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ON SYSTEMS OF PARTICLES IN SINGULAR REPULSIVE

INTERACTION IN DIMENSION ONE:

LOG AND RIESZ GAS

by Arnaud Guillin, Pierre Le Bris & Pierre Monmarché

Abstract. — In this article, we prove the first quantitative uniform in time propagation of chaos
for a class of systems of particles in singular repulsive interaction in dimension one that contains
the Dyson Brownian motion. We start by establishing existence and uniqueness for the Riesz
gases, before proving propagation of chaos with an original approach to the problem, namely
coupling with a Cauchy sequence type argument. We also give a general argument to turn a
result of weak propagation of chaos into a strong and uniform in time result using the long
time behavior and some bounds on moments, in particular enabling us to get a uniform in time
version of the result of Cépa-Lépingle [CL97].

Résumé (Sur les systèmes de particules en interaction singulière répulsive en dimension 1 : log-
gaz et gaz de Riesz)

Dans cet article, nous prouvons le premier résultat de propagation du chaos quantitative
uniforme en temps pour une classe de systèmes de particules en interaction singulière répul-
sive en dimension 1 qui contient le mouvement brownien de Dyson. Nous commençons par
établir l’existence et l’unicité des gaz de Riesz, avant de prouver la propagation du chaos par
une approche originale du problème, à savoir un couplage avec un argument de type suite de
Cauchy. Nous donnons également un argument général pour transformer un résultat faible de
propagation du chaos en un résultat fort et uniforme en temps en utilisant le comportement
en temps long et certaines bornes sur les moments, ce qui nous permet en particulier d’obtenir
une version uniforme en temps du résultat de Cépa-Lépingle [CL97].

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
2. Existence, uniqueness and long time behavior of the particles. . . . . . . . . . . . . . . . . 874
3. Limit for large number of particles with vanishing noise. . . . . . . . . . . . . . . . . . . . . . 881
4. Identification of the limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
5. From weak propagation of chaos to strong uniform in time propagation of chaos899
Appendix A. Technical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
Appendix B. Proof of Lemma 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907
Appendix C. Establishing the continuity in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915

Mathematical subject classification (2020). — 60J60, 60F15, 60B20, 35Q82, 60K35.
Keywords. — Propagation of chaos, long-time behavior, Riesz gas, Dyson Brownian motion, sto-
chastic calculus.

This work has been (partially) supported by the Project EFI ANR-17-CE40-0030 of the French
National Research Agency.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


868 A. Guillin, P. Le Bris & P. Monmarché

1. Introduction

We consider the one dimensional N -particle system in mean field interaction

(1.1) dXi
t =

√
2σN dB

i
t − U ′ (Xi

t

)
dt− 1

N

∑
j ̸=i

V ′(Xi
t −Xj

t )dt,

where for all i ∈ {1, . . . , N}, Xi
t denotes the position in R of the i-th particle, (Bit)i

are independent Brownian motions, and σN is a diffusion coefficient that may depend
on N . We denote XN

t =
(
X1
t , . . . , X

N
t

)
. We will refer to U as the confining potential

and V as the interaction potential, on which we will specify the assumptions later.
Finally, we denote by ρNt the law of (X1

t , . . . , X
N
t ).

The goal of this article is to give various results concerning equation (1.1) in the case
where V is a singular repulsive interaction potential. The main motivating example
is the (generalized) Dyson Brownian motion

(1.2) dXi
t =

√
2σ

N
dBit − λXi

tdt+
1

N

∑
j ̸=i

1

Xi
t −Xj

t

dt.

Equation (1.2) is satisfied, for λ = 0, by the eigenvalues of an N × N Hermitian
matrix valued Brownian motion, as observed by Dyson in 1962 [Dys62]. For λ > 0,
it corresponds to the eigenvalues of an N × N Hermitian matrix valued Ornstein-
Uhlenbeck process (see for instance [Cha92, RS93]).

The work of Wigner [Wig55] is often considered to be the starting point of Random
Matrix Theory. The main observation is that, for a Wigner matrix (a symmetric N×N
matrix whose entries above the main diagonal are independent centered variables), the
empirical distribution of the eigenvalues converges weakly as N → ∞ to the standard
semi-circle distribution. We refer to [AGZ10] and references therein for a thorough
introduction on Random Matrix Theory.

The main result of this article concerns the limit, as N goes to infinity, of (1.1),
which can be considered as a dynamical version of the convergence of the eigenvalues
of a Wigner matrix. What we wish to prove is that in a system of N particles in
mean-field interaction, as N goes to infinity, two particles become more and more
statistically independent. Kac [Kac56] described this behavior as propagation of chaos,
and we refer to Sznitman [Szn91] for a landmark study of the phenomenon. The notion
of chaos refers to the independence, while propagation alludes to the fact that having
this property of independence at the limit at time 0 will be sufficient to ensure the
same independence at later time t.

This limit for the Dyson Brownian motion was recently studied in [BDLL22] using
a notion of spectral dominance, and obtained without convergence rate. Let us also
mention the work [HS19] which proves propagation of chaos in 1D in a kinetic setting
(i.e., each particle is represented by a position and a velocity) for a discontinuous
interaction corresponding to the sign of the difference of positions.

Throughout this article, we denote by µNt := 1
N

∑N
i=1 δXi

t
the empirical measure

at time t of the N particle system. As proved by Sznitman [Szn91], the convergence
of the empirical measure towards a constant random variable ρt is equivalent to the
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On systems of particles in singular repulsive interaction in dimension one: log and Riesz gas 869

property of propagation of chaos. Very formally, this limit ρt is a weak solution to the
non linear equation of McKean-Vlasov type

(1.3) ∂tρt = ∂x ((U
′ + V ′ ∗ µt)µt) + σ∂2xxρt,

where σ is the limit (possibly 0) of σN as N → ∞ and ∗ is the (space) convolution
operation. The stochastic differential equation associated to (1.3) is

(1.4)
{
dXt =

√
2σ dBt − U ′(Xt)dt− V ′ ∗ ρt(Xt)dt,

ρt = Law(Xt),

and can also be seen as the formal limit of the stochastic differential equation (SDE)
(1.1), noticing 1

N

∑
j V

′(Xi
t−X

j
t ) = V ′∗µNt (Xi

t). At this stage however, let us insist on
the fact that the objects and solutions of (1.3) and (1.4) can be ill defined, especially
when V ′ is singular.

As we aim at deriving quantitative propagation of chaos result, we need a distance.
For µ and ν two probability measures on R2, denote by Π(µ, ν) the set of couplings
of µ and ν, i.e., the set of probability measures Γ on R × R with Γ(A × R) = µ(A)

and Γ(R×A) = ν(A) for all Borel set A of R. We define the Lp Wasserstein distance,
with p ⩾ 1, as

Wp (µ, ν) =

(
inf

Γ∈Π(µ,ν)

∫
|x− y|p Γ(dxdy)

)1/p

.

It is important to notice (see for instance [CP18, Rem. 3.28 & 3.30]) that in dimen-
sion 1 the optimal coupling (i.e., the one realizing the infimum) for Wp, p ⩾ 1, is
known as it is the monotone map. In particular, for two sets of points (xi)i∈{1,...,N}
and (yj)j∈{1,...,N}, assuming without loss of generality that x1 ⩽ · · · ⩽ xN and
y1 ⩽ · · · ⩽ yN , and two measures µ = 1

N

∑
i δxi and ν = 1

N

∑
j δyj , one has

Wp (µ, ν)
p
=

1

N

∑
i

|xi − yi|p.

There exists many ways of proving propagation of chaos, let us mention some.
– The main probabilistic tool, as used by McKean (see for instance [McK67]) and

then popularized by Sznitman [Szn91], is the coupling method. It consists in coupling
the solution of (1.1) with N independent copies (X

i

t)i of the solution (1.4). The goal
is to control the Wasserstein distance, which by definition can be written as

Wd

(
ρNt , ρ

⊗N
t

)
= inf

Γ∈Π(ρNt ,ρ
⊗N
t )

EΓ

( N∑
i=1

d(Xi
t , X

i

t)

)
.

Here, the notation Wd refers to the fact that the Wasserstein distance depends on an
underlying distance d. This is the only time we use this notation, not to be confused
with the Lp Wasserstein distance Wp we use thereafter.

Instead of considering the minimum over all couplings, the key idea is to
construct a specific one, which will therefore provide an upper bound on the Wasser-
stein distance. Well known coupling methods include the synchronous coupling
[Szn91, CGM08], or the more recent reflection coupling as suggested by Eberle
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870 A. Guillin, P. Le Bris & P. Monmarché

[Ebe16, EGZ19, DEGZ20]. The main benefit of this method of proof is that it allows
for a better probabilistic understanding of the processes and gives quantitative speed
of convergence in the case of Lipschitz continuous interactions. However, to the
authors’ knowledge, coupling methods have not yet given results in the case of
singular interactions.

– Using tools from PDE analysis, and functional inequalities, in order to show
convergence of ρNt towards ρ⊗Nt , recent progress have been made using a modulated
energy [Ser18, Ser20, RS23], by considering the relative entropy of ρNt with respect
to ρ⊗Nt [JW18] or by combining these two quantities into a modulated free energy
[BJW20]. These quantities have proved useful in showing propagation of chaos for
systems of particle in singular interaction by making full use of the regularity and
bounds on the moments of the limit equation (1.3).

– Another method, that lies somewhere in between the fields of probability and
PDE analysis, consists in proving the tightness or compactness of the set of empirical
measure, showing that the limit of any convergent subsequence satisfies (1.3), and
proving the uniqueness of the solution of (1.3). This has been for instance done for
singular interaction kernels, in the specific case of (1.2) [RS93, CL97, LLX20]. This
method, however, does not provide quantitative convergence rates.

Notice that all the methods described above rely on the properties of the limit
equation (1.3), because one needs to either give sense to the quantity V ′ ∗ µt in (1.4)
(and maybe show some properties in order to carry out computations) to use coupling
methods, prove bounds and regularity on the solution in order to use PDE related
methods, or at the very least prove the uniqueness of the solution of (1.3). This study
of the limiting equation can be a quite challenging task.

In this article, we describe a method that relies only on the well posedness of
the system of particles (1.1) and which provides a quantitative (and in some cases
uniform in time) result of propagation of chaos. We make full use of the fact that in
dimension one the particles will stay ordered, and that as a consequence the interaction
we consider will be convex (See Remark 1.1 below). Using a coupling method, we
prove that by taking any independent sequence of empirical measures, it is a Cauchy
sequence. Then, independence ensures the fact that the limit measure is an almost
surely constant random variable. To the authors’ knowledge, such a method has not
been used before to prove propagation of chaos.

Let us now introduce our main assumptions. The condition on the interaction
potential is the following:

Assumption 1. — There exists α ⩾ 1 such that
(1.5) ∀x ∈ R∗, V ′(x) = −x/|x|α+1 ,

and we thus consider

(1.6) V (x) =


1

α− 1
|x|−α+1 if α > 1

− ln(|x|) if α = 1

Notice that for all x ∈ R∗, V ′(x) = −V ′(−x), and V ′′(x) = α/|x|α+1.
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On systems of particles in singular repulsive interaction in dimension one: log and Riesz gas 871

Let us consider the open set
ON :=

{
X = (x1, . . . , xN ) ∈ RN | −∞ < x1 < · · · < xN <∞

}
.

Remark 1.1. — We highlight the main geometrical property we will use. Denote
Hint,α : RN 7→ R the function given by

∀x = (xi)i∈{1,...,N}, Hint,α(x) =
1

2N

∑
i ̸=j

V (xi − xj).

In this way the particle system (1.1) can be rewritten as the following Langevin
diffusion

dXt =
√
2σN dBt − U(Xt)dt−∇Hint,α(Xt)dt,

where Xt = (X1
t , . . . , X

N
t ) ∈ RN , B is a Brownian motion in RN , and U : RN 7→ RN

is the function given by U(x) = (U(xi))1⩽i⩽N .
Let X = (x1, . . . , xN ) ∈ ON and Y = (y1, . . . , yN ) ∈ ON . We have, since x→ V ′(x)

is odd under Assumption 1,(
∇Hint,α(X)−∇Hint,α(Y )

)
·
(
X − Y

)
=

1

N

∑
1⩽j ̸=i⩽N

(xi − yi)
(
V ′(xi − xj)− V ′(yi − yj)

)
=

1

N

∑
1⩽j<i⩽N

(
(xi − yi)− (xj − yj)

)(
V ′(xi − xj)− V ′(yi − yj)

)
=

1

N

∑
1⩽j<i⩽N

(
(xi − xj)− (yj − yj)

)(
V ′(xi − xj)− V ′(yi − yj)

)
.

Then, for i > j, we have xi − xj > 0 and yi − yj > 0. Since the function V ′ given
by Assumption 1 is an increasing function on R+, each term in the sum above is
non-negative. We thus obtain(

∇Hint,α(X)−∇Hint,α(Y )
)
· (X − Y ) ⩾ 0.

The drift term appearing in the particle system seen as a Langevin diffusion in RN

is therefore the gradient of a convex function on ON . This property will imply the
long time convergence of the particle system (see the proof of Theorem 3 thereafter),
and will be one of the main tool used to prove propagation of chaos (see the proof of
Lemma 3.1).

Consider U ∈ C2(R), and make the following assumptions

Assumption 2. — U ′ is Lipschitz continuous, i.e., there exists LU such that for all
x ∈ R we have |U ′′(x)| ⩽ LU . This implies

∀x, y ∈ R, |U ′(x)− U ′(y)| ⩽ LU |x− y|,
∃A > 0, ∀x ∈ R, |U ′(x)| ⩽ LU |x|+A.and

This first set of conditions will be used when establishing existence and uniqueness
of solutions of (1.1) as well as non uniform in time propagation of chaos. For further
results, for simplicity, the study will either be restricted to the convex case, namely:

J.É.P. — M., 2023, tome 10



872 A. Guillin, P. Le Bris & P. Monmarché

Assumption 3. — U satisfies Assumption 2 and we have U ′(0) = 0. Furthermore,
there is λ > 0 such that

∀x, y ∈ R,
(
U ′(x)− U ′(y)

)
(x− y) ⩾ λ(x− y)2.

...or to the quadratic case:

Assumption 4. — There is λ > 0 such that U is explicitly given by

∀x ∈ R, U(x) =
λ

2
x2.

We choose to use the same notation λ in both Assumption 3 and Assumption 4 as
it serves the same purpose.

Notice Assumption 4 is strictly stronger than Assumption 3, which itself is strictly
stronger than Assumption 2.

We focus on the quadratic case as it is the main case of interest in the applications
we presented. But, since the main results in the case α = 1 hold true in the convex
case with little to no modification in the calculations, we distinguish this case. The
assumption U convex should also be sufficient in the case α > 1, but requires more
involved computations. We describe later in the proofs the key points that should be
modified (see for instance Remark B.1). Likewise, assuming U ′(0) = 0 in Assumption 3
is purely technical.

We sum up the main results of the article in the following theorem.

Theorem 1
(A) Under Assumption 1 and 2, for α = 1 and σN ⩽ 1/N or for α > 1, there

exists a unique strong solution to (1.1).
(B) Under Assumptions 1 and 3, denoting by ρ1,Nt and ρ2,Nt the probability densities

on ON of the particle systems with respective initial conditions ρ1,N0 and ρ2,N0 , we have
∀t ⩾ 0, W2

(
ρ1,Nt , ρ2,Nt

)
⩽ e−λtW2

(
ρ1,N0 , ρ2,N0

)
.

