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As the title indicates this paper will describe several extensions and applications of the Γ2 integrated criterion introduced by M. Ledoux following ideas of B. Hellffer. We introduce general weak versions and show that they are equivalent to the weak Poincaré inequalities introduced by M. Röckner and F. Y. Wang. We also discuss special weak versions appropriate to the study of log-concave measures and log-concave perturbations of product measures.

We then describe some applications of weak integrated Γ 2 criteria to log-concave measures, perturbation of product measures or of radial measures.

1.1. Framework (The heart of darkness following [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]).

We will first introduce the objects we are dealing with. The aficionados of [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] will (almost) recognize what is called a full Markov triple therein. Nevertheless in order to understand some of our approaches, one has to understand why this framework is the good one. Let µ(dx) = Z -1

V e -V (x) dx be a probability measure defined on an open domain D ⊆ R n . When needed, we will require some regularity for V and assume that it takes finite values. We denote by µ(f ) the integral of f w.r.t. µ.

If V is in C 2 (D), we may introduce the operator A = ∆ -∇V.∇ and the diffusion process In the sequel we will assume that T x ∂ = +∞ a.s. for all x ∈ D .

X x t = x + √ 2 B t - t 0 ∇V (X x s )ds
(1.1)

In other words the process X . is conservative (in D) and we define P t f (x) = E(f (X x t )) for bounded f 's, so that P t is a markovian semi-group of contractions in L ∞ (D). Definition 1.1. We shall say that Assumption (H) is satisfied if (1.1) holds true and if in addition µ is a reversible (symmetric) measure for the process.

(1.2)

We will denote Γ(f, g) = ∇f, ∇g , E(f, g) = µ(Γ(f, g))

the associated Dirichlet form, with domain D(E). We will write Γ(f ) for Γ(f, f ). The next result is the key of the construction Proposition 1.2. Assume that (H) is satisfied. In the following two cases

(1) D = R n , (2) 
D is an open bounded domain and V ∈ C ∞ (D), then P t extends to a µ-symmetric continuous Markov semi-group on L 2 (µ) with generator à and domain D( Ã).

In addition the generator à is essentially self-adjoint on C ∞ 0 (D) (C ∞ functions with compact support). We shall call ESA this property. In particular C ∞ 0 (D) is a core for D( Ã). The latter is exactly the set of f ∈ H 2 loc (D) such that f and Af are in L 2 (µ).

We shall give a proof of this Proposition in section 7, where sufficient conditions for (H) are discussed as well as examples. For simplicity we will only use the notation A in the sequel both for A and Ã.

If g ∈ D(A) it holds E(f, g) = -µ(f Ag) .

(1.3)

If f ∈ L 2 (µ) it is well known that P t f ∈ D(A) for t > 0 and

∂ t P t f = AP t f . (1.4)
If in addition f ∈ D(A), ∂ t P t f = AP t f = P t Af .

(1.5)

In particular if f is in D(A), for t > 0,

∂ t AP t f = ∂ t P t Af = A P t Af . (1.6) 
1.2. Presentation of the main results.

We define the Poincaré constant C P (µ) as the smallest constant C satisfying

Var µ (f ) := µ(f 2 ) -µ 2 (f ) ≤ C µ(|∇f | 2 ) , (1.7) 
for all f ∈ C 1 b (D) the set of C 1 functions which are bounded with a bounded derivative. For simplicity we will say that µ satisfies a Poincaré inequality provided C P (µ) is finite. As it is well known, the Poincaré constant is linked to the exponential stabilization of the Markov semi-group P t . For a Diffusion Markov Triple, the following is well known (see chapter 4 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]), it extends to our situation Theorem 1.3. If (H) is satisfied, the following three statements are equivalent [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF] µ satisfies a Poincaré inequality, [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] there exists C such that for every f ∈ C ∞ 0 (D) (or C ∞ b (D) the set of smooth functions with bounded derivatives of any order), it holds

µ(|∇f | 2 ) ≤ C µ((Af ) 2 ) , (1.8) 
(3) there exists C > 0 such that for every f ∈ L 2 (µ),

Var µ (P t f ) ≤ e -2t/C Var µ (f ) .

(1.9)

In addition the optimal constants in (1.8) and (1.9) are equal to C P (µ).

It is important to check that the previous theorem only requires the properties we have recalled before. Actually the proof of (1) ⇔ (3) ([4] Theorem 4.2.5) only requires (1.4) so that it is always satisfied. The one of (2) ⇔ (1) ( [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] Proposition 4.8.3) requires to use ESA.

In addition one has to check that the semi-group is ergodic, i.e. that the only invariant functions (P t f = f for all t) are the constants. A proof is provided in the Appendix.

Following D. Bakry we may define (provided

V is C 2 ) the Γ 2 operator Γ 2 (f, g) = 1 2 [AΓ(f, g) -Γ(f, Ag) -Γ(Af, g)] .
(1.10)

for f, g in C ∞ b (D). A simple calculation yields in this case Γ 2 (f ) := Γ 2 (f, f ) = Hess(f ) 2 HS + ∇f, Hess(V ) ∇f .

(1.11)

Using symmetry we get µ(Γ 2 (f, g)) = µ((Af )(Ag)) .

(1.12) still for C ∞ b functions since if (H) is satisfied, they belong to D(A). The latter extends to f, g in D(A) thanks to ESA.

It is important to see that without (H) this result is wrong in general. To justify (1.12) it is at least necessary to know that Γ(f, g) ∈ D(A) which is not always the case even for C ∞ b functions if they are not all in D(A), as in the case of reflected diffusions for instance. Fortunately if (H) is satisfied it suffices to verify it for C ∞ b functions. Assume from now on that (1.12) is satisfied for f and g in the domain of A. It immediately follows that, if the curvature-dimension condition CD(ρ, N ) i.e.

Γ 2 (f ) ≥ ρ |∇f | 2 + 1 N (Af ) 2
is satisfied, then

C P (µ) ≤ N -1 ρ N the result being true for N ∈]1, +∞]
. This is the famous Bakry-Emery criterion for the Poincaré inequality. For N = +∞ the criterion is satisfied provided V is strictly convex in which case it is also a consequence of Brascamp-Lieb inequality. The second statement in Theorem 1.3 is thus sometimes called "the integrated Γ 2 criterion". This statement appears in Proposition 1.3 of M. Ledoux's paper [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF] as "a simple instance of the Witten Laplacian approach of Sjöstrand and Helffer ", but part of the argument goes back to Hörmander (see e.g. [START_REF] Alonso-Gutierrez | Approaching the Kannan-Lovasz-Simonovits and variance conjectures[END_REF] p.14). It is worth noticing that, if the semi-group does not appear in the statement, it is an essential tool of Ledoux's proof.

The integrated Γ 2 criterion is used in M. Ledoux's work [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF] on Gibbs measures. Under the denomination of "Bochner's method" it appeared more or less at the same time in the statistical mechanics word. More recently it was used in the context of convex geometry in [START_REF] Klartag | A Berry-Esseen type inequality for convex bodies with an unconditional basis[END_REF][START_REF] Barthe | Invariances in variance estimates[END_REF] under the denomination of L 2 method. Lemma 1 in [START_REF] Barthe | Invariances in variance estimates[END_REF] contains another proof (without using the semi-group) of ( 2) ⇒ (1) in the previous Theorem.

The third statement in Theorem 1.3 can be improved in the following way Proposition 1.4. The third statement (hence the first two too) of Theorem 1.3 is equivalent to the following one: there exists C > 0, such that for every f in a dense subset C of L 2 (µ) one can find a constant c(f

) such that Var µ (P t f ) ≤ c(f ) e -2t/C
and the optimal C is again C P (µ).

The proof of this proposition lies on the log-convexity of t → µ(P 2 t f ) for which several proofs are available (see the simplest one in [START_REF] Cattiaux | Poincaré inequalities and hitting times[END_REF] lemma 2.11 or in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]). A natural subset C is furnished by L ∞ (µ). An exponential decay to 0 of the variance controlled by the initial uniform norm thus implies that the same holds for the L 2 norm and is equivalent to the Poincaré inequality.

The semi-group property shows that L 2 decay to 0 cannot be faster than exponential and the previous result that any uniform decay i.e. Var µ (P T f ) ≤ c Var µ (f ) for some T > 0, c < 1 and f ∈ L 2 (µ) implies exponential decay. A natural question is then to describe what happens for slower decays. After a pioneering work by T. Liggett ([32]), this question was tackled by M. Röckner and F. Y. Wang in [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF]. These authors introduced the notion of weak Poincaré inequalities and relate them to all possible decays of the variance along the semi-group. Let us recall the main result in this direction Theorem 1.5. Consider the following two statements (1) There exists a non-increasing function β W P : (0, +∞) → R + , such that for all s > 0 and any bounded and Lipschitz function f ,

Var µ (f ) ≤ β W P (s) µ(|∇f | 2 ) + s Osc 2 (f ) , (1.13) 
where Osc(f ) denotes the Oscillation of f . (1.13) is called a weak Poincaré inequality (WPI) and it is clear that we may always choose β W P (s) = 1 for s ≥ 1.

(2) There exists a non-increasing function ξ going to 0 at infinity such that Var µ (P t f ) ≤ ξ(t) Osc 2 (f ) .

The weak Poincaré inequality (1) implies statement [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] with

ξ(t) = 2 inf{s > 0, β W P (s) ln(1/s) ≤ 2t} = inf s>0 s + e -2t/β(s) .
Conversely statement (2) implies statement (1) with

β W P (s) = 2s inf r>0 1 r ξ -1 (r exp(1 - r s ))
where ξ -1 denotes the converse of ξ, i.e. ξ -1 (r) = inf{s > 0, ξ(s) ≤ r}.

