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A JOURNEY WITH THE INTEGRATED Γ2 CRITERION AND ITS

WEAK FORMS.

PATRICK CATTIAUX
♠ AND ARNAUD GUILLIN

♦

♠ Université de Toulouse

♦ Université Clermont-Auvergne

Abstract. As the title indicates this paper will describe several extensions and applications
of the Γ2 integrated criterion introduced by M. Ledoux following ideas of B. Hellffer. We
introduce general weak versions and show that they are equivalent to the weak Poincaré
inequalities introduced by M. Röckner and F. Y. Wang. We also discuss special weak
versions appropriate to the study of log-concave measures and log-concave perturbations of
product measures.
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1. Introduction, framework and presentation of the results.

Introduced in [3] the Γ2 criterion (also called CD(ρ,∞) curvature condition) is the best known
sufficient condition for Poincaré and log-Sobolev inequalities to hold for some probability
measure µ. It reads as

Γ2(f) ≥ ρΓ(f)

for some ρ > 0 (see the definitions in the next subsection), i.e. is a pointwise condition. In
[28], M. Ledoux introduced an integrated version

µ(Γ2(f)) ≥ ρµ(Γ(f))

and proved that this integrated version for some ρ > 0 is equivalent to a Poincaré inequality
(see Theorem 1.3 below). The Poincaré inequality is thus a mean curvature condition.

As it is well known, Poincaré inequality is related to the “exponential” concentration of mea-
sure, to the L

2(µ) contraction of some associated Markov semi-group (implying exponential
stabilization) and to some isoperimetric questions.

During the last years weaker (and also stronger) forms of the Poincaré inequality have been
discussed. They allow us to describe weaker concentration properties (polynomial for in-
stance) and slower rates of convergence to equilibrium (see subsection 1.2). It is natural
to ask whether these weak Poincaré inequalities are equivalent to some weak integrated Γ2

criteria. This was the starting point of this work.
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2 P. CATTIAUX AND A. GUILLIN

We then describe some applications of weak integrated Γ2 criteria to log-concave measures,
perturbation of product measures or of radial measures.

1.1. Framework (The heart of darkness following [4]).

We will first introduce the objects we are dealing with. The aficionados of [4] will (almost)
recognize what is called a full Markov triple therein. Nevertheless in order to understand
some of our approaches, one has to understand why this framework is the good one.

Let µ(dx) = Z−1
V e−V (x) dx be a probability measure defined on an open domain D ⊆ R

n.
When needed, we will require some regularity for V and assume that it takes finite values.
We denote by µ(f) the integral of f w.r.t. µ.

If V is in C2(D), we may introduce the operator

A = ∆−∇V.∇

and the diffusion process

Xx
t = x+

√
2Bt −

∫ t

0
∇V (Xx

s )ds

living in D up to an explosion time T x
∂ since ∇V is local Lipschitz. Of course here B. is a

standard Brownian motion.

When D = R
n, T x

∂ = supk∈N∗ T
x
k where T x

k denotes the exit time of the euclidean ball of
radius k, while if D is a bounded open subset, T x

∂ denotes the hitting time of the boundary
∂D, i.e.

T x
∂ = sup

k
T x
k where T x

k = inf{t, d(Xx
t ,D

c) ≤ 1/k} .

In the sequel we will assume that

T x
∂ = +∞ a.s. for all x ∈ D . (1.1)

In other words the process X. is conservative (in D) and we define Ptf(x) = E(f(Xx
t )) for

bounded f ’s, so that Pt is a markovian semi-group of contractions in L
∞(D).

Definition 1.1. We shall say that Assumption (H) is satisfied if (1.1) holds true and if in
addition

µ is a reversible (symmetric) measure for the process. (1.2)

We will denote

Γ(f, g) = 〈∇f,∇g〉 , E(f, g) = µ(Γ(f, g))

the associated Dirichlet form, with domain D(E). We will write Γ(f) for Γ(f, f).

The next result is the key of the construction

Proposition 1.2. Assume that (H) is satisfied. In the following two cases

(1) D = R
n,

(2) D is an open bounded domain and V ∈ C∞(D),
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then Pt extends to a µ-symmetric continuous Markov semi-group on L
2(µ) with generator Ã

and domain D(Ã).

In addition the generator Ã is essentially self-adjoint on C∞
0 (D) (C∞ functions with compact

support). We shall call ESA this property. In particular C∞
0 (D) is a core for D(Ã). The

latter is exactly the set of f ∈ H2
loc(D) such that f and Af are in L

2(µ).

We shall give a proof of this Proposition in section 7, where sufficient conditions for (H) are
discussed as well as examples. For simplicity we will only use the notation A in the sequel
both for A and Ã.

If g ∈ D(A) it holds

E(f, g) = −µ(f Ag) . (1.3)

If f ∈ L
2(µ) it is well known that Ptf ∈ D(A) for t > 0 and

∂t Ptf = APtf . (1.4)

If in addition f ∈ D(A),

∂t Ptf = APtf = PtAf . (1.5)

In particular if f is in D(A), for t > 0,

∂tAPtf = ∂t PtAf = APtAf . (1.6)

1.2. Presentation of the main results.

We define the Poincaré constant CP (µ) as the smallest constant C satisfying

Varµ(f) := µ(f2)− µ2(f) ≤ C µ(|∇f |2) , (1.7)

for all f ∈ C1
b (D) the set of C1 functions which are bounded with a bounded derivative. For

simplicity we will say that µ satisfies a Poincaré inequality provided CP (µ) is finite.

As it is well known, the Poincaré constant is linked to the exponential stabilization of the
Markov semi-group Pt.

For a Diffusion Markov Triple, the following is well known (see chapter 4 in [4]), it extends
to our situation

Theorem 1.3. If (H) is satisfied, the following three statements are equivalent

(1) µ satisfies a Poincaré inequality,
(2) there exists C such that for every f ∈ C∞

0 (D) (or C∞
b (D) the set of smooth func-

tions with bounded derivatives of any order), it holds

µ(|∇f |2) ≤ C µ((Af)2) , (1.8)

(3) there exists C > 0 such that for every f ∈ L
2(µ),

Varµ(Ptf) ≤ e− 2t/C Varµ(f) . (1.9)

In addition the optimal constants in (1.8) and (1.9) are equal to CP (µ).
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It is important to check that the previous theorem only requires the properties we have
recalled before. Actually the proof of (1) ⇔ (3) ([4] Theorem 4.2.5) only requires (1.4) so
that it is always satisfied. The one of (2) ⇔ (1) ([4] Proposition 4.8.3) requires to use ESA.
In addition one has to check that the semi-group is ergodic, i.e. that the only invariant
functions (Ptf = f for all t) are the constants. A proof is provided in the Appendix.