(C) Under Assumptions 1 and 3 for α = 1 or under Assumptions 1 and 4 for
α ∈ ]1, 2[, let µNt := 1

N

∑N
i=1 δXi

t
be the empirical measure at time t of the solution

of (1.1). Assume there exists ρ0 such that EW2
2(µ

N
0 , ρ0) → 0 as N → ∞. With the

additional assumption σN ⩽ 1/N for α = 1, there exist (ρt)t⩾0 ∈ C(R+,P2(R)), as
well as universal constants C1, C2 > 0 and a quantity CN0 > 0 that depends on the
initial condition and such that CN0 →0 as N→∞, such that for all N⩾1 and all t ⩾ 0,

E
(
W2(µ

N
t , ρt)

2
)
⩽ e−2λtCN0 +

C1

N (2−α)/α + C2σN ,

where (ρt)t satisfies, for all functions f ∈ C2(R) with bounded derivatives such that
f , f ′, f ′U ′, and f ′′ are Lipschitz continuous and that f ′U ′ is bounded, the following
equation: ∀t ⩾ 0,∫

R
f(x)ρt(dx) =

∫
R
f(x)ρ0(dx)−

∫ t

0

∫
R
f ′(x)U ′(x)ρs(dx)ds

+
1

2

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ρs(dx)ρs(dy)ds.
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Remark that the statement (B), as well as functional inequalities such as Poincaré
or logarithmic Sobolev inequalities, has been obtained in [CL20] in the case α = 1.
Furthermore, statement (C) extends the result of [BO19], in which similar systems
are studied using the theory of gradient flows and (non uniform in time) propagation
of chaos is obtained for α < 2 without convergence rate.

We split Theorem 1 above into the more precise Theorems 2, 3, 4 and 5 below.
The organization of the article is as follows:

– In Section 2 we prove various results concerning particle system (1.1). In Sec-
tion 2.1, we show that, for α > 1 with any diffusion coefficient σN or α = 1 with
σN ⩽ 1/N , there exists a unique strong solution to (1.1) under Assumptions 1 and 2.
Furthermore, the particles stay in the same order at all time. See Theorem 2. In Sec-
tion 2.2, we show the long time convergence of the particle system under Assump-
tions 1 and 3. See Theorem 3. In Section 2.3, we prove bounds on the expectation of
interaction that will be useful later.

– Section 3 contains the main proofs of the article concerning the propagation
of chaos for (1.1) in the case σN → 0. For clarity, we separate the case α = 1

(in Section 3.1) and α ∈ ]1, 2[ (in Section 3.2), as the former allows for a proof that
contains all the ideas with little technical difficulties, while the latter requires the
more precise bounds obtained in Section 2.3. See Theorem 4.

– In Section 4, we identify the equation satisfied by the limit ρt. See Theorem 5.
In particular, we highlight an argument which intuitively suggests that α = 2 should
be the critical case for the well-posedness of the limit.

Finally, in Section 5, we show how one can turn a result of weak propagation of
chaos, such as the one obtained in [RS93, CL97, LLX20], into a strong and uniform
in time result by using the long time convergence and some bounds on the moments
of the particle system. See Theorem 6. This yields in particular strong uniform in
time propagation of chaos in the case of α = 1 and constant diffusion coefficient
σN = σ ̸= 0 that Theorem 4 cannot deal with, though without a quantitative rate of
convergence, using the result of [CL97]. This Section 5 is independent of the previous
ones. The result of this section is summarized in the next corollary.

Corollary 1.1. — Under Assumptions 1 and 3, for α = 1, σN = σ ∈ R, assume we
have for all N an initial condition (X1

0 , . . . , X
N
0 ) with bounded fourth moments (i.e.,

E
(

1
N

∑N
i=1 |Xi

0|4
)
< ∞) such that t 7→ E

(
1
N

∑N
i=1 |Xi

t −Xi
0|2

)
is continuous in t = 0

uniformly in N . Then we get strong uniform in time propagation of chaos, i.e.,

∀ε > 0, ∃N ⩾ 0, ∀t ⩾ 0, ∀n ⩾ N, E (W2 (µ
n
t , ρt)) < ε.

We give in Appendix C some sufficient conditions for this assumption of continuity
for the initial conditions.

Notations. — We try to keep coherent notations throughout the article, but as the
various objects and what they represent may become confusing, we list them here for
reference:
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874 A. Guillin, P. Le Bris & P. Monmarché

– P(X) is the set of probability measures on the set X, and Pp(X) is the set of
probability measures on the set X with finite p-th moment,

– (X1
t , . . . , X

N
t ), or (X1,N

t , . . . , XN,N
t ) when we need to insist on the total number

of particles, is the solution of the SDE defining our particle system. Xi
t denotes the

position in R of the i-th particle,
– ON :=

{
X = (x1, . . . , xN ) ∈ RN | −∞<x1< · · ·<xN <∞

}
is the set in which

we prove the solutions are,
– µNt := 1

N

∑N
i=1 δXi

t
∈ P(R) is the empirical measure at time t of the N particle

system. Notice that it is a random variable on the set P(R),
– ξNt ∈ P(P(R)) is the law of µNt ,
– ρNt ∈ P(ON ) is the joint law of (X1

t , . . . , X
N
t ),

– ρt ∈ P(R) is the limit towards which µNt will converge,
– all the notations above used with t = ∞ refer to the stationary distribution

(provided it exists),
– C(R+,P2(R)) is the space of continuous functions taking values in the space of

probability measures P2(R) endowed with the L2 Wasserstein distance,
– µN = (µNt )t⩾0 ∈ C(R+,P2(R)) and ρ = (ρt)t⩾0 ∈ C(R+,P2(R)),
– for a probability measure µ and a measurable function f , we may denote both

µ(f) :=
∫
fdµ and Eµ(f(X)) :=

∫
fdµ.

2. Existence, uniqueness and long time behavior of the particles

We start by gathering some technical results on the particle system.

2.1. Existence, uniqueness and no collisions. — The goal of this subsection is to
prove the following result.

Theorem 2. — Consider N ⩾ 2, and −∞ < x1 < · · · < xN < ∞. Under Assump-
tions 1 and 2,

– if α > 1, for any σN ⩾ 0, there exists a unique strong solution X = (X1, . . . , XN )

to the stochastic differential equation (1.1) with initial condition X1
0 = x1, . . . ,

XN
0 = xN , which furthermore satisfies Xt ∈ ON for all t ⩾ 0, P-a.s.;
– the same result holds for α = 1 and σN ⩽ 1/N .

Remark 2.1. — In the case α = 1 and σN = σ > 0, the existence of a unique
strong solution has been written in [CL97, Th. 2.5], where the authors allow collisions
between particles and show that the system still satisfies Xt ∈ ON i.e.,

−∞ < X1
t ⩽ · · · ⩽ XN

t <∞ for all t ⩾ 0, P-a.s.

In the case α = 1 and σN ⩽ 1/N , the proof of existence, uniqueness and absence
of collision has been done in [RS93] or in the more recent [LLX20]. For the sake of
completeness, and because it uses similar calculations, we also write the proof in this
case here.
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Denote the infinitesimal generator

LN,αf(x1, . . . , xN ) := −
N∑
i=1

U ′(xi)∂if(x1, . . . , xN )

− 1

N

∑
i̸=j

V ′(xi − xj)∂if(x1, . . . , xN ) + σN∆f(x1, . . . , xN ).

and consider, for X = (x1, . . . , xN ) ∈ RN ,

Hint,α(X) :=
1

2N

∑
i ̸=j

V (xi − xj), Hα(X) := Hint,α(X) +

N∑
i=1

x2i
2
,

where Hint,α denotes the interaction potential. We prove the following Lyapunov
conditions for the particles system Let us begin with the case α > 1.

Lemma 2.1. — Let N > 1. Under Assumptions 1 and 2, for α > 1, there exists
CN,α, DN,α > 0 such that, for all X ∈ ON ,

LN,αHα(X) ⩽ DN,α + CN,αH(X).

Under the additional Assumption 3, still for α > 1, there exists CN,α, DN,α > 0 such
that, for all X ∈ ON ,

LN,αHα(X) ⩽ DN,α − CN,αH(X).

This lemma shows that, for a force U ′ Lipschitz continuous, the energy does not
explode in finite time, which will provide us the existence of the solution of (1.1), and
the absence of collision between particles. For a potential U convex, it even yields a
uniform in time bound on the second moment of the particles, and on the expectation
of 1/

∣∣Xi −Xj
∣∣α−1 (even though we do not use this result to bound these moments,

as DN,α and CN,α depend rather badly on N).

Proof. — We compute:

LN,αHα(X) = −
N∑
i=1

(
U ′(xi) +

1

N

∑
j ̸=i

V ′(xi − xj)
)(
xi +

1

N

∑
j ̸=i

V ′(xi − xj)
)

+ σN

N∑
i=1

1 +
σN
N

N∑
i=1

∑
j ̸=i

V ′′(xi − xj)

= −
N∑
i=1

U ′(xi)xi −
1

N

N∑
i=1

∑
j ̸=i

U ′(xi)V
′(xi − xj)

− 1

N

N∑
i=1

∑
j ̸=i

xiV
′(xi − xj) +NσN

−
N∑
i=1

( 1

N

∑
j ̸=i

V ′(xi − xj)
)2

+
σN
N

N∑
i=1

∑
j ̸=i

V ′′(xi − xj).
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We have, under Assumptions 2 and 1,

−
N∑
i=1

U ′(xi)xi ⩽
N∑
i=1

LU |xi|2 +A|xi| ⩽
(
LU +

1

2

) N∑
i=1

|xi|2 +
NA2

2
,(2.1)

− 1

N

N∑
i=1

∑
j ̸=i

U ′(xi)V
′(xi − xj) = − 1

N

∑
j<i

(U ′(xi)− U ′(xj))
xi − xj

|xi − xj |α+1
(2.2)

⩽
LU
N

∑
j<i

1

|xi − xj |α−1
,

− 1

N

N∑
i=1

∑
j ̸=i

xiV
′(xi − xj) ⩽

1

N

∑
j<i

1

|xi − xj |α−1
.(2.3)

Let us now consider

|∇Hint,α(X)| =
( N∑
i=1

( 1

N

∑
j ̸=i

V ′(xi − xj)
)2

)1/2

.

We follow the proof of [HM19, Lem. 5.15]. Let j < i, which implies xj < xi, and
denote

ηk (X) =

{
1 if xk < xi,

−1 otherwise.

Then, considering η(X) = (η1(X), . . . , ηN (X)), we have

√
N |∇Hint,α(X)| ⩾ ξ(X) · ∇Hint,α(X) =

1

N

∑
k

ηk(X)
∑
ℓ ̸=k

V ′(xk − xℓ)

= − 1

N

∑
k<ℓ

(ηk(X)− ηℓ(X))
xk − xℓ

|xk − xℓ|α+1 .

Notice that, for k < ℓ, ηk(X) ̸= ηℓ(X) if and only if xk < xi ⩽ xℓ, in which case we
have ηk(X)− ηℓ(X) = 2 and (xk − xℓ) < 0. Therefore, the sum above only contains
non positive terms. In particular, choosing k = j and ℓ = i, we get

√
N |∇Hint,α(X)| ⩾ 2

N

1

|xi − xj |α
.

This holds for any j < i, thus

√
N
N(N − 1)

2
|∇Hint,α(X)| ⩾ 2

N

∑
j<i

1

|xi − xj |α
,

|∇Hint,α(X)| ⩾ 4

N2(N − 1)
√
N

∑
j<i

1

|xi − xj |α
.i.e.,
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We therefore have

−
N∑
i=1

( 1

N

∑
j ̸=i

V ′(xi − xj)
)2

+
σN
N

N∑
i=1

∑
j ̸=i

V ′′(xi − xj)

⩽
∑
j<i

σN
N

2α

|xi − xj |α+1
−

( 4

N2(N − 1)
√
N

)2 1

|xi − xj |2α
.

For α > 1, thanks to Young’s inequality, there is a constant CN such that
2σNα

N

1

|xi − xj |α+1
−
( 4

N2(N − 1)
√
N

)2 1

|xi − xj |2α
< CN .

Therefore, using this result along with (2.1) and (2.2), we prove the existence of two
nonnegative constants C and D, possibly depending on N , such that

LN,αHα(X) ⩽ D + CHα(X).

Let us now modify the various estimates under the additional Assumption 3. We may
replace the control (2.1) by

(2.4) −
N∑
i=1

U ′(xi)xi ⩽ −2λ

N∑
i=1

x2i
2
.

Then, instead of (2.2) and (2.3), we use the fact that there are CN and DN such that

(LU + 1)

N

1

|xi − xj |α−1
+

2σNα

N

1

|xi − xj |α+1
−

( 4

N2(N − 1)
√
N

)2 1

|xi − xj |2α

< CN − DN

|xi − xj |α−1
.

Combining this inequality with (2.4), we prove the existence of two nonnegative con-
stants C and D, possibly depending on N , such that

LN,αHα(X) ⩽ D − CHα(X). □

Let us now consider the Coulomb case.

Lemma 2.2. — Let N > 1. Under Assumptions 1 and 2, for α = 1 and σN ⩽ 1/N ,
there exists CN,α, DN,α > 0 such that, for all X ∈ ON ,

LN,αHα(X) ⩽ DN,α + CN,αHα(X).

Proof. — We compute:

LN,αHα(X) = −
N∑
i=1

U ′(xi)xi −
1

N

N∑
i=1

∑
j ̸=i

U ′(xi)V
′(xi − xj)

− 1

N

N∑
i=1

∑
j ̸=i

xiV
′(xi−xj)+NσN−

N∑
i=1

( 1

N

∑
j ̸=i

V ′(xi−xj)
)2

+
σN
N

N∑
i=1

∑
j ̸=i

V ′′(xi−xj).
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Let us consider
N∑
i=1

( 1

N

∑
j ̸=i

xi − xj
|xi − xj |2

)2

=
1

N2

N∑
i=1

∑
j,k ̸=i

xi − xj
|xi − xj |2

xi − xk

|xi − xk|2

=
1

N2

N∑
i=1

∑
j ̸=i

1

|xi − xj |2
+

1

N2

∑
i,j,k

distinct

xi − xj
|xi − xj |2

xi − xk

|xi − xk|2
,

and using the fact that for X ∈ ON and i < j we have xi < xj , we obtain

∑
i,j,k

distinct

xi − xj
|xi − xj |2

xi − xk

|xi − xk|2
= 2

N∑
i=1

∑
j<k
j,k ̸=i

xi − xj
|xi − xj |2

xi − xk

|xi − xk|2

= 2
∑
i<j<k

( xi − xj
|xi − xj |2

xi − xk

|xi − xk|2
+

xj − xi

|xj − xi|2
xj − xk

|xj − xk|2
+

xk − xj

|xk − xj |2
xk − xi

|xk − xi|2
)

= 2
∑
i<j<k

( 1

xj − xi

1

xk − xi
− 1

xj − xi

1

xk − xj
+

1

xk − xi

1

xk − xj

)
= 2

∑
i<j<k

1

xj − xi

1

xk − xi

1

xk − xj
(xk − xj − xk + xi + xj − xi) = 0.

Furthermore, the estimates (2.1), (2.2) and (2.3) still hold. We thus have

−
N∑
i=1

U ′(xi)xi ⩽
(
LU +

1

2

) N∑
i=1

|xi|2 +
NA2

2
,

− 1

N

N∑
i=1

∑
j ̸=i

(U ′(xi) + xi)V
′(xi − xj) ⩽

1

2
(LU + 1)(N − 1).

Therefore,

LN,αHα(X) ⩽
(LU + 1)(N − 1)

2
+
NA2

2
+NσN +

(
LU +

1

2

) N∑
i=1

|xi|2

+ 2
∑
i<j

(σN
N

− 1

N2

) 1

|xi − xj |2
.

