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Abstract 19 

The availability of computer tools able to describe the behavior of pyroclastic density currents 20 

(PDCs) with uncertainty quantification is of primary importance for the assessment of volcanic 21 

hazard. A common strategy to assess the intrinsic variability of these phenomena is based on the 22 

analysis of large sets of numerical simulations with variable input parameters. The use of models 23 

fast enough to allow for a large number of simulations, such as the so-called kinetic energy models, 24 

is thus advantageous. Due to the sensitivity of kinetic energy models to poorly constrained input 25 

parameters, the definition of their variation ranges is a critical step in the construction of hazard 26 

maps and a numerical calibration becomes necessary. We present a set of reproducible and 27 

structured calibration procedures of numerical models based either on a reference deposit or on 28 

the distribution of runout distance or inundation area of documented PDCs. In the first case, 29 

various metrics can be adopted to compare the model results with the reference PDC deposit (root 30 

mean square distance, Hausdorff distance and Jaccard index), facilitating the development of 31 

scenario-based hazard assessments. Calibrations based on the distribution of runout distance or 32 

inundation area allow the construction of probabilistic hazard maps that are not conditioned on the 33 

occurrence of a specific scenario, but rather reflect the variability of the documented PDCs during 34 

the time window considered. Importantly, our calibration strategies allow one to set the input 35 

parameters considering their potential statistical dependence. These procedures have been 36 

implemented on the user-friendly versions of two kinetic energy models: ECMapProb 2.0 and 37 

BoxMapProb 2.0, whose functionalities are presented for the first time in this paper. The different 38 

calibration strategies and the functionalities of the two programs are illustrated by considering 39 

three case studies: El Misti (Peru), Merapi (Indonesia) and Campi Flegrei (Italy). 40 

1. Introduction 41 



Pyroclastic density currents (PDCs) are mixtures of gas, juvenile pyroclasts and lithic fragments 42 

typically produced by a lateral blast or by the collapse of an eruptive column or a volcanic dome 43 

(Druitt 1998; Roche et al. 2013; Dufek et al. 2015; Lube et al. 2020). These mixtures are denser 44 

than the surrounding atmosphere and propagate laterally due to the effects of gravity and inertia, 45 

and are influenced by the volcano topography. PDCs represent one of the major hazards associated 46 

with volcanic systems, which have been systematically assessed by adopting an approach based 47 

on numerical modeling (Malin and Sheridan 1982; Neri et al. 2015a, 2022; Sheridan et al. 2004; 48 

Patra et al. 2005; Kelfoun et al. 2009; Doyle et al. 2010; Esposti Ongaro et al. 2011; 2016; Kelfoun 49 

2011; de' Michieli Vitturi et al. 2019; Aravena et al. 2020). PDCs pose important modeling 50 

challenges because of their complex propagation dynamics and the uncertainty in their initial 51 

conditions. Due to this uncertainty, a common strategy to assess the intrinsic variability of these 52 

phenomena is based on the analysis of a large number of simulations (e.g. 104-106) derived from 53 

the sampling of a statistically representative set of input parameters (Neri et al. 2015b; Tierz et al. 54 

2016a; Bevilacqua et al. 2017; Rutarindwa et al. 2019; Patra et al. 2020). Consequently, tools fast 55 

enough to allow for large numbers of simulations are required, such as the so-called kinetic energy 56 

models (Roche et al. 2013; Aravena et al. 2020). These models are based on the calculation of the 57 

kinetic energy in the flow front as a function of the distance travelled by the PDC. Kinetic energy 58 

is compared with the potential energy associated with the topographic obstacles encountered by 59 

the PDC to calculate the runout distance. Other strategies to reduce computational cost in 60 

uncertainty quantification studies include Gaussian emulators (Bayarri et al. 2009; 2015; Anderson 61 

et al. 2019; Poland and Anderson 2019) and Polynomial Chaos expansions (Dalbey et al., 2008; 62 

Tierz et al., 2018). These approaches enable the quick production of hazard maps without an 63 

excessive computational expense (e.g., they can be run on a single computer processor in less than 64 



an hour) and have important applications in computationally-light e-tools for rapid volcanic hazard 65 

and risk-management (Tonini et al. 2015; Marti et al. 2016; Bartolini et al. 2017; Takarada et al. 66 

2017; Gallant et al. 2018). In the case of kinetic energy models, because of their sensitivity on 67 

often poorly-constrained input parameters, the definition of variation ranges for model inputs is a 68 

critical step in the construction of statistically reliable hazard maps. 69 

The absence of standardized strategies to set the input parameters of kinetic energy models often 70 

limits the capability to perform comparative analyses between field data and numerical models. 71 

Inter-comparison of models is a critical step in the validation of numerical tools, as discussed by 72 

Esposti Ongaro et al. (2020a), being particularly relevant when these tools are used to define 73 

measures of volcanic risk mitigation (Valentine 2019; Gueugneau et al. 2021). We stress that there 74 

are similar difficulties in any numerical model when it is adopted to describe a physical 75 

phenomenon characterized by significant uncertainty (Scollo et al. 2008; Worni et al. 2012; Biass 76 

et al. 2016; White et al. 2017; Charbonnier et al. 2018; de' Michieli Vitturi and Tarquini 2018; 77 

Aspinall and Woo 2019; Bevilacqua et al. 2019; Yang et al. 2020), supporting the importance of 78 

developing strategies to address this issue. 79 

In this context, we present a set of reproducible and structured procedures to calibrate the input 80 

parameters of PDC numerical models based on geological information of the volcanic system of 81 

interest. These calibration strategies reduce the biases derived from user assumptions in the 82 

construction of PDC hazard maps, which are often necessary due to data incompleteness. The 83 

geological information used in these calibration strategies can be described in terms of the 84 

inundation zone of a specific PDC or the distribution of runout distances or inundation areas of 85 

past PDCs. Importantly, these calibration procedures are implemented in the user-friendly 86 

programs ECMapProb 2.0 and BoxMapProb 2.0, which are based on the traditional and branching 87 



formulations of the energy cone and the box model, respectively (Aravena et al. 2020), and whose 88 

functionalities and user manuals are included in this paper (see Supplementary Material). 89 

This study complements many previous efforts to set the input parameters of kinetic energy models 90 

based on the eruptive record of volcanoes (e.g. Neri et al. 2015b; Tierz et al. 2016a; 2016b; Ogburn 91 

and Calder 2017; Cioni et al. 2020). The purpose of our work is not to compare the suitability of 92 

different calibration procedures or provide new hazard maps for well-documented volcanoes, but 93 

to present a set of standardized calibration strategies that can be used for the quick construction of 94 

PDC inundation probabilistic maps. The applicability of these calibration strategies is not restricted 95 

to kinetic energy models, and they can be easily implemented for any numerical model able to 96 

simulate the inundation area of PDCs. We illustrate these calibration strategies by considering 97 

three volcanic systems: El Misti (Peru), Merapi (Indonesia) and Campi Flegrei (Italy). This paper 98 

consists of five sections. In Section 2 we describe briefly the numerical models used in this work 99 

and their input parameters. In Section 3 we present a set of reproducible calibration strategies of 100 

the inputs of PDC numerical models. In Section 4 we show three illustrative applications of our 101 

calibration strategies and, finally, in Section 5 we present a summary and conclusion of this paper. 102 

2. Input parameters of kinetic energy models 103 

Here we briefly describe the input parameters of the traditional and branching formulations of the 104 

energy cone (Section 2.1) and the box model (Section 2.2) as well as the historical background on 105 

the criteria used to define their input parameters (Section 2.3). 106 

2.1 Energy cone model 107 

The energy cone model is a simple and widely used formulation to study PDC dispersal (Malin 108 

and Sheridan 1982; Sheridan and Malin 1983; Wadge and Isaacs 1988) due to its easy 109 



implementation and fast generation of results. This model describes the evolution of the kinetic 110 

energy of a frictional flow by considering a constant rate of energy dissipation, which is compared 111 

with the potential energy needed to overcome the topographic obstacles along the PDC path. 112 