Following D. Bakry we may define (provided V is C2) the Γ2 operator

Γ2(f, g) =
1

2
[AΓ(f, g)− Γ(f,Ag)− Γ(Af, g)] . (1.10)

for f, g in C∞
b (D). A simple calculation yields in this case

Γ2(f) := Γ2(f, f) = ‖ Hess(f) ‖2HS +〈∇f,Hess(V )∇f〉 . (1.11)

Using symmetry we get

µ(Γ2(f, g)) = µ((Af)(Ag)) . (1.12)

still for C∞
b functions since if (H) is satisfied, they belong to D(A). The latter extends to

f, g in D(A) thanks to ESA.

It is important to see that without (H) this result is wrong in general. To justify (1.12)
it is at least necessary to know that Γ(f, g) ∈ D(A) which is not always the case even for
C∞
b functions if they are not all in D(A), as in the case of reflected diffusions for instance.

Fortunately if (H) is satisfied it suffices to verify it for C∞
b functions.

Assume from now on that (1.12) is satisfied for f and g in the domain of A. It immediately
follows that, if the curvature-dimension condition CD(ρ,N) i.e.

Γ2(f) ≥ ρ |∇f |2 + 1

N
(Af)2

is satisfied, then

CP (µ) ≤
N − 1

ρN

the result being true for N ∈]1,+∞]. This is the famous Bakry-Emery criterion for the
Poincaré inequality. For N = +∞ the criterion is satisfied provided V is strictly convex in
which case it is also a consequence of Brascamp-Lieb inequality.

The second statement in Theorem 1.3 is thus sometimes called “the integrated Γ2 criterion”.
This statement appears in Proposition 1.3 of M. Ledoux’s paper [28] as “a simple instance
of the Witten Laplacian approach of Sjöstrand and Helffer”, but part of the argument goes
back to Hörmander (see e.g. [1] p.14). It is worth noticing that, if the semi-group does not
appear in the statement, it is an essential tool of Ledoux’s proof.

The integrated Γ2 criterion is used in M. Ledoux’s work [28] on Gibbs measures. Under
the denomination of “Bochner’s method” it appeared more or less at the same time in the
statistical mechanics word. More recently it was used in the context of convex geometry
in [27, 6] under the denomination of L2 method. Lemma 1 in [6] contains another proof
(without using the semi-group) of (2) ⇒ (1) in the previous Theorem.

The third statement in Theorem 1.3 can be improved in the following way
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Proposition 1.4. The third statement (hence the first two too) of Theorem 1.3 is equivalent
to the following one: there exists C > 0, such that for every f in a dense subset C of L2(µ)
one can find a constant c(f) such that

Varµ(Ptf) ≤ c(f) e−2t/C

and the optimal C is again CP (µ).

The proof of this proposition lies on the log-convexity of t 7→ µ(P 2
t f) for which several proofs

are available (see the simplest one in [20] lemma 2.11 or in [4]).

A natural subset C is furnished by L∞(µ). An exponential decay to 0 of the variance controlled
by the initial uniform norm thus implies that the same holds for the L2 norm and is equivalent
to the Poincaré inequality.

The semi-group property shows that L2 decay to 0 cannot be faster than exponential and the
previous result that any uniform decay i.e. Varµ(PT f) ≤ cVarµ(f) for some T > 0, c < 1 and
f ∈ L

2(µ) implies exponential decay. A natural question is then to describe what happens
for slower decays. After a pioneering work by T. Liggett ([32]), this question was tackled by
M. Röckner and F. Y. Wang in [38]. These authors introduced the notion of weak Poincaré
inequalities and relate them to all possible decays of the variance along the semi-group. Let
us recall the main result in this direction

Theorem 1.5. Consider the following two statements

(1) There exists a non-increasing function βWP : (0,+∞) → R
+, such that for all

s > 0 and any bounded and Lipschitz function f ,

Varµ(f) ≤ βWP (s)µ(|∇f |2) + sOsc2(f) , (1.13)

where Osc(f) denotes the Oscillation of f . (1.13) is called a weak Poincaré inequality
(WPI) and it is clear that we may always choose βWP (s) = 1 for s ≥ 1.

(2) There exists a non-increasing function ξ going to 0 at infinity such that

Varµ(Ptf) ≤ ξ(t)Osc2(f) .

The weak Poincaré inequality (1) implies statement (2) with

ξ(t) = 2 inf{s > 0, βWP (s) ln(1/s) ≤ 2t} = inf
s>0

(

s+ e−2t/β(s)
)

.

Conversely statement (2) implies statement (1) with

βWP (s) = 2s inf
r>0

(

1

r
ξ−1(r exp(1− r

s
))

)

where ξ−1 denotes the converse of ξ, i.e. ξ−1(r) = inf{s > 0, ξ(s) ≤ r}.
Remark 1.6. Röckner and Wang (see [38] Corollary 2.4 (2)) introduce a trick that allows to
improve ξ in the previous result. The basic idea is to use repeatedly (1.13). We will choose
four sequences:

(1) a decreasing sequence of positive numbers (θi)i∈N such that θ0 = 1 and θi → 0 as
i → +∞,

(2) for i ≥ 1, αi = θi−1 − θi so that
∑

i αi = 1,
(3) a sequence (γi)i≥0 of positive numbers such that γ0 = 1 and

∏

i γi = 0,

(4) for i ≥ 1, si(t) is defined by e−2t αi/βWP (si(t)) = γi, hence si(t) = β−1
WP (2tαi/ ln(1/γi)).
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Applying (1.13) between tθi and tθi−1 we thus have

V arµ(Pθi−1tf) ≤ e−2αit/βWP (si(t)) Varµ(Pθitf)+ si(t)Osc2(f) = γi Varµ(Pθitf)+ si(t)Osc2(f) ,

which yields

Varµ(Ptf) ≤
∑

i≥0

(γi si+1(t))Osc2(f) . (1.14)

So that we may choose ξ(t) =
∑

i≥0(γi si+1(t)). ♦

Remark 1.7. In order to prove that statement (2) implies statement (1) we may follow another
route. Using

Varµ(f)−Varµ(Ptf) = 2

∫ t

0
µ(|∇Puf |2) du (1.15)

and the fact that t 7→ µ(|∇Ptf |2) is non-increasing (we shall recall a proof in the next section),
we have

Varµ(f) ≤ 2t µ(|∇f |2) + Varµ(Ptf) ≤ 2t µ(|∇f |2) + ξ(t)Osc2(f)

from which we deduce that

βWP (s) ≤ 2ξ−1(s) .