Noticing that there exist constants C,D such that
∑N
i=1 |xi|2 ⩽ CHα(X)+D, we ob-

tain the result if σN/N ⩽ 1/N2. □

Proof of Theorem 2. — For R > 0, define

τR := inf{t ⩾ 0 | Hα(Xt) > R}, τ := lim
R→∞

τR,

τ∂ON
:= inf{t ⩾ 0 | Xt ∈ ∂ON}.and

We have {τ = ∞} ⊂ {τ∂ON
= ∞}. Equation (1.1) with initial condition X0 = x ∈ ON

has a strong solution up to the stopping time τ . Let us show that Px(τ = ∞) = 1.
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α > 1. — Itô’s formula for the function f(t,x) = e−C
N,αtHα(x), using Lemma 2.1,

yields, for all R > 0 and t ⩾ 0,

Ex

(
e−C

N,α(t∧τR)Hα(Xt∧τR)
)
⩽ Hα(x) +

DN,α

CN,α
,

and thus, as Hα ⩾ 0,

Re−C
N,αtPx(τR ⩽ t) ⩽ Hα(x) +

DN,α

CN,α
.

We obtain, for all t ⩾ 0,

Px(τ ⩽ t) = lim
R→∞

Px(τR ⩽ t) ⩽ lim
R→∞

Hα(x) +DN,α/CN,α

R
eC

N,αt = 0.

α = 1. — There exists a constant H0 ∈ R, possibly depending on N , such that
for all x ∈ ON , Hα(x) ⩾ H0. Considering Itô’s formula for the function f(t,x) =

e−C
N,αt (Hα(x) +H0), using Lemma 2.2, yields, for all R > 0 and t ⩾ 0,

Ex

(
e−C

N,α(t∧τR) (Hα(Xt∧τR) +H0)
)
⩽ Hα(x) +H0 +

DN,α

CN,α
,

and thus, as Hα +H0 ⩾ 0,

e−C
N,αt(R+H0)Px(τR ⩽ t) ⩽ Hα(x) +H0 +

DN,α

CN,α
.

We obtain, for all t ⩾ 0,

Px(τ ⩽ t) = lim
R→∞

Px(τR ⩽ t) ⩽ lim
R→∞

Hα(x) +H0 +DN,α/CN,α

R+H0
eC

N,αt = 0.

We thus have, in both cases, ∀t ⩾ 0, Px(τ > t) = 1. This implies the particle
system almost surely does not explode nor collide in finite time.

Uniqueness of the solution of (1.1) is a direct consequence of (2.5) in Theorem 3
below. □

2.2. Long time behavior. — In this section we study the long time behavior of the
particle system. Parts of the result will also allow us to conclude on the uniqueness
of the particle system.

An important tool is the convexity of the interaction (see Remark 1.1).

Theorem 3. — Consider two solutions X and Y of (1.1) driven by the same Brownian
motions.

– Under Assumptions 1 and 2, we have

(2.5)
N∑
i=1

(Xi
t − Y it )

2 ⩽ e2LU t
N∑
i=1

(Xi
0 − Y i0 )

2.

This yields strong uniqueness of the solution of (1.1).
– Under Assumptions 1 and 2, denoting by ρ1,Nt and ρ2,Nt the laws on ON of the

particle systems with respective initial conditions ρ1,N0 and ρ2,N0 , we have

(2.6) ∀t ⩾ 0, W2

(
ρ1,Nt , ρ2,Nt

)
⩽ eLU tW2

(
ρ1,N0 , ρ2,N0

)
.
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– Under Assumptions 1 and 3, we have

(2.7) ∀t ⩾ 0, W2

(
ρ1,Nt , ρ2,Nt

)
⩽ e−λtW2

(
ρ1,N0 , ρ2,N0

)
.

Proof. — Let (Xi
t)1⩽i⩽N and (Y it )1⩽i⩽N be two solutions of (1.1) driven by the

same set of Brownian motions (i.e., coupled using a synchronous coupling), such that
X1
t < · · · < XN

t and Y 1
t < · · · < Y Nt . Using Itô’s formula,

d

( N∑
i=1

(Xi
t − Y it )

2

)
= −2

N∑
i=1

(
U ′(Xi

t)− U ′(Y it )
)
(Xi

t − Y it )dt

− 1

N

N∑
i=1

2(Xi
t − Y it )

∑
j ̸=i

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
dt,

with, since x→ V ′(x) is odd and increasing for x > 0 under Assumption 1,
2

N

∑
1⩽j ̸=i⩽N

(Xi
t − Y it )

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
=

2

N

∑
1⩽j<i⩽N

(
(Xi

t − Y it )− (Xj
t − Y jt )

)(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
=

2

N

∑
1⩽j<i⩽N

(
(Xi

t −Xj
t )− (Y it − Y jt )

)(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
⩾ 0.

Under Assumption 2, we obtain

d

dt

N∑
i=1

(Xi
t − Y it )

2 ⩽ 2LU

N∑
i=1

(Xi
t − Y it )

2, i.e., d
(
e−2LU t

N∑
i=1

(Xi
t − Y it )

2
)
= Ktdt,

with Kt ⩽ 0. We thus obtain
N∑
i=1

(Xi
t − Y it )

2 ⩽ e2LU t
N∑
i=1

(Xi
0 − Y i0 )

2.

This yields the results (2.5) and (2.6).
Under Assumption 3, similar calculations yield

d

dt

N∑
i=1

(Xi
t − Y it )

2 ⩽ −2λ

N∑
i=1

(Xi
t − Y it )

2.

and thus (2.7). □

2.3. Some moment bounds. — The aim of this section is to provide some explicit
bounds on the second moment of the empirical measure, as well as on the expec-
tation of the interaction potential. These bounds will be useful later when proving
propagation of chaos. Let, for x ∈ RN ,

(2.8) H(x) =

N∑
i=1

|xi|2 −
1

2N

∑
i ̸=j

|xi − xj |.

The idea of considering this function comes from [LM20].
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Lemma 2.3. — Consider Assumptions 1 and 4. The function H satisfies

∀x ∈ RN , H(x) ⩾
1

2

∑
i

|xi|2 −N.(2.9)

Given (Xt)t ⩾ 0 a solution of (1.1), we have the uniform in time bound

EH(Xt) ⩽ e−2λtEH(X0) +
1

λ

(
NσN +

C(α,N)

α

)
,(2.10)

as well as the following estimates:

E
(∫ t

0

e2λs

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)
(2.11)

⩽
α

2

(
EH(X0) +Ne2λt + 2NσN

e2λt − 1

2λ

)
+ C(α,N)

e2λt − 1

2λ
,

E
(∫ t

0

1

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)
(2.12)

⩽
α

2
(EH(X0) +N + (2NσN + 2λN) t) + C(α,N)t,

where

C(α,N) =


(N − 1)/2 if α = 1,

N/(2− α) if α ∈ ]1, 2[,

2N lnN if α = 2,

(1 + 1/(α− 2))Nα−1 if α > 2.

The proof relies on the computation of the time evolution of H(Xt) using Itô’s
formula. Using parts of the calculations of [LM20], as well as some technical results,
we obtain the various bounds. We postpone the proof of this lemma to Appendix B
for the sake of clarity.

3. Limit for large number of particles with vanishing noise

Consider for a given N ⩾ 1 a solution Xt = (X1
t , . . . , X

N
t ) of (1.1). Our goal is to

prove the following theorem.

Theorem 4. — Consider a sequence of initial empirical measures (µN0 )N⩾1 such that
there exists ρ0 ∈ P2(R) such that limN→0 E

(
W2(µ

N
0 , ρ0)

2
)

= 0. Under Assump-
tions 1 and 3 for α = 1 or under Assumptions 1 and 4 for α ∈ ]1, 2[ (with the
additional assumption σN ⩽ 1/N for α = 1), there exist a deterministic family of
measures (ρt)t⩾0 ∈ C(R+,P2(R)), as well as universal constants C1, C2 > 0 and a
quantity CN0 > 0 that depends on the initial condition and such that CN0 → 0 as
N → ∞, such that, for all N ⩾ 1 and all t ⩾ 0,

E
(
W2(µ

N
t , ρt)

2
)
⩽ e−2λtCN0 +

C1

N (2−α)/α + C2σN .
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In particular, notice that we require the diffusion coefficient σN to go to 0 in order
to obtain the limit for the empirical measure.

Here, we do not identify the limit ρt, we just prove its existence. The limit will be
studied in Section 4 later.

The proof of Theorem 4 is divided in two parts. First, we prove a property on
any sequence of independent empirical measures (µN )N which is similar to a Cauchy
property. Then, we use the independence of the random variables (µN )N to conclude
on the convergence towards a deterministic limit.

We will start by proving the Cauchy estimate in the case α = 1, as this will allow
us to describe the method in an easier case, before extending the result to α ∈ ]1, 2[

using much more cumbersome computations.

3.1. The case α = 1. — In this section, we prove the following lemma, which states
a sort of Cauchy property for the sequence of empirical measures:

Lemma 3.1. — Consider Assumption 1 and Assumption 3, with α = 1 and σN ⩽ 1/N .
Let (µN )N∈N be any sequence of independent empirical measures, such that µNt is the
empirical measure of the N particle system at time t. We have, for all t ⩾ 0 and all
N,M ⩾ 1,

(3.1) E
(
W2

(
µNt , µ

M
t

)2)
⩽ e−2λtE

(
W2

(
µN0 , µ

M
0

)2)
+

1

2λ

( 1

N
+

1

M
+ 2 (σN + σM )

)
,

There also are constants C1, C2, C3 > 0 independent of N and M such that

(3.2) E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ eC1t

(
E
(
W2

(
µN0 , µ

M
0

)2)
+ C2(σM + σN ) + C3

( 1

M
+

1

N

))
.

Proof. — For N,M ⩾ 1, let (B̃i)i∈{1,...,M} and (B̃′j)j∈{1,...,N} be two independent
families of Brownian motions, and consider x1 < · · · < xM and y1 < · · · < yN
two sets of initial conditions. Denote by (X̃i,M )i∈{1,...,M} (resp. (Ỹ j,N )j∈{1,...,N}) the
unique strong solution of (1.1) with initial conditions x1 < · · · < xM and Brownian
motions (B̃i)i∈{1,...,M} (resp. initial conditions y1 < · · · < yN and Brownian motions
(B̃′j)j∈{1,...,N}).

In order to compare the two sets (X̃i,M )i∈{1,...,M} and (Ỹ j,N )j∈{1,...,M} despite
the difference in the number of particles, we consider N exact copies of the sys-
tem (X̃i,M )i∈{1,...,M}, and M exact copies of (Ỹ j,N )j∈{1,...,N}. We thus denote
(Xi)i∈{1,...,NM} and (Y i)i∈{1,...,NM} the resulting processes, numbered such that, for
all t ⩾ 0,

−∞ <X1
t = · · · = XN

t < · · · < X
N(M−1)+1
t = · · · = XNM

t <∞,

−∞ <Y 1
t = · · · = YMt < · · · < Y

M(N−1)+1
t = · · · = Y NMt <∞.
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Thus

µMt =
1

M

M∑
i=1

δX̃i,M
t

=
1

NM

NM∑
i=1

δXi
t
, µNt =

1

N

N∑
i=1

δỸ i,N
t

=
1

NM

NM∑
i=1

δY i
t
,

and

W2

(
µNt , µ

M
t

)2
=

1

NM

NM∑
i=1

∣∣Xi
t − Y it

∣∣2 .
By convention, and for the sake of clarity, consider V ′(0) = 0. Then, for all i ∈
{1, . . . , NM}, we have the following dynamics:

dXi
t = −U ′(Xi

t)dt−
1

NM

∑
j

V ′(Xi
t −Xj

t )dt+
√
2σMdB

i
t

dY it = −U ′(Y it )dt−
1

NM

∑
j

V ′(Y it − Y jt )dt+
√
2σNdB

′i
t ,

where the Brownian motions (Bit)i and (resp. (B′i
t )i) are such that for all k ∈

{1, . . . ,M}, we have BN(k−1)+1 = · · · = BNk = B̃k, (resp. for all ℓ ∈ {1, . . . , N},
we have B′M(ℓ−1)+1 = · · · = B′Mℓ = B̃′ℓ). Thus

d(Xi
t − Y it )

2 = −2
(
U ′(Xi

t)− U ′(Y it )
)
(Xi

t − Y it )dt+ 2σMdt+ 2σNdt

− 2(Xi
t − Y it )

1

NM

∑
j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
dt

+ 2
√
2σM (Xi

t − Y it )dB
i
t − 2

√
2σN (Xi

t − Y it )dB
′i
t ,

and

d
( 1

NM

∑
i

(Xi
t −Y it )2

)
= − 2

NM

∑
i

(
U ′(Xi

t)− U ′(Y it )
)
(Xi

t −Y it )dt+2(σM +σN )dt

+
2
√
2σM

NM

∑
i

(Xi
t − Y it )dB

i
t −

2
√
2σN

NM

∑
i

(Xi
t − Y it )dB

′i
t

− 2

(NM)2

∑
i

(Xi
t − Y it )

∑
j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
dt.

We first compute:∑
i

(Xi
t − Y it )

∑
j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
=

∑
i>j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)(
(Xi

t − Y it )− (Xj
t − Y jt )

)
=

∑
i>j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)(
(Xi

t −Xj
t )− (Y it − Y jt )

)
.

Remember that the function x → V ′(x) is increasing for x > 0. Thus, all choices of
indexes i > j such that Xi

t ̸= Xj
t (which therefore imply, by the choice of numbering,
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that Xi
t > Xj

t ) and Y it ̸= Y jt yield nonnegative terms in the sum above. If Xi
t = Xj

t ,
by convention, we have V ′(Xi

t −Xj
t ) = 0, so

(3.3)

∑
i

(Xi
t − Y it )

∑
j

(
V ′(Xi

t −Xj
t )− V ′(Y it − Y jt )

)
⩾

∑
i>j

Y i
t =Y

j
t

V ′(Xi
t −Xj

t )(X
i
t −Xj

t ) +
∑
i>j

Xi
t=X

j
t

V ′(Y it − Y jt )(Y
i
t − Y jt )

⩾
∑
i>j

Y i
t =Y

j
t

−1 +
∑
i>j

Xi
t=X

j
t

−1 = −M(M − 1)

2
N − N(N − 1)

2
M.

Since −
(
U ′(Xi

t)− U ′(Y it )
)
(Xi

t − Y it ) ⩽ λ(Xi
t − Y it )

2, we thus obtain, for all t ⩾ 0,

(3.4) W2

(
µNt , µ

M
t

)2
⩽ W2

(
µN0 , µ

M
0

)2 − 2λ

∫ t

0

W2

(
µNs , µ

M
s

)2
ds

+

∫ t

0

(
2

(NM)2

(N(N − 1)

2
M +

M(M − 1)

2
N
)
+ 2(σM + σN )

)
ds

+
2
√
2σM

NM

∑
i

∫ t

0

(
Xi
s − Y is

)
dBis −

2
√
2σN

NM

∑
i

∫ t

0

(
Xi
s − Y is

)
dB′i

s .

Considering the expectation of the inequality above, and using Gronwall’s lemma
yields (3.1). Let us now take the supremum:

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+

( 1

M
+

1

N

)
t+ 2(σM + σN )t

+ E
(
2
√
2σM

NM
sup
s∈[0,t]

∑
i

∫ s

0

(
Xi
u − Y iu

)
dBiu

)
+ E

(
2
√
2σN

NM
sup
s∈[0,t]

∑
i

−
∫ s

0

(
Xi
u − Y iu

)
dB′i

u

)
.