Consequently, this model describes better the dispersal of dense, frictional granular flows 113 

(Campbell 2006; Pudasaini and Domnik 2009), although it has been adopted to simulate dilute 114 

PDCs as well. In addition to the collapse location (𝑄0,0), the input parameters of this model are: 115 

(a) collapse height (𝐻0,0, hereafter defined with respect to the topographic elevation at the point 116 

𝑄0,0), and (b) energy cone slope (tan(𝜑)). Note that tan(𝜑) has been frequently named 𝐻/𝐿 in 117 

the literature, where 𝐻 represents the height difference between the collapse point and the point of 118 

maximum runout and 𝐿 is the distance travelled by the PDC. The parameters 𝐻0,0 and tan(𝜑) 119 

define a vertical-axis cone whose interaction with the topography gives rise to an inundation area, 120 

as shown in Figure 1a-b. Because this model does not consider processes of pyroclast 121 

channelization, an enhanced formulation was presented by Aravena et al. (2020), where a root 122 

energy cone is complemented with branch energy cones along the preferential channelization 123 

directions of pyroclastic material, whose collapse heights are proportional to the residual potential 124 

energy computed in the vicinity of each channelization zone. Root and branch energy cones are 125 

organized in a tree-like array that gives rise to a branching structure (Harris 1963; Asmussen and 126 

Hering 1983; Haccou et al. 2005), which is stopped when the branch energy cones are not able to 127 

increase the inundation area of the modeled PDC (Fig. 1). The branching formulation does not 128 

include additional input parameters and thus the calibration procedures described below are valid 129 

both for the traditional and the branching formulations. 130 

2.2 Box model 131 



The box model integral formulation, based on the pioneering work of Huppert and Simpson 132 

(1980), describes inertial flows such as dilute PDCs (particle volume concentration of the order of 133 

10-2 or less). In this model, friction is assumed to be negligible and the flow propagation dynamics 134 

is controlled by the hydrostatic pressure contrast and by the momentum dissipation due to particle 135 

sedimentation. The input parameters of the box model are (Esposti Ongaro et al. 2016): collapsing 136 

volume (𝑉0), initial concentration of solid particles (𝜙0), Froude number (𝐹𝑟), sedimentation 137 

velocity (𝑤𝑠); solid particle density (𝜌𝑝), and ambient gas density (𝜌𝑎). These parameters define a 138 

vertical-axis conoid centered at the source position whose intersection with the topography defines 139 

the boundary of the inundation area. In this case as well, a new formulation based on the 140 

construction of additional (or branch) conoids in the zones of preferential channelization was 141 

presented by Aravena et al. (2020), which improves the ability of the box model to reproduce 142 

channelization processes of pyroclastic material. In the branching formulation, a root conoid is 143 

complemented with a set of branch conoids disposed along the zones of preferential 144 

channelization. These conoids are organized in a branching structure (Harris 1963; Asmussen and 145 

Hering 1983; Haccou et al. 2005) that is stopped when the branch conoids do not increase the 146 

inundation area of the modeled PDC (Aravena et al. 2020). The branching formulation does not 147 

involve the inclusion of additional input parameters and thus the calibration strategies described 148 

in this work are valid both for the traditional and the branching formulations of the box model. 149 

2.3 Setting the input parameters of kinetic energy models: historical background 150 

In the case of the energy cone model, where input parameters are collapse position (𝑄0,0), collapse 151 

height (𝐻0,0) and the energy cone slope (tan(𝜑)), several efforts have been devoted to constrain 152 

tan(𝜑) (Hsu 1975). Sheridan and Macías (1995) studied the deposits of pyroclastic flows at 153 

Colima volcano (Mexico) showing that tan(𝜑) is influenced by the pyroclastic flow volume. 154 



Hayashi and Self (1992) also found a negative correlation between tan(𝜑) and flow volume. The 155 

statistical correlation between flow volume and tan(𝜑) was further investigated and quantified in 156 

Spiller et al. (2014) and Ogburn et al. (2016). These papers have only partially constrained the 157 

expected variability of tan(𝜑), and thus additional assumptions are needed to set this input 158 

parameter. Regarding the parameter 𝐻0,0, 3D multiphase flow models (e.g. Esposti Ongaro et al. 159 

2020b) have shown that column collapse height is virtually irrelevant in the determination of the 160 

flow runout (which is more likely controlled by the mass flow rate feeding the PDC). 161 

Consequently, the interpretation of 𝐻0,0 as a measure of the collapse height may be misleading in 162 

PDCs derived from collapsing columns, and thus it should be considered as a model parameter for 163 

which a numerical calibration becomes necessary. 164 

In practice, many strategies for setting input parameters for the energy cone approach have been 165 

applied during the last decades, including the use of vent opening maps (i.e. spatial density models 166 

of the probable locations of new vents). For instance, Alberico et al. (2002) adopted the energy 167 

cone model to study PDC propagation at Campi Flegrei (Italy) using a vent opening probability 168 

map to define a set of likely collapse positions. In these simulations, input parameters were 169 

imposed to consider two scenarios that roughly reflect the typical runout distance of small- and 170 

large-scale PDCs in this volcanic system. Other examples where 𝐻0,0 and tan(𝜑) were imposed 171 

deterministically are Macías et al. (2008) and Ferrés et al. (2013). Tierz et al. (2016b) applied a 172 

Monte Carlo strategy to analyze the inundation area and runout distance of past PDCs at Vesuvius 173 

and Campi Flegrei, using independent probability distributions for the model inputs. Other 174 

examples where a Monte Carlo approach was applied are Sandri et al. (2018) and Clarke et al. 175 

(2020). 176 



Regarding the definition of the box model input parameters, Neri et al. (2015b) studied the 177 

geological record of Campi Flegrei to define probability distributions of the inundation area of 178 

past PDCs, finalizing these data to compute the input conditions (in particular, the flow volume) 179 

of a set of simulations through an iterative method of numerical inversion (Bevilacqua 2016). In 180 

addition, Neri et al. (2015b) used the vent opening probability maps from Bevilacqua et al. (2015) 181 

for the construction of fully probabilistic maps of PDC inundation at Campi Flegrei. Their findings 182 

were further extended by Bevilacqua et al. (2017), who detailed the joint effects of vent position 183 

and PDC scale. Both Neri et al. (2015b) and Bevilacqua et al. (2017) considered the inundation 184 

area as a random variable whose definition is based on the vent location and the geological record 185 

of Campi Flegrei, which was therefore used as an input in the box model simulations performed. 186 

Tadini et al. (2021) used average deposit thicknesses as a function of distance from the collapse 187 

location (Cioni et al. 2020) to constrain the input parameters of the box model for two significantly 188 

different PDC units of the AD 79 Vesuvius eruption. 189 

3. Calibration strategies 190 

Calibrating the input parameters of PDC numerical models is a critical step when they are used in 191 

the construction of inundation probability maps, even if the Monte Carlo approach is adopted to 192 

sample the model inputs. This is because inundation probability maps are not only controlled by 193 

the variation range of the input parameters but also by their probability distributions. In fact, the 194 

probabilistic nature of hazard maps computed from the invasion frequency within a set of 195 

numerical simulations is highly debatable if well-suited calibration procedures are not considered 196 

for their construction. For instance, Hyman et al. (2019) showed that selecting a non-uniform 197 

distribution over the input range can significantly enhance the robustness of numerical results. 198 



