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Abstract: Talc is a layered hydrous silicate mineral that plays a vital role in transporting 

water into Earth’s interior and helps to explain many anomalous geophysical 

observations in subduction zone settings. In this study, we explored the structure, 

equation of state, and elasticity of both triclinic and monoclinic talc under high pressures 

up to 18 GPa using first principles simulations based on density functional theory 

corrected for dispersive forces. Our results indicate that principal components of the full 

elastic constant tensor C11 and C22, shear components C66, and several off-diagonal 

components show anomalous pressure dependence. This non-monotonic pressure 
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dependence of elastic constant components is likely related to the structural changes and 

is often manifested in a polytypic transition from a low-pressure polytype talc-I to a high-

pressure polytype talc-II. The polytypic transition of talc occurs at pressures within its 

thermodynamic stability. However, the bulk and shear elastic moduli show no anomalous 

softening. Our study also shows that talc has low velocity, extremely high anisotropy, and 

anomalously high VP/VS ratio, thus making it a potential candidate mineral phase that 

could readily explain unusually high VP/VS ratio and large shear wave splitting delays as 

observed from seismological studies in many subduction systems. 
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1. Introduction 

Water plays a vital role in the solid Earth by influencing melting processes, i.e., 

lowering solidus temperature, facilitating mantle convection by affecting rheological 

properties of rocks, and affecting geophysical observations such as seismic velocities and 

geoelectric fields. As plates subduct, bending-related faults often lead to hydration of the 

oceanic lithosphere, which in turn stabilizes a suite of hydrous minerals (Ranero et al., 

2003). Talc, Mg3Si4O10(OH)2, is one such hydrous mineral and contains ~4.7 wt.% water 

locked up in its crystal structure as hydroxyl ions. Talc and other hydrous minerals play 

an important role in transporting water into the Earth’s interior. These hydrous minerals 

have limited thermal stabilities. Talc has maximum thermal stability of ~800–820 ºC at 

~3 GPa, i.e., 95 km. Due to its negative Clapeyron slope (dP/dT <0) at pressures greater 

than 3 GPa, the thermal stability of talc is reduced to 710 ºC at 5 GPa, i.e., 155 km 

(Pawley and Wood, 1995). Upon reaching adequate depths, hydrous minerals dehydrate 

and release aqueous fluids. The upward migration of these aqueous fluids further 

stabilizes hydrous minerals such as talc and serpentine in the relatively cooler regions of 

the overlying mantle wedge (Evans et al., 1976). The dehydration of these hydrous 

minerals is often manifested as the double seismic zones (Brudzinski et al., 2007; 

Dorbath et al., 2008; Rondenay et al., 2008).  

Effective transfer of water through the subduction zone is achieved by the transfer 

of water from progressively denser hydrous mineral phases. In other words, if the 

geothermal gradient overlaps with the stability field of hydrous minerals, water is likely 

to be effectively sequestered within the hydrous minerals and dragged along with the 
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subducting plate. Serpentine is a hydrous mineral that is thermodynamically stable up to a 

depth of ~200 km in a relatively cold subduction zone. As serpentine dehydrates, it often 

transfers water to a denser hydrous mineral phase, phase A, which is stable at a deeper 

depth. Often the thermodynamic stability fields of serpentine and phase A do not fully 

overlap, i.e., the geothermal gradient passes through a region where no hydrous mineral 

is stable, creating a thermodynamic choke point in the effective transport of water into 

the deep Earth. Experimental studies have shown that at such a thermodynamic choke 

point, talc may intercalate water in its interlayer and stabilize the 10-Å phase that is 

crucial in transporting water deep down to dense hydrous mineral phases (Pawley and 

Wood, 1995; Pawley et al., 1995; Ohtani et al., 2004; Gleason et al., 2008; Rashchenko et 

al., 2016). 

Talc is a layered hydrous silicate mineral with a crystal structure that consists of 

an octahedral (O) layer sandwiched by two tetrahedral (T) layers (TOT), i.e., three MgO6 

octahedral units are sandwiched between two [Si2O5]
2-

 units such that their apical oxygen 

atoms are pointing towards each other. The two hydroxyls (OH)
- 
attached to the MgO6 

octahedra point within the di-trigonal rings formed by the tetrahedral units and are 

perpendicular to the (001) plane. The adjacent TOT layers are held by weak van der 

Waals (vdW) forces. Due to the layered crystal structure, talc is one of the softest 

minerals with a Mohs hardness scale of 1 (Wenk and Bulakh, 2016) and has a very low 

coefficient of friction ~0.16–0.23 at room temperature (Escartín et al., 2008; Moore and 

Lockner, 2008). Talc is often resistant to slip when the rate of sliding is faster (Moore and 

Lockner, 2008). These characteristics make talc an ideal lubricant to allow slow and 

stable sliding/creeping along the subduction interface, inhibiting the elastic energy build-
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up and preventing fast sliding and unstable slip related to large earthquakes (Wibberley, 

2007). 

Talc is a common mineral and is often found in metamorphosed or 

hydrothermally altered lithologies. Because of its widespread occurrence, stability, and 

unique physical properties, the presence of talc is often invoked to explain anomalous 

geophysical observations. For example, it is suggested that talc might explain 

observations along many oceanic faults that occur in slow and ultra-slow spreading mid-

ocean ridges (Schroeder and John, 2004; Boschi et al., 2006) and stable fast creeping 

sections of the San Andreas fault (Moore and Rymer, 2007; Wibberley, 2007). It is 

proposed that a talc-rich mélange zone forms in the slab-mantle interface and contributes 

to the low-velocity zone observed at or above the slab surface (Bebout and Barton, 2002; 