We use Burkholder-Davis-Gundy inequality to show that there exists a constant CBDG
such that

E
(
2
√
2σM

NM
sup
s∈[0,t]

∑
i

∫ s

0

(Xi
u − Y iu)dB

i
u

)
⩽

2
√
2σM

NM

∑
i

E
(

sup
s∈[0,t]

∫ s

0

(
Xi
u − Y iu

)
dBiu

)

⩽ CBDG
2
√
2σM

NM

∑
i

E
((∫ t

0

(
Xi
s − Y is

)2
ds

)1/2)
⩽ CBDG

2
√
2σM

NM

∑
i

(
1

2
√
2σM

E
(∫ t

0

(
Xi
s − Y is

)2
ds

)
+

√
2σM
2

)
= CBDGE

(∫ t

0

1

NM

∑
i

(
Xi
s − Y is

)2
ds

)
+ 2σMCBDG

= CBDGE
(∫ t

0

W2

(
µNs , µ

M
s

)2
ds

)
+ 2σMCBDG.
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Using the same control on the second local martingale, we get

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+

( 1

N
+

1

M

)
t+ 2(σM + σN )t

+ 2CBDG(σM + σN ) + 2CBDG

∫ t

0

E
(
W2

(
µNs , µ

M
s

)2)
ds,

and thus, denoting

CN,M =
1

2CBDG

( 1

M
+

1

N
+ 2(σM + σN )

)
,

we get

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
+ CN,M ⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+ 2CBDG(σM + σN ) + CN,M

+ 2CBDG

∫ t

0

(
E
(
W2

(
µNs , µ

M
s

)2)
+ CN,M

)
ds.

Gronwall’s lemma yields (3.2). □

Remark 3.1. — For λ = 0, the proof above still yields a quantitative result of prop-
agation of chaos, though no longer uniform in time: considering (3.4), we get, for all
t ⩾ 0,

EW2

(
µNt , µ

M
t

)2
⩽ EW2

(
µN0 , µ

M
0

)2
+

( 1

N
+

1

M
+ 2(σN + σM )

)
t.

Likewise, under Assumption 2 instead of Assumption 3, we get a similar (non uniform
in time) result

EW2

(
µNt , µ

M
t

)2
⩽ e2LU t

(
EW2

(
µN0 , µ

M
0

)2
+

1

2LU

( 1

N
+

1

M
+ 2(σN + σM )

))
.

3.2. The case α ∈ ]1, 2[. — Let us now show the proof of Lemma 3.1 can be extended
to other values of α. Notice that we use the assumption α = 1 to deal with (3.3). To
account for this quantity for α > 1, we now use the bound (2.11) and obtain, using
the definition of H given in (2.8), the following lemma.

Lemma 3.2. — Consider Assumptions 1 and 4, with α ∈ ]1, 2[. Let (µN )N∈N be any
sequence of independent empirical measures, such that µNt is the empirical measure
of the N particle system at time t. We have, for all t ⩾ 0 and all N,M ⩾ 1,

(3.5) E
(
W2

(
µNt , µ

M
t

)2)
⩽ e−2λt

(
E
(
W2

(
µN0 , µ

M
0

)2)
+

3(α− 1)

N (2−α)/αE
µM
0
(
|X|2

)
+

3(α− 1)

M (2−α)/αE
µN
0
(
|Y |2

))
+

1

λ
(σM + σN ) +

1

λ

( 3α− 2

α(2− α)
+ 3λ(α− 1)

)( 1

N (2−α)/α +
1

M (2−α)/α

)
+

3(α− 1)

2λ

( σN
M (2−α)/α +

σM
N (2−α)/α

)
.
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Proof. — Consider a similar set up as the proof of Lemma 3.1, and define (X̃i,M
t )i,

(Ỹ j,Nt )j , (Xi
t)i, (Y

j
t )j in the same manner. We compute, like previously:

d
(
e2λtW2

(
µNt , µ

M
t

)2)
= 2λe2λtW2

(
µNt , µ

M
t

)2
dt+ e2λtdW2

(
µNt , µ

M
t

)2
= e2λtAtdt+ e2λtdMt

where Mt is a local martingale, and

At ⩽ − 2

(NM)2

∑
i>j

Y i
t =Y

j
t

V ′(Xi
t −Xj

t )(X
i
t −Xj

t )

− 2

(NM)2

∑
i>j

Xi
t=X

j
t

V ′(Y it − Y jt )(Y
i
t − Y jt ) + 2(σM + σN ).

Using Young’s inequality, we have, for all γ > 0 and i > j,
1

|x|α−1
⩽ γα/(α−1) (α− 1)

α

⌊ i−jN ⌋+ 1

|x|α
+

1

αγα
(
⌊ i−jN ⌋+ 1

)α−1 .

Hence,
1

(NM)2

∑
i>j

Y i
t =Y

j
t

Xi
t ̸=X

j
t

1

|Xi
t −Xj

t |α−1

⩽
1

(NM)2
γα/(α−1) (α− 1)

α

∑
i>j

Y i
t =Y

j
t

Xi
t ̸=X

j
t

⌊ i−jN ⌋+ 1

|Xi
t −Xj

t |α
+

1

(NM)2
1

αγα

∑
i>j

Y i
t =Y

j
t

1(
⌊ i−jN ⌋+ 1

)α−1 .

We calculate, since ⌊(i− j)/N⌋+ 1 ⩾ (i− j)/N :∑
i>j

Y i
t =Y

j
t

1(
⌊ i−jN ⌋+ 1

)α−1 ⩽
∑
i>j

Y i
t =Y

j
t

Nα−1

(i− j)
α−1

∑
i>j

Y i
t =Y

j
t

1

(i− j)α−1
=

NM∑
i=1

i−1∑
j=⌊ i−1

M ⌋M+1

1

(i− j)α−1
=

NM∑
i=1

i−1−⌊ i−1
M ⌋M∑

j=1

1

jα−1
,and

which implies using Lemma A.1∑
i>j

Y i
t =Y

j
t

1(
⌊ i−jN ⌋+ 1

)α−1 ⩽ Nα−1
NM∑
i=1

1

2− α

(
i− 1−

⌊ i− 1

M

⌋
M

)2−α
⩽
NαMM2−α

2− α
.

Hence,
1

(NM)2
1

αγα

∑
i>j

Y i
t =Y

j
t

1(
⌊ i−jN ⌋+ 1

)α−1 ⩽
1

N2−α
1

Mα−1

1

α(2− α)γα
.
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We consider γα/(α−1) = 1/(M1+δ) for some yet unspecified δ > 0. Thus
1

(NM)2
1

αγα

∑
i>j

Y i
t =Y

j
t

1(
⌊ i−jN ⌋+ 1

)α−1 ⩽
1

α(2− α)N2−α
M (1+δ)(α−1)

Mα−1
=

Mδ(α−1)

α(2− α)N2−α .

Furthermore,

1

(NM)2

∑
i>j

Y i
t =Y

j
t

Xi
t ̸=X

j
t

⌊ i−jN ⌋+ 1

|Xi
t −Xj

t |α
⩽

1

(NM)2

M−1∑
i=0

i−1∑
j=0

N∑
k=1

N∑
ℓ=1

⌊i− j + k−ℓ
N ⌋+ 1

|XiN+k
t −XjN+ℓ

t |α

⩽
1

(NM)2

M∑
i=1

i−1∑
j=1

N2 i− j + 2

|X̃i
t − X̃j

t |α
,

and thus

γα/(α−1) (α− 1)

α

1

(NM)2

∑
i>j

Y i
t =Y

j
t

Xi
t ̸=X

j
t

⌊ i−jN ⌋+ 1

|Xi
t −Xj

t |α
⩽ 3

(α− 1)

α

1

M1+δ

1

M2

∑
i>j

i− j

|X̃i
t − X̃j

t |α
.

Using the same calculations to deal with
1

(NM)2

∑
i>j

Xi
t=X

j
t

Y i
t ̸=Y

j
t

1

|Y it − Y jt |α−1
,

we obtain, by taking the expectation in Itô’s formula, that for all t ⩾ 0,

e2λtE
(
W2

(
µNt , µ

M
t

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+ 2(σM + σN )

∫ t

0

e2λsds

+ 2

∫ t

0

E
( e2λs

(NM)2

∑
i>j

Y i
s =Y

j
s

1

|Xi
s −Xj

s |α−1

)
ds

+ 2

∫ t

0

E
( e2λs

(NM)2

∑
i>j

Xi
s=X

j
s

1

|Y is − Y js |α−1

)
ds

⩽ E
(
W2

(
µN0 , µ

M
0

)2)
+ 2(σM + σN )

∫ t

0

e2λsds+

∫ t

0

2Mδ(α−1)

α(2− α)N2−α e
2λsds

+

∫ t

0

2N δ̃(α−1)

α(2− α)M2−α e
2λsds

+ 6
(α− 1)

α

1

M1+δ

∫ t

0

E
(e2λs
M2

∑
i>j

i− j

|X̃i,M
s − X̃j,M

s |α
)
ds

+ 6
(α− 1)

α

1

N1+δ̃

∫ t

0

E
(e2λs
N2

∑
i>j

i− j

|Ỹ i,Ns − Ỹ j,Ns |α
)
ds,
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and we use (2.11) to get

E
(
e2λtW2

(
µNt , µ

M
t

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+ 2(σM + σN )

∫ t

0

e2λsds

+

∫ t

0

2M δ(α−1)

α(2− α)N2−α e
2λsds+

∫ t

0

2N δ̃(α−1)

α(2− α)M2−α e
2λsds

+
3(α− 1)

M1+δ

(
E
(
H((X̃i,M

0 )i)
)
+Me2λt + 2MσM

e2λt−1

2λ

)
+

3(α− 1)

N1+δ̃

(
E
(
H((Ỹ j,N0 )j)

)
+Ne2λt + 2NσN

e2λt−1

2λ

)
+

6(α− 1)

α(2− α)

e2λt−1

2λ

( 1

Mδ
+

1

N δ̃

)
.

We now choose the coefficients δ and δ̃. Consider

δ =
(2− α)

α

lnN

lnM
and δ̃ =

(2− α)

α

lnM

lnN
.

In this way, we have both

Mδ(α−1)

N2−α =
eδ(α−1) lnM

N2−α =
e

(2−α)(α−1)
α lnN

N2−α = N−(2−α)/α

N δ̃(α−1)

M2−α =M−(2−α)/α,and

and

M−δ =M− (2−α)
α

lnN
lnM = e−

(2−α)
α lnN = N−(2−α)/α and, likewise, N−δ̃ =M−(2−α)/α.

And thus

E
(
e2λtW2

(
µNt , µ

M
t

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+ 3(α− 1)

( 1

N (2−α)/αE
( 1

M
H((X̃i,M

0 )i)
)
+

1

M (2−α)/αE
( 1

N
H((Ỹ j,N0 )j)

))
+
e2λt − 1

2λ

(
2(σM + σN ) +

2

α(2− α)

( 1

N (2−α)/α +
1

M (2−α)/α

)
+ 6(α− 1)

( σN
M (2−α)/α +

σM
N (2−α)/α

)
+

6(α− 1)

α(2− α)

( 1

N (2−α)/α +
1

M (2−α)/α

))
+ 3(α− 1)e2λt

( 1

N (2−α)/α +
1

M (2−α)/α

)
.

This yields the result. □

Lemma 3.3. — Consider Assumptions 1 and 4, with α ∈ ]1, 2[. Let (µN )N∈N be any
sequence of independent empirical measures, such that µNt is the empirical measure
of the N particle system at time t. There exist positive constants C1, C2 and C3 such
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that, for all t ⩾ 0 and all N,M ⩾ 1,

(3.6) E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ eC1t

(
E
(
W2

(
µN0 , µ

M
0

)2)
+ 3(α− 1)

(EµM
0

(
|X|2

)
N (2−α)/α +

EµN
0

(
|X|2

)
M (2−α)/α

)
+ C2(σN + σM ) + C3

( 1

N (2−α)/α +
1

M (2−α)/α

))
.

Proof. — Consider a similar set up as the proof of Lemma 3.1, and define (X̃i,M
t )i,

(Ỹ j,Nt )j , (Xi
t)i, (Y

j
t )j in the same manner. With similar calculations, Itô’s formula

yields
W2

(
µNt , µ

M
t

)2
⩽ W2

(
µN0 , µ

M
0

)2
+
(
2(σM + σN ) +

2

α(2− α)

( 1

N (2−α)/α +
1

M (2−α)/α

))
t

+
6(α− 1)

αMN (2−α)/α

∫ t

0

1

M2

∑
i>j

i− j

|X̃i,M
s − X̃j,M

s |α
ds

+
6(α− 1)

αNM (2−α)/α

∫ t

0

1

N2

∑
i>j

i− j

|Ỹ i,Ns − Ỹ j,Ns |α
ds

+
2
√
2σM

NM

∑
i

∫ t

0

(Xi
s − Y is )dB

i
s −

2
√
2σN

NM

∑
i

∫ t

0

(Xi
s − Y is )dB

′i
s .

Similarly as Lemma 3.1, we use Burkholder-Davis-Gundy inequality to show that
there exists a constant CBDG such that

E
(
2
√
2σM

NM
sup
s∈[0,t]

∑
i

∫ s

0

(Xi
u−Y iu)dBiu

)
⩽ 2CBDGσM+CBDGE

(∫ t

0

W2

(
µNs , µ

M
s

)2
ds

)
,

and

E
(
2
√
2σN

NM
sup
s∈[0,t]

∑
i

−
∫ s

0

(
Xi
u − Y iu

)
dB′i

u

)
⩽ 2CBDGσN + CBDGE

(∫ t

0

W2

(
µNs , µ

M
s

)2
ds

)
.

We now use (2.12) to obtain

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+
(
2(σM + σN ) +

2

α(2− α)

( 1

N (2−α)/α +
1

M (2−α)/α

))
t

+
6(α− 1)

αMN (2−α)/α

(α
2
(EH(X0) +M + (2MσM +M) t) + C(α,M)t

)
+

6(α− 1)

αNM (2−α)/α

(α
2
(EH(Y 0) +N + (2NσN +N) t) + C(α,N)t

)
+ 2CBDG(σN + σM ) + 2CBDGE

(∫ t

0

W2

(
µNs , µ

M
s

)2
ds

)
,
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and thus
E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ E

(
W2

(
µN0 , µ

M
0

)2)
+

3(α− 1)

N (2−α)/αE
( 1

M
H(X0)

)
+

3(α− 1)

M (2−α)/αE
( 1

N
H(Y 0)

)
+ 2CBDG(σN + σM ) + 3(α− 1)

( 1

N (2−α)/α +
1

M (2−α)/α

)
+

(
2(σM + σN ) + 6(α− 1)

( σM
N (2−α)/α +

σN
M (2−α)/α

)
+

6α− 4

α(2− α)

( 1

N (2−α)/α +
1

M (2−α)/α

)
+ 3λ(α− 1)

( 1

N (2−α)/α +
1

M (2−α)/α

))
t

+ 2CBDGE
(∫ t

0

sup
u∈[0,s]

W2

(
µNu , µ

M
u

)2
ds

)
.

Denote

Cprop(N,M,α) :=
( 6α− 4

α(2− α)
+ 3λ(α− 1)

)( 1

N (2−α)/α +
1

M (2−α)/α

)
+ 6(α− 1)

( σM
N (2−α)/α +

σN
M (2−α)/α

)
+ 2(σM + σN ),

Dprop(N,M,α) := E
(
W2

(
µN0 , µ

M
0

)2)
+ 2CBDG(σN + σM )

+ 3(α− 1)
(E (

1
MH(X0)

)
N (2−α)/α +

E
(

1
NH(Y 0)

)
M (2−α)/α

)
+ 3(α− 1)

( 1

N (2−α)/α +
1

M (2−α)/α

)
,

such that, for the sake of conciseness, we have

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
⩽ Dprop(N,M,α)

+ 2CBDGE
(∫ t

0

(
sup
u∈[0,s]

W2

(
µNu , µ

M
u

)2
+
Cprop(N,M,α)

2CBDG

)
ds

)
.