In this section, we describe different strategies to calibrate the input parameters of the energy cone 199 

model and box model. To provide a common nomenclature, the calibrated input parameters are 200 

named 𝛼 and 𝛽. For the energy cone model, 𝛼 is defined as the collapse height 𝐻0,0 and 𝛽 201 

represents the energy cone slope tan(𝜑). For the box model, 𝛼 represents log(𝑉0) (with 𝑉0 202 

representing the collapsing volume) and 𝛽 is defined as the initial particle concentration 𝜙0. The 203 

other input parameters of the box model are fixed. The six inputs of the box model are combined 204 

to define only two intermediate variables (𝐿𝑚𝑎𝑥 and 𝐶; see Aravena et al. 2020) which fully define 205 

the box model conoids. A calibration based on only two variable parameters is thus enough to 206 

capture the variability in the numerical results of this model and to describe the adopted calibration 207 

procedures. Our calibration procedures can be eventually generalized to a larger number of 208 

variable input parameters. To develop a reproducible calibration procedure, we need to define a 209 

similarity index (S) between the results of a set of calibration simulations and a reference scenario 210 

or set of reference scenarios. In this work and in the programs ECMapProb 2.0 and BoxMapProb 211 

2.0, the reference scenario (or set of reference scenarios) can be defined in terms of an inundation 212 

polygon or in terms of a probability distribution of runout distance or inundation area, which are 213 

expected to be based on the geological record of the studied volcano. 214 

Consider a set of 𝑁 ⨯𝑁 calibration simulations with fixed source position and the input parameters 215 

variable within the Cartesian product of predefined ranges (𝛼 ∈ [𝛼1, … , 𝛼𝑁] and 𝛽 ∈ [𝛽1, … , 𝛽𝑁]). 216 

Both sequences of inputs are increasing and their values equidistant. We name S𝑚,𝑛 the similarity 217 

index between the modeled inundation polygon associated with the 𝑚-th value of 𝛼 and the 𝑛-th 218 

value of  𝛽 and the reference scenario or set of reference scenarios. S𝑚,𝑛 is assumed to be a non-219 

negative number that increases as the consistency between the modeled inundation polygon and 220 

the reference scenario or set of reference scenarios increases. This may translate into a 221 



mathematical relationship between S𝑚,𝑛 and the sampling probability of the pair of inputs 222 

(𝛼𝑚, 𝛽𝑛):  223 

𝑃((𝛼, 𝛽) = (𝛼𝑚, 𝛽𝑛)):= 𝑐𝑝 ∙ 𝑆𝑚,𝑛 (1) 

where 𝑐𝑝 is a normalizing constant. 224 

Considering known values for S𝑚,𝑛 we can define a probability function for sampling the model 225 

inputs based on the reference scenario or set of reference scenarios. In practice, this means that we 226 

can calculate 𝑐𝑝, which is used to normalize the function 𝑃 to integrate to unity, by assuming: 227 

{
𝑃(𝛼 ∈ [𝛼1, 𝛼𝑁]) = 1

𝑃(𝛽 ∈ [𝛽1, 𝛽𝑁]) = 1
 (2) 

In this work we describe five different similarity indexes, which have been implemented in the 228 

programs ECMapProb 2.0 and BoxMapProb 2.0. Three similarity indexes are based on a reference 229 

inundation polygon (i.e., the footprint over the topography of the inundation area of a given PDC; 230 

Section 3.1), and the other two similarity indexes are based on predefined probability distributions 231 

of runout distance and inundation area, respectively (Section 3.2). These probability distributions 232 

are expected to be based on the geological record of the studied volcano. 233 

Importantly, all the calibration strategies described in this work consider a possible statistical 234 

dependence between the model inputs. In the case of the energy cone model, the well-known 235 

relationship between PDC volume and tan(𝜑) likely translates into a mathematical relationship 236 

between 𝐻0,0 and tan(𝜑) (see Section 4.1), which would imply that the input parameters cannot 237 

be sampled independently for the construction of PDC hazard maps. In the case of the box model, 238 



the product between𝑉0 and 𝜙0 represents the collapsing volume of pyroclasts, and thus the 239 

applicability of an independent sampling is highly debatable (see Section 4.3). 240 

3.1 Metrics based on a reference inundation polygon 241 

Let consider two inundation polygons (A and B) defined by the sets of boundary points 𝐴𝑖 and 𝐵𝑗, 242 

respectively (𝑖 = 1,… , 𝑛𝑎 and 𝑗 = 1,… , 𝑛𝑏). Polygon A is given by the reference inundation area 243 

(defined by the user in the programs ECMapProb 2.0 and BoxMapProb 2.0) and polygon B is the 244 

result of a given calibration simulation (computed using 𝛼 = 𝛼𝑚 and 𝛽 = 𝛽𝑛). In our programs, 245 

in order to reduce the numerical errors derived from the definition of these polygons and to balance 246 

the weight given to the different portions of the polygons, their contour points are re-sampled 247 

considering a large number (𝑛𝑟 = 1,000) of equidistant points (with respect to the arc length) 248 

named 𝐴𝑘 and 𝐵𝑘 (𝑘 = 1,… , 𝑛𝑟). Below we describe the three different metrics available to 249 

calculate S𝑚,𝑛 based on a reference inundation polygon (Fig. 2). 250 

3.1.1 Root mean square distance (RMSD) 251 

This similarity index is based on the root mean square distance between the boundary points of 252 

each polygon (𝐴𝑘 and 𝐵𝑘) and the closest boundary point of the other one (Fig. 2a), i.e.: 253 

𝑅𝑀𝑆𝐷𝑚,𝑛: =
√(∑ ( min

𝑗∈[1,𝑛𝑟]
(𝑑(𝐴𝑖 , 𝐵𝑗))

2

)
𝑛𝑟
𝑖=1 ) + (∑ ( min

𝑗∈[1,𝑛𝑟]
(𝑑(𝐵𝑖, 𝐴𝑗))

2

)
𝑛𝑟
𝑖=1 )

2𝑛𝑟
 

(3) 

 254 

where 𝑅𝑀𝑆𝐷 is the 2D-array containing the results of root mean square distance in all the 255 

calibration simulations and the subscripts refer to the indices of this matrix. The lower the value 256 



of 𝑅𝑀𝑆𝐷𝑚,𝑛, the higher the similarity degree between the inundation polygons. From these results, 257 

the similarity index can be defined by: 258 

𝑆𝑚,𝑛
(1)

: = (
1

𝑅𝑀𝑆𝐷𝑚,𝑛 + 𝜀𝐷𝐸𝑀
)

2

 (4) 

where 𝜀𝐷𝐸𝑀 is the cell size of the DEM used in the calibration simulations, representing a measure 259 

of the DEM resolution-derived uncertainty in the calculation of the distance-based similarity 260 

metrics. We found that the effect of 𝜀𝐷𝐸𝑀 was negligible in all the tested cases, but it is still 261 

incorporated in Eq. 4 to avoid division by zero in any simulation condition (note that the minimum 262 

value computed for 𝑅𝑀𝑆𝐷𝑚,𝑛 in the studied cases is much larger than 𝜀𝐷𝐸𝑀 ≈ 30m). In Equation 263 

4 and in all the similarity indexes presented in Section 3.1, we assumed a quadratic relationship to 264 

calculate S𝑚,𝑛 in order to enhance the weight of the pairs of input parameters that allow us to 265 

simulate an inundation polygon similar to the reference scenario. The adoption of other 266 

expressions to derive the similarity index from a given comparison metric is also possible (e.g. 267 

Charbonnier et al. 2018; Patra et al. 2020), as well as the inclusion of complementary comparison 268 

metrics. 269 

3.1.2 Hausdorff distance (HD) 270 

The second similarity index is defined as the maximum distance between a contour point belonging 271 

to one of the inundation polygons and the closest boundary point of the other one (Fig. 2b): 272 

𝐻𝐷𝑚,𝑛: = max { max
𝑖∈[1,𝑛𝑟]

min
𝑗∈[1,𝑛𝑟]

𝑑(𝐴𝑖 , 𝐵𝑗) ,  max
𝑖∈[1,𝑛𝑟]

min
𝑗∈[1,𝑛𝑟]