Remark 1.6. Röckner and Wang (see [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF] Corollary 2.4 (2)) introduce a trick that allows to improve ξ in the previous result. The basic idea is to use repeatedly (1.13). We will choose four sequences:

(1) a decreasing sequence of positive numbers (θ i ) i∈N such that θ 0 = 1 and

θ i → 0 as i → +∞, (2) for i ≥ 1, α i = θ i-1 -θ i so that i α i = 1, (3) 
a sequence (γ i ) i≥0 of positive numbers such that γ 0 = 1 and i γ i = 0, [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] 

for i ≥ 1, s i (t) is defined by e -2t α i /β W P (s i (t)) = γ i , hence s i (t) = β -1 W P (2tα i / ln(1/γ i )).
Applying (1.13) between tθ i and tθ i-1 we thus have 

V ar µ (P θ i-1 t f ) ≤ e -2α i t/β W P (s i (t)) Var µ (P θ i t f ) + s i (t) Osc 2 (f ) = γ i Var µ (P θ i t f ) + s i (t) Osc 2 (f ) , which yields Var µ (P t f ) ≤ i≥0 (γ i s i+1 (t)) Osc 2 (f ) . ( 1 
(f ) ≤ 2t µ(|∇f | 2 ) + Var µ (P t f ) ≤ 2t µ(|∇f | 2 ) + ξ(t) Osc 2 (f )
from which we deduce that

β W P (s) ≤ 2ξ -1 (s) .
This expression is simpler than the one in [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF] we recalled in Theorem 1.5, but can be slightly worse. ♦ Example 1.8. Let us give some examples of (non optimal) pairs for (β W P , ξ).

(1) If for p > 0, ξ(t) = c ′ t -p one can take β W P (s) = c s -1/p . Conversely if β W P (s) = c s -1/p the previous Theorem yields ξ(t) = c ′ t -p ln p (t). Using the trick in remark 1.6, when β W P (s) = cs -1/p , and choosing γ i = 2 -i and α i = 6 π 2 i -2 we get that ξ(t) ∼ t -p , for large t's, i.e. the logarithmic term disappeared as expected.

(2) For p > 0, ξ(t) = c ′ ln -p (1 + t) and β W P (s) = c e δ/s 1/p . (3) For 0 < p < 1, ξ(t) = c e -c ′ t p and β W P (s) = d ′ + d ln (1-p)/p (1 + 1/s) .

All the constants depend on p. ♦

A natural question is thus to understand whether there is an integrated Γ 2 version of these weak inequalities or not. This will be done in the next section where we introduce a first weak version: for some decreasing β for any bounded g ∈ D(A) and any s > 0,

(WIΓ 2 Osc) µ(|∇g| 2 ) ≤ β(s) µ((Ag) 2 ) + s Osc 2 (g) . (1.16)
We shall see that (WIΓ 2 Osc) can be compared with the weak Poincaré inequality.

In section 3 we introduce another, perhaps more natural, weak version

(WIΓ 2 grad) µ(|∇g| 2 ) ≤ β(s) µ((Ag) 2 ) + s |||∇g| 2 || ∞ , (1.17) 
which is useful in the log-concave situation, i.e. provided V is convex (not necessarily strictly convex). It is known since S. Bobkov's work [START_REF] Bobkov | Isoperimetric and analytic inequalities for log-concave probability measures[END_REF], that a log-concave probability measure always satisfies some Poincaré inequality (see [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF] for a direct proof using Lyapunov functions).

Recent results by E. Milman ([35]) combined with Brascamp-Lieb inequality allow us to get the following result : if µ is log-concave,

C P (µ) ≤ C univ µ(||Hess -1 V || HS )
for some universal C univ . We recover this result in corollary 3.2 as a consequence of (WIΓ 2 grad) (and not Brascamp-Lieb) and obtain new explicit bounds in corollary 3.5 involving

µ(ln 1+ε (1 + ||Hess -1 V || HS )
only.

The next section 4 deals with log-concave perturbations of either log-concave product measures or log-concave radially symmetric measures. Actually M. Ledoux introduced the integrated Γ 2 criterion in order to study the Poincaré inequality of perturbations (non necessarily log-concave but wit a potential whose curvature is bounded from below) of product measures and to obtain results for Gibbs measures on continuous spin systems ( [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF]). In the same paper he extended his approach to the log-Sobolev constant (see [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF] Proposition 1.5 and the comments immediately after its statement). This approach was then developed in [START_REF] Otto | A new criterion for the logarithmic Sobolev inequality and two applications[END_REF] and several works.

In their subsection 3.4, Barthe and Klartag [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] indicate that this method should be used in order to get some results on log-concave perturbations of product measures that are uniformly log-concave in the large, but not for heavy tailed product measures. In section 4 we show that the weak integrated Γ 2 criterion allows us to (partly) recover similar but slightly worse results as in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF]. Other results in this direction are shown in [START_REF] Cattiaux | Functional inequalities for perturbed measures with applications to logconcave measures and to some Bayesian problems[END_REF]. We then extend the method and replace product measures by radial distributions.

In all the paper, unless explicitly stated, we assume for simplicity that assumption (H) is in force.

Dedication. A tribute to Michel Ledoux.

The origin of this work was an attempt to convince M. Ledoux of the interest of weak inequalities of Poincaré type. After reading the beautiful wink to Michel's heroes [START_REF] Ledoux | γ2 and Γ2[END_REF], we understood that the only way to succeed was to introduce some "curvature condition" inside.

It was thus natural to weaken the integrated Γ 2 criterion introduced in [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF] and to see what happens. The byproduct results in the paper were a nice surprise.

2. Weak integrated Γ 2 .

Let us start with an obvious remark: since ∇f and Af are unchanged when replacing f by f -a for any constant a, we have

µ(|∇f | 2 ) = µ(|∇(f -a)| 2 ) = -µ((f -a) A(f -a)) = -µ((f -a) Af ) ≤ 1 2 Osc(f ) µ(|Af |) ,
by choosing a = (sup(f ) + inf(f ))/2. Using for s > 0, 2uv ≤ 1 s u 2 + s v 2 we thus deduce, using Cauchy-Schwarz inequality, that for all s > 0,

µ(|∇f | 2 ) ≤ 1 16s µ((Af ) 2 ) + s Osc 2 (f ) . (2.1)
This is a special instance of (1.16) we recall here: for some decreasing β for any bounded g ∈ D(A) and any s > 0,

(WIΓ 2 Osc) µ(|∇g| 2 ) ≤ β(s) µ((Ag) 2 ) + s Osc 2 (g) . (2.2)
Hence some (very) weak form of the integrated Γ 2 is always satisfied. The previous inequality is thus certainly insufficient in order to get interesting consequences.

Remark 2.1. Contrary to (WPI), (2.2) is not always satisfied for s ≥ 1, so that, apriori, β does not necessarily goes to 0 at infinity. However if (2.2) is satisfied with two functions β 1 and β 2 , it is also satisfied with β = min(β 1 , β 2 ). According to (2.1), it is thus always satisfied for s → min(β(s), 1/16s), so that we may always assume without loss of generality that β goes to 0 at infinity. Again in all what follows we denote

β -1 (t) = inf{s > 0 , β(s) ≤ t}. ♦
To see how to reinforce (2.1) it is enough to look at the proof of ( 2) implies ( 1) in Theorem 1.3. We follow the proof in [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF].

The starting point is again (1.15),

Var µ (f ) -Var µ (P t f ) = 2 t 0 µ(|∇P u f | 2 ) du
yielding the equality (1.7) in [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF],

Var µ (f ) = 2 +∞ 0 µ(|∇P t f | 2 ) dµ
as soon as Var µ (P t f ) → 0 as t → +∞ .

Since µ is symmetric, the latter is satisfied as soon as the semi-group is ergodic, i.e. the eigenspace of A associated to the eigenvalue 0 is reduced to the constants. Actually this property is ensured by our assumptions: as shown for instance in [START_REF] Röckner | Weak Poincaré inequalities and L 2 -convergence rates of Markov semigroups[END_REF] Theorem 3.1 and the remark following this theorem, if µ(dx) = e -V dx is a probability measure with V of C 1 class, hence locally bounded, µ satisfies some weak Poincaré inequality so that the above convergence holds true.

Now defining

F (t) = µ(|∇P t f | 2 )
, one can check (using (1.3) and (1.6)) that

F ′ (t) = -2µ((AP t f ) 2 ) . (2.3) 
Notice that this equality shows that F is non increasing.

Using this property in (1.15) we also have

µ(|∇P t f | 2 ) ≤ 1 2t Var µ (f ) ≤ 1 2t Osc 2 (f ) . (2.4)
Assuming that a weak integrated Γ 2 inequality (2.2) is satisfied we get, using that Osc(P t f ) ≤ Osc(f ),

F ′ (t) ≤ - 2 β(s) F (t) + 2s β(s) Osc 2 (f ) .
This immediately yields

µ(|∇P t f | 2 ) = F (t) ≤ e -2t/β(s) µ(|∇f | 2 ) + s 1 -e -2t/β(s) Osc 2 (f ) . (2.5)
We may apply the previous inequality replacing f by P a f , next t by t -a and use again Osc(P a f ) ≤ Osc(f ). Using (2.4) we thus have for t > a > 0,

µ(|∇P t f | 2 ) ≤ inf s>0 s + 1 2a e -2(t-a)/β(s) Osc 2 (f ) = η(t) Osc 2 (f ). (2.6)
We have thus obtained Proposition 2.2. Assume that µ satisfies a weak integrated Γ 2 inequality (WI Γ 2 Osc) (2.2). Define for t > a > 0,

η(t) = inf s>0 s + 1 2a e -2(t-a)/β(s) = 2 inf{s > 0 ; β(s) ln(1/as) ≤ 2(t -a)} .
If η is integrable at infinity, then for t > a,

Var µ (P t f ) ≤ 2 +∞ t η(u)du Osc 2 (f ) .
In particular µ satisfies a (WPI) where β W P is given in Theorem 1.5 with

ξ(t) = 2 +∞ t η(u)du .
Remark 2.3. Notice that if µ satisfies a Poincaré inequality we recover the correct exponential decay thanks to proposition 1.4.