Spandler et al., 2008; Marschall and Schumacher, 2012). The stable-sliding behavior of 

talc leads to aseismicity and therefore controls the maximum depth of earthquakes in 

subduction zones (Peacock and Hyndman, 1999). It is also suggested that talc may 

promote slow-slip earthquakes, i.e., an earthquake-like event that releases comparable 

energies with a much slower rate, five-order slower, than those of ordinary great 

earthquakes (Kawasaki, 2004; Mainprice et al., 2008). In the central Mexican subduction 

zone, a thin layer at the top of the slab, which is characterized by ultra-slow velocity, low 

viscosity, high P-to-S velocity ratio (VP/VS), and free of earthquakes, has also been linked 

to the presence of talc (Kim et al., 2013). In the flat subduction system of central Mexico, 

talc is also suggested to play an important role in the dynamic process of slab-flattening 

(Manea and Gurnis, 2007; Kim et al., 2013). 
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Despite the importance of talc in subduction zone settings, little is known about 

its elasticity. Owing to the difficulty in finding good quality single crystals, experimental 

data on full elastic constants are currently lacking. Attempts have been made to estimate 

the shear modulus from ultrasonic compressional sound wave velocity (Bailey and 

Holloway, 2000); however, so far, no known Brillouin scattering result exists for talc. In 

contrast to the full elastic constant tensor, a significant amount of experimental studies 

has provided constraints on the bulk modulus from the studies of the equation of state 

(Pawley et al., 2002; Gleason et al., 2008; Gatta et al., 2013). 

So far, the equation of state and elasticity of talc have been explored by at least 

three prior first principles simulation studies (Stixrude, 2002; Mainprice et al., 2008; 

Ulian et al., 2014). The equation of state study using first principles explored the high 

pressure evolution of the crystal structure and linear compressibility of triclinic talc but 

did not explore the full elastic constant tensor (Stixrude, 2002). This was followed by a 

study that determined the full elastic constant tensor and elastic anisotropy of both 

monoclinic and triclinic talc up to 12 GPa (Mainprice et al., 2008). However, since talc is 

a layered hydrous silicate, the vdW interactions often play a vital role, and relevant 

correction is needed to better describe its structure and elastic properties (Weck et al., 

2015). In addition, the predicted pressure dependence of the elastic constants and elastic 

moduli for the triclinic and monoclinic polymorphs were quite different, and the pressure 

dependence also indicated a significant scattering due to poorly converged energetics. 

More recent work on talc explored the structure and elastic properties using first 

principles simulation integrated with dispersive forces contribution (Ulian et al., 2014). 

However, the full elastic constant results were limited to ambient pressure. It is well 
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known that pressure significantly influences the elasticity of layered hydrous minerals. 

Hence, in this study, we explored the structure, equation of state, and elasticity of both 

triclinic and monoclinic talc using first principles simulations incorporating dispersive 

interaction corrections at high pressures up to 18 GPa. 

 

2. Methods 

In nature, talc (Mg3Si4O10(OH)2) is reported to crystallize in either monoclinic 

space group symmetry (C2/c) with two TOT layers (Z= 4) (Gruner, 1934) or triclinic 

space group symmetry (C ) (Rayner and Brown, 1973; Perdikatsis and Burzlaff, 1981) 

with one TOT unit (Z=2). Hence, in this study, we explored both triclinic and monoclinic 

polymorphs. We explored the high-pressure behavior of crystal structure, equation of 

state, and elasticity of talc using static density functional theory as implemented in the 

Vienna ab-initio simulation package (VASP) (Hohenberg and Kohn, 1964; Kohn and 

Sham, 1965; Kresse and Hafner, 1993; Kresse and Furthmüller, 1996a, b; Kresse and 

Joubert, 1999). First principles simulations based on density functional theory are crucial 

in providing valuable insights into the energetics, structure, and elasticity of hydrous 

minerals (Tsuchiya et al., 2005; Tsuchiya and Tsuchiya, 2009, 2011; Chantel et al., 2012; 

Ulian et al., 2014; Mookherjee et al., 2015, 2016, 2019; Mookherjee and Tsuchiya, 2015; 

Peng et al., 2017; Yang et al., 2017; Ulian and Valdrè, 2017, 2019; Peng and 

Mookherjee, 2020; Lee et al., 2021; Saha et al., 2021). We used generalized gradient 

approximation (GGA) (Perdew et al., 1996) and the highly accurate projector augmented 

wave method (PAW) implemented in VASP (Kresse and Joubert, 1999). 
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It is well known that dispersive interaction corrections often provide better 

prediction of the structure and properties of layered minerals (Ulian et al., 2014; Weck et 

al., 2015). Hence, to account for the long-range dispersive interactions, we computed the 

equation of state and elasticity of talc with optB88 vdW density functional as 

implemented in VASP (Dion et al., 2004; Klimeš et al., 2009, 2011; Román-Pérez and 

Soler, 2009).  

We performed a series of convergence tests on talc by varying the cutoff energy 

and k-points. Unlike the previous study where a low cutoff energy Ecut of 400 eV was 

used (Mainprice et al., 2008), we found that a cutoff energy Ecut= 900 eV was required to 

describe the ground state energy of talc adequately (Supplementary Data Table 1). 

Similarly, we found that it needed a k-point mesh of 6 3 3 Monkhorst-Pack grid with 

27 irreducible k-points (Monkhorst and Pack, 1976) (Supplementary Data Table 2). 

We determined the elastic constants by straining the lattice parameters by ±1%, as 

outlined in previous studies (Mookherjee and Stixrude, 2009; Mookherjee and Capitani, 

2011; Chheda et al., 2014; Peng et al., 2017; Peng and Mookherjee, 2020). Next, we 

computed the compressional and shear wave velocities VP(n) and VS(n) as a function of 

propagation direction n (Mainprice, 1990). The P-wave anisotropy (AVP) is defined as 

AVP = (VPmax-VPmin)/[(VPmax+VPmin)/2]×100%. In an anisotropic media, the shear wave 

splits into two waves. We denoted the fastest and slowest wave as VS1 and VS2, 

respectively. We calculated the shear wave polarization anisotropy (AVS) along each 

direction by AVS = (VS1–VS2)/[(VS1+VS2)/2]×100%. 