𝑑(𝐵𝑖, 𝐴𝑗)} (5) 



where 𝐻𝐷 is the 2D-array containing the Hausdorff distances associated with all the calibration 273 

simulations and the subscripts refer to the indices of this matrix. The associated similarity index 274 

can be defined by: 275 

𝑆𝑚,𝑛
(2)

: = (
1

𝐻𝐷𝑚,𝑛 + 𝜀𝐷𝐸𝑀
)

2

 (6) 

where 𝜀𝐷𝐸𝑀 is incorporated to avoid division by zero in any simulation condition. 276 

3.1.3 Jaccard index (JI) 277 

This similarity index (Jaccard 1901) compares the areas defined by the inundation polygons, and 278 

is given by (Fig. 2c): 279 

𝐽𝐼𝑚,𝑛 =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (7) 

where 𝐽𝐼 is the 2D-array containing the results of Jaccard index associated with all the calibration 280 

simulations and the subscripts refer to the indices of this matrix. The Jaccard index ranges between 281 

0 and 1, and its square value is used to derive the associated similarity index (i.e., 𝑆𝑚,𝑛
(3)
: = 𝐽𝐼𝑚,𝑛

2 ). 282 

3.2 Metrics based on a reference probability distribution of runout distance or inundation 283 

area 284 

3.2.1 Runout distance-based calibration 285 

We consider the expected probability distribution of runout distances as a measure potentially 286 

useful to calibrate the inputs of PDC numerical models because, in some cases, likely eruption 287 

scenarios have been defined by adopting indications on the expected runout distance (e.g. Ferrés 288 

et al. 2013). In this case, no reference inundation polygon is needed and calibration is only based 289 



on a predefined distribution of runout distance. If 𝐹𝑅𝐷 is the cumulative distribution function of 290 

runout distance, we can compute a measure of the weight that must be assigned to a calibration 291 

simulation characterized by a runout distance 𝑅𝐷𝑚,𝑛 in order to reproduce the predefined 292 

distribution of runout distance: 293 

𝑆𝑚,𝑛
(4)

: = ∫
(|𝑅𝐷𝑚,𝑛 − 𝐹𝑅𝐷

−1(𝑥)| + 𝜀𝐷𝐸𝑀)
−1

∑ ∑ (|𝑅𝐷𝑎,𝑏 − 𝐹𝑅𝐷
−1(𝑥)| + 𝜀𝐷𝐸𝑀)

−1𝑁
𝑏=1

𝑁
𝑎=1

𝑑𝑥
1

0

 (8) 

where 𝑅𝐷 is the matrix array containing the runout distances of the calibration simulations, and 294 

the subscripts indicate the indices of this matrix. Consider a specific integration step defined by 295 

the cumulative probability 𝑥𝑠and thus associated with a specific runout distance 𝐹𝑅𝐷
−1(𝑥𝑠). The 296 

numerator of Eq. 8 is a measure of the consistency degree between 𝐹𝑅𝐷
−1(𝑥𝑠) and 𝑅𝐷𝑚,𝑛, while the 297 

denominator is a normalization factor that considers the consistency degree between 𝐹𝑅𝐷
−1(𝑥𝑠) and 298 

the runout distance in all the elements of the matrix 𝑅𝐷 (i.e. all the calibration simulations). 𝜀𝐷𝐸𝑀 299 

is incorporated to avoid division by zero in any simulation condition. The cumulative distribution 300 

𝐹𝑅𝐷 can be any statistical fit of the data, possibly including an extrapolation of extreme events. 301 

3.2.2 Inundation area-based calibration 302 

Finally, because likely eruption scenarios have been also defined using the expected probability 303 

distribution of the inundation areas (e.g. Bevilacqua et al. 2017), we also consider the use of this 304 

variable to calibrate the input parameters (in this case as well, no reference inundation polygon is 305 

needed to develop the calibration simulations). If we define the cumulative distribution function 306 

of inundation area by 𝐹𝐼𝐴, we can compute the weight that must be assigned to a calibration 307 

simulation characterized by the inundation area 𝐼𝐴𝑚,𝑛 with the aim of reproducing the predefined 308 

probability distribution of inundation area: 309 



𝑆𝑚,𝑛
(5)

: = ∫
(|𝐼𝐴𝑚,𝑛 − 𝐹𝐼𝐴

−1(𝑥)| +𝜀𝐷𝐸𝑀
2 )

−1

∑ ∑ (|𝐼𝐴𝑎,𝑏 − 𝐹𝐼𝐴
−1(𝑥)| +𝜀𝐷𝐸𝑀

2 )
−1𝑁

𝑏=1
𝑁
𝑎=1

𝑑𝑥
1

0

 (9) 

where 𝐼𝐴 is the matrix containing the inundation area of the calibration simulations and the 310 

subscripts refer to the indices of this matrix. The reason for including 𝜀𝐷𝐸𝑀
2  is equivalent to that 311 

presented previously. 312 

In ECMapProb 2.0 and BoxMapProb 2.0, the number of simulations to be performed in the 313 

calibration step is defined by the user. However, in order to mitigate discretization errors, the 314 

comparison metrics (i.e. 𝑅𝑀𝑆𝐷, 𝐻𝐷, 𝐽𝐼, 𝑅𝐷 and 𝐼𝐴) are interpolated in the input space, giving rise 315 

to a sufficiently large matrix, which considers 𝑁 = 100 and preserves the limits of the ranges 316 

defined by the user for 𝛼 and 𝛽. As an alternative to the described calibration strategies, our 317 

programs also allow the user to define a priori the probability distributions adopted to sample the 318 

input parameters. Various options are available to set the vent position as well, including 319 

pointwise, linear and radial geometries or a set of positions expressly defined by the user, which 320 

can be flexibly adopted for testing the influence of collapse position in PDC propagation. 321 

4. Test cases: results and discussion 322 

Here we present three applications of our calibration strategies and their discussion. El Misti 323 

volcano (Peru) was adopted to show the use of calibrations based on a reference inundation 324 

polygon for constructing probability maps of PDC inundation; Merapi volcano (Indonesia) was 325 

adopted to illustrate the use of calibrations based on the expected distribution of runout distance; 326 

while Campi Flegrei (Italy) was selected to show the use of calibrations based on the expected 327 

distribution of inundation area, also exemplifying the effects of several sources of data uncertainty. 328 

Since the reference scenario adopted for El Misti includes both valley-confined deposits and over 329 

bank deposits on the valley margins (Charbonnier et al. 2020), the concomitance of dense and 330 



dilute PDCs is likely. For simplicity, we limit our analysis of El Misti to the use of the branching 331 

energy cone model, which is expected to better describe dense gravity-driven PDCs. Because most 332 

of the PDCs generated at Merapi volcano are derived from dome collapses (i.e. they are frictional 333 

flows), we used the branching energy cone model. Finally, since Campi Flegrei eruptions tend to 334 

produce dilute, inertial PDCs, they are better described by the box model (Esposti Ongaro et al. 335 

2016). In the latter case, we adopted the traditional formulation instead of the branching one 336 

because minor channelization processes are expected in such a flat topography and because this 337 

choice allows us to perform comparisons with the most recent PDC hazard assessments at Campi 338 

Flegrei (Neri et al. 2015b; Bevilacqua et al. 2017). Additionally, in this test case we set vent 339 

position by coupling the box model with vent opening probability maps (Bevilacqua et al., 2021). 340 

4.1 El Misti volcano 341 

El Misti volcano (5,822 m a.s.l.) is located 13 km NE of Arequipa city (>1 million inhabitants, at 342 

an altitude 3,500 m lower than the summit of El Misti). These factors and its potential to develop 343 

PDC-forming eruptions (Legros 2001; Thouret et al. 2001; Harpel et al. 2011; Sandri et al. 2014; 344 