If we come back to (2.1) we may always use β(s) ∼ c/s. Using proposition 2.2 with a = t/2 the best possible η(t) is of order 1/t (for large t's) and thus is not integrable, in accordance with the fact that (2.1) cannot furnish the rate of decay to 0 since it is satisfied for all measures µ. Notice that, as for the (WPI), if β(s) = cs -1/(p+1) we obtain η(t) = c ′ (ln(t)/t) p+1 and finally ξ(t) ∼ c ′ (ln(t)/t) p . But here again we may apply the trick of remark 1.6, simply replacing (1.13) by (2.5), yielding

µ(|∇P t f | 2 ) ≤ i≥0 (γ i s i+1 (t)) Osc 2 (f ) , (2.7) 
with s i (t) = β -1 (2tα i / ln(1/γ i )) .
As for (WPI) this remark allows us to skip the logarithmic term. ♦ Remark 2.4. Taking a = µ(f ) we may replace (2.1) by

µ(|∇f | 2 ) ≤ 1 4s µ((Af ) 2 ) + s Var µ (f ) ,
so that we could also consider weak inequalities of the form

µ(|∇f | 2 ) ≤ β(s) µ((Af ) 2 ) + s Var µ (f ) . (2.8)
It is immediately seen that the previous derivation is unchanged if we replace Osc 2 (f ) by Var µ (f ) so that if η is integrable we get

Var µ (P t f ) ≤ 2 +∞ t η(u)du Var µ (f ) .
But according to what we already said, such a decay implies that µ satisfies a Poincaré inequality, hence thanks to Theorem 1.3 that β is constant equal to C P (µ) (or if one prefers that β(0) < +∞). Thus, in the other cases, (2.8) furnishes a non-integrable η. ♦

Let us look at the converse statement. According to Theorem 1.5 we may associate some (WPI) inequality to any decay controlled by the Oscillation. Thus for a = µ(f ),

µ 2 (|∇f | 2 ) = -µ 2 ((f -a)Af ) ≤ µ((Af ) 2 ) Var µ (f ) ≤ µ((Af ) 2 ) β W P (s) µ(|∇f | 2 ) + s Osc 2 (f ) . (2.9) Since u 2 ≤ Cu + B implies that u ≤ 1 2 C + (C 2 + 4B) 1 2 ≤ C + B 1 2 ,
we obtain

µ(|∇f | 2 ) ≤ β W P (s) µ((Af ) 2 )) + s 1 2 µ 1 2 ((Af ) 2 ) Osc(f ) , ≤ (β W P (s) + 1 2 ) µ((Af ) 2 )) + 1 2 s Osc 2 (f ) .
We have thus obtained (since we know that µ always satisfies some (WPI) inequality) and according to remark 2.1

Proposition 2.5. µ always satisfies a weak integrated Γ 2 inequality (WI Γ 2 Osc) (2.2), with

β(s) = min 1/2 + β W P (2s) , 1 16s . 
The previous results need some comments.

In first place, if we cannot assume that β(s) = 1 for s ≥ 1 in the weak integrated Γ 2 inequality (2.2), the interesting behaviour of this function is nevertheless as s → 0 for proposition 2.2 to have some interest.

In second place proposition 2.5 is certainly non sharp. In particular we do not recover the same β when β W P is constant, i.e. when µ satisfies a Poincaré inequality, while using (2.9) with s = 0 yields the correct value.

A still worse remark is that the previous proposition cannot be always used in conjunction with proposition 2.2. Indeed if β W P (s) ≥ c/s as it is the case in the second case of example 1.8 the η obtained in proposition 2.2 is not integrable.

Let us look at some other example.

Example 2.6. Assume that for some p > 0, β W P (s) = cs -1/p . In this case one can improve upon the result of proposition 2.5. Indeed we may replace the weak Poincaré inequality by its equivalent Nash type inequality

Var µ (f ) ≤ c (p + (1/p) p ) 1 p+1 µ p p+1 (|∇f | 2 ) Osc 2 p+1 (f ) . We thus deduce µ 2 (|∇f | 2 ) ≤ µ((Af ) 2 ) Var µ (f ) ≤ c(p) µ((Af ) 2 ) µ p p+1 (|∇f | 2 ) Osc 2 p+1 (f )
for some c(p) that may change from line to line, so that

µ 2 (|∇f | 2 ) ≤ c(p) µ p+1 p+2 ((Af ) 2 ) Osc 2 p+2 (f )
and finally that µ satisfies a weak integrated Γ 2 inequality with

β(s) = c(p) s -1/(p+1) .
This result is of course better than the s -1/p obtained by directly using proposition 2.5 and according to remark 1.6 allows to recover the correct decay for ξ(t). ♦

3.

The log-concave case.

If one wants to mimic (WPI) it seems more natural to consider another type of weak integrated Γ 2 inequalities, namely

(WI Γ 2 grad) µ(|∇g| 2 ) ≤ β(s) µ((Ag) 2 ) + s |||∇g| 2 || ∞ . (3.1)
But contrary to the previous derivation it is no more true that

|||∇P t f | 2 || ∞ ≤ |||∇f | 2 || ∞ so that the analogue of (2.4) will involve sup u≤t |||∇P u f | 2 || ∞ which is not really tractable.
If we want to guarantee

|||∇P t f | 2 || ∞ ≤ |||∇f | 2 || ∞ a sufficient condition is that µ is log- concave, i.e.
V is convex. Indeed in this case on can show (see a stochastic immediate proof in [START_REF] Cattiaux | Semi log-concave Markov diffusions[END_REF]) that

|∇P t f | 2 ≤ P 2 t (|∇f |) ≤ P t (|∇f | 2 ) ≤ |||∇f | 2 || ∞ . (3.
2) In this case we will thus obtain the analogue of (2.5)

µ(|∇P t f | 2 ) ≤ e -2t/β(s) µ(|∇f | 2 ) + s |||∇f | 2 || ∞ . (3.3) 
The difference with the previous section is that (3.1) is satisfied by β(s) = 0 for s ≥ 1. The converse function β -1 is thus bounded by 1, hence integrable at the origin. Now we can use the trick described in Remark 1.6 which yields,

µ(|∇P t f | 2 ) ≤ +∞ i=0 γ i β -1 (2α i+1 t/ ln(1/γ i+1 )) |||∇f | 2 || ∞ = η(t) |||∇f | 2 || ∞ . (3.4)
Since β -1 is integrable at 0, we have thus obtained after a simple change of variable, provided η is integrable at infinity

Var µ (f ) ≤ 2 +∞ 0 η(u)du |||∇f | 2 || ∞ ≤ +∞ i=0 γ i ln(1/γ i+1 ) α i+1 +∞ 0 β -1 (t)dt |||∇f | 2 || ∞ . (3.5) 
As before we may choose γ i = 2 -i and

α i = 6 π 2 i -2 so that +∞ i=0 γ i ln(1/γ i+1 ) α i+1 = κ
where κ is thus a universal constant. Hence if

β -1 is integrable with integral equal to M β we have obtained Var µ (f ) ≤ κ M β |||∇f | 2 || ∞ .
(3.6) As first shown by E. Milman in [START_REF] Milman | On the role of convexity in isoperimetry, spectral-gap and concentration[END_REF], for log-concave measures (3.6) implies a Poincaré inequality. A semi-group proof of E. Milman's result was then given by M. Ledoux in [START_REF] Ledoux | From concentration to isoperimetry: semigroup proofs[END_REF].

Another semi-group proof and various improvements were recently shown in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF]. We shall follow the latter to give a precise result. Starting with

µ(|f -µ(f )|) ≤ Var 1/2 µ (f ) ≤ κ 1/2 M 1 2
β |||∇f ||| ∞ , we deduce from [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] Theorem 2.7 that the 2 we have thus obtained Proposition 3.1. Assume that µ is log-concave and satisfies a weak integrated Γ 2 inequality (WI Γ 2 grad) (3.1). Then

L 1 Poincaré constant C ′ C (µ) is less than 16 κ M β /π. Using Cheeger's inequality C P (µ) ≤ 4 (C ′ C (µ))
C P (µ) ≤ 1024 π 2 κ M β , where κ is some (explicit) universal constant and M β = +∞ 0 β -1 (t)dt.
It turns out that there always exists a (non necessarily optimal) function β such that (3.1) is satisfied for a log-concave measure µ Indeed recall (1.10) and (1.12). We have

µ((Af ) 2 ) = µ(||Hessf || 2 HS ) + µ( ∇f, HessV ∇f ) ≥ 1 u µ(|∇f | 2 1 ||HessV || HS ≥ 1 u ) ≥ 1 u µ(|∇f | 2 ) - 1 u µ({||HessV || HS ≤ 1 u }) |||∇f | 2 || ∞ . It follows µ(|∇f | 2 ) ≤ β(s) µ((Af ) 2 ) + s |||∇f | 2 || ∞ with β -1 (s) = µ(||Hess -1 V || HS ≥ s) . (3.7) Since µ(||Hess -1 V || HS ) = +∞ 0 µ(||Hess -1 V || HS ≥ s) ds we have obtained Corollary 3.2. If µ is log-concave and such that µ(||Hess -1 V || HS ) < +∞, then C P (µ) ≤ C univ µ(||Hess -1 V || HS ) ,
for some universal constant C univ . This result is not new and as remarked by E. Milman is an immediate consequence of the fact that (3.6) implies that µ satisfies some Poincaré inequality and of one of the favorite inequality of M. Ledoux, namely the Brascamp-Lieb inequality

Var µ (f ) ≤ µ( ∇f, Hess -1 V ∇f ) ≤ µ(||Hess -1 V || HS ) |||∇f | 2 || ∞ .
Actually this method furnishes a slightly better pre-constant than the one obtained with our method (since our κ ≥ 1).