 

3. Results 
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3.1. Equation of state and crystal structure 

The energy-volume and pressure-volume behavior of talc can be well described 

by the 4
th

-order Birth-Murnaghan equation of state (EoS) (Murnaghan, 1937; Birch, 

1978; Katsura and Tange, 2019) (Fig. 1). To better compare with prior EoS studies, we 

also fitted our data with Murnaghan EoS and 3
rd

-order Birth-Murnaghan EoS (Table 1). 

Our predicted zero-pressure volume for triclinic and monoclinic talc is V0
tri

= 461.8±0.1 

Å
3
 and V0

mon
= 923.44±0.08 Å

3
, respectively (Table 1). Experimental studies reported that 

the zero-pressure volume of triclinic talc is 453.6±0.4 Å
3
 (Gleason et al., 2008) and 

454.7±0.9 Å
3
 (Gatta et al., 2013), while that of monoclinic talc is 912±2 Å

3
 (Pawley et al., 

2002) and 915±8 Å
3
 (Gleason et al., 2008). Our results are ~1%–2% larger than the 

experimental results. We noted that the conventional GGA tends to underestimate the 

binding energy and thus overestimate the volume, while the conventional local density 

approximation (LDA) is the opposite. But the prediction with the vdW correction showed 

a much better agreement with the experimental results (Supplementary Data Fig. 1). The 

4
th

-order Birth-Murnaghan EoS fitting also yields the zero-pressure bulk modulus K0
tri

= 

38.5±3 GPa and the pressure derivative of the bulk modulus K’0
tri

= 13.2±0.1 and K’’0
tri

= 

−4.3±0.1 GPa
-1

 for triclinic talc, and K0
mon

= 40.0±0.2 GPa and K’0
mon

= 12.2±0.3 and 

K’’0
mon

= −3.6±0.3 GPa
-1

 for monoclinic talc (Table 1). Our analysis indicates that 

different types of EoS fitting affect the fitting results significantly. In addition, there is 

also a strong correlation between K0 and K’0 which is known for other minerals. Such a 

correlation means that the energy-volume data can be fitted equally well by varying the 

value of K0 and K’0. This must be considered when comparing a set of EoS parameters 

with previous results (Angel, 2000). 
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The lattice parameters of talc decrease with pressures for both triclinic and 

monoclinic structures (Fig. 2). However, the change in the c-axis is much more 

considerable compared with the a- and b-axis. We used fl-Fl relations to determine the 

linear incompressibility along each axis, where fl is linear finite strain and Fl is the linear 

normalized pressure (the subscript “l” represents each axis) (Davies, 1974; Weaver, 

1976; Meade and Jeanloz, 1990; Wentzcovitch and Stixrude, 1997; Chheda et al., 2014). 

Both triclinic and monoclinic talc show the relation of Ka~Kb>>Kc, indicating a large 

anisotropy in the linear compressibility (Supplementary Data Table 3, Fig. 2). Upon 

compression, the volume and average bond distance of each polyhedral unit decrease 

(Supplementary Data Fig. 2). The hydroxyl bond distance slightly increases upon 

compression, and beyond 1.4 GPa, it decreases monotonously with pressure. The 

tetrahedral rotation angle = (∑6
i=1|i–120°|)/12 captures the degree of distortion in the 

six-membered tetrahedral rings, where i is the angle among three adjacent basal oxygen 

atoms. Our results show that the tetrahedral rotation angle increases upon compression 

consistent with prior experimental studies (Perdikatsis and Burzlaff, 1981; Gatta et al., 

2013) (Supplementary Data Fig. 2). 

 

3.2. Elasticity 

To determine the elasticity of talc, we considered both triclinic and monoclinic 

polymorphs. The talc crystal with triclinic symmetry has 21 independent elastic 

constants, while the talc crystal with monoclinic symmetry has 13 independent ones 

(Nye, 1985). In the pressure range explored in this study, the principal components of 
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elastic constant exhibit the following relation of C11~C22>C33 (Figs. 3 and 4, Tables 2 and 

3).  

Upon compression, the principal components C11 and C22 first soften up to 

pressures of 3 GPa. Upon further compression beyond 3 GPa, C11 and C22 stiffen. In 

contrast to C11 and C22, the C33 increases monotonously. We also noted that C12, C15, C25, 

C36, and C45 of triclinic talc and C12 of monoclinic talc show initial softening till ~3 GPa, 

following which they show normal pressure dependence. While C66 and C14 of triclinic 

talc and C66 of monoclinic talc all exhibit opposite pressure dependence, i.e., they first 

stiffen up to 3 GPa and then soften upon compression (Figs. 3 and 4). The transition 

occurs within the thermodynamic stability of talc and is observed in both triclinic and 

monoclinic polymorphs. It is a rather unique behavior and is likely related to the reported 

polytypic transition between the low-pressure polytype talc-I to the high-pressure 

polytype talc-II (Scott et al., 2007; Gleason et al., 2008). This transition is related to the 

shearing between the weakly bonded adjacent TOT layers along the a–b plane, i.e., the 

change of the stacking angle of TOT layers. The shearing is likely to facilitate the water 

intercalation into talc and thus the formation of the 10-Å phase (Gleason et al., 2008). 

Owing to such shearing between the adjacent TOT layers, Cijs with stresses acting along 

the a- and b-directions, i.e., subscripts of 1, 2, and 6, tend to be more sensitive and hence 

show anomalous pressure dependence. 