Charbonnier et al. 2020) justify the use of this volcano as a case study for illustrating the 345 

application of our calibration strategies. In fact, at least three sub-Plinian and Plinian eruptions 346 

occurred at El Misti during the last 10,000 years, intercalated with small-magnitude Vulcanian 347 

events (Cobeñas et al. 2012). Following Cobeñas et al. (2012) and Charbonnier et al. (2020), we 348 

use the 2070 cal yr BP Plinian eruption as a reference event to assess PDC hazard at El Misti 349 

volcano, which corresponds to a VEI 4 event for which the recurrence rate has been estimated 350 

between 2000 and 4000 years (Charbonnier et al. 2020). Presentation of updated hazard maps is 351 

beyond the objectives of this work (for which the reader can consult the official hazard map for El 352 

Misti; Mariño et al. 2008); we aim instead at presenting an illustrative application of our calibration 353 



strategies. For this, we used the inundation polygon of the PDCs derived from the 2070 cal yr BP 354 

Plinian eruption (Fig. 3a; Charbonnier et al. 2020) to calibrate the input parameters of the 355 

branching energy cone model, considering a fixed collapse position at the summit crater (Fig. 3a), 356 

𝐻0,0 from 100 m to 2,000 m, and tan(𝜑) ranging between 0.2 and 1.0. 357 

We performed 400 calibration simulations using the program ECMapProb 2.0. Figure 3b-d shows 358 

the pseudo-color plots derived from the calibration simulations, based on the following metrics: 359 

RMSD, HD and JI. This figure highlights the strong correlation between 𝐻0,0 and tan(𝜑) in 360 

determining the different similarity indexes. Calibration results were then used to sample three sets 361 

of input parameters, each one derived from the application of a different metric (RMSD, HD and 362 

JI, respectively; Fig. 3e-g). With this information, we performed three additional sets of 363 

simulations aimed at constructing scenario-based probability maps of PDC inundation. Here we 364 

also introduced a small variability in vent position, which was sampled uniformly within a 200 m-365 

radius circle centered in the collapse position used in the calibration simulations (Fig. 3a).  366 

The resulting probability maps of PDC inundation (Fig. 4) are highly consistent with each other 367 

and with Cobeñas et al. (2012) and Sandri et al. (2014). They show a preferential propagation 368 

direction toward SW (i.e., toward the basin and the city of Arequipa, reaching in many cases its 369 

suburbs). Runout distance typically ranges between 6 km and 15-17 km (mean value of about 10 370 

km and median value of ~9 km; Fig. 4 and supplementary Table C1). The branching energy cone 371 

model predicts non-negligible channelization processes through Chili River, which agrees with the 372 

geological record at El Misti volcano and influences the inundation probability in the northern 373 

portion of Arequipa (Fig. 4). Significant channelization processes toward NE and SE are not 374 

apparent in the numerical results. Figure 4 shows that the 50% isolines of the resulting probabilistic 375 

maps tend to present a behavior similar to the reference scenario (indicated by a green line in Fig. 376 



4), but it presents shorter propagation distances in the channelization zones. However, the 10% 377 

isolines envelope most of the inundation area of the reference scenario also in the channelization 378 

domains. 379 

Importantly, channelization through the San Lázaro catchment is significant at proximal and 380 

medial zones and small at distal domains, and very weak channelization is modelled along the 381 

Huarangal catchment. This is apparently inconsistent with Charbonnier et al. (2020), who 382 

recognized these catchments as relevant for the channelization of pyroclastic material to Arequipa. 383 

Our simulations were calibrated using a specific reference deposit with very limited channelization 384 

through these catchments and, more importantly, our collapse positions are located in the summit 385 

zone, while the simulations performed by Charbonnier et al. (2020) were developed considering 386 

the collapse of already channelized pyroclastic material (the collapsing material was initially 387 

located at the apex of two specific drainage networks, at >2 km from the summit crater). 388 

Consequently, as Charbonnier et al. (2020) indicate, their probabilistic maps are not only 389 

conditioned on the occurrence of a VEI 4 eruption, but also on the entrance of large volumes of 390 

pyroclastic material in two specific drainage networks that threaten Arequipa; while our 391 

probabilistic maps are conditioned exclusively on the occurrence of an event similar to the 2070 392 

cal yr BP Plinian eruption. These differences in the objectives and thus in the criteria adopted in 393 

the calibration step hinder the development of further comparisons with Charbonnier et al. (2020), 394 

and highlight the necessity of considering separately the PDCs initiated from the summit and near 395 

the drainage networks at El Misti volcano. In any case, to show that this difference derives from 396 

the adoption of different calibration criteria instead of limitations of the branching energy cone 397 

model to channelize pyroclastic material, we performed additional simulations with a vent located 398 

on the flanks of the volcano, which are displayed in the supplementary Figure C1. These 399 



simulations show the potential of the branching energy cone model to predict highly channelized 400 

flows along the main drainage networks of El Misti volcano. 401 

In this section we adopted three different metrics to construct independent probabilistic maps of 402 

PDC inundation. The definition of a preferred calibration metric is likely controlled by the specific 403 

case study and model adopted, and thus providing general considerations is not straightforward. 404 

We suggest, however, that calibration metrics based on the inundation area contour (e.g. Hausdorff 405 

distance and RMSD) are probably more appropriate than the Jaccard Index when we study 406 

volcanoes that have presented intense channelization along valleys, or when this process is 407 

particularly critical for risk assessment. In any case, the construction of independent probability 408 

maps can be useful to define uncertainty ranges in the resulting hazard maps. 409 

4.2 Merapi volcano 410 

Merapi stratovolcano (~2,930 m a.s.l.) is located ~25 km north of the metropolitan area of 411 

Yogyakarta, Central Java, Indonesia. This volcano has experienced frequent dome-forming 412 

activity during the last centuries able to generate PDCs (“Merapi-type” nuées ardentes) and 413 

subsequent lahars (Boudon et al. 1993; Voight et al. 2000; Voight and Davis 2000; Bourdier and 414 

Abdurachman 2001; Thouret et al. 2001; Lube et al. 2011; Gertisser et al. 2012; Surono et al. 2012; 415 

Charbonnier et al. 2013; Komorowski et al. 2013; Kelfoun et al. 2021). The topography of Merapi, 416 

characterized by numerous radial valleys, has exerted a significant effect in the propagation of 417 

PDCs, and also the crater configuration and collapse position have influenced the transport 418 

direction of recent PDCs (e.g. Charbonnier and Gertisser 2008). For instance, because of the 419 

topographic barriers present at the NE of the volcano summit, most of the recent PDCs propagated 420 

towards S, SW and W (Solikhin 2015). 421 



The dynamics of this type of PDC is dominated by gravitational acceleration on the volcanic slopes 422 

and granular frictional dissipation, making them suitable for the use of the branching energy cone 423 

model. The presentation of new hazard maps is beyond the objectives of this article, for which the 424 

reader can consult the wide volcanological literature at Merapi (Andreastuti et al. 2000; Itoh et al. 425 

2000; Lavigne et al. 2000; Thouret et al. 2000; Charbonnier and Gertisser 2009; Charbonnier and 426 

Gertisser 2012; Mei et al. 2013; Lavigne et al. 2015; Kelfoun et al. 2017) and the official hazard 427 

map of this volcano (Sayudi et al. 2010). 428 

The availability of detailed information about the dispersion of PDCs in the past (e.g. Bourdier 429 

and Abdurachman 2001; Solikhin 2015) allows us to consider the expected distribution of runout 430 

distance to calibrate our numerical model. To do this, first we performed 400 calibration 431 

simulations using the branching energy cone model and considering a fixed collapse position at 432 

the summit crater, 𝐻0,0 ranging from 40 m to 200 m, and tan(𝜑) ranging between 0.2 and 1.0. The 433 

small range adopted for 𝐻0,0 is justified by the generation mechanism of most of the PDCs at 434 