Still in the log-concave situation, if we assume (2.2) we may derive another control for the Poincaré constant. 

µ(|∇P t f | 2 ) = F (t) ≤ e -2t/β(s(t)) µ(|∇f | 2 ) + s(t) Osc 2 (f ) ,
we get Var µ (f ) ≤ κ µ(|∇f | 2 ) + s 0 Osc 2 f so that the conclusion follows from [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF] Theorem 9.2.14.

Still in the log-concave case it was shown by M. Ledoux in [START_REF] Ledoux | Spectral gap, logarithmic Sobolev constant, and geometric bounds[END_REF] that

|||∇P t f ||| ∞ ≤ 1 √ 2t ||f || ∞ so that replacing f by f -a with a = 1 2 (inf f + sup f ) we have |||∇P t f ||| ∞ ≤ 1 2 √ 2t Osc(f ) .
This bound was improved in [START_REF] Cattiaux | Semi log-concave Markov diffusions[END_REF] replacing √ 2 by √ π and is one of the key element in the proof of Theorem 2.7 in [START_REF] Cattiaux | On the Poincaré constant of log-concave measures[END_REF].

We may combine this bound with the (WI Γ 2 grad) inequality in order to improve upon the previous result. If a (WI Γ 2 grad) inequality is satisfied we have

µ(|∇P 2t f | 2 ) ≤ e -2t/β(s) µ(|∇P t f | 2 ) + s |||∇P t f | 2 || ∞ ≤ e -2t/β(s) µ(|∇f | 2 ) + s 4 πt Osc 2 (f ) .
We have thus obtained 

+∞ 0 e -2t/β(s(t)) dt = κ/4 < +∞ , then C P (µ) ≤ 64 ln(2) κ (1 -6s 0 ) 2 .
(3.9)

In the previous proposition we can choose a generic function s(t) given by

s(t) = θ 16 t 1 t≤2 + ln -(1+θ) (t) 1 t>2 , (3.10) 
so that

+∞ 0 s(t) 4π t dt = θ 32π + 1 64π ln θ (2) ≤ 1 48
as soon as 0 < θ ≤ 1. So we may always choose

κ = 4 2 + +∞ 2 e -2t/β((θ/16) ln -(1+θ) (t)) dt , s 0 = 1 12 , C P (µ) ≤ 256 ln(2) κ . (3.11) 
As we previously saw, we may also use the previous proposition with

β -1 (s) = µ(||Hess -1 V || HS ≥ s) .
This yields Corollary 3.5. If µ is log-concave and such that M ε := µ(ln 1+ε (1 + ||Hess -1 V || HS )) < +∞ for some ε > 0, then

C P (µ) ≤ c + 4 max 2, exp 2 ε 64 M ε θ 1 ε-θ , with θ = 1 if ε ≥ 2 and θ = ε/2 if ε ≤ 2, where c is some universal constant. Proof. Denote by M ε = µ(ln 1+ε (1 + ||Hess -1 V || HS )). According to Markov inequality β -1 (s) ≤ M ε ln 1+ε (1 + s) .
It follows

β(t) ≤ exp M ε t 1 1+ε so that for t ≥ 2, β(s(t)) ≤ exp 8M ε θ 1 1+ε ln 1+θ 1+ε (1 + t) .
In particular, using

t 2 ≥ t + 1 for t ≥ 2, 1 2 ln(t) ≥ 8M ε θ 1 1+ε ln 1+θ 1+ε (1 + t) as soon as t ≥ max 2, exp 2 ε 64 M ε θ 1 ε-θ .
For such t's we thus have

e -2t/β(s(t)) = e -2 exp(ln(t)-ln(β(s(t)))) ≤ e -2 √ t so that finally κ 4 ≤ max 2, exp 2 ε 64 M ε θ 1 ε-θ + +∞ 2 e -2 √ t dt .
Hence the result choosing θ = 1 if ε ≥ 2 and θ = ε/2 otherwise.

Of course our bounds are far from being sharp. Notice that the previous corollary allows to look at Subbotin distributions µ(dx) = Z -1 e -|x| p dx for large p's, while Brascamp-Lieb inequality cannot be used. However other known methods (see e.g. S. Bobkov's results on radial measures in [START_REF] Bobkov | Spectral gap and concentration for some spherically symmetric probability measures[END_REF]) furnish better bounds in this case. Of course the previous corollary covers non radial cases.

Remark 3.6. If M ε := µ(||Hess -1 V || ε HS ) < +∞ for some ε > 0 we can obtain another explicit bound choosing θ = 1 in (3.10). Using again Markov inequality we have β(s) ≤ (M ε /s) 1/ε so that

+∞ 2 e -2t/β(s(t)) dt ≤ +∞ 2 e -2t/ ln 2/ε (M 1/ε ε t) dt ≤ 1 2 M 1/ε ε ln 2/ε (M 2/ε ε ) + +∞ 2
e -2t/ ln 2ε (t 2 ) dt and finally

C P (µ) ≤ c(ε) + max 2, 1 2 M 1/ε ε ln 2/ε (M 2/ε ε ) .
Notice that for ε = 1 we recover a slightly worse result than corollary 3.2 since an extra logarithm appears. Of course choosing s(t) with a slower decay, we may improve upon this result but it seems that in all cases an extra worse term always appears. In addition constants are quite bad. But of course the result is new for ε < 1. ♦ 4. Some applications: perturbation of product measures and radial measures.

We will first recall how the (usual) integrated Γ 2 criterion can be used in order to relate the Poincaré constant of µ to the ones of its one dimensional conditional distributions, in some special situations. We copy here Proposition (3.1) in [START_REF] Ledoux | Logarithmic Sobolev inequalities for unbounded spin systems revisited[END_REF] and its proof to see how to potentially extend it. In the sequel we denote

SG(µ) = 1 C P (µ) the spectral gap of µ. Proposition 4.1. (M. Ledoux) Let µ(dx) = Z -1 e -W (x)-n i=1 h i (x i ) dx = Z -1 e -V (x)
dx be a probability measure on R n , W and the h i 's being C 2 . Introduce the one dimensional conditional distributions

η i,x (dt) = Z -1 i,x e -W (x 1 ,...,x i-1 ,t,x i ,..xn)-h i (t) dt . Let S = inf i,x SG(η i,x ) .
Assume that HessW (x) ≥ w and max i ∂ 2 ii W (x) ≤ w for all x ∈ R n . Then

SG(µ) ≥ S + w -w . Proof. It holds Γ 2 f = i,j (∂ 2 ij f ) 2 + i h ′′ i (x i )(∂ i f ) 2 + ∇f, HessW ∇f ≥ i (∂ 2 ii f ) 2 + i h ′′ i (x i )(∂ i f ) 2 + w|∇f | 2 (4.1) ≥ i (∂ 2 ii f ) 2 + i (h ′′ i (x i ) + ∂ 2 ii W ) (∂ i f ) 2 + (w -w) |∇f | 2 ≥ i Γ 2,i f + (w -w) |∇f | 2 .
It follows

µ((Af ) 2 ) = µ(Γ 2 f ) ≥ i µ(SG(η i,x ) |∂ i f | 2 ) + (w -w) µ(|∇f | 2 ) (4.2) ≥ (S + w -w) µ(|∇f | 2 ) ,
hence the result applying Theorem 1.3.

Remark 4.2. Choosing W = 0 the previous result contains the renowned tensorization property of Poincaré inequality

C P (⊗ i µ i ) ≤ max i C P (µ i ) .
Similar results for weak Poincaré inequalities involve a "dimension dependence" (see e.g. [START_REF] Barthe | Concentration for independent random variables with heavy tails[END_REF]). ♦ Remark 4.3. For the proof of proposition 4.1 to be rigorous, it is enough to assume that ESA is satisfied for C ∞ 0 (R n ) (which is implicit in M. Ledoux's work). Indeed in this case one only has to consider such test functions. The delicate point in the previous proof is that one has to check

µ(Γ 2,i f ) = µ((A i f ) 2 ) where A i f = ∂ 2 ii f -(h ′ (x i ) + ∂ i W )∂ i f in order to use the integrated Γ 2 criterion.
If f is compactly supported, this is immediate as we already discussed in the introduction. Hence for D = R n , (H) ensures that the result holds true. The case of a bounded domain D will be discussed later. ♦

In the previous proof, assume that w = 0 (W is convex), we thus obtain

Γ 2 f ≥ i µ(h ′′ i (x i ) (∂ i f ) 2 )
so that, as we did for obtaining (3.7) we have for u > 0, since we may integrate w.r.t. µ,

µ(|∇f | 2 ) ≤ u µ((Af ) 2 ) + µ min i (h ′′ i (x i ) ≤ 1/u) |||∇f | 2 || ∞ (4.3)
that furnishes a (WI Γ 2 grad) inequality. Of course

µ min i (h ′′ i (x i ) ≤ 1/u) ≤ n max i µ h ′′ i (x i ) ≤ 1 u .
We have seen that such a weak inequality is interesting provided on one hand µ is log-concave and on the other hand u → max i µ h ′′ i (x i ) ≤ 1 u which is clearly non-increasing goes to 0 as u → +∞. We will thus assume that all h i are convex, yielding thanks to Proposition 3.4 with the choice (3.10) with θ = 1 Lemma 4.4. Let µ(dx) = Z -1 e -W (x)-n i=1 h i (x i ) dx = Z -1 e -V (x) dx be a probability measure on R n , W and the h i 's being convex and C 2 . Define

α(v) = max i µ(h ′′ i (x i ) ≤ v)
and assume that (the non-decreasing) α goes to 0 as v → 0. Then

C P (µ) ≤ 256 ln(2) κ with κ = 4 2 + +∞ 2 e -2t/α -1 (1/16 n ln 2 (t)) dt .
Let us illustrate this situation in the particular case h i (u) = |u| p for p > 1. We immediately see that the situation is completely different depending on whether p < 2 or p > 2. Denote by µ i the probability distribution of x i under µ. For p < 2 we have to control the tails of µ i while for p > 2 we have to control the mass of small intervals centered at the origin.