The polytypic transition is often characterized by pressure-induced structural 

adjustments, resulting in iso-symmetric changes in the stacking sequences of the 

tetrahedral and octahedral layers. In addition to talc, similar transitions have been 

observed in several layered hydrous silicates relevant to subduction zones, including 
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kaolinite (Welch and Crichton, 2010; Basu and Mookherjee, 2021), chlorite (Welch et al., 

2004), and serpentine (Nestola et al., 2010). Such transitions are often associated with the 

pressure-induced anomalies of elastic constants. For instance, prior first principles 

predictions of serpentine polymorphs- lizardite (Mookherjee and Stixrude, 2009; 

Tsuchiya, 2013) and antigorite (Mookherjee and Capitani, 2011), and chlorite 

(Mookherjee and Mainprice, 2014) reported anomalous elasticity under compression. 

Experimental studies on the pressure dependence of elastic constants are often rare, 

except for one Brillouin scattering study of antigorite, which also revealed the pressure-

induced anomaly (Bezacier et al., 2013). Hence, such transitions are often manifested in 

the changes in the pressure-volume relations and high-pressure vibrational spectroscopy, 

as documented in serpentine polymorphs antigorite (Nestola et al., 2010) and lizardite 

(Auzende et al., 2004), chlorite (Welch et al., 2004), kaolinite (Welch and Crichton, 

2010; Basu and Mookherjee, 2021), and dickite (Johnston et al., 2002; Dera et al., 2003). 

At pressures beyond the anomalous behavior, the rate of stiffening of C11 and C22, 

i.e., the pressure dependence dCii/dP, where i= 1 or 2, is significantly lower than that of 

C33, i.e., dC33/dP. Similar behavior has been often observed in other layered hydrous 

silicates, including serpentine polymorph lizardite (Mookherjee and Stixrude, 2009; 

Tsuchiya, 2013), antigorite (Mookherjee and Capitani, 2011; Bezacier et al., 2013), 

chlorite (Mookherjee and Mainprice, 2014), and phlogopite (Chheda et al., 2014). We 

noticed that the pressure dependence of C13 and C23 is much larger than that of C12, and 

similarly, the pressure dependence of C44 and C55 is much larger than that of C66 for the 

entire pressure range explored in this study.  
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The comparison of elastic constants between our study and prior estimates 

showed significant differences in Cijs (Figs. 3 and 4) (Mainprice et al., 2008). These 

differences are likely due to both the dispersive interaction correction and the high cutoff 

energy (900 eV) used in this study. In contrast, the previous study did not use any 

correction for the dispersive force and used much lower cutoff energy (400 eV). Owing 

to the low cutoff energy and very likely non-converged results, prior results exhibited 

scattered data of elasticity versus pressure (Mainprice et al., 2008). However, there is a 

qualitative agreement between the prior study and our work in the talc-I to talc-II 

transition, and both capture the change in pressure dependence of elastic constants. 

We determined the Hill averages of bulk and shear moduli based on Voigt and 

Reuss bounds (Fig. 5). The zero-pressure bulk and shear moduli are in good agreement 

with previous experimental studies (Babeyko et al., 1994; Bailey and Holloway, 2000). 

Our results show that the elastic moduli of talc increase with pressure. In addition, the 

results of triclinic and monoclinic talc crystal match very well, indicating that the 

symmetry has almost no effect on the elastic properties of talc. At 0 GPa, the bulk and 

shear moduli of triclinic talc crystal are 58.0 and 26.9 GPa, respectively (Table 2). While 

the bulk and shear moduli of monoclinic talc crystal are 58.9 and 29.6 GPa, respectively 

(Table 3). The predicted P- and S-wave velocity of talc also increase with pressure. 

Similarly, the symmetry has almost no effect on the velocity of talc. At 0 GPa, the VP and 

VS of triclinic talc are respectively 6.0 and 3.2 km/s at a density of 2.70 g/cm
3
. For 

monoclinic talc, the VP and VS are 6.0 and 3.3 km/s with a density of 2.72 g/cm
3
.  

Prior simulation results show a scattering in the pressure dependence (Mainprice 

et al., 2008). In addition, the shear modulus and velocities predicted in earlier studies 
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show significant divergence between the different symmetries (Mainprice et al., 2008) 

and are significantly higher than our current results (Mainprice et al., 2008; Ulian et al., 

2014). (Fig. 5). Again, the scattering in the pressure dependence of the elasticity data of 

the prior study is likely due to the lower cutoff energy and non-converged results. 

 

4. Discussion 

4.1. Anisotropy 

It is well known that talc is an extremely anisotropic mineral, as evident from its 

structure and resulting elastic properties. It is also known to develop a strong 

crystallographic preferred orientation along interfaces of thrust faults and between 

subduction slab and mantle wedge (Lee et al., 2020; Nagaya et al., 2020). Thus, we 

determined the seismic wave velocities VP, VS1, and VS2 along different propagation 

directions (Supplementary Data Figs. 3–8). At ambient conditions, the single-crystal 

anisotropy of talc is AVP
tri

 ~68%, AVS
tri

 ~150%, AVP
mon

 ~69%, and AVS
mon

 ~141% (Fig. 

6). Upon compression, both AVP and AVS decrease significantly. When the pressure 

increases to ~6 GPa, the anisotropy is almost converged with AVP
tri

 ~29%, AVS
tri

 ~43%, 

AVP
mon

 ~28%, and AVS
mon

 ~39%. Compared with other layered hydrous silicates, 

including chlorite (Mookherjee and Mainprice, 2014) and antigorite serpentine 

(Mookherjee and Capitani, 2011), talc has the largest anisotropy at low pressures. 

Especially, AVS is almost three times larger than that of chlorite and antigorite. However, 

previous work significantly underestimated AVS (Mainprice et al., 2008). Again, it is 

owing to the use of low cutoff energy and poorly converged results. The stereographic 

projection of the P-wave, VP, shows that the propagation is slow perpendicular to the 
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basal plane, i.e., along the c-axis or [001] direction. The stereographic projection of AVS, 

i.e., the difference between VS1 and VS2, shows that AVS is relatively large along the c-

axis. The crystal symmetry has little or no effect on anisotropy (Fig. 6).  