This expression is simpler than the one in [38] we recalled in Theorem 1.5, but can be slightly
worse. ♦

Example 1.8. Let us give some examples of (non optimal) pairs for (βWP , ξ).

(1) If for p > 0, ξ(t) = c′ t−p one can take βWP (s) = c s−1/p. Conversely if βWP (s) =
c s−1/p the previous Theorem yields ξ(t) = c′ t−p lnp(t).

Using the trick in remark 1.6, when βWP (s) = cs−1/p, and choosing γi = 2−i and
αi =

6
π2 i

−2 we get that ξ(t) ∼ t−p, for large t’s, i.e. the logarithmic term disappeared
as expected.

(2) For p > 0, ξ(t) = c′ ln−p(1 + t) and βWP (s) = c eδ/s
1/p

.

(3) For 0 < p < 1, ξ(t) = c e−c′tp and βWP (s) = d′ + d ln(1−p)/p(1 + 1/s) .

All the constants depend on p. ♦

A natural question is thus to understand whether there is an integrated Γ2 version of these
weak inequalities or not. This will be done in the next section where we introduce a first
weak version: for some decreasing β for any bounded g ∈ D(A) and any s > 0,

(WIΓ2Osc) µ(|∇g|2) ≤ β(s)µ((Ag)2) + sOsc2(g) . (1.16)

We shall see that (WIΓ2Osc) can be compared with the weak Poincaré inequality.

In section 3 we introduce another, perhaps more natural, weak version

(WIΓ2 grad) µ(|∇g|2) ≤ β(s)µ((Ag)2) + s |||∇g|2||∞ , (1.17)

which is useful in the log-concave situation, i.e. provided V is convex (not necessarily strictly
convex). It is known since S. Bobkov’s work [9], that a log-concave probability measure
always satisfies some Poincaré inequality (see [2] for a direct proof using Lyapunov functions).
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Recent results by E. Milman ([35]) combined with Brascamp-Lieb inequality allow us to get
the following result : if µ is log-concave,

CP (µ) ≤ Cuniv µ(||Hess−1V ||HS)

for some universal Cuniv. We recover this result in corollary 3.2 as a consequence of (WIΓ2

grad) (and not Brascamp-Lieb) and obtain new explicit bounds in corollary 3.5 involving

µ(ln1+ε(1 + ||Hess−1V ||HS)

only.

The next section 4 deals with log-concave perturbations of either log-concave product mea-
sures or log-concave radially symmetric measures. Actually M. Ledoux introduced the inte-
grated Γ2 criterion in order to study the Poincaré inequality of perturbations (non necessarily
log-concave but wit a potential whose curvature is bounded from below) of product measures
and to obtain results for Gibbs measures on continuous spin systems ([28]). In the same
paper he extended his approach to the log-Sobolev constant (see [28] Proposition 1.5 and the
comments immediately after its statement). This approach was then developed in [36] and
several works.

In their subsection 3.4, Barthe and Klartag [7] indicate that this method should be used in
order to get some results on log-concave perturbations of product measures that are uniformly
log-concave in the large, but not for heavy tailed product measures. In section 4 we show
that the weak integrated Γ2 criterion allows us to (partly) recover similar but slightly worse
results as in [7]. Other results in this direction are shown in [17]. We then extend the method
and replace product measures by radial distributions.

In all the paper, unless explicitly stated, we assume for simplicity that assumption (H) is in
force.

Dedication. A tribute to Michel Ledoux.

The origin of this work was an attempt to convince M. Ledoux of the interest of weak
inequalities of Poincaré type. After reading the beautiful wink to Michel’s heroes [31], we
understood that the only way to succeed was to introduce some “curvature condition” inside.
It was thus natural to weaken the integrated Γ2 criterion introduced in [28] and to see what
happens. The byproduct results in the paper were a nice surprise.

2. Weak integrated Γ2.

Let us start with an obvious remark: since ∇f and Af are unchanged when replacing f by
f − a for any constant a, we have

µ(|∇f |2) = µ(|∇(f − a)|2) = −µ((f − a)A(f − a)) = −µ((f − a)Af) ≤ 1

2
Osc(f)µ(|Af |) ,

by choosing a = (sup(f) + inf(f))/2. Using for s > 0, 2uv ≤ 1
s u

2 + s v2 we thus deduce,
using Cauchy-Schwarz inequality, that for all s > 0,

µ(|∇f |2) ≤ 1

16s
µ((Af)2) + sOsc2(f) . (2.1)
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This is a special instance of (1.16) we recall here: for some decreasing β for any bounded
g ∈ D(A) and any s > 0,

(WIΓ2Osc) µ(|∇g|2) ≤ β(s)µ((Ag)2) + sOsc2(g) . (2.2)

Hence some (very) weak form of the integrated Γ2 is always satisfied. The previous inequality
is thus certainly insufficient in order to get interesting consequences.

Remark 2.1. Contrary to (WPI), (2.2) is not always satisfied for s ≥ 1, so that, apriori, β
does not necessarily goes to 0 at infinity. However if (2.2) is satisfied with two functions β1
and β2, it is also satisfied with β = min(β1, β2). According to (2.1), it is thus always satisfied
for s 7→ min(β(s), 1/16s), so that we may always assume without loss of generality that β
goes to 0 at infinity. Again in all what follows we denote β−1(t) = inf{s > 0 , β(s) ≤ t}. ♦

To see how to reinforce (2.1) it is enough to look at the proof of (2) implies (1) in Theorem
1.3. We follow the proof in [28].