Remark 4.5. For p < 2, h p : u → |u| p is not C 2 . But if p > 1, the only problem lies at the origin, and using that h ′′ p is integrable at the origin it is not difficult to check (regularizing h p at the origin for instance) that all what was done above is still true. ♦ More generally we may consider h i 's who satisfy similar concentration bounds. Let us state a first result Proposition 4.6. Let µ(dx) = Z -1 e -W (x) -n i=1 h i (x i ) dx be a probability measure on R n . We assume that the h i 's are even convex functions. In addition we assume that for all i = 1, ..., n,

h ′′ i (u) ≥ ρ(|u|)
where ρ is a non-increasing positive function going to 0 at infinity. Then for all even convex function W it holds

C P (µ) ≤ 4 2 + +∞ 2 e -2t ρ( √ 2 max i C P (η i ) ln(n ln 2 (t)) dt ,
where η i (du) = Z -1 i e -h i (u) du.

Proof. According to Prekopa-Leindler theorem we know that the i-th marginal law µ i of µ, i.e. the µ distribution of x i , is a one dimensional distribution, that can be written

µ i (du) = Z -1 i ρ i (u) e -h i (u) du , (4.4) 
with an even and log-concave (thus non increasing on R + ) function ρ i . For such one dimensional distributions we may use a remarkable result due to O. Roustant, F. Barthe and B. Ioos (see [START_REF] Roustant | Poincaré inequalities on intervals -application to sensitivity analysis[END_REF]) recalled in proposition 6 of [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF], namely Lemma 4.7. (Roustant-Barthe-Ioos) Let η(du) = e -V (u) 1 (-b,b) (u) du be a probability measure on R, with V a continuous and even function. For any even function ρ which is non-increasing on R + and such that ν(du) = ρ(u) η(du) is a probability measure, it holds

C P (ν) ≤ C P (η) .
Applying the lemma we get

C P (µ i ) ≤ C P (Z -1 e -h i (u) du) := C P (η i ) . (4.5)
We can thus use the concentration of measure property obtained via the Poincaré inequality, first shown by S. Bobkov and M. Ledoux ([8]). Here we use an explicit form we found in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF] (4.4.6). Since u → u is 1-Lipschitz and centered (again thanks to symmetry), it yields

µ(h ′′ (x i ) ≤ 1/u) ≤ µ(|x i | ≥ ρ -1 (1/u)) ≤ 6 exp - ρ -1 (1/u) C P (η i ) . (4.6)
We thus have for v > 0

v µ((Af ) 2 ) + 6 n max i exp - ρ -1 (1/v) C P (η i ) ||∇f | 2 || ∞ ≥ µ(|∇f | 2 ) , (4.7) 
yielding, for s > 0 small enough,

β(s) = 1 ρ max i C P (η i ) ln(6n/s) . (4.8) 
It remains to use the lemma 4.4.

Remark 4.8. When h i (u) = |u| p for some 1 < p ≤ 2, one knows that C P (η i ) ≤

4 p 2(1-1/p)
according to [START_REF] Bonnefont | A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions[END_REF] Theorem 2.1. It follows that for some (explicit) constant c(p),

C P (µ) ≤ c(p) p(p -1)
(1 + ln 2-p (6n)) .

The study of such µ's is not new. A much better result has been recently shown by F. Barthe and B. Klartag (see Theorem 1 in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF]), Theorem 4.9. (Barthe-Klartag) Let µ(dx) = Z -1 e -W (x) -n i=1 |x i | p dx be a probability measure. We assume that 1 ≤ p ≤ 2 and that W is an even convex function. Then

C P (µ) ≤ C ln 2-p p (max(n, 2)) ,
where C is some universal constant.

The key point here is naturally that the result holds true for any even and convex W . The proof by Barthe and Klartag lies on a lot of properties of log-concave measures and uses in particular the extension of the gaussian correlation inequality shown by Royen, to mixtures of gaussian measures. We of course refer the reader to [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF]. We do not only loose something on the power of the logarithm, but the constant becomes infinite as p goes to 1, which is natural since the Γ 2 requires some strict convexity except at some point. However our result does not require the full machinery of gaussian mixtures, and shows that the result only depends on the behaviour of the second derivative of the h's at infinity. ♦ Remark 4.10. In the previous proof we implicitly have used the fact that (H) is satisfied. We know that it is the case when W ∈ C 2 (R n ). If W is only continuous, we may replace W by W ε = W * γ ε where γ ε is a tiny centered gaussian density. W ε is still even and convex, so that the Theorem applies. Since the bound does not depend on ε we may take limits in the corresponding Poincaré inequalities and get the same bound for W . ♦ Remark 4.11. Let now consider the case p > 2. This time we have to control

µ |x i | ≤ u -1/(p-2) ,
for large u's. Using (4.4) and since ρ i is even and log-concave, we see that

µ |x i | ≤ u -1/(p-2) ≤ Z -1 i ρ i (0) u -1/(p-2) . But Z -1 i ρ i (0) = e -W (x 1 ,...,x i-1 ,0,x i+1 ,...,xn)-j =i |x j | p i =j dx j e -W (x)-j |x j | p j dx j . Denote by α = max i Z -1 i ρ i (0) . (4.9) 
Then we get

β(s) = 1 p(p -1)
αn s p-2 so that we have to estimate (choosing θ = 1 in (3.10))

+∞ 2 exp - 2p(p -1) (αn) p-2 t ln 2(p-2) (t) dt .
Using that t/ ln k (t) is bounded below by c(k, ε)t 1-ε for any ε > 0, we easily obtain Proposition 4.12. Let µ(dx) = Z -1 e -W (x)-n i=1 |x i | p dx. We assume that p > 2 and that W is convex and even so that µ is log-concave. Then for all ε > 0, there exists a constant c(p, ε) such that

C P (µ) ≤ c(p, ε) (α n) (p-2)(1+ε) where α = max i e -W (x 1 ,...,x i-1 ,0,x i+1 ,...,xn)-j =i |x j | p i =j dx j e -W (x)-j |x j | p j dx j .
For instance if we assume that t → W (x 1 , ...t, ..., x n ) is β Hölder continuous, uniformly in x and i, using

|W (x 1 , ...t, ..., x n ) -W (x 1 , ...0, ..., x n )| ≤ L|t| β , we get α ≤ 1 e -L|t| β -|t| p dt .
The previous result may have some interest only if 2 < p < 3. This is also quite natural: for large p's, |x| p becomes flat near the origin so that one cannot expect to use some convexity approach.

The best general control (thus including the case p > 2 for Subbotin distributions) is obtained in Theorem 18 of [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF], and says that

C P (µ) ≤ c n max i (C P (ν i )) .
In addition, in subsection 3.4 of [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF], it is shown that the factor n is optimal by considering log concave perturbations of Subbotin distributions ν i with exponent p for large p's for which C P (µ) is at least of order n (p-2)/p . 

However if W is unconditional (i.e. W (σx) = W (x) for all σ ∈ {-1, 1} n ),
(µ) = µ(x i x j )-µ(x i )µ(x j ). It is immediate that σ 2 (µ) = ||Cov µ || 2 HS ≤ C P (µ) (σ(µ)
being the largest eigenvalue of Cov(µ)). Our proof thus gives an universal bound (that does not depend on W ) for the Covariance matrix. The proofs by Barthe and Klartag use first estimates for this covariance matrix. ♦

Looking at log-concave perturbations of log-concave product measures as above, can be partly motivated by statistical issues. We refer to [START_REF] Cattiaux | Functional inequalities for perturbed measures with applications to logconcave measures and to some Bayesian problems[END_REF] (in particular the final section) for some of them. Of course looking at product measures is interesting thanks to the tensorization property of Poincaré inequality, furnishing dimension free bounds. For log-concave measures, another case is well understood since S. Bobkov's work [START_REF] Bobkov | Spectral gap and concentration for some spherically symmetric probability measures[END_REF], namely radial measures. The following version is due to M. Bonnefont, A.Joulin and Y. Ma ( [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF] Theorem 1.2) Theorem 4.14. (Bobkov, Bonnefont-Joulin-Ma) Let µ be a spherically symmetric (radial) log-concave probability measure on R n , n ≥ 2. Then

C P (µ) ≤ µ(|x| 2 ) n -1 .
We can obtain a result similar to proposition 4.6 or proposition 4.12 Theorem 4.15. Let µ(dx) = Z -1 µ e -W (x)-h(|x| 2 ) dx be a probability measure on R n . We assume that W is even and convex and that h is convex and non-decreasing on R + , so that µ is log-concave. W and h are also normalized so that W (0) = h(0) = 0 (and consequently W and h are non-negative). Introduce

ν h (dx) = e -h(|x| 2 ) dx .
There exists an universal constant c such that

C P (µ) ≤ c 1 + +∞ 2 e -4t h ′ 1 (cn(µ) ln 2 (t)) 2/n dt , with c n (µ) = Z -1 µ π n/2 nΓ(n/2) ≤ inf θ π n/2 nΓ(n/2) e max |x|=θ W (x) ν h (|x| ≤ θ) = inf θ e max |x|=θ W (x) n θ 0 r n-1 e -h(r 2 ) dr . Remark 4.16. Let µ λ (dx) = Z -1 µ λ -n e -W (x/λ)-h(|x| 2 /λ 2 ) dx a dilation of µ. Notice that λ 2 c 2/n n (µ λ ) = c n (µ)
. Since one has a factor 1/λ 2 in front of h ′ , we partly recover the homogeneity of the Poincaré constant under dilations. ♦

Proof. Once again we may assume that W and h are smooth, convolving with a tiny gaussian kernel, that preserves convexity and parity. For simplicity we also assume that h ′ is (strictly) increasing, so that h ′ is one to one. For two vectors x and y we write xy for the vector with coordinates (xy