Merapi, i.e. dome collapse. Figure 5a-b presents the pseudo-color plots of runout distance and 435 

inundation area in the calibration simulations. Because of the high slope that characterizes the 436 

volcano flanks in the proximal area (>30º), a significant gap is observed in the simulated runout 437 

distances between ~0.2 km (i.e. inside the crater limits) and ~2.5 km (Fig. 5a). In other words, all 438 

the simulations that exceeded the crater limits were able to travel at least ~2.5 km from the source 439 

due to the high slopes encountered by the PDC in this zone of the volcano. 440 

To define the input probability distribution of runout distance, we adopted the information 441 

summarized by Solikhin (2015), who compiled the runout distances of 55 PDCs between 1900 and 442 

2010 (Fig. 5c-d). In particular, the runout distances of these events were fitted considering both 443 

gamma and lognormal probability functions (Fig. 5c-d). Although a bimodal distribution could be 444 



hypothesized to describe the data, we decided to keep the discussion simpler and focus on the 445 

calibration features. The coupling of calibration simulations and the two predefined distributions 446 

of runout distance give rise to two sampling probability distributions of input parameters (Figure 447 

5e-f), which were then used in two sets of 500 simulations to construct PDC inundation probability 448 

maps. This number of simulations is large enough for the probability maps to converge. To carry 449 

out these simulations, collapse positions were sampled uniformly from a 300 m-radius circle 450 

centered in the collapse position used for the calibration simulations (i.e. the volcano summit). 451 

The resulting inundation maps are displayed in Figure 6. Even though we sampled the collapse 452 

positions uniformly, results reproduce well the preferential propagation directions observed at 453 

Merapi volcano (i.e. S, W, NW and SW), which are also observed in hazard maps derived from 454 

the geological record of Merapi volcano (e.g. Figure 4 of Thouret et al. 2000). The small inundation 455 

probabilities simulated at distances of the order of 15 km, which are present in the geological 456 

record of Merapi (Newhall et al. 2000), are consequences of the limited dataset adopted in the 457 

numerical calibration (i.e. PDCs between 1900 and 2010), which implies that our probability maps 458 

are conditioned on the occurrence of an eruption that follows the eruption variability of the last 459 

century (Solikhin 2015). 460 

Differences between the results associated with the gamma and lognormal fits are negligible (Fig. 461 

6, Fig. 7a and supplementary Table C2). In these simulations, mean runout distance is 5.8-5.9 km, 462 

with 90% confidence intervals of [3.2, 12.1] km and [3.1, 11.5] km for the results associated with 463 

gamma and lognormal fits, respectively (supplementary Table C2). The branching energy cone 464 

model predicts non-negligible channelization processes through different river valleys such as 465 

Senowo, Apu, Woro, Opak and Gendol, which agrees with the recent activity at Merapi volcano 466 

(Fig. 6). Interestingly, although the last major PDC at Merapi was channelized through the Gendol 467 



catchment, our results suggest a dominant channelization effect of Woro and Opak catchments to 468 

the south. This apparent inconsistency with the last eruption is instead coherent with the geological 469 

record of the last century (Solikhin 2015). 470 

Figure 7 presents the comparison between the CDFs of the predefined distributions of runout 471 

distance, which derive from two fits based on the geological record of Merapi (gamma and 472 

lognormal; dashed lines), and the resulting distributions of runout distance in the simulations 473 

presented in Figure 6 (continuous lines). The empirical CDF of 55 documented PDCs is also 474 

included (Solikhin 2015). The main contrast between the predefined and resulting CDFs derives 475 

from the absence of simulations with runout distances lower than 2.5 km. We speculate that low-476 

runout distance PDCs observed at Merapi can be related to volume-limited block-and-ash flows 477 

(or simply a rock-fall rather than a PDC), whose dynamics cannot be modeled by the branching 478 

energy cone model. The presence of different families of PDCs at Merapi could be responsible for 479 

the bimodal behavior of documented runout distances (Fig. 5c-d). Additional differences between 480 

the predefined and resulting CDFs presented in Figure 7 may derive from the use of a calibration 481 

based on simulations performed using a single collapse position, while a small uncertainty in 482 

collapse position was introduced for the construction of the hazard maps presented in Figure 6. 483 

Since a major challenge to evaluate the hazard associated with dome collapse at Merapi is the 484 

frequent occurrence of changes in the eruption site (Thouret et al. 2000), in the Supplementary 485 

Figure C2 we show the results of four sets of simulations with collapse positions at different 486 

regions of the volcano summit. These results stress that small differences in the collapse position 487 

(e.g. of the order of hundreds of meters) are able to change dramatically the expected propagation 488 

of PDCs and the valleys involved. 489 



Note that these maps are conditioned on the occurrence of a PDC derived from the collapse of a 490 

summit dome, which is not the only mechanism able to produce PDCs at Merapi. In fact, this 491 

volcano has presented large explosive eruptions in historic times, such as the 1872 eruption 492 

(Hartmann 1934). 493 

4.3 Campi Flegrei 494 

Campi Flegrei, located on the Campanian plain in Southern Italy, is a 12 km wide caldera that 495 

includes a highly urbanized area and a significant portion of the city of Naples. The volcanic 496 

activity of Campi Flegrei during the last 15 kyr has been separated in three epochs of temporally 497 

clustered eruptions, which include at least 70 explosive events (e.g. Di Vito et al. 1999; Smith et 498 

al. 2011; Bevilacqua et al. 2016; Isaia et al. 2019). Among the products of these eruptions, PDCs 499 

represent the main volcanic hazard (Lirer et al. 2001; Alberico et al. 2002; 2011; Orsi et al. 2004; 500 

2009; Rossano et al. 2004; Todesco et al. 2006; Neri et al. 2015b; Tierz et al. 2016b; Bevilacqua 501 

et al. 2017) but their assessment is particularly challenging due to the large uncertainty in the 502 

position of future vents (Alberico et al. 2002; Orsi et al. 2004; Selva et al. 2012; Bevilacqua et al. 503 

2015; 2017; 2020; Rivalta et al. 2019). 504 

The availability of detailed information about the dispersion of PDCs in the past allows us to 505 

consider the expected distribution of inundation area to calibrate the box model. To do this, we 506 

performed two sets of 900 calibration simulations each by adopting the traditional formulation of 507 

the box model, with the collapsing volume ranging from 106 to 1011 m3 and the initial concentration 508 

of solid particles between 0.5 vol. % and 4.0 vol. %. The range adopted for the collapsing volume 509 

spans over several orders of magnitude (including the best-fit range with the inundation areas of 510 

documented PDCs, as observed below), while the values adopted for the initial concentration of 511 

solid particles are those expected for dilute PDCs. The other input parameters of the box model 512 



were fixed (sedimentation velocity of 0.6 m/s, Froude number of 1.1, pyroclasts density of 1500 513 

kg/m3 and ambient gas density of 1.1 kg/m3). Note that the number of calibration simulations is 514 

sensibly larger than those adopted in previous sections due to the different variation ranges of the 515 

input parameters. For Campi Flegrei simulations, considering that the collapsing volume ranges 516 

over five orders of magnitude, a large number of simulations is needed to produce smooth sampling 517 

probability distributions for the model inputs. Both sets of calibration simulations for Campi 518 

Flegrei differ in the collapse position, set at Monte Nuovo and Agnano, respectively (Fig. 8a), and 519 

allow us to calculate the inundation area as a function of the two variable input parameters (Fig. 520 

8b-c). Although the uncertainty in vent position in this volcanic field may raise doubts about the 521 

use of a fixed vent position for calibration purposes, the absence of major topographic barriers at 522 

Campi Flegrei (with the exception of the caldera rim, ~160 m high, or the rim of the Agnano plain, 523 