For an anisotropic mineral such as talc, VP/VS ratio can be further examined as 

VP/VS1 and VP/VS2 and their variations along pressures and propagation directions 

(Supplementary Data Fig. 9). It is noted that the different crystal symmetry has almost no 

effect on VP/VS ratio. Along the c-axis, i.e., [001] direction, the VP/VS1 of both triclinic 

and monoclinic talc ranges between 1.4–1.5 over the entire explored pressure range and 

is relatively insensitive to compression. In contrast, the VP/VS2 of talc is quite large and is 

~5–7 at zero pressure. Upon compression, VP/VS2 of triclinic talc decreases to ~3.0 at 1.5 

GPa and ~2.1 at 4 GPa, while VP/VS2 of monoclinic talc decreases to ~3.4 at 1.5 GPa and 

~2.1 at 4 GPa. Beyond 4 GPa, the VP/VS2 is largely insensitive to pressures. Moreover, for 

the randomly oriented talc aggregate, the bulk VP/VS of both triclinic and monoclinic talc 

ranges between 1.7–1.9 that is in-between the VP/VS1 and VP/VS2. Additionally, the 

stereographic projection shows that the ratios vary a lot with propagation directions, 

especially VP/VS2 (Supplementary Data Fig. 9). 

 

4.2. Poisson’s ratio 

When materials are compressed along a certain axis, they tend to expand in the 

direction perpendicular to the compression axis, and Poisson’s ratio quantitatively 

captures this phenomenon. It is defined as the negative ratio of the transverse deformation 

to the axial deformation. It is expected that softer material will expand more with the unit 

compression force, resulting in a larger Poisson’s ratio.  
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We estimated the Poisson’s ratio of triclinic talc along various extension 

directions (Supplementary Method; Fig. 7). At low pressures, i.e., below 4 GPa, the 

Poisson’s ratio is negative for many directions. This means that if talc is stretched along 

the axial direction, the transverse directions will also expand. This is a special class of 

materials known as “auxetic materials” (Yang et al., 2004). Talc exhibits auxetic 

behavior at low pressures, i.e., P< ~4 GPa. At ~1.4 GPa, i.e., the depth of ~45 km, the 

Poisson’s ratio is as low as −0.62. It gradually transitions to a normal behavior at high 

pressures. For instance, at P≥ 5.6 GPa, talc exhibits the normal positive Poisson’s ratio in 

all directions (Fig. 7). We noted that Poisson’s ratio is still very anisotropic at higher 

pressures. The Poisson’s ratio varies greatly with different directions, and even in a 

certain direction, the maximum and minimum directions yield very different Poisson’s 

ratios. 

 

5. Implication 

In the central Mexican subduction zone, a series of seismological studies based on 

the Meso-America Subduction Experiment (MASE) have revealed the presence of an 

ultra-slow velocity layer between the subducting Cocos plate and the overriding North 

American plate (Fig. 8). This layer is characterized by a small thickness of ~2–8 km, low-

velocity, low-viscosity, and low-strength (i.e., aseismic) (Pérez-Campos et al., 2008; 

Song et al., 2009; Kim et al., 2010, 2013; Manea and Manea, 2011; Dougherty et al., 

2012). In addition to the existence of an ultra-slow velocity layer, the subduction zone is 

also unique because- (a) it has a shallow-flat-steep subduction configuration, and (b) the 

subducting slab is just located below the Moho and thus is almost devoid of overlying 



 17 

mantle wedge and directly overlain by the continental crust of North American plate. 

This thin, low-velocity, and weak layer is interpreted as being made up of either hydrated 

mineralogy (talc and chlorite) or high pore fluid pressures (Audet et al., 2009; Song and 

Kim, 2012).  

Prior studies have also found that this flat segment of the slab is characterized by 

(a) a constant depth of ~45 km; (b) a low shear velocity of 2.4–3.4 km/s, i.e., even slower 

than the topmost of the slab by 1.3–1.5 km/s; (c) a high VP/VS ratio of 2.050.25 based on 

a VP of ~5.54 km/s; and (d) a slab surface temperature of 500–800 C (Kim et al., 2010). 

Considering all these constraints, the pore fluid pressure is unlikely since the fluid is 

likely to be lost by this depth (Manea and Manea, 2011). In contrast, the hydrated mineral 

such as talc is likely to form by the reaction of serpentines and slab-derived silica-rich 

fluids along the slab-wedge interface, which lies in the thermodynamic stability field of 

talc (~800C at 1–2 GPa) (Bose and Ganguly, 1995; Pawley and Wood, 1995). In 

addition, geophysical observations on MASE did show that fluids release due to slab 

dehydration and then hydrate the upper plate. For example, a ~13 km thick continental 

root is expected below the 2.2 km elevation of the Trans-Mexican Volcanic Belt based on 

isostatic equilibrium, but it is missing. Instead, low-density minerals induced by 

hydration are suggested to compensate for the negative buoyancy (Kim et al., 2010). Also, 

several regions of non-volcanic tremor have been reported above the flat slab suggesting 

lasting hydration and weakening of the overlying continental crust (Fig. 8) (Manea and 

Manea, 2011). Thus talc is a potential candidate for explaining the ultra-slow velocity 

layer in central Mexico (Kim et al., 2013).  
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However, apart from being thermodynamically stable, talc also needs to fulfill the 

crucial constraints of low shear velocity and high VP/VS ratio observed in this subduction 

zone setting. We evaluated the potentiality of talc to explain the ultra-slow velocity layer 

using our predicted elasticity and anisotropy. We compiled the reported VP/VS vs. VS in 

the central Mexican subduction zone (Kim et al., 2010). We compared the geophysical 

compilation with that of relevant hydrous minerals, including lizardite, antigorite, 

phlogopite, and chlorite (Mookherjee and Stixrude, 2009; Bezacier et al., 2010; Chheda 

et al., 2014; Manthilake et al., 2021) (Fig. 8). At ~1.5 GPa, i.e., ~45 km depth, the VP/VS1 

ratio of triclinic talc varies between 1.2 and 1.8 and VP/VS2 varies between 1.2 and 6.3 

with the bulk VP/VS ~1.7. At similar conditions, the VP/VS1 of monoclinic talc varies 

between 1.1 and 1.8 and VP/VS2 varies between 1.2 and 5.6 with the bulk VP/VS ~1.8 