The starting point is again (1.15),

Varµ(f)−Varµ(Ptf) = 2

∫ t

0
µ(|∇Puf |2) du

yielding the equality (1.7) in [28],

Varµ(f) = 2

∫ +∞

0
µ(|∇Ptf |2) dµ

as soon as

Varµ(Ptf) → 0 as t → +∞ .

Since µ is symmetric, the latter is satisfied as soon as the semi-group is ergodic, i.e. the
eigenspace of A associated to the eigenvalue 0 is reduced to the constants. Actually this
property is ensured by our assumptions: as shown for instance in [38] Theorem 3.1 and the
remark following this theorem, if µ(dx) = e−V dx is a probability measure with V of C1

class, hence locally bounded, µ satisfies some weak Poincaré inequality so that the above
convergence holds true.

Now defining F (t) = µ(|∇Ptf |2), one can check (using (1.3) and (1.6)) that

F ′(t) = −2µ((APtf)
2) . (2.3)

Notice that this equality shows that F is non increasing.

Using this property in (1.15) we also have

µ(|∇Ptf |2) ≤ 1

2t
Varµ(f) ≤ 1

2t
Osc2(f) . (2.4)

Assuming that a weak integrated Γ2 inequality (2.2) is satisfied we get, using that Osc(Ptf) ≤
Osc(f),

F ′(t) ≤ − 2

β(s)
F (t) +

2s

β(s)
Osc2(f) .

This immediately yields

µ(|∇Ptf |2) = F (t) ≤ e−2t/β(s) µ(|∇f |2) + s
(

1− e−2t/β(s)
)

Osc2(f) . (2.5)
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We may apply the previous inequality replacing f by Paf , next t by t − a and use again
Osc(Paf) ≤ Osc(f). Using (2.4) we thus have for t > a > 0,

µ(|∇Ptf |2) ≤ inf
s>0

(

s+
1

2a
e−2(t−a)/β(s)

)

Osc2(f) = η(t)Osc2(f). (2.6)

We have thus obtained

Proposition 2.2. Assume that µ satisfies a weak integrated Γ2 inequality (WI Γ2Osc) (2.2).
Define for t > a > 0,

η(t) = inf
s>0

(

s+
1

2a
e−2(t−a)/β(s)

)

= 2 inf{s > 0 ; β(s) ln(1/as) ≤ 2(t− a)} .

If η is integrable at infinity, then for t > a,

Varµ(Ptf) ≤ 2

(∫ +∞

t
η(u)du

)

Osc2(f) .

In particular µ satisfies a (WPI) where βWP is given in Theorem 1.5 with

ξ(t) = 2

(∫ +∞

t
η(u)du

)

.

Remark 2.3. Notice that if µ satisfies a Poincaré inequality we recover the correct exponential
decay thanks to proposition 1.4.

If we come back to (2.1) we may always use β(s) ∼ c/s. Using proposition 2.2 with a = t/2
the best possible η(t) is of order 1/t (for large t’s) and thus is not integrable, in accordance
with the fact that (2.1) cannot furnish the rate of decay to 0 since it is satisfied for all
measures µ.

Notice that, as for the (WPI), if β(s) = cs−1/(p+1) we obtain η(t) = c′ (ln(t)/t)p+1 and finally
ξ(t) ∼ c′ (ln(t)/t)p. But here again we may apply the trick of remark 1.6, simply replacing
(1.13) by (2.5), yielding

µ(|∇Ptf |2) ≤
∑

i≥0

(γi si+1(t))Osc2(f) , (2.7)

with

si(t) = β−1(2tαi/ ln(1/γi)) .

As for (WPI) this remark allows us to skip the logarithmic term. ♦
Remark 2.4. Taking a = µ(f) we may replace (2.1) by

µ(|∇f |2) ≤ 1

4s
µ((Af)2) + sVarµ(f) ,

so that we could also consider weak inequalities of the form

µ(|∇f |2) ≤ β(s)µ((Af)2) + sVarµ(f) . (2.8)

It is immediately seen that the previous derivation is unchanged if we replace Osc2(f) by
Varµ(f) so that if η is integrable we get

Varµ(Ptf) ≤ 2

(∫ +∞

t
η(u)du

)

Varµ(f) .
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But according to what we already said, such a decay implies that µ satisfies a Poincaré
inequality, hence thanks to Theorem 1.3 that β is constant equal to CP (µ) (or if one prefers
that β(0) < +∞). Thus, in the other cases, (2.8) furnishes a non-integrable η. ♦

Let us look at the converse statement. According to Theorem 1.5 we may associate some
(WPI) inequality to any decay controlled by the Oscillation. Thus for a = µ(f),

µ2(|∇f |2) = −µ2((f − a)Af) ≤ µ((Af)2)Varµ(f)

≤ µ((Af)2)
(

βWP (s)µ(|∇f |2) + sOsc2(f)
)

. (2.9)

Since u2 ≤ Cu+B implies that

u ≤ 1

2

(

C + (C2 + 4B)
1
2

)

≤ C +B
1
2 ,

we obtain

µ(|∇f |2) ≤ βWP (s)µ((Af)
2)) + s

1
2 µ

1
2 ((Af)2)Osc(f) ,

≤ (βWP (s) +
1

2
)µ((Af)2)) +

1

2
sOsc2(f) .

We have thus obtained (since we know that µ always satisfies some (WPI) inequality) and
according to remark 2.1

Proposition 2.5. µ always satisfies a weak integrated Γ2 inequality (WI Γ2 Osc) (2.2), with

β(s) = min

(

1/2 + βWP (2s) ,
1

16s

)

.

The previous results need some comments.

In first place, if we cannot assume that β(s) = 1 for s ≥ 1 in the weak integrated Γ2 inequality
(2.2), the interesting behaviour of this function is nevertheless as s → 0 for proposition 2.2
to have some interest.

In second place proposition 2.5 is certainly non sharp. In particular we do not recover the
same β when βWP is constant, i.e. when µ satisfies a Poincaré inequality, while using (2.9)
with s = 0 yields the correct value.

A still worse remark is that the previous proposition cannot be always used in conjunction
with proposition 2.2. Indeed if βWP (s) ≥ c/s as it is the case in the second case of example
1.8 the η obtained in proposition 2.2 is not integrable.