~110 m high) produces only small differences in the calibration results as a function of the collapse 524 

position. In particular, we adopted the calibration data of Monte Nuovo and Agnano as 525 

representative for the western and eastern sectors of Campi Flegrei, respectively. In the following 526 

we further evaluate the validity of this assumption. 527 

Because the calibration procedure described in Section 3.2.2 needs the input of a probability 528 

distribution of inundation area, we used the information summarized by Neri et al. (2015b), which 529 

relies largely on Orsi et al. (2004). In particular, we followed the strategy of Neri et al. (2015b) 530 

and Bevilacqua et al. (2017) to consider the variability of inundation area in 47 documented PDCs, 531 

the effect of possible underestimations of the area of PDC deposits, and the presence of “lost” 532 

deposits in the dataset. Therefore, we provided an example of the effect of data uncertainty on our 533 

calibration algorithm, besides the model uncertainty (Kennedy and O’Hagan 2001; Bayarri et al. 534 

2007a; 2007b). Furthermore, we considered the western and eastern domains of Campi Flegrei 535 



separately because significant differences have been recognized in the typical scale of their 536 

eruptions (for additional details, see Bevilacqua et al. 2017). This allowed us to define the expected 537 

distribution of inundation area in the two regions of Campi Flegrei, which are displayed as 538 

cumulative curves in Figure 8d-e. These results show that the inundation area of a PDC generated 539 

at the eastern sector of Campi Flegrei tends to be significantly larger than that expected in the 540 

western portion of this volcanic field. 541 

The coupling of the calibration simulations (Fig. 8b-c) and the expected distributions of inundation 542 

area (Fig. 8d-e) gives rise to two sampling probability distributions of input parameters, which are 543 

displayed in Figure 9. These results show a strong correlation between the two input parameters 544 

in the calculation of the calibration similarity indexes, suggesting that interdependent sampling 545 

strategies of the model inputs should be preferred (Fig. 9). As expected, the peak of sampling 546 

probability for the western sector of Campi Flegrei (computed for collapsing volumes of 𝑉0 =547 

107 − 3 ∙ 108m3) is associated with much smaller PDCs than that predicted for the eastern zone 548 

of this caldera (computed for collapsing volumes of 𝑉0 = 3 ∙ 108 − 2 ∙ 109m3), with differences 549 

of one order of magnitude (Fig. 9). 550 

With this information, we performed two sets of 3,000 simulations to construct PDC inundation 551 

probability maps for the two sectors of Campi Flegrei. To carry out these simulations, collapse 552 

positions were sampled using the vent opening probability map presented by Bevilacqua et al. 553 

(2015). Note that this map includes uncertainty ranges but, for simplicity, in this work we adopted 554 

the mean value map. We also discarded all the vents located offshore and considered separately 555 

the western and eastern sectors of Campi Flegrei (using the limits adopted by Bevilacqua et al. 556 

2017). On the other hand, following Bevilacqua et al. (2017), the sea surface has been considered 557 

as a flat topography with no consideration of water influence on the PDC propagation dynamics. 558 



Numerical results, visualized in a GIS environment, are displayed in Figure 10a-b. We remark that 559 

these maps are conditioned on the occurrence of a PDC-forming eruption in the western and 560 

eastern sectors of Campi Flegrei, respectively. We also include the combined probabilistic map of 561 

PDC inundation (Fig. 10c), defined using the relative weights of the two sectors of Campi Flegrei 562 

in the vent opening maps of Bevilacqua et al. (2015), i.e. 30.7% for the western sector and 69.3% 563 

for the eastern sector. For an eruption located in the western sector of Campi Flegrei, our 564 

simulations show a peak of PDC inundation probability of about 30% at Averno, being strongly 565 

consistent with Bevilacqua et al. (2017). For an eruption located in the eastern portion of this 566 

volcanic system, numerical results show a maximum PDC inundation probability of ~60% at 567 

Astroni and Agnano, with probabilities around 15-20% of having a PDC able to overcome the 568 

Posillipo Hill, again in agreement with the results presented by Bevilacqua et al. (2017). 569 

Differences in the maximum values of PDC inundation probability between the two sectors of 570 

Campi Flegrei are mainly derived from the scale of the PDCs expected, which are much larger in 571 

the eastern sector. The combined probability map of PDC inundation, which is not conditioned on 572 

the sector of the source position, presents a maximum value of ~43% at Agnano and Astroni, and 573 

a probability of ~10-15% of overcoming the Posillipo Hill. The consistency between our results 574 

and Bevilacqua et al. (2017) can be considered an expected result because we used the same 575 

geological dataset to calibrate the models. However, we stress that the calibration procedures are 576 

completely different. 577 

Finally, Figure 11 presents the comparison between the CDFs of the predefined distributions of 578 

inundation area (continuous red lines) and the resulting distributions of this variable in the 579 

simulations presented in Figure 10a-b (dashed blue lines). The empirical CDF of inundation area 580 

in the geological record of Campi Flegrei is also displayed (black line). The strong agreement 581 



between the prescribed and the resulting distributions of inundation area confirms that a calibration 582 

procedure based on simulations performed using a single source point is able to capture well the 583 

dependence between the box model input parameters and the resulting inundation area in this 584 

volcanic system, where the topographic roughness is small. 585 

5. Summary and conclusions 586 

Although numerical models have become a fundamental tool in the assessment of volcanic hazard 587 

and in the design of volcanic risk mitigation strategies (e.g. Ferrés et al. 2013; Sandri et al. 2014; 588 

Bevilacqua et al. 2017; Charbonnier et al. 2020; Clarke et al. 2020; Esposti Ongaro et al. 2020b), 589 

the large variety of criteria used to define their input parameters often limits the development of 590 

comparisons between different numerical models, which is a critical step for their validation 591 

(Esposti Ongaro et al. 2020a). In this work, we propose a set of structured and reproducible 592 

procedures to calibrate the input parameters of PDC numerical models, which are based on the 593 

characteristics of past PDCs in the studied volcanic system. These can be described in terms of: 594 

(a) A reference inundation map (described as a polygon) from a specific eruption. Three 595 

parameters to compute the similarity index between this polygon and a set of calibration 596 

simulations have been considered (RMSD, Hausdorff distance, and Jaccard Index). Calibration 597 

simulations results can be used to define different sampling probability distributions of the 598 

input parameters, which in turn can be adopted to extract a set of calibrated inputs to use in 599 

numerical simulations. The application of these calibrations enables the construction of 600 

probabilistic maps of PDC inundation conditioned on the occurrence of an event similar to the 601 

reference scenario (i.e. scenario-based hazard assessment, see Section 4.1). Moreover, the 602 

parallel use of different metrics allows us to construct independent probability maps, 603 

potentially useful to define uncertainty ranges in the resulting hazard maps. 604 



(b) The distribution of runout distances or inundation area of past PDCs. This information, along 605 

with the results of the calibration simulations, allow us to sample a set of input parameters able 606 

to reflect the eruptive history of the volcano. These two procedures, whose application involves 607 

a large knowledge of the characteristics of the studied volcanic system, are able to produce 608 

PDC inundation probabilistic maps conditioned on the occurrence of a PDC-forming eruption 609 

without assumptions associated with its characteristics (e.g. magnitude or intensity, see 610 

Sections 4.2 and 4.3). 611 

The suitability of the different calibration procedures will be naturally controlled by the availability 612 

of detailed information of the studied volcanic system and by the approach used to assess the 613 

hazard derived from PDCs (e.g. based on a specific scenario or not). These strategies consider the 614 

interaction of the input parameters in controlling the numerical results (in other words, input 615 

parameters are not sampled independently). All the tested cases exhibit a strong interdependence 616 

between the input parameters in the resulting functions of sampling probability, suggesting that 617 

calibration strategies that consider interdependent sampling should be preferred for the 618 

construction of probabilistic maps of PDC inundation. In fact, our approach produces multivariate 619 

probability density functions over the input space rather than optimal input values. This is 620 

particularly important when dealing with very uncertain conditions, and possible data inadequacy 621 

or model inaccuracy (Kennedy and O’Hagan 2001; Bayarri et al. 2007a, 2007b). We remark that 622 

our approach can deal with both data uncertainty and the statistical extrapolation of extreme events. 623 