(Supplementary Data Fig. 9). The bulk VP/VS assumes an inherently homogenous nature, 

i.e., random orientation, of the minerals/rocks, while the VP/VS1 and VP/VS2 are estimated 

along specific propagation directions. However, it is likely for talc to develop a strong 

crystallographic preferred orientation along interfaces between subduction slab and 

mantle wedge (Lee et al., 2020; Nagaya et al., 2020). The range of VP/VS for talc due to 

different propagation directions can explain the VP/VS ratio as high as 2.05±0.25 observed 

in the ultra-slow velocity layer of the central Mexican subduction zone. 

Seismologically, the strength and geometry of anisotropy are generally reflected 

by the delay time between the fast and slow shear waves and the polarization direction of 

the fast shear wave, respectively (Long and van der Hilst, 2006; Long and Silver, 2008; 

Faccenda et al., 2008). Many subduction zones, including Ryukyu and Tonga, are often 

characterized by a large delay time of >1 s (Long and Silver, 2008; Katayama et al., 
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2009). The delay time is proportional to the ray path length and the strength of anisotropy 

along the ray path. Although olivine is the dominant mantle mineral, the elastic 

anisotropy of olivine is ~10%, and significant thickness of mantle with preferred 

orientated olivine is required to explain a large delay time. In contrast, the extremely 

anisotropic mineral such as talc could easily explain the large delay time within a thin 

layer. To further illustrate the degree of anisotropy associated with talc, we took the 

central Mexican subduction zone as an example. If we were to assume a talc layer of 

~4±1 km thick (Song et al., 2009; Kim et al., 2010, 2013; Manea and Manea, 2011), the 

estimated delay time is likely to be ~0.03±0.01 s to 2.1±0.5 s depending on the incidence 

angle based on the single-crystal anisotropy of triclinic talc. The largest delay time is 

observed when the ray path is parallel to the (001) plane of talc, i.e., along a-b plane of 

triclinic talc with the azimuth angle of 150º (Fig. 6). Similarly, the predicted delay time 

for monoclinic talc is ~0.04±0.01 s to 1.8±0.4 s. The largest delay time is observed when 

the ray path is parallel to the (001) plane and along the b-axis of monoclinic talc (Fig. 6). 

However, since talc is extremely anisotropic, the predicted delay time along the c-axis is 

still very high, with triclinic and monoclinic talc being ~1.8±0.4 s and 1.5±0.4 s, 

respectively. Clearly, a relatively thin layer of extremely anisotropic minerals such as talc 

could easily explain the large delay time >1 s, assuming a perfect crystal alignment. 

However, our understanding of the elasticity of talc in subduction zone settings is likely 

to be enhanced by further investigations on the slip system and how non-hydrostatic 

stresses are likely to affect the crystallographic preferred orientation of talc bearing 

lithology. 
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6. Conclusions 

In summary, we explored the structure, equation of state, and elasticity of both 

triclinic and monoclinic talc under high pressures up to 18 GPa using first principles 

simulations based on density functional theory corrected for dispersive forces. Owing to 

the dispersive correction and high cutoff energy of 900 eV, our results are significantly 

improved compared to the previous high-pressure elasticity study (Mainprice et al., 

2008). The prior estimation was widely used to explain the geophysical observations or 

build geophysical models relevant to subduction zone settings. However, our results 

indicate that the prior estimation greatly overestimated the shear moduli and shear wave 

velocity and significantly underestimated the shear wave anisotropy. Thus, it is required 

to re-evaluate the velocity models and/or interpretations using the previous data set. 

Our results also show that some components of the full elastic constant tensor, 

including C11, C22, and C66, exhibit anomalous pressure dependence. The non-monotonic 

pressure dependence of elastic constant components is very likely related to the structural 

changes, which usually manifests in a polytypic transition from a low-pressure polytype 

talc-I to a high-pressure polytype talc-II. This polytypic transition occurs at ~3 GPa, 

which is within the thermodynamic stability field of talc. The transition could be a 

structural precursor of the 10-Å phase, a hydrous mineral that is thermodynamically 

stable at a deeper depth and is crucial for transporting water into the deep Earth. 

Our study also shows that talc bearing hydrated lithology could readily account 

for anomalously low velocity, extremely high anisotropy, and anomalously high VP/VS 

ratio observed in subduction zone settings. In addition, talc bearing lithologies could also 
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explain a large delay time in shear wave splitting as observed from seismological studies 

in many subduction systems. 
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Figure Captions 

Figure 1: Comparison between experimental results and our predicted pressure vs. unit-

cell volume for triclinic (tri) and monoclinic (mon) talc. Please note that the unit-cell 

volume of monoclinic talc has been divided by two to compare with that of triclinic talc. 

G13: Gatta et al., 2013; G08: Gleason et al., 2008; P02: Pawley et al., 2002. 

 

Figure 2: (a–c) Lattice parameters (a) a-, (b) b-, (c) c-axis of talc as a function of 

pressure. Please note that the c-axis of monoclinic talc has been divided by two to 

compare with that of triclinic talc. (d–f) Angular lattice parameters (d) , (e) , (f)  as a 

function of pressure. Our predicted results are compared with experimental results of talc 

(G13: Gatta et al., 2013; G08: Gleason et al., 2008; P02: Pawley et al., 2002). (g–i) The 

linear normalized pressure, Fl, vs. the linear Eulerian finite strain, fl, are plotted for (g) a-; 

(h) b-; (i) c-axis. The intercept along the ordinate indicates the linear compressibility Ka, 

Kb, and Kc. The error bars for the normalized pressure are estimated to be ±0.1 GPa based 

on the numerical precision of the calculations determined from the convergence of the 

energy. 