) i = x i y i . It holds Γ 2 f = i,j (∂ 2 ij f ) 2 + ∇f, HessW ∇f + 4 h ′′ (|x| 2 ) |x∇f | 2 + 2 h ′ (|x| 2 )|∇f | 2 ≥ 2 h ′ (|x| 2 )|∇f | 2 so that u µ((Af ) 2 ) + µ 2 h ′ (|x| 2 ) ≤ 1 u |||∇f | 2 || ∞ ≥ µ(|∇f | 2 ) . (4.10) 
So µ satisfies a (WI Γ 2 grad) inequality, with

β -1 (u) = µ 2 h ′ (|x| 2 ) ≤ 1 u = µ r h ′ (r 2 ) ≤ 1 2u = µ r r ≤ (h ′ ) -1 (1/2u)
where µ r denotes the probability distribution of the radial part of µ. We have

µ r (dv) = Z -1 µ n ω n v n-1 e -h(v) S n-1 e -W (vθ) σ n (dθ) dv
where σ n denotes the uniform measure on the sphere S n-1 and ω n = π n/2 nΓ(n/2) denotes the volume of the unit (euclidean) ball. It follows, since W and h are non-negative,

µ r r ≤ (h ′ ) -1 (1/2u) ≤ Z -1 µ π n/2 n Γ(n/2) ((h ′ ) -1 (1/2u)) n/2
from which we deduce that we can choose

β(t) = 1 2 h ′ ((s/c n ) 2/n ) with c n = Z -1 µ π n/2 nΓ(n/2)
.

It remains to apply proposition 3.1.

The next step is thus to get some tractable bound for c n , i.e a lower bound for Z µ . The simplest way to do it is to use the fact that W is non-decreasing on each radial direction so that for all θ > 0

Z µ ≥ |x|≤θ e -W (x)-h(|x| 2 ) dx ≥ e -max |x|=θ W (x) ν h (|x| ≤ θ) .
Corollary 4.17. In particular if h(u) = u p with p ≥ 1, we have

C P (µ) ≤ 12288 ln(2) c 2(p-1) n n (µ) 4p (4(p -1)) 4(p-1) n . Proof. If h(u) = u p for p > 1, the corresponding dilation µ λ is given by h λ (u) = λ -2p u p . Recall that c n (µ λ ) = λ -n c n (µ).
We shall use that

ln(t) ≤ 1 α 2 α t α + (ln(2) -(1/α)) for t ≥ 2 and α > 0. If t ≥ 2, we thus have ln(t) ≤ 1 α 2 α t α if α ≤ 1 and ln(t) ≤ t α if α ≥ 1. It follows ln 4(p-1) n (t) ≤ c β t β for t ≥ 2 and 0 < β, with c β = 2 -β 4(p -1) βn 4(p-1) n if βn 4(p -1) ≤ 1 ; c β = 1 if βn 4(p -1) ≥ 1 . This e -4t h ′ λ 1 (cn(µ λ ) ln 2 (t)) 2/n ≤ e -κ β t 1-β for κ β = 4p c β λ 2 c 2(p-1) n n (µ) 
.

A simple change of variables u = κ β t 1-β , together with the positivity of all constants yields

+∞ 2 e -4t h ′ λ 1 (cn(µ λ ) ln 2 (t)) 2/n dt ≤ ((1 -β)κ β ) -1 +∞ 0 u β 1-β e -u 1-β du .
Choosing for simplicity β = 1/n, so that βn/4(p -1) ≤ 1, for n ≥ 2 the final integral is bounded independently of n for instance by c = +∞ 0 u e - √ u du = 12. It follows

C P (µ λ ) ≤ 1024 ln(2)   2 + c λ 2 c 2(p-1) n n (µ) 4p (4(p -1)) 4(p-1) n   .
Using C P (µ) = λ -2 C P (µ λ ) and letting λ go to infinity furnishes the result. For p = 1 the result follows from strict convexity.

Remark 4.18. If µ r denotes the radial distribution of µ, v) .

µ r (dv) = ρ(v) v n-1 e -h(
ρ is clearly an even function. Since for a fixed θ, v → W (vθ) is even and convex, it is nondecreasing, so that v → ρ(v) is non-increasing. ρ is non necessarily log-concave, but we can again apply Proposition 6 in [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] furnishing, with νh = Z -1 ν h ,

C P (µ r ) ≤ C P (ν h ) . (4.11) 
The measure νh being log-concave, we know that

C P (ν h ) ≤ 12 Var νh (v) .
What is important here is that the Poincaré constant of the radial measure µ r can be bounded independently of W . ♦ Remark 4.19. Is the bound in Corollary 4.17 of the good order ? To see it look at the particular case W = 0. In this case Z µ = n ωn 2p Γ(n/2p) so that c n (µ) = 2p n Γ(n/2p) , and our bound furnishes

C P (µ) ≤ c 2 10(p-1)/n p 6(p-1)/n 4p n 2(p-1)/n 1 Γ 2(p-1)/n (n/2p) ,
for some universal c. In this case the following very precise bounds were obtained by Bonnefont, Joulin and Ma in [START_REF] Bonnefont | Spectral gap for spherically symmetric log-concave probability measures, and beyond[END_REF],

µ(|x| 2 ) n ≤ C P (µ) ≤ µ(|x| 2 ) n -1 .
Since µ(|x| 2 ) = Γ((n + 2)/2p) Γ(n/2p) for n/p ≫ 1 (even for large p's) we may use

Γ(z) ∼ z→+∞ √ 2πz z-(1/2) e -z
so that the Bonnefont, Joulin, Ma theorem furnishes

C P (µ) ∼ (2ep) -1/p n 1-(1/p) . (4.12)
For the same asymptotics our bound furnishes (for some new constant c) C P (µ) ≤ c p 3(p-1)/n n 1-(1/p) . (4.13)

Hence provided p ln(p) ≤ Cn, we get the good order (but of course not the good constant). This shows that our bound is not so bad. ♦

5.

The case of compactly supported measures.

Let us come back to the proof of Proposition 4.1 starting with

Γ 2 f = i,j (∂ 2 ij f ) 2 + i h ′′ i (x i )(∂ i f ) 2 + ∇f, HessW ∇f . (5.1)
If W is convex, we thus have

µ(Γ 2 f ) ≥ i µ((∂ 2 ii f ) 2 + i h ′′ i (x i )(∂ i f ) 2 ) = i µ(η i,x ((∂ 2 ii f ) 2 + h ′′ i (x i )(∂ i f ) 2 )) (5.2)
Instead of adding and substracting ∂ 2 ii W (∂ i f ) 2 , consider η i,x as a perturbation of θ i (dt) = z -1 i e -h i (t) dt using the notation η i,x (dt) = Z -1 i,x e -W i,x (t) θ i (dt) .

Since we integrate a non-negative quantity it holds

η i,x ((∂ 2 ii f ) 2 + h ′′ i (x i )(∂ i f ) 2 ) ≥ e -sup W i,x θ i ((∂ 2 ii f ) 2 + h ′′ i (x i )(∂ i f ) 2 ) ≥ e -sup W i,x SG(θ i ) θ i ((∂ i f ) 2 ) ≥ e -OscW i,x SG(θ i ) η i,x ((∂ i f ) 2 ) , (5.3) 
provided θ i (Γ 2 g) = θ i ((L i g) 2 )
with L i g = g ′′ -h ′ i g ′ . Notice since W i,x is convex, its Oscillation cannot be bounded on R, unless W i,x is constant. Hence the previous result has no interest on R n and we shall only consider the case where the process lives in a bounded domain D. We have thus obtained some variation of the renowned Holley-Stroock perturbation result namely Proposition 5.1. Let µ(dx) = Z -1 e -W (x)-n i=1 h i (x i ) 1 D (x) dx be a probability measure on the hypercube D = i ]a i , b i [ . Assume that (G1) For all i, the one dimensional diffusion

dy i t = √ 2 dB i t -h ′ i (y i t )dt satisfies (H) on ]a i , b i [ with reversible measure θ i (du) = z -1 i e -h i (u) 1 u∈]a i ,b i [ du. (G2) W ∈ C ∞ (R n ) and is convex.
Introduce the one dimensional conditional log-density

W i,x (t) = W (x 1 , ..., x i-1 , t, x i , ..x n ) . Then C P (µ) ≤ max i sup x e Osc(W i,x ) max i C P (θ i ) .
Since max i sup x e Osc(W i,x ) ≤ OscW we recover (provided W is convex) Holley-Stroock result for a product reference measure on a hypercube. But what is important here is that we only have to consider the Oscillation of W along lines parallel to the axes.