We have illustrated our calibration strategies by applying them to three volcanoes: El Misti, Merapi 624 

and Campi Flegrei. In general terms, results are strongly consistent with previous hazard 625 

assessments and with the geological record of these volcanic systems (e.g., Cobeñas et al. 2012; 626 

Sandri et al. 2014; Neri et al. 2015b; Solikhin 2015; Bevilacqua et al. 2017). In any case, our results 627 



are not intended to represent updated hazard maps of these well-documented volcanoes, for which 628 

the reader should consult the official maps and other recent studies of volcanic hazard (e.g. Mariño 629 

et al. 2008; Sayudi et al. 2010; Sandri et al. 2014; Neri et al. 2015b; Bevilacqua et al. 2017; 630 

Charbonnier et al. 2020). 631 

The different calibration procedures described here were implemented on improved, user-friendly 632 

versions of the programs ECMapProb 2.0 and BoxMapProb 2.0, whose functionalities and user 633 

manuals are presented for the first time in this article (see Supplementary material). These open-634 

source and freely downloadable programs adopt the traditional and branching formulations of the 635 

energy cone and the box model (Aravena et al., 2020), respectively, and thus they present different 636 

applicability fields (frictional and inertial flows, respectively). 637 

Code availability 638 

ECMapProb 2.0 is available in https://github.com/AlvaroAravena/ECMapProb (Apache 2.0 639 

license). BoxMapProb 2.0 is available in https://github.com/AlvaroAravena/BoxMapProb 640 

(Apache 2.0 license). 641 
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Figure Captions 1028 

Figure 1. Illustrative example of the tree-like structure used in the branching energy cone model. More details can be 1029 

found in Aravena et al. (2020). Left-hand side: surface plots of the energy cones and the topography. Central column: 1030 

contour plots of the energy cones and the topography. Right-hand side: functions of horizontal distance (i.e. run-out 1031 

distance as a function of the polar angle) of the different generations of energy cones. The number of generations 1032 

increases from top to bottom. 1033 

Figure 2. Illustrations of the different metrics used to calculate the similarity index between a reference scenario, 1034 

defined by the reference inundation polygon A, and a given calibration simulation characterized by the inundation 1035 

polygon B (see Section 3.1). In panel c, the intersection of polygons A and B is indicated in green, while the union of 1036 

these polygons is represented by the sum of green and red areas. 1037 

Figure 3. (a) Elevation map of El Misti volcano (Peru) including the PDC inundation area associated with the 2070 1038 

cal yr BP eruption (Charbonnier et al. 2020), used to calibrate the branching energy cone model. The red point 1039 

represents the collapse position used in the calibration simulations. (b-d) Pseudo-color plots of the different 1040 

coincidence parameters (RMSD, HD and JI) computed from the calibration simulations. In these panels, yellow pixels 1041 

are associated with high similarity indexes between the calibration simulations and the reference inundation polygon, 1042 

and blue pixels indicate low degrees of similarity between the computed invasion zones in the calibration simulations 1043 

and the reference inundation polygon. RMSD and HD are expressed in meters in the color scales, while JI is a non-1044 

dimensional coincidence parameter. (e-g) Sampling probability distributions of input parameters (𝐻0,0 and tan(𝜑)) 1045 

used in different sets of simulations for El Misti volcano (see Fig. 4), which derive from the calibrations simulations 1046 

displayed in panels b-d. Values in the color scales represent the sampling probability per cell, where each cell 1047 

corresponds to one hundredth of the variation range of each calibrated input of the model (i.e. 𝐻0,0 and tan(𝜑)). 1048 

Figure 4. Maps of PDC inundation probability at El Misti volcano imported in a GIS environment. Results are 1049 

expressed in percent. Intense red tones indicate high PDC inundation probability. The input parameters used in these 1050 



simulations derive from the calibrations displayed in Figure 3. The reference PDC deposit used for the numerical 1051 

calibration of input parameters is displayed in green (2070 cal yr BP eruption; Charbonnier et al. 2020). 1052 

Figure 5. (a-b) Pseudo-color plots of runout distance and inundation area derived from the set of calibration 1053 

simulations performed for Merapi volcano. Runout distance is expressed in km in the color scale. (c-d) PDF and CDF 1054 

of the predefined probability distributions of runout distance adopted for the calibration of input parameters used in 1055 

Merapi simulations. These distributions derive from fitting the data of 55 PDCs (Solikhin 2015), which are displayed 1056 

as a histogram (c) and an empirical cumulative curve (d), using gamma and lognormal probability distributions. In 1057 

panel d, F(x) denotes the cumulative distribution of runout distance. (e-f) Sampling probability distribution of input 1058 

parameters (𝐻0,0and tan(𝜑)) used in two sets of simulations performed for Merapi volcano (see Fig. 6). Values in the 1059 

color scales represent the sampling probability per cell, where each cell corresponds to one hundredth of the variation 1060 

range of each calibrated input of the model (i.e. 𝐻0,0 and tan(𝜑)). 1061 

Figure 6. Probability maps of PDC inundation at Merapi volcano constructed using the branching energy cone model. 1062 

Collapse positions were sampled uniformly within a 300 m-radius circle in the volcanic summit while collapse 1063 

parameters (i.e. 𝐻0,0 and tan(𝜑)) were sampled considering the distribution of runout distance observed in the 1064 

geological record (Solikhin 2015). This data was fitted using gamma (a) and lognormal (b) probability distributions 1065 

(Fig. 5c-f). Results of PDC inundation probability, indicated in the isolines, are expressed in percent. 1066 

Figure 7. Empirical cumulative curves of runout distance in documented PDCs at Merapi and in the simulation sets 1067 

presented in Figure 6. The predefined probability functions of runout distance, derived from fitting the data of 1068 

documented PDCs (Solikhin 2015) using both gamma and lognormal probability functions, are included. The 1069 

differences between these curves are mainly related to the absence of runout distances lower than 2.5 km in the 1070 

modeling results. F(x) denotes the cumulative distribution of runout distance. 1071 

Figure 8. (a) Map of Campi Flegrei showing the points used as the collapse position in the calibration simulations. 1072 

(b-c) Pseudo-color plots of inundation area derived from the set of calibration simulations performed for Campi 1073 

Flegrei. Inundation area is expressed in km2 in the color scale. (d-e) CDFs of the inundation area in documented PDCs 1074 

at the western and eastern domains of Campi Flegrei and the expected probability distributions of this parameter, 1075 

computed following Neri et al. (2015b) and Bevilacqua et al. (2017) in order to consider the effect of likely 1076 



underestimations of the area of PDC deposits and the presence of “lost” deposits in the dataset. In panels d and f, F(x) 1077 

denotes the cumulative distribution of inundation area. 1078 

Figure 9. Sampling probability distributions of input parameters (collapsing volume and initial concentration of solid 1079 

particles) in two sets of simulations performed for Campi Flegrei (see Fig. 10). Values in the color scales represent 1080 

the sampling probability per cell, where each cell corresponds to one hundredth of the variation range of each 1081 

calibrated input of the model (i.e. log(𝑉0) and 𝜙0). 1082 

Figure 10. Probability maps of PDC inundation at Campi Flegrei constructed using the traditional box model. Collapse 1083 

positions were sampled from published vent opening probability maps (Neri et al. 2015b; Bevilacqua et al. 2017), 1084 

while the other model inputs were sampled considering calibrations based on the expected distribution of inundation 1085 

area. Results of PDC inundation probability, indicated in the isolines, are expressed in percent. 1086 

Figure 11. CDFs of the inundation area in documented PDCs at the western and eastern domains of Campi Flegrei, 1087 

the expected probability distributions of this parameter (i.e. prescribed in our numerical simulations), and the resulting 1088 

distributions of inundation area in the simulations presented in Figure 10. F(x) denotes the cumulative distribution of 1089 

inundation area. 1090 
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