 

Figure 3: Elastic constants Cij of triclinic talc as a function of pressure. Triclinic talc has 

21 independent elastic constants, and each panel has been labeled. The gray shaded area 

marks talc-I to talc-II transition. Our results are compared with previous simulation 

results (black triangles) (Mainprice et al., 2008). 
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Figure 4: Elastic constants Cij of monoclinic talc as a function of pressure. Monoclinic 

talc has 13 independent elastic constants, and each panel has been labeled. The gray 

shaded area marks talc-I to talc-II transition. Our results are compared with previous 

simulation results (black triangles) (Mainprice et al., 2008). 

 

Figure 5: (a) Voigt-Reuss-Hill averaging bulk (K) and shear (G) moduli of talc as 

functions of pressure. The cool color symbols represent bulk moduli, while the warm 

color symbols represent shear moduli. The circle symbols denote triclinic talc, while the 

square symbols denote monoclinic talc. The results are compared with previous 

simulation studies (M08: Mainprice et al., 2008; U14: Ulian et al., 2014) and 

experimental studies (B94: Babeyko et al., 1994; BH00: Bailey and Holloway, 2000). (b) 

Compressional (VP) and shear (VS) wave velocity of talc as a function of pressure. The 

cool color symbols represent compressional wave velocity, while the warm color symbols 

represent shear wave velocity. The circle symbols denote triclinic talc, while the square 

symbols denote monoclinic talc. The results are compared with previous simulation 

studies (M08: Mainprice et al., 2008; U14: Ulian et al., 2014). 

 

Figure 6: (a) Compressional and shear wave anisotropy, AVP and AVS, as a function of 

pressure for various layered hydrous minerals relevant for the subduction zone settings. 

Mineral abbreviation: tlc-tri- triclinic talc (this study; Mainprice et al., 2008); tlc-mon: 

monoclinic talc (this study; Mainprice et al., 2008); atg- antigorite serpentine 

(Mookherjee and Capitani, 2011); and chl- chlorite (Mookherjee and Mainprice, 2014). 

(b) Stereographic projections down the c-axis of VP and AVS of both triclinic and 
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monoclinic talc at ~1.3–1.4 GPa, which corresponds to a depth of ~45 km. The black 

square symbols denote the maximum values, and the white circle symbols denote the 

minimum values. The solid black lines mark the fixed azimuth angle for Fig. 8c, i.e., 

150° for triclinic talc and 90° for monoclinic talc. 

 

Figure 7: Poisson’s ratio of triclinic talc along different directions at (a) low and (b) high 

pressures, i.e., 1.4 and 5.6 GPa. In each unit on the three-dimensional upper hemisphere 

stereogram, the bold short black line at the center of the circle points to the extension 

direction; the thin circle represents the undeformed cylinder; the bold circle represents the 

elastically deformed cylinder with 1% elastic extension applied; the blue and green lines 

represent the maximum and minimum direction of Poisson’s ratio, respectively; and the 

blue and green numbers are the maximum and minimum value of Poisson’s ratio. It is 

noted that red lines in panel (a) indicate that Poisson’s ratio is negative. 

 

Figure 8: (a) Schematic diagram of the central Mexican subduction zone with the 

shallow-flat-steep subduction configuration. In the ultra-slow velocity layer (UVL), it is 

assumed that the (001) plane of talc is nearly parallel to the flat slab, marked by the green 

bars. (b) P-to-S velocity ratio (VP/VS) vs. shear wave velocity VS of talc. Our results are 

compared with various layered hydrous minerals relevant for the subduction zone 

settings, including lizardite serpentine (lz) (Mookherjee and Stixrude, 2009), antigorite 

serpentine (atg) (Bezacier et al., 2010), phlogopite (phl) (Chheda et al., 2014), and 

chlorite (chl) (Manthilake et al., 2021). The gray and open diamonds represent the data of 

the upper and lower oceanic crustal (OC) layer of the subducting slab of the central 
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Mexican subduction zone (Kim et al., 2010). (c) Delay time/ thickness of the anisotropic 

layer (VS/VS1VS2) as a function of incidence angle of both triclinic and monoclinic talc at 

~1.3–1.4 GPa, which corresponds to a depth of ~45 km. The profile of the data is marked 

by the solid black lines in Fig. 6, i.e., the azimuth angle is 150° for triclinic talc and 90° 

for monoclinic talc. The incidence angle is between the ray path and c-axis, i.e., 0° 

indicates the ray path is along the c-axis while 90° indicates the ray path is parallel to a-b 

plane. 

 

Table 1: Equation of state parameters for talc compared with previous studies. Number in 

the parenthesis is the error in the last digit. 

Table 2. Elastic constants for triclinic talc. 

Table 3. Elastic constants for monoclinic talc. 

 

Supplementary Data  

Supplementary Method: Anisotropic Poisson’s ratio 

 

Supplementary Data Tables 

Supplementary Data Table 1. The total energy as a function of increasing cut-off energy 

(Ecutoff) for triclinic talc using GGA with van der Waals correction. The K-points 

remain unchanged. 

Supplementary Data Table 2. The total energy as a function of increasing K-points for 

triclinic talc using GGA with van der Waals correction. The cut-off energy of 900 eV 

remains unchanged. 
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Supplementary Data Table 3. Lattice parameters and linear compressibility for talc. 

Supplementary Data Table 4. The elastic constants as a function of cut-off energy 

(Ecutoff) for triclinic talc using GGA. 