Using Gronwall lemma on

t 7−→ E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
+
Cprop(N,M,α)

2CBDG
,

we get, for all t ⩾ 0,

E
(
sup
s∈[0,t]

W2

(
µNs , µ

M
s

)2)
+
Cprop(N,M,α)

2CBDG

⩽ e2CBDGt
(
Dprop(N,M,α) +

Cprop(N,M,α)

2CBDG

)
. □

3.3. Conclusion. — We now wish to prove that the Cauchy-like estimates (3.1) and
(3.5) are sufficient to conclude on the convergence, at any given t > 0, of the empirical
measures.
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Lemma 3.4. — For any sequence (µn)n∈N of independent random measures in
P2 (R), if

(3.7) ∀ε > 0, ∃N ⩾ 0, ∀n,m ⩾ N, EW2 (µ
n, µm) ⩽ ε,

then there exists a deterministic measure ρ ∈ P2 (R) such that

EW2 (µ
n, ρ) −→ 0 as n −→ ∞.

Proof. — Let us start by mentioning the result of [Bol08], which states that if (X, d) is
a complete metric space, then so is (P(X),Wd), where Wd is the Wasserstein distance
associated to d. Denote, for ξ and ζ two probability measures on the space P2(R)
and Γ the set of couplings of ξ and ζ, the Wasserstein distance

(3.8) W(ξ, ζ) = inf
(µ,ν)∼Γ

EW2(µ, ν).

The metric space (P1(P2(R)),W) is complete.
Let ξn be the law of µn. The assumption (3.7) implies, since W(ξn, ξm) ⩽

EW2 (µ
n, µm), that there exists a measure ζ ∈ P(P2(R)) such that

W(ξn, ζ) −→ 0 as n −→ ∞.

Denote by πn the optimal coupling between ξn and ζ for the Wasserstein distance
above. Considering π1 ⊗ π2 ⊗ · · · , there exists a sequence (ρn)n, of independent mea-
sures identically distributed according to ζ, such that

EW2 (µ
n, ρn) −→ 0 as n −→ ∞.

We now wish to prove that all ρn are almost surely equal. To do so, we will make
use of the assumption of independence of the sequence µn. We have

∀ε > 0, ∃N ⩾ 0, ∀n ⩾ N, ∀p > 0, EW2

(
µn, µn+p

)
⩽ ε,

∀ε > 0, ∃N ⩾ 0, ∀n ⩾ N, EW2 (µ
n, ρn) ⩽ ε.

Direct triangle inequalities using the two assertions above yield

∀ε > 0, ∃N ⩾ 0, ∀n ⩾ N, ∀p > 0, EW2

(
µn, ρn+p

)
⩽ ε,

∀ε > 0, ∃N ⩾ 0, ∀n ⩾ N, ∀p > 0, EW2

(
ρn, ρn+p

)
⩽ ε.

The fact that EW2 (µ
n, ρn) → 0 implies EW1 (µ

n, ρn) → 0. The dual formulation of
the L1 Wasserstein distance yields

E sup
∥ψ∥Lip⩽1

|µn(ψ)− ρn(ψ)| −→ 0.

Let f be a bounded Lipschitz continuous function. We have

(3.9) E |µn(f)− ρn(f)| −→ 0.

In particular we get Eµn(f) → Eρ(f), with ρ ∼ ζ. Likewise,

(3.10) E
∣∣ρn(f)− ρn+1(f)

∣∣ −→ 0.

On the one hand, using the independence of the sequence,

E
(
µn(f)µn+1(f)

)
= E (µn(f))E

(
µn+1(f)

)
−→ E (ρ(f))

2
.
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On the other hand,

E
(
µn(f)µn+1(f)

)
= E

(
(ρn(f))

2
+ ρn(f) (µn(f)− ρn(f))

+ µn(f)
(
µn+1(f)− ρn+1(f)

)
+ µn(f)

(
ρn+1(f)− ρn(f)

))
.

Let us consider each term individually:

E
(
(ρn(f))

2
)
= E

(
(ρ(f))

2)
,

E (ρn(f) (µn(f)− ρn(f))) ⩽ ∥f∥∞E |µn(f)− ρn(f)| −→ 0 using (3.9),
E
(
µn(f)

(
µn+1(f)− ρn+1(f)

))
⩽ ∥f∥∞E

∣∣µn+1(f)− ρn+1(f)
∣∣ −→ 0 using (3.9),

E
(
µn(f)

(
ρn+1(f)− ρn(f)

))
⩽ ∥f∥∞E

∣∣ρn+1(f)− ρn(f)
∣∣ −→ 0 using (3.10).

Thus

E
(
µn(f)µn+1(f)

)
−→ E

(
(ρ(f))

2)
.

We have obtained

E (ρ(f))
2
= E

(
(ρ(f))

2)
,

which implies that for any bounded and Lipschitz continuous function f , ρ(f) is almost
surely constant. Let ρ1 and ρ2 be two random variables with law ζ, considering two
random variables X ∼ ρ1 and Y ∼ ρ2, we get for all Lipschitz continuous bounded
function h that Eh(X) = Eh(Y ). Let a < b be two real numbers. Consider

gm(x) =


1 if x ∈ [a+ 1/m, b− 1/m],

0 if x ⩽ a or x ⩾ b,

m(x− a) if a < x < a+ 1/m,

m(b− x) if b− 1/m < x < b.

By construction, (gm)m∈N is an increasing sequence of bounded Lipschitz continu-
ous functions such that for all m, gm ⩽ 1]a,b[ and for all x ∈ R, gm(x) → 1]a,b[(x)

as m → ∞. We thus have for all m ∈ N the equality Egm(X) = Egm(Y ) and,
by the monotone convergence theorem, E1]a,b[(X) = E1]a,b[(Y ). Then, again by the
monotone convergence theorem and by considering an increasing sequence of simple
functions, the equality Eh(X) = Eh(Y ) holds true for all bounded measurable func-
tion h. The variables X and Y are thus equal in law, and ρ is therefore a deterministic
probability measure. □

Lemma 3.4 allows us to conclude on the convergence, at any given t ⩾ 0, of the
sequence of empirical measures (µNt )N towards ρt where, at least formally, ρ is a
solution of the non linear limit equation (we refer to the next Section 4 for a more
rigorous identification of the equation satisfied by the limit ρ). However, a priori,
if the limit equation admits several solutions, nothing guarantees that the sequence
converges towards the same solution at two different times t1 and t2. To show this,
we now use the estimates (3.2) and (3.6) which, even though on their own do not
ensure uniform in time convergence because of the exponential term, show that on
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any time interval [0, T ] there is uniform convergence towards a unique solution of the
limit equation. This result, combined with the uniform in time pointwise convergence
given by Lemma 3.4, will yield the desired result. Denote C([0, T ],P2(R)) the space of
continuous functions taking values in the space of probability measures P2(R) endowed
with the L2 Wasserstein distance.

Lemma 3.5. — Let T ⩾ 0. For any sequence (µn)n∈N of independent random variables
in C([0, T ],P2(R)), if

(3.11) ∀ε > 0, ∃N ⩾ 0, ∀n,m ⩾ N, E
(

sup
t∈[0,T ]

W2 (µ
n
t , µ

m
t )

)
⩽ ε,

then there exists a deterministic measure (ρt)t∈[0,T ] ∈ C([0, T ],P2(R)) such that

E
(

sup
t∈[0,T ]

W2 (µ
n
t , ρt)

)
−→ 0 as n −→ ∞.

Proof. — Let, for ξ and ζ two probability measures on the space C([0, T ],P2(R))
and Γ the set of couplings of ξ and ζ, the Wasserstein distance be defined by

(3.12) Ws(ξ, ζ) = inf
(µ,ν)∼Γ

E
(

sup
t∈[0,T ]

W2(µt, νt)
)
.

Let ξn be the law of µn. By completeness, Assumption (3.11) implies that there exists
a probability measure ζ on C([0, T ],P2(R)) such that

Ws(ξ
n, ζ) −→ 0 as n −→ ∞.

Thus, there exists a sequence (ρn)n, identically distributed according to ζ, such that

E sup
t∈[0,T ]

W2 (µ
n
t , ρ

n
t ) −→ 0 as n −→ ∞.

By the same proof as Lemma 3.4, we get that for all t ⩾ 0, all ρnt are almost surely
equal, hence the result. □

4. Identification of the limit

The goal of this subsection is to identify, in a more rigorous way than the formal
calculations of the introduction, the limit ρt, and more precisely the PDE it satisfies.
We prove the following theorem

Theorem 5. — For α ∈ ]1, 2[ under Assumptions 1 and 4, or for α = 1 under As-
sumptions 1 and 2, both with σN → 0, the limit (ρt)t⩾0, obtained in Theorem 4, of the
sequence of empirical measures ((µNt )t⩾0)N⩾2 satisfies, for all functions f ∈ C2(R)
with bounded derivatives such that f , f ′, f ′U ′, and f ′′ are Lipschitz continuous and
that f ′U ′ is bounded, the following equation, for all t ⩾ 0,∫

R
f(x)ρt(dx) =

∫
R
f(x)ρ0(dx)−

∫ t

0

∫
R
f ′(x)U ′(x)ρs(dx)ds

+
1

2

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ρs(dx)ρs(dy)ds.
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The proof of the theorem above consists in rigorously applying the dominated
convergence theorem in the PDE satisfied by the empirical measure.

To do so, let us first mention the following lemma, which is a consequence of
previous calculations.

Lemma 4.1. — For α ∈ ]1, 2[ and under Assumptions 1 and 4, for all t ⩾ 0, there
exists a constant Cint such that for all N ⩾ 2, we have the following estimate:

(4.1) E
(∫ t

0

∫∫
{x ̸=y}

1

|x− y|(α−1)(α+2)/2α
µNs (dx)µNs (dy)ds

)
⩽ Cint.

Proof. — Let (X1
t , . . . , X

N
t )t be the unique strong solution of (1.1), and µNt the as-

sociated empirical measure. By definition,

E
(∫ t

0

∫∫
{x̸=y}

1

|x− y|(α−1)(α+2)/2α
µNs (dx)µNs (dy)ds

)
= 2E

(∫ t

0

1

N2

∑
i>j

1

|Xi
s −Xj

s |(α−1)(α+2)/2α
ds

)
.

Young’s inequality yields, for i > j, for β > 0, γ > 0, and p > 1 and q > 1 such that
1/p+ 1/q = 1,

1

|Xi
t −Xj

t |(α−1)(α+2)/2α
⩽
γp

p

( (i− j)β

|Xi
t −Xj

t |(α−1)(α+2)/2α

)p
+

1

qγq
1

(i− j)βq
.

We choose

β =
(α− 1)

α
, p =

α

α− 1
, q = α, γ = N−(α−1)/α.

which yields

1

|Xi
t −Xj

t |(α−1)(α+2)/2α
⩽

(α− 1)

α

1

N

i− j

|Xi
t −Xj

t |(α+2)/2
+
Nα−1

α

1

(i− j)α−1
.

From Lemma A.1, we have∑
i>j

1

(i− j)α−1
⩽

N

2− α
N2−α.

Thus∫ t

0

1

N2

∑
i>j

1

|Xi
s −Xj

s |(α−1)(α+2)/2α
ds

⩽
(α− 1)

α

1

N

(∫ t

0

1

N2

∑
i>j

i− j

|Xi
s −Xj

s |(α+2)/2
ds

)
+

1

N2

Nα−1

α

N

2− α
N2−αt.

This yields the result using (2.12), as (α+ 2)/2 ∈ ]1, 2[, and noticing that 1
NEH(X0)

is bounded from above by the initial second moment, and is thus bounded uniformly
in N . □
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Proof of Theorem 5. As EW1(µ
N
t , ρt) → 0, we get, by the dual formulation of the

Wasserstein distance, that, for any Lipschitz continuous function g,

E
∫
R
g(x)µNt (dx) −→

∫
R
g(x)ρt(dx).

Likewise, since

W1(µ
N
t ⊗ µNt , ρt ⊗ ρt) ⩽ W1(µ

N
t ⊗ µNt , ρt ⊗ µNt ) +W1(ρt ⊗ µNt , ρt ⊗ ρt)

= inf
(X1,X2)∼µN

t ⊗µN
t

(Y 1,Y 2)∼ρt⊗µ
N
t

E
(
|X1 − Y 1|+ |X2 − Y 2|

)
+ inf

(X1,X2)∼ρt⊗µ
N
t

(Y 1,Y 2)∼ρt⊗ρt

E
(
|X1 − Y 1|+ |X2 − Y 2|

)
⩽ inf
X1∼µN

t

Y 1∼ρt

E
(
|X1 − Y 1|

)
+ inf
X2∼µN

t

Y 2∼ρt

E
(
|X2 − Y 2|

)
= 2W1(µ

N
t , ρt),

we get that, for any Lipschitz continuous function g,

E
∫
R

∫
R
g(x, y)µNt (dx)µNt (dy) −→

∫
R

∫
R
g(x, y)ρt(dx)ρt(dy).

Let us now consider a function f ∈ C2(R) with bounded derivatives such that f , f ′,
f ′U ′ and f ′′ are Lipschitz continuous and f ′U ′ is bounded. By Itô’s formula, we have∫

R
f(x)µNt (dx) =

∫
R
f(x)µN0 (dx)−

∫ t

0

∫
R
f ′(x)U ′(x)µNs (dx)ds

+

∫ t

0

∫
R
σNf

′′(x)µNs (dx)ds+

∫ t

0

√
2σN
N

N∑
i=1

f ′(Xi
s)dB

i
s

+
1

2

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
µNs (dx)µNs (dy)ds

:= I0(N)− I1(N) + I2(N) + I3(N) + I4(N).

Let us deal with each terms.

I0(N). — Since we assume f to be Lipschitz continuous

EI0(N) = E
∫
R
f(x)µN0 (dx) −→

∫
R
f(x)ρ0(dx).

I1(N). — f ′U ′ being Lipschitz continuous, we have

E
∫
R
f ′(x)U ′(x)µNs (dx) −→

∫
R
f ′(x)U ′(x)ρs(dx).

Furthermore, since f ′U ′ is bounded,
∣∣∫

R f
′(x)U ′(x)µNs (dx)

∣∣ ⩽ ∥f ′U ′∥∞ and we have,
by dominated convergence,

EI1(N) = E
∫ t

0

∫
R
f ′(x)U ′(x)µNs (dx)ds =

∫ t

0

E
∫
R
f ′(x)U ′(x)µNs (dx)ds

−→
∫ t

0

∫
R
f ′(x)U ′(x)ρs(dx)ds.
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I2(N). — Since we assume f ′′ to be Lipschitz continuous,

EI2(N) = E
∫ t

0

∫
R
σNf

′′(x)µNs (dx)ds =

∫ t

0

σNE
(∫

R
f ′′(x)µNs (dx)

)
ds

−→ 0 (by dominated convergence).

I3(N). — As f ′ is bounded, I3(N) is a true martingale, and thus EI3(N) = 0.

I4(N). — Let, for R > 0, ϕR be a Lipschitz continuous function such that

ϕR(x) =


1 if x ⩽ R,

(2R− x)/R if R ⩽ x ⩽ 2R,

0 if x ⩾ 2R.

We have

(4.2)
∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
µNs (dx)µNs (dy)ds

=

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ϕR(|x− y|)µNs (dx)µNs (dy)ds

+

∫ t

0

∫∫
(f ′(x)− f ′(y))(x− y)

|x− y|α+1
(1− ϕR(|x− y|))µNs (dx)µNs (dy)ds.