Proof. The only thing remaining to prove is that we can work with C ∞ b (D) functions f so that u → f (x 1 , ..., x i-1 , u, x i+1 , ..., x n ) is also C ∞ b (]a i , b i [) and we may use (G1) to justify the calculations we have done before. It is thus enough to show that (H) is satisfied for the full process i.e. with V = W + i h i . Since ∇W and ∆W are bounded on D, the law of X x . is absolutely continuous w.r.t. to the one of (y 1 . , ..., y n . ) thanks to Girsanov theory. It follows that the exit time of D is almost surely infinite since the same holds for (y 1 . , ..., y n . ) according to (G1). In addition the Feynman-Kac representation of the density F T (on C 0 ([0, T ], D)) is again given by the formula of Example 7.1, so that, as we have seen, (H) is satisfied. Proof. As usual, using smooth approximations, we may assume that W ∈ C ∞ (R n ). We shall perturb µ in order to apply the previous proposition. To this end, on the interval ]a i , b i [ define

Corollary 5.2. Let µ(dx) = Z -1 e -W (x)-n i=1 h i (x i ) 1 D (x)
h i ε (u) = ε 1 u -a i + 1 b i -u . Consider µ ε (dx) = Z -1 e -W (x) -i (h i (x i )+h i ε (x i )) 1 D (x) dx . Denote g i ε = h i + h i ε .
Assumptions (G1) and (G2) of proposition 5.1 are satisfied. We already assumed (G2). In order to show (G1) it is first enough to use Feller test of non explosion for a one dimensional diffusion, i.e. to check that for

c i = 1 2 (a i + b i ), a i c i exp y c i (g i ε ) ′ (u)du dy = -∞
(replacing a i by b i we similarly get +∞) according for instance to [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] Chapter VI, Theorem 3.1, which is immediate. It follows that (1.1) is satisfied. In addition (g

i ε ) ′ ∈ L 2 (θ i ε (du)) where θ i ε (du) = z -1 ε e -g i ε (u) 1 ]a i ,b i [ (u)
du, so that we are in the situation of Example 7.2 ensuring that the one dimensional y . in (G1) satisfies (H). We have thus obtained

C P (µ ε ) ≤ max i sup x e Osc(W i,x ) max i C P (θ i ε (dt)) . Using Lebesgue's bounded convergence Theorem, for all f ∈ C 0 b (D) it holds lim ε→0 D f (x) e -W (x)-n i=1 g i ε (x i ) dx = D f (x) e -W (x)-n i=1 h i (x i ) dx
so that using this result for f and 1, µ ε weakly converges to µ. It follows

C P (µ) ≤ lim inf ε→0 C P (µ ε ) ≤ max i sup x e Osc(W i,x ) lim inf ε→0 max i C P (θ i ε ) .
We may now use the fact that θ i ε is log-concave since both h i and h i ε are convex. We thus have C P (θ i ε ) ≤ 12 Var θ i ε (x i ) . Once again θ i ε weakly converges to θ i and since

x i → x 2 i is continuous and bounded on [a i , b i ], Var θ i ε (x i ) → Var θ i (x i
) so that the conclusion follows from the immediate V ar θ i (x i ) ≤ C P (θ i ).

Super Γ 2 condition

As there are weak Poincaré inequalities, Super Poincaré inequalities (SPI) have also been introduced by Wang [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF] as a concise description of functional inequalities strictly stronger than Poincaré inequalities, in particular logarithmic Sobolev (or more generally F -Sobolev) inequalities.

(SPI) is often written in the following form: ∀s > 0, there exists a non-increasing

β :]0, ∞[ → [1, +∞[ such that µ(f 2 ) ≤ sµ(|∇f | 2 ) + β(s)µ(|f |) 2 . ( 6.1) 
Applying (6.1) to constant functions one sees that β(s) ≥ 1 for all s. Since 1 is assumed to belong to the range of β, the (SPI) inequality implies a Poincaré inequality with C P (µ) ≤ β -1 (1), and one has β(s) = 1 for s ≥ C P (µ) . When β(s) = ae b/s for positive a and b, then the Super Poincaré inequality is equivalent to a logarithmic Sobolev inequality (see [START_REF] Cattiaux | Poincaré and Logarithmic Sobolev inequalities for nearly radial measures[END_REF] lemma 2.5 and lemma 2.6 for a precise statement).

It is also possible to consider SPI with a L p norm rather than the L 1 norm, so that we will introduce general (p-SPI) for 1 ≤ p < 2 and all s > 0,

µ(f 2 ) ≤ sµ(|∇f | 2 ) + β(s)µ(|f | p ) 2/p . (6.2)
This time, (6.2) does not imply a Poincaré inequality, so that it is natural to assume in addition that C P (µ) ≤ +∞. In this case we have the following Lemma 6.1. Assume that C P (µ) < +∞ and that the following centered (cp-SPI) inequality is satisfied for all s > 0,

Var µ (f ) ≤ sµ(|∇f | 2 ) + β c (s)µ(|f -µ(f )| p ) 2/p , (6.3) 
where β is non increasing. Then (p-SPI) holds with β(s) = 1 + 4β c (s).

Proof. Since C P (µ) < +∞ we may choose β c (s) = 0 for s > C P (µ). Let f be given. It holds

µ(|f -µ(f )| p ) ≤ 2 p-1 (µ(|f | p ) + µ p (|f |)) ≤ 2 p µ(|f | p ) yielding µ(|f | 2 ) = Var µ (f ) + µ 2 (f ) ≤ sµ(|∇f | 2 ) + β c (s)µ 2/p (|f -µ(f )| p ) + µ 2 (|f |) ≤ sµ(|∇f | 2 ) + (4β c (s) + 1) µ 2/p (|f | p ) .
It is then natural to introduce an integrated super Γ 2 condition: for some 1 ≤ p < 2, there exists a positive non-increasing function β such that ∀s > 0

(pSI -Γ 2 ) µ(|∇f | 2 ) ≤ s µ(Af ) 2 ) + β(s)µ(|f | p ) 2/p .
In the sequel we assume that C P (µ) < +∞, so that for all s ≥ C P (µ) one may take β(s) = 0. Let us begin by this simple proposition Proposition 6.2. We have the following (1) A (p -SP I) inequality is equivalent to

µ((P t f ) 2 ≤ e -2t/s µ(f 2 ) + β(s)µ(|f | p ) 2/p (1 -e -2t/s ), (6.4) 
for all s > 0 and all t ≥ 0.

(2) A (pSI -Γ 2 ) condition is equivalent to µ(|∇P t f | 2 ≤ e -2t/s µ(|∇f | 2 ) + β(s)µ(|f | p ) 2/p (1 -e -2t/s ). (6.5)
for all s > 0 and all t ≥ 0.

Proof. The first part is well known and is included in Wang's work [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF]. The second point will follow the same line of proof. As already emphasized in the previous sections, denoting

F (t) = µ(|∇P t f | 2 )
one has F ′ (t) = -2µ((AP t f ) 2 ) so that the (pSI -Γ 2 ) gives directly is a P martingale so that for all bounded h, E(h(X 0 )g(X t )) = µ(gh) + t 0 E(h(X 0 )g(X s )) ds .

F ′ (
Since a regular disintegration of P is furnished by the distribution of the X x . 's, it follows P t g = g + t 0 P s g ds µ almost surely, so that g ∈ D( Ã) and satisfies Ãg = g. Hence µ(g 2 ) = µ(gAg) = -µ(|∇g| 2 ) so that g = 0.

The proof of the remaining part of the Theorem is the same as in [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours Spécialisés[END_REF] p.42.

Finally we will indicate how to show that the semi-group is ergodic when D is bounded (we already mention a possible way for D = R n in section 2) . If P t f = f for all t > 0 it follows that f ∈ D(A) and satisfies Af = 0 so that f is smooth thanks to hypoellipticity. Applying Ito's formula we deduce that f (X x t ) = f (x) a.s. for all t > 0. Thanks to the Support Theorem ( [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] chapter 6 section 8) we know that the distribution of X x t admits a positive density w.r.t. Lebesgue measure, so that if f (y) = f (x) for some y, hence all z in a neighborhood N of y by continuity, P(X x t ∈ N ) > 0 and thus f (X x t ) = f (x) with positive probability, which is a contradiction.

Let us give now some of the most important examples. In these examples we assume that V ∈ C 3 . In all cases the law of (X x t ) t≤T is given by dQ = F T dP where P is the law of a Wiener process starting from 0 and It is however not clear in general that P t f is smooth (even if V is). If one assumes that ∂D is C ∞ and V ∈ C ∞ ( D), P t f ∈ C ∞ ( D) is shown in [START_REF] Cattiaux | Stochastic calculus and degenerate boundary value problems[END_REF] Theorem 2.9 by using the method of [START_REF] Cattiaux | Regularité au bord pour les densités et les densités conditionnelles d'une diffusion réfléchie hypoelliptique[END_REF] (see the proof of Theorem 2.11 therein). Notice that the proof of regularity is using Sobolev imbedding theorem, so that one should relax the C ∞ assumption but with dimension dependent regularity assumptions. Other more important difficulties will be pointed out later.

F T = exp 1 2 V (x) - 1 2 V (x + √ 2 W T ) + 1 2
The other major difficulty is that ESA is not satisfied in general.

In comparison with the previous example, the boundary term will disappear if e -V = 0 on ∂D. It is what happens if (H) is satisfied, but here again we do not need such a proof twhich is not useful in the present work. ♦

  living in D up to an explosion time T x ∂ since ∇V is local Lipschitz. Of course here B . is a standard Brownian motion. When D = R n , T x ∂ = sup k∈N * T x k where T x k denotes the exit time of the euclidean ball of radius k, while if D is a bounded open subset, T x ∂ denotes the hitting time of the boundary ∂D, i.e. k = inf{t, d(X x t , D c ) ≤ 1/k} .

  dx be a probability measure on the hypercube D = i ]a i , b i [ . Assume that the h i 's and W are convex and C 2 b ( D). Then, with the notations of Proposition 5.1 we have C P (µ) ≤ 12 max i sup x e Osc(W i,x ) max i C P (θ i ) .

Example 7 . 1 .

 71 If either (H1) V (x) → +∞ as x → ∂D (i.e. |x| → +∞ if D = R n ), and 1 2 |∇V | 2 -∆V is bounded from below, or (H2) D = R n and x, ∇V (x) ≥ -a|x| 2 -b for some a, b in R, then (H) is satisfied. If V is convex (H2) is satisfied with a = b = 0. If D = R n thesetwo cases are detailed in [40] subsection 2.2.2 (conservativeness is shown in Theorem 2.2.19 therein). In the (H1) case for a bounded domain the only thing to do is to replace the exit times of large balls by the T k 's in Lemme 2.2.21 of [40].

2 -

 2 ∆V )(x + √ 2 W s )ds . (7.2) ♦ If f is smooth (C 2 ( D)) and belongs to D(A) it also holds-µ(f Ag) = µ( ∇f, ∇g ) + ∂D g n D , ∇f e -V dσ Daccording to Green's identity. Here n D denotes the normalized inward normal vector on ∂D and σ D denotes the surface measure on ∂D. Since the set of the traces on ∂D of bounded functions in H 1 (µ) is dense in L ∞ (σ D ), we deduce that n D , ∇f |∂D = 0 .