 

Supplementary Data Figures 

Supplementary Data Figure 1. Comparison of total energy using GGA with van der 

Waals correction (GGA + vdW) and conventional GGA for triclinic talc. The vertical 

bars indicate the zero-pressure unit-cell volume: red- GGA + vdW (this study); blue- 

conventional GGA (this study); black- conventional LDA (Stixrude, 2002); and green- 

experiments (Gatta et al., 2013; Gleason et al., 2008). 

Supplementary Data Figure 2. Structural change with increasing pressures for triclinic 

talc. (a) Volume of Mg octahedrons with pressures. The solid red line represents the 

average volume of Mg1 and Mg2 octahedrons. (b) Volume of Si tetrahedrons with 

pressures. The solid blue line represents the average volume of Si1 and Si2 tetrahedrons. 

with pressures which describes the distortion degree of the six-membered tetrahedral 

rings. Previous experimental (G13: Gatta et al., 2013; PB81: Perdikatsis and Burzlaff, 

1981) and simulation (U14: Ulian et al., 2014; S02: Stixrude, 2002) results are reported 

for comparison. 

Supplementary Data Figure 3. Three-dimensional plot of VP as a function of incidence 

angle and pressure for triclinic talc. The data are taken along the plane with an azimuth 

angle of 60°. 
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Supplementary Data Figure 4. Three-dimensional plot of VS1 as a function of incidence 

angle and pressure for triclinic talc. The data are taken along the plane with an azimuth 

angle of 60°. 

Supplementary Data Figure 5. Three-dimensional plot of VS2 as a function of incidence 

angle and pressure for triclinic talc. The data are taken along the plane with an azimuth 

angle of 60°. 

Supplementary Data Figure 6. Three-dimensional plot of VP as a function of incidence 

angle and pressure for monoclinic talc. The data are taken along the plane with an 

azimuth angle of 0°. 

Supplementary Data Figure 7. Three-dimensional plot of VS1 as a function of incidence 

angle and pressure for monoclinic talc. The data are taken along the plane with an 

azimuth angle of 0°. 

Supplementary Data Figure 8. Three-dimensional plot of VS2 as a function of incidence 

angle and pressure for monoclinic talc. The data are taken along the plane with an 

azimuth angle of 0°. 

Supplementary Data Figure 9. (a) P-to-S velocity ratio (VP/VS) vs. pressure of talc. Inset 

is an enlarged version to better show the VP/VS1 of talc. (b) Stereographic projections 

down the c-axis of VP/VS1 and VP/VS2 of both triclinic and monoclinic talc at ~1.3-1.4 

GPa, which corresponds to a depth of ~45 km. The black square symbols denote the 

maximum values, and the white circle symbols denote the minimum values. The colored 

circle/square symbols indicate the propagation directions of the P-to-S velocity ratio we 

chose in this figure. 
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Table 1. Equation of state parameters for talc compared with previous studies. Number in the 

parenthesis is the error in the last digit. 

  
Symmetry

a 

Pressure 

range (GPa) 
E0 (eV) 

V0 
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K0 

(GPa) 
K' 

K'' 

(GPa-1) 

EoS 

fitting b 
Methods c 

Gatta et al., 

2013 
tri 0-15.5   

454.7(

9) 
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4.9(

5) 
  M 

SCND+SC

XRD 

  tri 0-15.5   
454.7(

10) 
56(3) 

5.4(

7) 
  III-BM 

SCND+SC

XRD 

Pawley et al., 

2002 
mon 0-6.2   912(2) 41(4) 6(2)   M SEDXRPD 

Pawley et al., 

1995 
mon 0-6.05   
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2) 

41.6(

9) 

6.5(

4) 
  M XRPD 

Gleason et al., 

2008 
tri 0-10.0   

453.6(

4) 

30(17

) 

18(2

7) 
  III-BM XRPD 

  mon 0-10.4   915(8) 44(2) 
18(1

) 
  III-BM XRPD 

Stixrude et al., 

2002 

tri/primitiv

e cell 
-1.10-26.07   

217.5(

1) 

37.8(

4) 

13.6

(2) 
-4.0 IV-BM LDA static 

  
tri/primitiv

e cell 
-1.10-26.07   

221.8(

2) 
29(5) 17 -8.6 IV-BM LDA 300 K 

Mainprice et 

al., 2008 
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a: tri: triclinic; mon: monoclinic. 
b: M: Murnaghan fitting; III-BM: 3rd-order Birch-Murnaghan fitting; IV-BM: 4th-order Birch-Murnaghan fitting. 
c: SCND: single-crystal neutron diffraction; SCXRD: single-crystal X-ray diffraction; SEDXRPD: synchrotron energy-

dispersive; XRPD: X-ray powder diffraction; LDA: local density approximation; GGA: generalized gradient 
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 43 

d: Results from this study have been fitted by Murnaghan fitting, 3rd-order Birch-Murnaghan fitting, and 4th-order 

Birch-Murnaghan fitting. The 2 of triclinic and monoclinic talc are 1.1E-2 and 3.9E-4 using Murnaghan fitting, 5.0E-3 

and 2.2E-4 using3rd-order Birch-Murnaghan fitting, 8.6E-5 and 4.3E-6 using 4th-order Birch-Murnaghan fitting, 

respectively.  
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Note: Cij,0 is the Cij at zero pressure in the unit of GPa, Cij' is the pressure derivative 
of Cij which is unitless, and Cij'' is the second order pressure derivative of Cij in the 
unit of GPa-1. 
 

Table 3. Elastic constants for monoclinic talc. 
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Note: Cij,0 is the Cij at zero pressure in the unit of GPa, Cij' is the pressure derivative 
of Cij which is unitless, and Cij'' is the second order pressure derivative of Cij in the 
unit of GPa-1. 
 
 

Research Highlights 

 



 45 

 Talc is one of the most elastically anisotropic mineral in subduction zone settings. 

 Talc-bearing lithology used to explain ultra-slow velocity, high VP/VS ratio, and 

large delay time  

 Pressure dependence of the components of the elastic constant tensor exhibits 

anomalous behavior  
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