Let us look at some other example.

Example 2.6. Assume that for some p > 0, βWP (s) = cs−1/p. In this case one can improve
upon the result of proposition 2.5. Indeed we may replace the weak Poincaré inequality by
its equivalent Nash type inequality

Varµ(f) ≤ c (p+ (1/p)p)
1

p+1 µ
p

p+1 (|∇f |2)Osc
2

p+1 (f) .

We thus deduce

µ2(|∇f |2) ≤ µ((Af)2)Varµ(f) ≤ c(p)µ((Af)2)µ
p

p+1 (|∇f |2)Osc
2

p+1 (f)

for some c(p) that may change from line to line, so that

µ2(|∇f |2) ≤ c(p)µ
p+1
p+2 ((Af)2)Osc

2
p+2 (f)
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and finally that µ satisfies a weak integrated Γ2 inequality with

β(s) = c(p) s−1/(p+1) .

This result is of course better than the s−1/p obtained by directly using proposition 2.5 and
according to remark 1.6 allows to recover the correct decay for ξ(t). ♦

3. The log-concave case.

If one wants to mimic (WPI) it seems more natural to consider another type of weak inte-
grated Γ2 inequalities, namely

(WI Γ2 grad) µ(|∇g|2) ≤ β(s)µ((Ag)2) + s |||∇g|2||∞ . (3.1)

But contrary to the previous derivation it is no more true that |||∇Ptf |2||∞ ≤ |||∇f |2||∞ so
that the analogue of (2.4) will involve supu≤t |||∇Puf |2||∞ which is not really tractable.

If we want to guarantee |||∇Ptf |2||∞ ≤ |||∇f |2||∞ a sufficient condition is that µ is log-
concave, i.e. V is convex. Indeed in this case on can show (see a stochastic immediate proof
in [15]) that

|∇Ptf |2 ≤ P 2
t (|∇f |) ≤ Pt(|∇f |2) ≤ |||∇f |2||∞ . (3.2)

In this case we will thus obtain the analogue of (2.5)

µ(|∇Ptf |2) ≤ e−2t/β(s) µ(|∇f |2) + s |||∇f |2||∞ . (3.3)

The difference with the previous section is that (3.1) is satisfied by β(s) = 0 for s ≥ 1. The
converse function β−1 is thus bounded by 1, hence integrable at the origin.

Now we can use the trick described in Remark 1.6 which yields,

µ(|∇Ptf |2) ≤
(

+∞
∑

i=0

γi β
−1(2αi+1 t/ ln(1/γi+1))

)

|||∇f |2||∞ = η(t) |||∇f |2||∞ . (3.4)

Since β−1 is integrable at 0, we have thus obtained after a simple change of variable, provided
η is integrable at infinity

Varµ(f) ≤ 2

(∫ +∞

0
η(u)du

)

|||∇f |2||∞

≤
(

+∞
∑

i=0

γi ln(1/γi+1)

αi+1

)

(
∫ +∞

0
β−1(t)dt

)

|||∇f |2||∞ . (3.5)

As before we may choose γi = 2−i and αi =
6
π2 i

−2 so that

+∞
∑

i=0

γi ln(1/γi+1)

αi+1
= κ

where κ is thus a universal constant. Hence if β−1 is integrable with integral equal to Mβ we
have obtained

Varµ(f) ≤ κMβ |||∇f |2||∞ . (3.6)

As first shown by E. Milman in [35], for log-concave measures (3.6) implies a Poincaré in-
equality. A semi-group proof of E. Milman’s result was then given by M. Ledoux in [30].
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Another semi-group proof and various improvements were recently shown in [16]. We shall
follow the latter to give a precise result.

Starting with

µ(|f − µ(f)|) ≤ Var1/2µ (f) ≤ κ1/2 M
1
2
β |||∇f |||∞ ,

we deduce from [16] Theorem 2.7 that the L1 Poincaré constant C ′
C(µ) is less than 16

√

κMβ/π.

Using Cheeger’s inequality CP (µ) ≤ 4 (C ′
C(µ))

2 we have thus obtained

Proposition 3.1. Assume that µ is log-concave and satisfies a weak integrated Γ2 inequality
(WI Γ2 grad) (3.1). Then

CP (µ) ≤ 1024

π2
κMβ ,

where κ is some (explicit) universal constant and Mβ =
∫ +∞
0 β−1(t)dt.

It turns out that there always exists a (non necessarily optimal) function β such that (3.1)
is satisfied for a log-concave measure µ

Indeed recall (1.10) and (1.12). We have

µ((Af)2) = µ(||Hessf ||2HS) + µ(〈∇f,HessV ∇f〉)

≥ 1

u
µ(|∇f |2 1||HessV ||HS≥ 1

u
)

≥ 1

u
µ(|∇f |2) − 1

u
µ({||HessV ||HS ≤ 1

u
}) |||∇f |2||∞ .

It follows

µ(|∇f |2) ≤ β(s)µ((Af)2) + s |||∇f |2||∞
with

β−1(s) = µ(||Hess−1V ||HS ≥ s) . (3.7)

Since

µ(||Hess−1V ||HS) =

∫ +∞

0
µ(||Hess−1V ||HS ≥ s) ds

we have obtained

Corollary 3.2. If µ is log-concave and such that µ(||Hess−1V ||HS) < +∞, then

CP (µ) ≤ Cuniv µ(||Hess−1V ||HS) ,

for some universal constant Cuniv.

This result is not new and as remarked by E. Milman is an immediate consequence of the
fact that (3.6) implies that µ satisfies some Poincaré inequality and of one of the favorite
inequality of M. Ledoux, namely the Brascamp-Lieb inequality

Varµ(f) ≤ µ(〈∇f,Hess−1V ∇f〉) ≤ µ(||Hess−1V ||HS) |||∇f |2||∞ .

Actually this method furnishes a slightly better pre-constant than the one obtained with our
method (since our κ ≥ 1).

