s- 1 + c 4 ∂ x τ 2 s

 4032142 Proof of Theorems 1.1-1.2 Lemma 4.1. (Final energy estimate) If E T is sufficiently small, thenE (t) + t (t )dt ≤ CE (0), ∀ t ∈ [0, T ]. (4.1)Proof. Combining (3.4) and Lemmas 3.2-3.6, and adding for all 1 ≤ l ≤ s, we arrive at

Proof of Theorem 1 . 1 .

 11 The estimate in Lemma 4.1 shows that the smooth solution W is uniformly bounded in L ∞ ([0, T ]; H s (R)) with respect to ε and T . By the bootstrap principle, it yields uniformly global solution. In particular, this estimate gives(1.16).

  (4.2) over [0, T ] together with (3.3) yields

	t		t		
	W (t) 2 s +	q(t ) 2 s + τ (t ) 2 s dt ≤ CE (0) + CE	1/2 T	D(t )dt .	(4.3)
	0		0		

that there exist functions (ρ, ū, θ) ∈ L ∞ (R + ; H s (R)) and (q, τ ) ∈ L 2 (R + ; H s (R)), such that (1.17)-(1.18) hold. In addition, as ε → 0,

Moreover, from the first three equations in (4.5), it is easy to see that (

. Hence, by a classical compactness theorem [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], for all T > 0, (ρ ε ) ε , (u ε ) ε and (θ ε ) ε are relatively compact in C([0, T ]; H s-1 loc (R)). As a consequence, as ε → 0, up to subsequences,

This is sufficient to pass the limit in (4.5)-(4.6) in the sense of distributions and to obtain the Navier-Stokes equations for the ideal fluid. This ends the proof of Theorem 1.2.