Let us now find the limit as R goes to 0 of the limit as N goes to infinity of the
expectation of the first term of (4.2). By Hölder’s inequality,

E
∫ t

0

∫∫
{x ̸=y}

∣∣∣ (f ′(x)− f ′(y))(x− y)

|x− y|α+1
ϕR(|x− y|)

∣∣∣µNs (dx)µNs (dy)ds

⩽ ∥f ′′∥∞E
(∫ t

0

∫∫
{x ̸=y}

1

|x− y|(α−1)(α+2)/2α
µNs (dx)µNs (dy)ds

)(2α)/α+2

× E
(∫ t

0

∫∫
ϕR(|x− y|)(α+2)/(2−α)µNs (dx)µNs (dy)ds

)(2−α)/(α+2)

,

and since 0 ⩽ ϕR ⩽ 1,

E
(∫ t

0

∫∫
ϕR(|x− y|)(α+2)/(2−α)µNs (dx)µNs (dy)ds

)(2−α)/(α+2)

⩽ E
(∫ t

0

∫∫
ϕR(|x− y|)µNs (dx)µNs (dy)ds

)(2−α)/(α+2)

.

We now use (4.1) to get

(4.3) E
∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ϕR(|x− y|)µNs (dx)µNs (dy)ds

⩽ ∥f ′′∥∞C(2α)/α+2
int E

(∫ t

0

∫∫
ϕR(|x− y|)µNs (dx)µNs (dy)ds

)(2−α)/(α+2)

.
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We then use∫ t

0

∫∫
ϕR(|x− y|)µNs (dx)µNs (dy)ds ⩽

∫ t

0

∫∫
{x=y}

µNs (dx)µNs (dy)ds

+

∫ t

0

∫∫
{x̸=y}

ϕR(|x− y|)µNs (dx)µNs (dy)ds.

First, ∫ t

0

∫∫
{x=y}

µNs (dx)µNs (dy)ds =
t

N
.

Then ϕR(|x|) ⩽ 1|x|⩽2R ⩽ (2R/|x|)(α−1)(α+2)/2α, which implies

E
(∫ t

0

∫∫
{x ̸=y}

ϕR(|x− y|)µNs (dx)µNs (dy)ds

)
⩽ (2R)(α−1)(α+2)/2αE

(∫ t

0

∫∫
{x ̸=y}

1

|x− y|(α−1)(α+2)/2α
µNs (dx)µNs (dy)ds

)
⩽ (2R)(α−1)(α+2)/2αCint.

Thus,

E
∫ t

0

∫∫
ϕR(|x− y|)µNs (dx)µNs (dy)ds ⩽

t

N
+ (2R)(α−1)(α+2)/2αCint.(4.4)

Thus, for the first term of (4.2), using (4.3) and (4.4), taking the limit as N → ∞
and then as R→ 0 yields

(4.5) lim
R→0

lim
N→∞

E
∫ t

0

∫∫
{x̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1

× ϕR(|x− y|)µNs (dx)µNs (dy)ds = 0.

Let us find the limit as R goes to 0 of the limit as N goes to infinity of the
expectation of the second term of (4.2). Since (f ′(x)−f ′(y))(x−y)

|x−y|α+1 (1 − ϕR(|x − y|)) is
bounded and Lipschitz continuous, we have

E
∫ t

0

∫∫
(f ′(x)− f ′(y))(x− y)

|x− y|α+1
(1− ϕR(|x− y|))µNs (dx)µNs (dy)ds

−→
∫ t

0

∫∫
(f ′(x)− f ′(y))(x− y)

|x− y|α+1
(1− ϕR(|x− y|))ρs(dx)ρs(dy)ds.

We now want to use dominated convergence to consider the limit as R goes to 0.
We have ∣∣∣ (f ′(x)− f ′(y))(x− y)

|x− y|α+1
(1− ϕR(|x− y|))

∣∣∣ ⩽ ∥f ′′∥∞
1x ̸=y

|x− y|α−1
.

Let us show that ∫ t

0

∫∫
1x ̸=y

|x− y|α−1
ρs(dx)ρs(dy)ds <∞.
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Using (4.1), and Young’s inequality as α− 1 ⩽ (α− 1)(α+ 2)/2α, we get

E
∫ t

0

∫∫
1− ϕR(|x− y|)

|x− y|α−1
µNs (dx)µNs (dy)ds

⩽ E
∫ t

0

∫∫
1x̸=y

|x− y|α−1
µNs (dx)µNs (dy)ds ⩽ C̃int,

where C̃int is a constant independent of N (depending on Cint). The right-hand side
being independent of N and R, and since 1− ϕR(|x− y|)/|x− y|α−1 is bounded and
Lipschitz continuous, we have, taking the limit as N → ∞,

E
∫ t

0

∫∫
1− ϕR(|x− y|)

|x− y|α−1
ρs(dx)ρs(dy)ds ⩽ C̃int,

and by monotone convergence theorem

E
∫ t

0

∫∫
1x ̸=y

|x− y|α−1
ρs(dx)ρs(dy)ds ⩽ C̃int.

This implies

(4.6) lim
R→0

lim
N→∞

E
∫ t

0

∫∫
(f ′(x)− f ′(y))(x− y)

|x− y|α+1

× (1− ϕR(|x− y|))µNs (dx)µNs (dy)ds

=

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ρs(dx)ρs(dy)ds.

From (4.5) and (4.6), we obtain

EI4(N) −→ 1

2

∫ t

0

∫∫
{x ̸=y}

(f ′(x)− f ′(y))(x− y)

|x− y|α+1
ρs(dx)ρs(dy)ds.

Hence the result. □

Remark 4.1. — Notice how above we rely on the fact that (f ′(x)−f ′(y))(x−y)
|x−y|α+1 1x̸=y is

integrable with respect to ρt⊗ρt for a Lipschitz continuous function f ′. This amounts
to being able to prove ∫∫

{x ̸=y}

1

|x− y|α−1
ρt(dx)ρt(dy) <∞.

For the sake of the argument, let us assume that ρt = 1[0,1] is the uniform distribution
on [0, 1]. Then ∫∫

[0,1]×[0,1]

1

|x− y|α−1
dxdy <∞,

if and only if α < 2. Although this is no proof, this small estimate seems to indicate
that α = 2 is indeed a critical value.
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5. From weak propagation of chaos to strong uniform in time propagation
of chaos

In this section, which is somewhat independent of the previous ones, we wish to
show how one could improve a result of weak propagation of chaos, as for instance
obtained in [RS93], [CL97] or [LLX20], into a result of strong and uniform in time
propagation of chaos. We consider (1.1) for any potentials U and V and any diffusion
σN , and assume there is a strong solution (Xi

t)t of (1.1). In this general framework,
we assume one has been able to prove the following assertions:

Assumption 5 (Weak prop. of chaos). — For an initial distribution µ0 converging in
L2 Wasserstein distance to a measure ρ0, and for all t ⩾ 0, the empirical measure
µNt = 1

N

∑N
i=1 δXi

t
converges weakly to a probability density ρt.

Assumption 6 (Bounded moments). — Assume there is C0 ⩾ 0 such that, for all N
and all t ⩾ 0,

E
(

1

N

N∑
i=1

|Xi
t |4

)
⩽ C0.

Assumption 7 (Long time convergence). — Denoting by ρ1,Nt and ρ2,Nt the probabil-
ity densities of the N particle systems in ON with respective initial conditions ρ1,N0

and ρ2,N0 , there exists λ > 0 such that we have

∀t ⩾ 0,W2

(
ρ1,Nt , ρ2,Nt

)
⩽ e−λtW2

(
ρ1,N0 , ρ2,N0

)
.

Assumption 8 (Continuity in 0). — The function t 7→ E
(

1
N

∑N
i=1 |Xi

t −Xi
0|2

)
is con-

tinuous in t = 0, uniformly in N , in the sense that

∀ε > 0, ∃δ > 0, ∀0 ⩽ t < δ, ∀N ⩾ 0, E
(

1

N

N∑
i=1

|Xi
t −Xi

0|2
)

⩽ ε.

Remark 5.1. — These assumptions are satisfied in the case α = 1. We have shown
in Theorem 3 the long time convergence of the particle system. In Appendix C we
prove continuity in 0 for a well chosen initial condition. To prove the bounded 4-th
moments, considering ϕ : (x1, . . . , xN ) 7→ 1

N

∑N
i=1 |xi|4, we have

LN,αϕ = −
N∑
i=1

U ′(xi)
( 4

N
x3i

)
+

N∑
i=1

(
1

N

N∑
j ̸=i

1

xi − xj

)(4x3i
N

)
+ σN

N∑
i=1

12

N
x2i

⩽ 12σN

(
1

N

N∑
i=1

x2i

)
− 4λ

N

N∑
i=1

|xi|4 +
4

N2

∑
i ̸=j

x3i
xi − xj

.
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We get

4

N2

∑
i ̸=j

x3i
xi − xj

=
4

N2

∑
j<i

x3i − x3j
xi − xj

=
4

N2

∑
j<i

x2i + xixj + x2j

⩽
6

N2

∑
j<i

x2i + x2j ⩽
6

N

N∑
i=1

x2i .

In this way,

LN,αϕ ⩽ 6 (2σN + 1)

(
1

N

N∑
i=1

x2i

)
− 4λ

N

N∑
i=1

|xi|4

⩽
9 (2σN + 1)

2

2λ
− 2λ

N

N∑
i=1

|xi|4 since x2i ⩽
λx4i

3(1 + 2σN )
+

3(1 + 2σN )

4λ

=
9 (2σN + 1)

2

2λ
− 2λϕ.

We thus obtain the uniform in time bound on the 4-th moment provided we have an
initial bound.

Our goal is to show

Theorem 6. — Under Assumptions 5, 6, 7 and 8, we get strong uniform in time
propagation of chaos, i.e.,

∀ε > 0, ∃N ⩾ 0, ∀t ⩾ 0, ∀n ⩾ N, E (W2 (µ
n
t , ρt)) < ε.

The outline of the proof is the following
– Using the weak propagation of chaos and the bounded moments, we get a strong

convergence in Wasserstein distance.
– Using the long time convergence of the particle system and the strong propaga-

tion of chaos, we get the long time convergence for the limiting process, as well as
strong propagation of chaos for the stationary measures.

– Thanks to the long time convergence of both the particle system and the limiting
process, and using the continuity in 0 of the particle system for the Wasserstein
distance, we get uniform continuity in time for the Wasserstein distance between the
empirical measure and the limiting process, this continuity being uniform in N .

– Finally, thanks to all the previous results, we get uniform in time propagation of
chaos.

The following result is the characterization of the W2-convergence, as given in
[Vil09, Th. 6.9].

Lemma 5.1 (Strong propagation of chaos). — Under Assumptions 5 and 6, we also
have the following convergence

(5.1) ∀t ⩾ 0, lim
N→∞

E
(
W2

(
µNt , ρt

)2)
= 0.
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Remark 5.2. — We use here the assumption on the bounded 4-th moment of the
empirical measure, to have, by the Cauchy-Schwarz inequality for R > 0,

1

N

N∑
i=1

∣∣Xi
∣∣2 1|Xi|⩾R/2 ⩽

(
1

N

N∑
i=1

∣∣Xi
∣∣4)1/2(

1

N

N∑
i=1

1|Xi|⩾R/2

)1/2

,

E
(

1

N

N∑
i=1

∣∣Xi
∣∣2 1|Xi|⩾R/2

)
⩽ E

(
1

N

N∑
i=1

∣∣Xi
∣∣4)1/2

E
(

1

N

N∑
i=1

1|Xi|⩾R/2

)1/2

⩽ C
1/2
0 E

(
1

N

N∑
i=1

1|Xi|⩾R/2

)1/2

.

We have, by weak convergence since x 7→ 1|x|⩾R/2 is a bounded upper semi continuous
function

lim sup
N→∞

∫
1|x|⩾R/2dµ

N
t ⩽

∫
1|x|⩾R/2dρt.

Then, since
∫
1|x|⩾R/2dµ

N
t is a sequence of positive functions bounded by 1, we have

by Fatou’s lemma

lim sup
N→∞

E
(∫

1|x|⩾R/2dµ
N
t

)
⩽ E

(
lim sup
N→∞

∫
1|x|⩾R/2dµ

N
t

)
and by dominated convergence

lim
R→∞

∫
1|x|⩾R/2dρt = 0.

Therefore

lim
R→∞

lim sup
N→∞

E
(

1

N

N∑
i=1

1|Xi|⩾R/2

)
⩽ lim
R→∞

E
(
lim sup
N→∞

1

N

N∑
i=1

1|Xi|⩾R/2

)
⩽ lim
R→∞

E
(∫

1|x|⩾R/2dρt

)
= lim
R→∞

∫
1|x|⩾R/2dρt = 0.

This yields the necessary property to use [Vil09, Th. 6.9]. In reality, any assumption
on a bounded p-th moment with p > 2 would have been sufficient, using Hölder’s
inequality instead of Cauchy-Schwarz’s.

Lemma 5.2 (Long time behavior of the limiting equation). — Under Assumptions 5, 6
and 7, consider µNt (resp. νNt ) the empirical distribution of the solution (Xi

t)t with
initial distribution µ⊗N

0 (resp. ν⊗N0 ) and weakly converging as N goes to infinity to µt
(resp. νt). We have

W2 (µt, νt) ⩽ e−λtW2(µ0, ν0).

Proof. — Denoting ρ1,Nt (resp. ρ2,Nt ) the law in ON the law of the N particle system
which yields µNt (resp. νNt ). We have, under πNt the optimal coupling between ρ1,Nt
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and ρ2,Nt for the L2 Wasserstein distance,

W2 (µt, νt) ⩽ Eπ
N
t
(
W2

(
µt, µ

N
t

)
+W2

(
µNt , ν

N
t

)
+W2

(
νNt , νt

))
.

Since

Eπ
N
t
(
W2

(
µNt , ν

N
t

))
⩽ Eπ

N
t
(
W2

(
µNt , ν

N
t

)2)1/2
= Eπ

N
t

(
1

N

N∑
i=1

(Xi
t − Y it )

2

)1/2

=
1√
N

W2(ρ
1,N
t , ρ2,Nt ),

and, by Assumption 7,

W2(ρ
1,N
t , ρ2,Nt ) ⩽ e−λtW2(ρ

1,N
0 , ρ2,N0 ) ⩽ e−λtE

( N∑
i=1

(Xi
0 − Y i0 )

2

)1/2

=
√
Ne−λtE

(
W2

(
µN0 , ν

N
0

))
,

(where this last expectation is taken for any coupling of ρ1,N0 and ρ2,N0 ) we get, for
all N ⩾ 0,

W2 (µt, νt) ⩽ E
(
W2

(
µt, µ

N
t

)
+ e−λt

(
W2

(
µN0 , µ0

)
+W2(µ0, ν0) +W2

(
ν0, ν

N
0

))
+W2

(
νNt , νt

))
.

Recall from Lemma 5.1 E
(
W2

(
µt, µ

N
t

))
→ 0 as N tends to infinity, thus using As-

sumptions 5 and 6. By taking the limit as N tends to infinity in the right-hand side
of the inequality above, we obtain

W2 (µt, νt) ⩽ e−λtW2(µ0, ν0). □

Recall from [Bol08] that the space of probability measures endowed with the
Wasserstein distance is a complete metric space. Thus, thanks to the Banach fixed
point theorem, the contraction of the Wasserstein distance for the non linear limit
yields the existence of a stationary distribution.

Lemma 5.3 (Propagation of chaos for the stationary distribution). — Under Assump-
tions 5, 6, and 7, denote by ρ∞ (resp. ρN∞) the stationary measure for the non linear
process (resp. for the particle system), and let µN∞ be an empirical measure associated
to ρN∞. We have

E
(
W2

(
µN∞, ρ∞

)2) −→ 0 as N −→ ∞.

Proof. — We have

W2 (ρt, ρ∞) ⩽ e−λtW2 (ρ0, ρ∞) , W2

(
ρNt , ρ

N
∞
)
⩽ e−λtW2

(
ρN0 , ρ

N
∞
)
.