Still in the log-concave situation, if we assume (2.2) we may derive another control for the
Poincaré constant.
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Proposition 3.3. Assume that µ is log-concave and satisfies a weak integrated Γ2 inequality
(WI Γ2Osc) (2.2). If in addition there exists a function s(t) such that

∫ +∞

0
s(t) dt =

s0
2

<
1

12
and

∫ +∞

0
e−2t/β(s(t)) dt = κ/2 < +∞ ,

then

CP (µ) ≤
64 ln(2)κ

(1− 6s0)2
. (3.8)

Proof. Starting with (2.5) in the simplified form

µ(|∇Ptf |2) = F (t) ≤ e−2t/β(s(t)) µ(|∇f |2) + s(t)Osc2(f) ,

we get
Varµ(f) ≤ κµ(|∇f |2) + s0Osc2f

so that the conclusion follows from [16] Theorem 9.2.14. �

Still in the log-concave case it was shown by M. Ledoux in [29] that

|||∇Ptf |||∞ ≤ 1√
2t

||f ||∞

so that replacing f by f − a with a = 1
2(inf f + sup f) we have

|||∇Ptf |||∞ ≤ 1

2
√
2t
Osc(f) .

This bound was improved in [15] replacing
√
2 by

√
π and is one of the key element in the

proof of Theorem 2.7 in [16].

We may combine this bound with the (WI Γ2grad) inequality in order to improve upon the
previous result. If a (WI Γ2grad) inequality is satisfied we have

µ(|∇P2tf |2) ≤ e−2t/β(s) µ(|∇Ptf |2) + s |||∇Ptf |2||∞
≤ e−2t/β(s) µ(|∇f |2) + s

4πt
Osc2(f) .

We have thus obtained

Proposition 3.4. Assume that µ is log-concave and satisfies a weak integrated Γ2 inequality
(WI Γ2 grad) (3.1). If in addition there exists a function s(t) such that

∫ +∞

0

s(t)

4πt
dt =

s0
4

<
1

24
and

∫ +∞

0
e−2t/β(s(t)) dt = κ/4 < +∞ ,

then

CP (µ) ≤
64 ln(2)κ

(1− 6s0)2
. (3.9)

In the previous proposition we can choose a generic function s(t) given by

s(t) =
θ

16

(

t1t≤2 + ln−(1+θ)(t)1t>2

)

, (3.10)

so that
∫ +∞

0

s(t)

4π t
dt =

θ

32π
+

1

64π lnθ(2)
≤ 1

48



14 P. CATTIAUX AND A. GUILLIN

as soon as 0 < θ ≤ 1. So we may always choose

κ = 4

(

2 +

∫ +∞

2
e−2t/β((θ/16) ln−(1+θ)(t))dt

)

, s0 =
1

12
, CP (µ) ≤ 256 ln(2)κ . (3.11)

As we previously saw, we may also use the previous proposition with

β−1(s) = µ(||Hess−1V ||HS ≥ s) .

This yields

Corollary 3.5. If µ is log-concave and such that Mε := µ(ln1+ε(1+ ||Hess−1V ||HS)) < +∞
for some ε > 0, then

CP (µ) ≤ c+ 4 max

(

2, exp

(

[

2ε 64Mε

θ

]
1

ε−θ

))

,

with θ = 1 if ε ≥ 2 and θ = ε/2 if ε ≤ 2, where c is some universal constant.

Proof. Denote by Mε = µ(ln1+ε(1 + ||Hess−1V ||HS)). According to Markov inequality

β−1(s) ≤ Mε

ln1+ε(1 + s)
.

It follows

β(t) ≤ exp

[

(

Mε

t

) 1
1+ε

]

so that for t ≥ 2,

β(s(t)) ≤ exp

[

(

8Mε

θ

)
1

1+ε

ln
1+θ
1+ε (1 + t)

]

.

In particular, using t2 ≥ t+ 1 for t ≥ 2,

1

2
ln(t) ≥

(

8Mε

θ

) 1
1+ε

ln
1+θ
1+ε (1 + t)

as soon as

t ≥ max

(

2, exp

[

2ε 64Mε

θ

] 1
ε−θ

)

.

For such t’s we thus have

e−2t/β(s(t)) = e−2 exp(ln(t)−ln(β(s(t)))) ≤ e−2
√
t

so that finally

κ

4
≤ max

(

2, exp

[

2ε 64Mε

θ

] 1
ε−θ

)

+

∫ +∞

2
e−2

√
t dt .

Hence the result choosing θ = 1 if ε ≥ 2 and θ = ε/2 otherwise. �

Of course our bounds are far from being sharp. Notice that the previous corollary allows
to look at Subbotin distributions µ(dx) = Z−1e−|x|p dx for large p’s, while Brascamp-Lieb
inequality cannot be used. However other known methods (see e.g. S. Bobkov’s results on
radial measures in [10]) furnish better bounds in this case. Of course the previous corollary
covers non radial cases.
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Remark 3.6. IfMε := µ(||Hess−1V ||εHS) < +∞ for some ε > 0 we can obtain another explicit

bound choosing θ = 1 in (3.10). Using again Markov inequality we have β(s) ≤ (Mε/s)
1/ε so

that

∫ +∞

2
e−2t/β(s(t)) dt ≤

∫ +∞

2
e−2t/ ln2/ε(M

1/ε
ε t)dt

≤ 1

2
M1/ε

ε ln2/ε(M2/ε
ε ) +

∫ +∞

2
e−2t/ ln2ε(t2)dt

and finally

CP (µ) ≤ c(ε) + max

(

2,
1

2
M1/ε

ε ln2/ε(M2/ε
ε )

)

.

Notice that for ε = 1 we recover a slightly worse result than corollary 3.2 since an extra
logarithm appears. Of course choosing s(t) with a slower decay, we may improve upon this
result but it seems that in all cases an extra worse term always appears. In addition constants
are quite bad. But of course the result is new for ε < 1. ♦

4. Some applications: perturbation of product measures and radial measures.

We will first recall how the (usual) integrated Γ2 criterion can be used in order to relate
the Poincaré constant of µ to the ones of its one dimensional conditional distributions, in
some special situations. We copy here Proposition (3.1) in [28] and its proof to see how to
potentially extend it. In the sequel we denote

SG(µ) =
1

CP (µ)

the spectral gap of µ.