  Proposition 3.3. Assume that µ is log-concave and satisfies a weak integrated Γ 2 inequality (WI Γ 2 Osc) (2.2). If in addition there exists a function s(t) such that

	0	+∞	s(t) dt =	s 0 2	<	1 12	and	0	+∞	e -2t/β(s(t)) dt = κ/2 < +∞ ,
	then						C P (µ) ≤	64 ln(2) κ (1 -6s 0 ) 2 .	(3.8)
	Proof. Starting with (2.5) in the simplified form	

  Proposition 3.4. Assume that µ is log-concave and satisfies a weak integrated Γ 2 inequality (WI Γ 2 grad) (3.1). If in addition there exists a function s(t) such that

	0	+∞	s(t) 4πt	dt =	s 0 4	<	1 24	and

  one can deeply reinforce the previous result and show that C P (µ) ≤ max i (C P (ν i )) as shown in[START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF] Theorem 17.

♦ Remark 4.13. Denote by Cov(µ) the covariance matrix, i.e. Cov i,j

  |P t f | p ) 2/pand since µ(|P t f | p ) 2/p ≤ µ(|f | p ) 2/p we conclude thanks to Gronwall's lemma. The other implication comes from differentiating with respect to time at time 0. 6.1. From (p-SPI) to (pSI-Γ 2 ). We follow the same proof as in section 2, assuming that a (p -SP I) holds, i.e. we use Cauchy-Schwartz inequality in order to get We thus see that we have "lost" a factor 1/s but if we think to the logarithmic Sobolev inequality, it roughly means the loss of a constant.6.2. From (pSI-Γ 2 ) to (p-SPI). . Starting with µ(|∇P t f | 2 ≤ e -2t/s µ(|∇f | 2 ) + β(s)µ(|P t f | p ) 2/p (1 -e -2t/s ) |P u f | p ) 2/p (1 -e -2u/s )du.Assume first that f is centered. If p > 1 then Poincaré inequality implies back an exponential convergence in L p norm (see[START_REF] Cattiaux | Poincaré inequality and the L p convergence of semi-groups[END_REF] Theorem 1.3) so that for all centered f we getµ(f 2 ) ≤ sµ(|∇f | 2 ) + K p β(s)µ(|f | p ) 2/pwhere K p depends on p and is going to infinity as p goes to 1. Applying lemma 6.1 we thus obtain µ(|f | 2 ) ≤ sµ(|∇f | 2 ) + (1 + 4K p β(s))µ(|f | p ) 2/p .

	t) ≤ -≤ 3 2 s µ((Af ) 2 ) + 2 s F (t) + 2β(s) s β(s) µ(1/2 2s µ(|f | and using Var µ (f ) = 2 ∞ 0 µ(|∇P u f | 2 )du we get Var µ (f ) ≤ 2 ∞ 0 0 e -2u/s µ(|∇f | 2 )du + 2β(s) ∞ t µ(As a consequence t → 0 ∇g(X

µ(|∇f | 2 ) = µ(-f Af ) ≤ µ(f 2 ) µ((Af ) 2 ) ≤ s µ(|∇f | 2 ) µ((Af ) 2 ) + β(s)µ(|f | p ) 2/p µ((Af ) 2 )

.

Recall now the already used following fact:

if 0 ≤ u ≤ √ Au + B then u ≤ A + B 1/2 . It yields µ(|∇f | 2 ) ≤ s µ((Af ) 2 ) + β(s)µ(|f | p ) 2/p µ((Af ) 2 ) p )

2/p . s ), dB s

 [START_REF] Barthe | Spectral gaps, symmetries and log-concave perturbations[END_REF]. Appendix: about the heart of darkness.

Let us come back to the framework of this work especially Proposition 1.2. First of all, if (H) is satisfied, according to Theorem 2.2.25 and its proof in Royer's book [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours Spécialisés[END_REF] (also see the english version [START_REF] Royer | An initiation to logarithmic Sobolev inequalities, volume 14 of SMF/AMS Texts and Monographs[END_REF]), the following holds (A1) P t extends to a µ-symmetric continuous Markov semi-group e -t à on L 2 (µ). We denote by D( Ã) the domain of the generator à of this L 2 (µ) semi-group. Actually Royer only considers the case D = R n , but the key point in the proof is that one can apply Ito's formula for such an f up to time t (without any stopping time) which is ensured by the conservativeness in D.

In the case D = R n the proof of ESA for C ∞ 0 the set of smooth compactly supported functions is contained in [START_REF] Wielens | The essential selfadjointness of generalized Schrödinger operators[END_REF] using an elliptic regularity result Theorem 2.1 in [START_REF] Frehse | Essential selfadjointness of singular elliptic operators[END_REF] (actually the latest result certainly appeared in other places). The proof is explained in Theorem 2.2.7 of [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours Spécialisés[END_REF] (also see Proposition 3.2.1 in [START_REF] Bakry | Analysis and Geometry of Markov diffusion operators[END_REF]) when V is C ∞ . The structure of D( Ã) is also proved in the same Theorem. We shall explain the proof when D is bounded, still assuming for simplicity that V ∈ C ∞ (D). The same elliptic regularity should be used to extend the result to V ∈ C 2 (D), but will introduce too much intricacies to be explained here.

. Since E is regular, Fukushima's theory (see [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF]) allows us to build a symmetric Hunt process associated to (E, H 1 0 (µ, D)). This process is then a solution to the martingale problem associated to A and C ∞ 0 (D). Since T x ∂ is almost surely infinite, this martingale problem has an unique solution given by the (distribution) of the stochastic process X x . . In order to prove ESA it is enough to show that if g ∈ L 2 (µ) satisfies µ(g (Aϕ -ϕ)) = 0 for all ϕ ∈ C ∞ 0 (D) then g vanishes (see the beginning of the proof in [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours Spécialisés[END_REF] p.31). According to the proof in [START_REF] Royer | Une initiation aux inégalités de Sobolev logarithmiques, volume 5 of Cours Spécialisés[END_REF] p.31, it implies in particular that g ∈ D ′ (D) and satisfies Ag = g. Using that A is hypoelliptic since V ∈ C ∞ (D), we deduce that g ∈ C ∞ (D). Using Ito's formula (since the process is conservative) we have

almost surely. If X 0 is distributed according to µ, the right hand side belongs to L 2 (P) (P being the underlying probability measure on the path space), so that the left hand side also belongs to L 2 (P). The L 2 norm of this left hand side is equal to 2t µ(|∇g| 2 ) so that ∇g ∈ L 2 (µ).

Example 7.2. Assume now

3) is an entropy condition related to the stationary Nelson processes (see [START_REF] Meyer | Construction de processus de Nelson réversibles[END_REF][START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF][START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF][START_REF] Cattiaux | Correction to: "Minimization of the Kullback information of diffusion processes[END_REF][START_REF] Cattiaux | Minimization of the Kullback information for some Markov processes[END_REF]). The stationary (symmetric) conservative diffusion process is built in these papers.

Conservative means here that T ∂D = +∞ P µ a.s (7.4) i.e. if X 0 is distributed according to µ.

The proof in the bounded case is a simple modification of the one in [START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF]. The modification is as follows (we refer to the notations therein):

(1) First the flow ν t is stationary with ν t = µ.

(2) Next the drift B = -∇V . Assuming in addition that D has a smooth boundary, one can approximate in L 2 (µ), B by B k 's which are C ∞ b (R n ) and coincide with B on Dk = {x ; , d(x, ∂D) ≥ 1/k} (for this we need ∂D k to be smooth).

One can then follow the "Outline of proof" (4.9 bis) in [START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF] replacing the T n therein by the T k we have introduced before (the exit times of D k ) so that (4.14) in [START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF] is trivially satisfied. (4.16) is then justified when (1.1) is satisfied. The only remaining thing to prove is thus (4.10) in [START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF]. For f ∈ C ∞ 0 (R n ) whose support contains D we may then proceed as in the proof of Theorem (4.18) in [START_REF] Cattiaux | Minimization of the Kullback information of diffusion processes[END_REF] in order to prove it.

In order to show the strong existence of the diffusion process starting from x (and not the stationary measure) it is enough to show (1.1) is satisfied (the strong existence of the diffusion process up to T x ∂D is ensured since V is local-Lipschitz). Since the stationary process is conservative, so is X x . for µ, hence Lebesgue, almost all x. Standard results in Dirichlet forms theory show that this result extends to all x outside some polar set. Actually it is true for all x using the following (itself more or less standard 40 years ago): choose a small ball B(x, ε) with ε < d(x, ∂D)/2 and introduce S the exit time of this ball. For t > 0 the distribution of X t 1 t<S has a density w.r.t. Lebesgue's measure restricted to the ball (using e.g. Malliavin calculus). It follows from the Markov property and (7.4) that P x (T x ∂D < +∞ , t < S) = 0. Hence P x (T x ∂D = +∞) ≤ P x (t < S) for all t > 0, the latter going to 0 as t → 0.

In all cases the Feynman-Kac representation of F T in (7.2) is obtained by using Ito's formula with V which is allowed since V ∈ C 3 (D) and (1.1) again. ♦ Example 7.3. If we do no more assume that the hitting time of the boundary is infinite, assumption (H) is not satisfied. The space of interest should be H 1 b (µ) the closure of C ∞ b (D) for the Dirichlet form. The corresponding process is the symmetric reflected diffusion process. A good reference is [START_REF] Pardoux | Symmetric reflected diffusions[END_REF] where this normally reflected diffusion process is built (under much more general conditions). Assume that the boundary is smooth. A little bit more is needed. First if f ∈ H 1 b (µ) and g ∈ D(A), one has, according to Fukushima's theory (see [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF] (1.3.10)), µ( ∇f, ∇g ) = -µ(f Ag) . (7.5)