Let µN∞ be an empirical measure associated to ρN∞. We have, for all t ⩾ 0, under πt
the optimal coupling between ρNt and ρN∞,

Eπt
(
W2

(
µN∞, ρ∞

)2)
⩽ 3Eπt

(
W2

(
µN∞, µ

N
t

)2)
+ 3Eπt

(
W2

(
µNt , ρt

)2)
+ 3Eπt

(
W2 (ρt, ρ∞)

2)
.
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We consider an initial condition ρ0 = ρ∞ (and thus for all t ⩾ 0, ρt = ρ∞) and
X1

0 , . . . , X
N
0 i.i.d initial condition (reordered) distributed according to ρ∞ (this way

E(W2(µ
N
0 , ρ∞)) → 0). We get

Eπt
(
W2

(
µN∞, ρ∞

)2)
⩽ 3Eπt

(
W2

(
µN∞, µ

N
t

)2)
+ 3Eπt

(
W2

(
µNt , ρt

)2)
.

On one hand, since the optimal transport map for the W2 distance between two sets
of points in dimension one is the map that transports the first point to the first point,
the second to the the second, etc., when the two sets are ordered,

(5.2)
Eπt

(
W2

(
µN∞, µ

N
t

)2)
= Eπt

(
1

N

N∑
i=1

(Xi − Y i)2
)

=
1

N
W2

(
ρNt , ρ

N
∞
)2

⩽
e−2λt

N
W2

(
ρN0 , ρ

N
∞
)2
.

Then, there exists a constant C0, depending on the uniform bounds on the second
moments of the non linear process and the empirical measure of the particle system
such that

Eπt
(
W2

(
µN∞, µ

N
t

)2)
⩽ C0e

−2λt.

On the second hand, as ρt is a deterministic measure, we have

Eπt
(
W2

(
µNt , ρt

)2)
= E

(
W2

(
µNt , ρt

)2) −→ 0 as N −→ ∞.

This yields

E
(
W2

(
µN∞, ρ∞

)2)
⩽ C0e

−2λt + 3E
(
W2

(
µNt , ρt

)2)
.

Consider ε > 0. There is tε such that for all t ⩾ tε we have C0e
−2λt ⩽ ε/2 and,

given tε, there is a Nε such that for all N ⩾ Nε we have 3E
(
W2

(
µNtε , ρtε

)2)
⩽ ε/2. In

this way,

∀ε > 0, ∃Nε ⩾ 0, ∀N ⩾ Nε, E
(
W2

(
µN∞, ρ∞

)2)
⩽ ε,

i.e.,
E
(
W2

(
µN∞, ρ∞

)2) −→ 0 as N −→ ∞. □

Lemma 5.4 (Uniform continuity in t, uniformly in N). — Under Assumptions 5, 6, 7
and 8, the function t→E

(
W2

(
µNt , ρt

))
is uniformly continuous in t, uniformly in N .

Proof. — Let us begin by showing the function t→ W2 (ρt, ρ0) is continuous in t = 0.
We have, for all N ⩾ 0,

W2 (ρt, ρ0) ⩽ E
(
W2

(
ρt, µ

N
t

)
+W2

(
µNt , µ

N
0

)
+W2

(
µN0 , ρ0

))
.

Let ε > 0. First, we have

E
(
W2

(
µNt , µ

N
0

)2)
= E

(
1

N

N∑
i=1

|Xi
t −Xi

0|2
)
,
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and thus, by Assumption 8, there exists δ > 0 such that, for all t ⩽ δ and N ⩾ 0,

E
(
W2

(
µNt , µ

N
0

))
⩽
ε

3
.

Then, let t ⩽ δ. Using the strong propagation of chaos, there exists Nt ⩾ 0 and N0 ⩾ 0

such that for N = max(Nt, N0)

E
(
W2

(
ρt, µ

N
t

))
⩽
ε

3
and E

(
W2

(
µN0 , ρ0

))
⩽
ε

3

Hence,
∀ε > 0, ∃δ > 0, ∀t < δ, W2 (ρt, ρ0) < ε,

and the continuity of the function t→ W2 (ρt, ρ0) in t = 0.
Now, let t ⩾ 0 and (tn)n∈N a sequence converging to t. We have∣∣∣EπN

t,tn

(
W2

(
µNtn , ρtn

))
− Eπ

N
t,tn

(
W2

(
µNt , ρt

))∣∣∣
⩽

∣∣∣EπN
t,tn

(
W2

(
µNtn , µ

N
t

))
+ Eπ

N
t,tn

(
W2

(
ρt, ρtn

))∣∣∣
⩽ e−λ(t∧tn)

( 1√
N

W2(ρ
N
|t−tn|, ρ

N
0 ) +W2(ρ|t−tn|, ρ0)

)
,

where the expectation is taken under πNt,tn the optimal coupling between ρNtn and ρNt
and the last inequality comes from the fact that

Eπ
N
t,tn

(
W2

(
µNtn , µ

N
t

))
⩽ Eπ

N
t,tn

(
W2

(
µNtn , µ

N
t

)2)1/2
= Eπ

N
t,tn

(
1

N

N∑
i=1

(Xi − Y i)2
)1/2

=
1√
N

W2

(
ρNt , ρ

N
tn

)
.

We have

1

N
W2

(
ρN|t−tn|, ρ

N
0

)2
⩽ E

(
1

N

N∑
i=1

|Xi
|t−tn| −Xi

0|2
)
.

The continuity in 0 of t→ W2 (ρt, ρ0), and the continuity in 0 (uniform in N) of
t→ E

(
1
N

∑N
i=1 |Xi

t −Xi
0|2

)
are therefore sufficient to yield the result. □

Lemma 5.5. — Under Assumptions 5, 6, 7 and 8, there exists a non-decreasing se-
quence (tN )N⩾0 that goes to infinity such that, for all N ⩾ 0,

(5.3) sup
s∈[0,tN ]

E
(
W2

(
µNs , ρs

))
−→ 0 as N −→ ∞.

Proof. — By strong propagation of chaos,

(5.4) ∀ε > 0, ∀t ⩾ 0, ∃N ⩾ 0, ∀n ⩾ N, E (W2 (µ
n
t , ρt)) ⩽ ε.

Denote g(t,N) = E
(
W2

(
µNt , ρt

))
. By Lemma 5.4, g is uniformly continuous in t,

uniformly in N . Let ε > 0 and t > 0. There exists N1 ⩾ 0 such that, for all n ∈ N
and all x, y ∈ [0, t],

|x− y| ⩽ t

N1
=⇒ |g(x, n)− g(y, n)| ⩽ ε

2
.
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We also have
∃N ⩾ 0, ∀n ⩾ N, ∀i ∈ {0, . . . , N1}, g(ti/N1, n) ⩽

ε

2
.

In this way,
∃N ⩾ 0, ∀n ⩾ N, ∀s ∈ [0, t], g(s, n) ⩽ ε.

Denoting f(t,N) = sups∈[0,t] E
(
W2

(
µNs , ρs

))
, we thus obtain

(5.5) ∀ε > 0, ∀t ⩾ 0, ∃N ⩾ 0, ∀n ⩾ N, f(t, n) ⩽ ε.

There exists a non-decreasing function ϕ : R 7→ N such that for all t ⩾ 0 and all
n ⩾ ϕ(t) we have f(t, n) ⩽ 1

t and limt→∞ ϕ(t) = +∞. By convention ϕ(0) = 0.
Consider t0 = 0 and

tN = sup{t ⩾ tN−1 | t ∈ ϕ−1({0, 1, . . . , N})}.

The sequence (tN )N⩾0 thus defined is non-decreasing by construction. Because
limt→∞ ϕ(t) = +∞, the set ϕ−1({0, 1, . . . , N}) is non-empty and its supremum goes
to infinity as N goes to infinity. Therefore limN→∞ tN = +∞ and tN ̸= 0 eventually.

We have N ⩾ ϕ(tN−1), and therefore by definition of ϕ, we eventually get for N
sufficiently large

f(tN−1, N) ⩽
1

tN−1
.

This concludes the proof. □

We may now conclude.

Proof of Theorem 6. — We have, for µN∞ an empirical measure associated to ρN∞, and
πNt the optimal coupling between ρNt and ρN∞,

Eπ
N
t
(
W2

(
µNt , ρt

))
⩽ Eπ

N
t
(
W2

(
µNt , µ

N
∞
))

+ Eπ
N
t
(
W2

(
µN∞, ρ∞

))
+ Eπ

N
t
(
W2 (ρ∞, ρt)

)
⩽ e−λt

( 1√
N

W2

(
ρN0 , ρ

N
∞
)
+W2 (ρ∞, ρ0)

)
+ E

(
W2

(
µN∞, ρ∞

))
.

Since
1√
N

W2

(
ρN0 , ρ

N
∞
)
⩽ E

(
1

N

N∑
i=1

|Xi
0 −Xi

∞|2
)1/2

⩽ 2C
1/2
0 ,

we obtain
(5.6) E

(
W2

(
µNt , ρt

))
⩽ C̃(t) + f̃(N),

where C̃ is decreasing and goes to 0, and f̃ tends to 0.
Let t ⩾ 0. If t ⩽ tN where tN is given in Lemma 5.5, we have using (5.3)

E
(
W2

(
µNt , ρt

))
⩽ sup
s∈[0,tN ]

E
(
W2

(
µNs , ρs

))
−→ 0 as N −→ ∞,

and, if t > tN , using (5.6),

E
(
W2

(
µNt , ρt

))
⩽ C̃(t) + f̃(N) ⩽ C̃(tN ) + f̃(N) −→ 0 as N −→ ∞.

Those two bounds being independent of t, we obtain uniform in time propagation of
chaos. □
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Appendix A. Technical results

Lemma A.1. — We have the following inequality

∀N ⩾ 1,

N∑
i=1

1

iα−1
⩽


1

2−αN
2−α if α ∈ [1, 2[,

2 lnN if α = 2 (and N ⩾ 2),
1 + 1/(α− 2) if α > 2.

Proof. — Let fα : x→ 1/xα−1. For α ⩾ 1, fα is a non increasing function on ]0,+∞[,
and for all x ∈ [i, i+ 1], fα(i+ 1) ⩽ fα(x) ⩽ fα(i). This implies

fα(i+ 1) ⩽
∫ i+1

i

fα(x)dx ⩽ fα(i),

and thus

N∑
i=1

fα(i) ⩽


∫ N

0

1

xα−1
dx if α ∈ [1, 2[,

fα(1) +

∫ N

1

1

xα−1
dx if α ⩾ 2.

=


[
x2−α

2−α

]N
0

if α ∈ [1, 2[,

1 + [lnx]
N
1 if α = 2,

1 +
[
x2−α

2−α

]N
1

if α > 2.

Hence,

N∑
i=1

1

iα−1
⩽


N2−α/(2− α) if α ∈ [1, 2[,

1 + lnN if α = 2,

1 + 1/(α− 2)− 1/(α− 2)Nα−2 if α > 2.

□

Lemma A.2. — Let, for x = (xi)i∈{1,...,N},

A(x) =
(∑
j ̸=i

1

xi − xj

)
1⩽i⩽N

.

There is a constant C such that for all N ⩾ 0 and for the set of points x =

(xi)i∈{1,...,N} with xi = i/N , we have |A(x)| ⩽ CN3/2.

Proof. — Throughout this proof, we denote by C the various universal constants
appearing for the sake of conciseness. We have, for all i∑
j ̸=i

1

xi − xj
= N

∑
j ̸=i

1

i− j
= N

i−1∑
j=1

1

|i− j|
−N

N∑
j=i+1

1

|i− j|
= N

(i−1∑
j=1

1

j
−
N−i∑
j=1

1

j

)
,

and thus ∑
j ̸=i

1

xi − xj
=

−N
∑N−i
j=i 1/j if i ⩽ ⌊N+1

2 ⌋,

N
∑i−1
j=N−i+1 1/j if i ⩾ ⌊N+1

2 ⌋.

We obtain

|A(x)| =
(
N2

⌊N+1
2 ⌋∑
i=1

(N−i∑
j=i

1/j

)2

+N2
N∑

i=1+⌊N+1
2 ⌋

( i−1∑
j=N−i+1

1/j

)2)1/2

.
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The change of variable ĩ = N + 1− i in this last sum yields

|A(x)| =
(
2N2

⌊N+1
2 ⌋∑
i=1

(N−i∑
j=i

1/j

)2)1/2

.

There exists a universal constant C such that, for all n ⩾ 0,

ln(n)− C ⩽
n∑
i=1

1/i ⩽ ln(n) + C.

This yields, for i ⩾ 2,(N−i∑
j=i

1/j

)2

⩽ (ln(N − i)− ln(i− 1) + 2C)
2
,

and, for i = 1, (N−i∑
j=i

1/j

)2

⩽ (ln(N − i) + C)
2
.

In this way,

|A(x)| ⩽
(
2N2 (ln(N − i) + C)

2
+ 2N2

⌊N+1
2 ⌋∑
i=2

(
2(ln(N − i)− ln(i− 1))2 + 8C2

))1/2

.

Then

(ln(N − i)− ln(i− 1))2 = ln
( 1− i/N

(i− 1)/N

)2

⩽ 2 ln(1− i/N)2 + 2 ln((i− 1)/N)2,

and there is a universal constant, which we also denote by C, such that

1

N

⌊N+1
2 ⌋∑
i=2

ln(1− i/N)2 ⩽ C +

∫ 1/2

0

ln(1− x)2dx ⩽ C,

1

N

⌊N+1
2 ⌋∑
i=2

ln((i− 1)/N)2 ⩽ C +

∫ 1/2

0

ln(x)2dx ⩽ C.and

And thus
|A(x)| ⩽

(
CN3

)1/2
,

hence the result. □

Appendix B. Proof of Lemma 2.3

Recall we work under Assumptions 1 and 4.

Proving (2.9). — For x ∈ RN , we have

H(x) =
∑
i

|xi|2 −
1

2N

∑
i ̸=j

|xi − xj | ⩾
∑
i

|xi|2 −
1

2N

∑
i̸=j

(
2 +

1

8
|xi − xj |2

)
,
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and thus

H(x) ⩾
∑
i

|xi|2 −
N(N − 1)

N
− 1

8N

∑
i ̸=j

|xi|2 + |xj |2

⩾
∑
i

|xi|2
(
1− (N − 1)

4N

)
− N(N − 1)

N
⩾

1

2

∑
i

|xi|2 −N.

Hence the result. □

Time evolution of H(Xt). — We consider (Xt)t ⩾ 0 a solution of (1.1) such that for
all t ⩾ 0 we have X1

t < · · · < XN
t . We apply Itô’s formula to get, as almost surely

∀t ⩾ 0, Xt ∈ ON ,

dH(Xt) = −
∑
i

2U ′ (Xi
t

)
Xi
tdt− 2

∑
i

Xi

N

∑
j ̸=i

V ′(Xi
t −Xj

t )dt+ 2NσNdt

+ 2
√
2σN

∑
i

XidB
i
t +

∑
i

U ′ (Xi
t

)
N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |
dt

+
∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)( 1

N

∑
j ̸=i

V ′(Xi
t −Xj

t )
)
dt

−
√
2σN

∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)
dBit.

We have ∑
i

Xi

∑
j ̸=i

V ′(Xi
t −Xj

t ) =
∑
i>j

V ′(Xi
t −Xj

t )(X
i
t −Xj

t )

= −
∑
i>j

1

|Xi
t −Xj

t |α−1
,

∑
i

U ′ (Xi
t

)
N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |
=

1

N

∑
i>j

(
U ′ (Xi

t

)
− U ′(Xj

t )
)
(Xi

t −Xj
t )

|Xi
t −Xj

t |
(B.1)

=
λ

N

∑
i>j

|Xi
t −Xj

t | =
λ

2N

∑
i ̸=j

|Xi
t −Xj

t |.