Proposition 4.1. (M. Ledoux)

Let µ(dx) = Z−1 e−W (x)−
∑n

i=1 hi(xi) dx = Z−1 e−V (x)dx be a probability measure on R
n, W

and the hi’s being C2. Introduce the one dimensional conditional distributions

ηi,x(dt) = Z−1
i,x e−W (x1,...,xi−1,t,xi,..xn)−hi(t) dt .

Let

S = inf
i,x

SG(ηi,x) .

Assume that HessW (x) ≥ w and maxi ∂
2
iiW (x) ≤ w̄ for all x ∈ R

n.

Then

SG(µ) ≥ S + w − w̄ .
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Proof. It holds

Γ2f =
∑

i,j

(∂2
ijf)

2 +
∑

i

h′′i (xi)(∂if)
2 + 〈∇f,HessW ∇f〉

≥
∑

i

(∂2
iif)

2 +
∑

i

h′′i (xi)(∂if)
2 + w|∇f |2 (4.1)

≥
∑

i

(∂2
iif)

2 +
∑

i

(h′′i (xi) + ∂2
iiW ) (∂if)

2 + (w − w̄) |∇f |2

≥
∑

i

Γ2,if + (w − w̄) |∇f |2 .

It follows

µ((Af)2) = µ(Γ2f) ≥
∑

i

µ(SG(ηi,x) |∂if |2) + (w − w̄)µ(|∇f |2) (4.2)

≥ (S + w − w̄)µ(|∇f |2) ,
hence the result applying Theorem 1.3. �

Remark 4.2. Choosing W = 0 the previous result contains the renowned tensorization prop-
erty of Poincaré inequality

CP (⊗i µi) ≤ max
i

CP (µi) .

Similar results for weak Poincaré inequalities involve a “dimension dependence” (see e.g. [5]).
♦
Remark 4.3. For the proof of proposition 4.1 to be rigorous, it is enough to assume that ESA
is satisfied for C∞

0 (Rn) (which is implicit in M. Ledoux’s work). Indeed in this case one only
has to consider such test functions. The delicate point in the previous proof is that one has
to check

µ(Γ2,if) = µ((Aif)
2)

where Aif = ∂2
iif − (h′(xi) + ∂iW )∂if in order to use the integrated Γ2 criterion. If f is

compactly supported, this is immediate as we already discussed in the introduction. Hence
for D = R

n, (H) ensures that the result holds true.

The case of a bounded domain D will be discussed later. ♦

In the previous proof, assume that w = 0 (W is convex), we thus obtain

Γ2f ≥
∑

i

µ(h′′i (xi) (∂if)
2)

so that, as we did for obtaining (3.7) we have for u > 0, since we may integrate w.r.t. µ,

µ(|∇f |2) ≤ uµ((Af)2) + µ

(

min
i
(h′′i (xi) ≤ 1/u)

)

|||∇f |2||∞ (4.3)

that furnishes a (WI Γ2 grad) inequality. Of course

µ

(

min
i
(h′′i (xi) ≤ 1/u)

)

≤ n max
i

µ

(

h′′i (xi) ≤
1

u

)

.

We have seen that such a weak inequality is interesting provided on one hand µ is log-concave
and on the other hand u 7→ maxi µ

(

h′′i (xi) ≤ 1
u

)

which is clearly non-increasing goes to 0 as
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u → +∞. We will thus assume that all hi are convex, yielding thanks to Proposition 3.4
with the choice (3.10) with θ = 1

Lemma 4.4. Let µ(dx) = Z−1 e−W (x)−
∑n

i=1 hi(xi) dx = Z−1 e−V (x)dx be a probability measure
on R

n, W and the hi’s being convex and C2. Define

α(v) = max
i

µ(h′′i (xi) ≤ v)

and assume that (the non-decreasing) α goes to 0 as v → 0. Then

CP (µ) ≤ 256 ln(2)κ

with

κ = 4

(

2 +

∫ +∞

2
e−2t/α−1(1/16n ln2(t)) dt

)

.

Let us illustrate this situation in the particular case hi(u) = |u|p for p > 1. We immediately
see that the situation is completely different depending on whether p < 2 or p > 2. Denote
by µi the probability distribution of xi under µ. For p < 2 we have to control the tails of µi

while for p > 2 we have to control the mass of small intervals centered at the origin.

Remark 4.5. For p < 2, hp : u 7→ |u|p is not C2. But if p > 1, the only problem lies at the
origin, and using that h′′p is integrable at the origin it is not difficult to check (regularizing
hp at the origin for instance) that all what was done above is still true. ♦

More generally we may consider hi’s who satisfy similar concentration bounds. Let us state
a first result

Proposition 4.6. Let µ(dx) = Z−1 e−W (x)−
∑n

i=1 hi(xi) dx be a probability measure on R
n.

We assume that the hi’s are even convex functions. In addition we assume that for all
i = 1, ..., n,

h′′i (u) ≥ ρ(|u|)
where ρ is a non-increasing positive function going to 0 at infinity. Then for all even convex
function W it holds

CP (µ) ≤ 4

(

2 +

∫ +∞

2
e−2t ρ(

√
2maxi CP (ηi) ln(n ln2(t)) dt

)

,

where ηi(du) = Z−1
i e−hi(u) du.

Proof. According to Prekopa-Leindler theorem we know that the i-th marginal law µi of µ,
i.e. the µ distribution of xi, is a one dimensional distribution, that can be written

µi(du) = Z−1
i ρi(u) e

−hi(u) du , (4.4)

with an even and log-concave (thus non increasing on R
+) function ρi. For such one dimen-

sional distributions we may use a remarkable result due to O. Roustant, F. Barthe and B.
Ioos (see [39]) recalled in proposition 6 of [7], namely
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Lemma 4.7. (Roustant-Barthe-Ioos)

Let η(du) = e−V (u) 1(−b,b)(u) du be a probability measure on R, with V a continuous and even

function. For any even function ρ which is non-increasing on R
+ and such that ν(du) =

ρ(u) η(du) is a probability measure, it holds

CP (ν) ≤ CP (η) .