Hence

dH(Xt) =− 2λH(Xt)dt−
λ

2N

∑
i̸=j

|Xi
t −Xj

t |+
2

N

∑
i>j

1

|Xi
t −Xj

t |α−1
dt

+ 2NσNdt+
∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)( 1

N

∑
j ̸=i

V ′(Xi
t −Xj

t )
)

+ 2
√
2σN

∑
i

Xi
tdB

i
t −

√
2σN

∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)
dBit.
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We now use the calculations of [LM20, Lem. 4.2] and write

∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)( 1

N

∑
j ̸=i

V ′(Xi
t −Xj

t )
)

= −
∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |α+1

)
= − 1

N2

∑
i

∑
j,ℓ ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |
Xi
t −Xℓ

t∣∣Xi
t −Xℓ

t

∣∣α+1

= − 1

N2

∑
i

∑
j ̸=i

1

|Xi
t −Xj

t |α
− 1

N2

∑
i

∑
j,ℓ ̸=i
j ̸=ℓ

Xi
t −Xj

t

|Xi
t −Xj

t |
Xi
t −Xℓ

t∣∣Xi
t −Xℓ

t

∣∣α+1 ,

and ∑
i

∑
j,ℓ ̸=i,
j ̸=ℓ

Xi
t −Xj

t

|Xi
t −Xj

t |
Xi
t −Xℓ

t

|Xi
t −Xℓ

t |α+1

=
∑
i

∑
j,ℓ ̸=i
j<ℓ

Xi
t −Xj

t

|Xi
t −Xj

t |
Xi
t −Xℓ

t

|Xi
t −Xℓ

t |α+1
+

Xi
t −Xℓ

t

|Xi
t −Xℓ

t |
Xi
t −Xj

t

|Xi
t −Xj

t |α+1

=
∑
i

∑
j,ℓ ̸=i
j<ℓ

(Xi
t −Xj

t )(X
i
t −Xℓ

t )

|Xi
t −Xj

t ||Xi
t −Xℓ

t |

( 1

|Xi
t −Xj

t |α
+

1

|Xi
t −Xℓ

t |α
)

=
∑
i<j<ℓ

(Xi
t −Xj

t )(X
i
t −Xℓ

t )

|Xi
t −Xj

t ||Xi
t −Xℓ

t |

( 1

|Xi
t −Xj

t |α
+

1

|Xi
t −Xℓ

t |α
)

+
(Xj

t −Xi
t)(X

j
t −Xℓ

t )

|Xj
t −Xi

t ||Xi
t −Xℓ

t |

( 1

|Xj
t −Xi

t |α
+

1

|Xj
t −Xℓ

t |α
)

+
(Xℓ

t −Xj
t )(X

ℓ
t −Xi

t)

|Xℓ
t −Xj

t ||Xℓ
t −Xi

t |

( 1

|Xℓ
t −Xj

t |α
+

1

|Xℓ
t −Xi

t |α
)

=
∑
i<j<ℓ

1

|Xi
t −Xj

t |α
+

1

|Xi
t −Xℓ

t |α
− 1

|Xj
t −Xi

t |α
− 1

|Xj
t −Xℓ

t |α

+
1

|Xℓ
t −Xj

t |α
+

1

|Xℓ
t −Xi

t |α

= 2
∑
i<j<ℓ

1

|Xi
t −Xℓ

t |α
= 2

∑
i<j

j − i− 1

|Xi
t −Xj

t |α
.

We therefore have∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)( 1

N

∑
j ̸=i

V ′(Xi
t −Xj

t )
)
= − 2

N2

∑
i>j

i− j

|Xi
t −Xj

t |α
.
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We now compute:

(B.2)

d
(
e2λtH(Xt)

)
= 2λe2λtH(Xt)dt+ e2λtdH(Xt)

= e2λt
( 2

N

∑
i>j

1

|Xi
t −Xj

t |α−1
− 2

N2

∑
i>j

i− j

|Xi
t −Xj

t |α

− λ

2N

∑
i ̸=j

|Xi
t −Xj

t |+ 2NσN

)
dt

+
√
2σNe

2λt
∑
i

(
2Xi

t −
1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)
dBit.

Proving (2.10) and (2.11) for α = 1. — Let α = 1. We get from (B.2):

e2λtEH(Xt) ⩽ EH(X0)+(N−1+2NσN )
e2λt − 1

2λ
− E

(∫ t

0

2e2λs

N2

∑
j<i

i− j

|Xi
s −Xj

s |
ds

)
.

This first yields (2.10), and then (2.11) using (2.9), for α = 1.

Proving (2.11) for α > 1. — Let α > 1. Using Young’s inequality, we have, for all
γ > 0 and i > j,

1

|x|α−1
⩽ γα/(α−1) (α− 1)

α

i− j

|x|α
+

1

αγα(i− j)α−1
.

Hence,
1

N

∑
i>j

1

|Xi
t −Xj

t |α−1
⩽ γα/(α−1) (α− 1)

α

1

N

∑
i>j

i− j

|Xi
t −Xj

t |α
+

1

αγα
1

N

∑
i>j

1

(i− j)α−1
.

We consider γα/(α−1) = 1/N , i.e., γα = 1/Nα−1, so that

(B.3) 1

N

∑
i>j

1

|Xi
t −Xj

t |α−1
⩽

(α− 1)

α

1

N2

∑
i>j

i− j

|Xi
t −Xj

t |α
+
Nα−2

α

∑
i>j

1

(i− j)α−1
.

Let us now assume α ∈ ]1, 2[. Using Lemma A.1, we find∑
i>j

1

(i− j)α−1
=

N∑
i=1

i−1∑
j=1

1

(i− j)α−1
=

N∑
i=1

i−1∑
j=1

1

jα−1
=

N∑
j=1

N − j

jα−1

⩽ N

N∑
j=1

1

jα−1
⩽
NN2−α

2− α
.

Hence,
1

N

∑
i>j

1

|Xi
t −Xj

t |α−1
⩽

(α− 1)

α

1

N2

∑
i>j

i− j

|Xi
t −Xj

t |α
+

N

α(2− α)
,

and thus
2

N

∑
i>j

1

|Xi
t −Xj

t |α−1
− 2

N2

∑
i>j

i− j

|Xi
t −Xj

t |α
⩽ − 2

α

1

N2

∑
i>j

i− j

|Xi
t −Xj

t |α
+

2N

α(2− α)
.
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Using (B.2), we get

(B.4) e2λtEH(Xt) ⩽ EH(X0)−
2

α
E
(∫ t

0

e2λs

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)

+

∫ t

0

e2λs
(
2NσN +

2N

α(2− α)

)
ds.

This yields
2

α
E
(∫ t

0

e2λs

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)

⩽ EH(X0)− e2λtEH(Xt) +

∫ t

0

e2λs
(
2NσN +

2N

α(2− α)

)
ds

⩽ EH(X0) +Ne2λt +
(
2NσN +

2N

α(2− α)

)(e2λt − 1

2λ

)
,

where we used (2.9) for this last inequality. This yields the desired result for α ∈ ]1, 2[.
Let α = 2. Instead of the control (B.3), we have, by Lemma A.1,∑

i>j

1

(i− j)α−1
⩽ 2N lnN,

which then yields

2E
(∫ t

0

e2λs

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)

⩽ α
(
EH(X0) +Ne2λt + 2NσN

e2λt − 1

2λ

)
+ 4N lnN

e2λt − 1

2λ
.

Finally, let α > 2. By Lemma A.1,∑
i>j

1

(i− j)α−1
⩽

(
1 +

1

α− 2

)
N,

which then yields

2E
(∫ t

0

e2λs

N2

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)
⩽ α

(
EH(X0) +Ne2λt + 2NσN

e2λt − 1

2λ

)
+ 2

(
1 +

1

α− 2

)
Nα−1 e

2λt − 1

2λ
.

Proving (2.10) for α > 1. — Using (B.4) for α > 1, we find

e2λtEH(Xt) ⩽ EH(X0) +
(
2NσN +

2C(α,N)

α

)e2λt − 1

2λ
,

EH(Xt) ⩽ e−2λtEH(X0) +
1

λ

(
NσN +

C(α,N)

α

)
.i.e.,

We thus obtain the uniform in time bound.
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Proving (2.12). — Using the previous calculations, we have

dH(Xt) ⩽ −2λH(Xt)dt+ 2
∑
i>j

1

|Xi
t −Xj

t |α−1
dt+ 2NσNdt−

2

N2

∑
i<j

j − i

|Xi
t −Xj

t |α
dt

+ 2
√
2σN

∑
i

XidB
i
t −

√
2σN

∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)
dBit,

as well as

(B.5) dH(Xt) ⩽ −2λH(Xt)dt+ 2NσNdt+
2C(α,N)

α
dt− 2

αN2

∑
i>j

i− j

|Xi
t −Xj

t |α
dt

+ 2
√
2σN

∑
i

XidB
i
t −

√
2σN

∑
i

( 1

N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |

)
dBit.

Hence, from (B.5), we get

2

α
E
(

1

N2

∫ t

0

∑
i>j

i− j

|Xi
s −Xj

s |α
ds

)
⩽ EH(X0)− EH(Xt)−

∫ t

0

2λEH(Xs)ds

+
(
2NσN +

2C(α,N)

α

)
t

⩽ EH(X0) +N +
(
2λN + 2NσN +

2C(α,N)

α

)
t,

where we used (2.9) for this last inequality.
This concludes the proof.

Remark B.1. — One of the reasons we choose to focus on a quadratic potential U can
be found in (B.1): convexity is not sufficient to deal with this term and one should
instead use the Lipschitz condition to bound∑

i

U ′ (Xi
t

)
N

∑
j ̸=i

Xi
t −Xj

t

|Xi
t −Xj

t |
⩽
LU
2N

∑
i ̸=j

|Xi
t −Xj

t |.

This is not surprising as a convex potential U would tend to bring the particles closer
together, thus increasing the interactions we are trying to bound.

If one wishes to work in the general convex case, the calculations should then
be adapted. First notice that assuming LU ⩽ 2λ, where λ would be the convexity
coefficient, would be sufficient as we would keep a non positive coefficient in front
of the sum

∑
i̸=j |Xi

t −Xj
t | in (B.2). If LU > 2λ, the function H should be however

modified to take into account this constant LU . We do not address this question.

Appendix C. Establishing the continuity in time

In this section, we show the continuity in 0, uniform in N , of the function t 7→
E
(

1
N

∑N
i=1 |Xi

t − Xi
0|2

)
(where we denote Xt = (X1

t , . . . , X
N
t ) the solution of (1.1)

with initial condition X0 = (X1
0 , . . . , X

N
0 ) ∈ ON ), under some assumptions on X0.
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Lemma C.1. — Under Assumptions 1 and 3, let Xt = (X1
t , . . . , X

N
t ) be the solution

of (1.1) with (deterministic) initial condition x0 = (x10, . . . , x
N
0 ) ∈ ON . For α ∈ [1, 2[,

there exists a constant Ccont (depending only on α and λ) such that, for all t ⩾ 0 and
N ∈ N,

E
(
1

N

N∑
i=1

|Xi
t−xi0|2

)
⩽Ccont

( |A(x0)|H(x0)

N5/2
+
(1+σN )|A(x0)|

N3/2
+
H(x0)

N
+1+σN

)
t,

where

(C.1) A(x) =
(
−
∑
j ̸=i

V ′(xi − xj)
)
1⩽i⩽N

.

Proof. — Itô’s formula yields

(C.2)
∑
i

|Xi
t − xi0|2 = −2

∫ t

0

∑
i

U ′(Xi
s)(X

i
s − xi0)ds

− 2

N

∫ t

0

∑
i

(∑
j ̸=i

V ′(Xi
s −Xj

s )
)
(Xi

s − xi0) + 2NσN t+ 2
√
2σN

∑
i

∫ t

0

(Xi
s − xi0)dB

i
s.

We have, using the convexity of A,

−
∑
i

(∑
j ̸=i

V ′(Xi
s −Xj

s )
)
(Xi

s − xi0) = A(Xs) · (Xs − x0) ⩽ |A(x0)||Xs − x0|,

and thus

E
(
− 2

N

∫ t

0

∑
i

(∑
j ̸=i

V ′(Xi
s −Xj

s )
)
(Xi

s − xi0)ds

)

⩽
2|A(x0)|

N
E
(∫ t

0

(∑
i

(Xi
s − xi0)

2
)1/2

ds

)
.

Then (∑
i

(Xi
s − xi0)

2
)1/2

⩽

√
N

2
+

1

2
√
N

∑
i

(Xi
s − xi0)

2

⩽

√
N

2
+

1√
N

(∑
i

(Xi
s)

2 +
∑
i

(xi0)
2
)
,

and thus, using (2.9),(∑
i

(Xi
s − xi0)

2
)1/2

⩽

√
N

2
+ 4

√
N +

2√
N

(H(Xs) +H(x0)) .

In this way,

E
(∫ t

0

(∑
i

(Xi
s − xi0)

2
)1/2

ds

)
⩽

9

2

√
Nt+

2√
N

H(x0)t+
2√
N

∫ t

0

E (H(Xs)) ds.
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We now use (2.10) to get that there exists a universal constant C, depending only
on α, such that

E
(∫ t

0

(∑
i

(Xi
s − xi0)

2
)1/2

ds

)
⩽

(9
2

√
N +

4√
N

H(x0) +
2
√
NσN
λ

+
2C

√
N

λ

)
t,

which finally yields

E
(
− 2

N

∫ t

0

∑
i

(∑
j ̸=i

V ′(Xi
s −Xj

s )
)
(Xi

s − xi0)ds

)

⩽
(9|A(x0)|√

N
+

8|A(x0)|H(x0)

N3/2
+

4|A(x0)|σN
λ
√
N

+
2C|A(x0)|
λ
√
N

)
t.

We then have, using again (2.9),

−2

∫ t

0

∑
i

U ′(Xi
s)(X

i
s − xi0)ds = −2

∫ t

0

∑
i

U ′(Xi
s)X

i
sds+ 2

∫ t

0

∑
i

U ′(Xi
s)x

i
0ds

⩽ −2λ

∫ t

0

∑
i

(Xi
s)

2ds+ 2LU

∫ t

0

∑
i

|Xi
s||xi0|ds

⩽ −λ
∫ t

0

∑
i

(Xi
s)

2ds+
L2
U

λ

∫ t

0

∑
i

|xi0|2ds

⩽
2L2

U

λ
(H(x0) +N)t.

and thus

E
(
−2

∫ t

0

∑
i

U ′(Xi
s)(X

i
s − xi0)ds

)
⩽

2L2
U

λ
(H(x0) +N)t.

Going back to (C.2), we obtain

E
( 1

N

∑
i

|Xi
t − xi0|2

)
⩽

2L2
U

λ

(H(x0)

N
+ 1

)
t+ 2σN t

+
(9|A(x0)|

N3/2
+

8|A(x0)|H(x0)

N5/2
+

4|A(x0)|σN
λN3/2

+
2C|A(x0)|
λN3/2

)
t,

hence,

E
( 1

N

∑
i

|Xi
t − xi0|2

)
⩽

(
|A(x0)|
N3/2

(
9 +

4σN
λ

+
2C

λ

)
+

2L2
U

λ

H(x0)

N
+

8|A(x0)|H(x0)

N5/2
+

2L2
U

λ
+ 2σN

)
t.

This yields the result. □

Remark C.1. — We thus have to assume the initial condition X0 =
(
Xi

0

)
i

is such
that |A(X0)| ≲ N3/2 and H(X0) ≲ N , and still satisfies W2(µ

N
0 , ρ0) → 0 as N → ∞.

As shown in Lemma A.2, for α = 1 and ρ0 = 1[0,1], such a choice is possible.
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