Applying the lemma we get

CP (µi) ≤ CP (Z
−1 e−hi(u) du) := CP (η

i) . (4.5)

We can thus use the concentration of measure property obtained via the Poincaré inequality,
first shown by S. Bobkov and M. Ledoux ([8]). Here we use an explicit form we found in [4]
(4.4.6). Since u 7→ u is 1-Lipschitz and centered (again thanks to symmetry), it yields

µ(h′′(xi) ≤ 1/u) ≤ µ(|xi| ≥ ρ−1(1/u)) ≤ 6 exp

(

− ρ−1(1/u)
√

CP (ηi)

)

. (4.6)

We thus have for v > 0

v µ((Af)2) + 6n max
i

exp

(

− ρ−1(1/v)
√

CP (ηi)

)

||∇f |2||∞ ≥ µ(|∇f |2) , (4.7)

yielding, for s > 0 small enough,

β(s) =
1

ρ
(

√

maxi CP (ηi) ln(6n/s)
) . (4.8)

It remains to use the lemma 4.4. �

Remark 4.8. When hi(u) = |u|p for some 1 < p ≤ 2, one knows that CP (η
i) ≤ 4

p2(1−1/p)

according to [11] Theorem 2.1. It follows that for some (explicit) constant c(p),

CP (µ) ≤
c(p)

p(p− 1)
(1 + ln2−p(6n)) .

The study of such µ’s is not new. A much better result has been recently shown by F. Barthe
and B. Klartag (see Theorem 1 in [7]),

Theorem 4.9. (Barthe-Klartag) Let µ(dx) = Z−1 e−W (x)−
∑n

i=1 |xi|p dx be a probability mea-
sure. We assume that 1 ≤ p ≤ 2 and that W is an even convex function. Then

CP (µ) ≤ C ln
2−p
p (max(n, 2)) ,

where C is some universal constant.

The key point here is naturally that the result holds true for any even and convex W . The
proof by Barthe and Klartag lies on a lot of properties of log-concave measures and uses in
particular the extension of the gaussian correlation inequality shown by Royen, to mixtures
of gaussian measures. We of course refer the reader to [7]. We do not only loose something on
the power of the logarithm, but the constant becomes infinite as p goes to 1, which is natural
since the Γ2 requires some strict convexity except at some point. However our result does
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not require the full machinery of gaussian mixtures, and shows that the result only depends
on the behaviour of the second derivative of the h’s at infinity. ♦

Remark 4.10. In the previous proof we implicitly have used the fact that (H) is satisfied. We
know that it is the case when W ∈ C2(Rn). If W is only continuous, we may replace W by
Wε = W ∗ γε where γε is a tiny centered gaussian density. Wε is still even and convex, so
that the Theorem applies. Since the bound does not depend on ε we may take limits in the
corresponding Poincaré inequalities and get the same bound for W . ♦
Remark 4.11. Let now consider the case p > 2. This time we have to control

µ
(

|xi| ≤ u−1/(p−2)
)

,

for large u’s.

Using (4.4) and since ρi is even and log-concave, we see that

µ
(

|xi| ≤ u−1/(p−2)
)

≤ Z−1
i ρi(0)u

−1/(p−2) .

But

Z−1
i ρi(0) =

∫

e−W (x1,...,xi−1,0,xi+1,...,xn)−
∑

j 6=i |xj |p ∏
i 6=j dxj

∫

e−W (x)−
∑

j |xj |p ∏
j dxj

.

Denote by

α = max
i

Z−1
i ρi(0) . (4.9)

Then we get

β(s) =
1

p(p− 1)

(αn

s

)p−2

so that we have to estimate (choosing θ = 1 in (3.10))
∫ +∞

2
exp

(

−2p(p− 1)

(αn)p−2

t

ln2(p−2)(t)

)

dt .

Using that t/ lnk(t) is bounded below by c(k, ε)t1−ε for any ε > 0, we easily obtain

Proposition 4.12. Let µ(dx) = Z−1 e−W (x)−∑n
i=1 |xi|p dx. We assume that p > 2 and that

W is convex and even so that µ is log-concave. Then for all ε > 0, there exists a constant
c(p, ε) such that

CP (µ) ≤ c(p, ε) (α n)(p−2)(1+ε)

where

α = max
i

∫

e−W (x1,...,xi−1,0,xi+1,...,xn)−
∑

j 6=i |xj |p ∏
i 6=j dxj

∫

e−W (x)−∑

j |xj|p ∏
j dxj

.

For instance if we assume that t 7→ W (x1, ...t, ..., xn) is β Hölder continuous, uniformly in x
and i, using |W (x1, ...t, ..., xn)−W (x1, ...0, ..., xn)| ≤ L|t|β, we get

α ≤ 1
∫

e−L|t|β−|t|p dt
.
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The previous result may have some interest only if 2 < p < 3. This is also quite natural: for
large p’s, |x|p becomes flat near the origin so that one cannot expect to use some convexity
approach.

The best general control (thus including the case p > 2 for Subbotin distributions) is obtained
in Theorem 18 of [7], and says that

CP (µ) ≤ c n max
i

(CP (νi)) .

In addition, in subsection 3.4 of [7], it is shown that the factor n is optimal by considering
log concave perturbations of Subbotin distributions νi with exponent p for large p’s for which
CP (µ) is at least of order n

(p−2)/p.

However if W is unconditional (i.e. W (σx) = W (x) for all σ ∈ {−1, 1}n), one can deeply
reinforce the previous result and show that CP (µ) ≤ maxi(CP (νi)) as shown in [7] Theorem
17. ♦

Remark 4.13. Denote by Cov(µ) the covariance matrix, i.e. Covi,j(µ) = µ(xixj)−µ(xi)µ(xj).
It is immediate that σ2(µ) = ||Covµ||2HS ≤ CP (µ) (σ(µ) being the largest eigenvalue of
Cov(µ)). Our proof thus gives an universal bound (that does not depend on W ) for the
Covariance matrix. The proofs by Barthe and Klartag use first estimates for this covariance
matrix. ♦

Looking at log-concave perturbations of log-concave product measures as above, can be partly
motivated by statistical issues. We refer to [17] (in particular the final section) for some
of them. Of course looking at product measures is interesting thanks to the tensorization
property of Poincaré inequality, furnishing dimension free bounds. For log-concave measures,
another case is well understood since S. Bobkov’s work [10], namely radial measures. The
following version is due to M. Bonnefont, A.Joulin and Y. Ma ([12] Theorem 1.2)

Theorem 4.14. (Bobkov, Bonnefont-Joulin-Ma)

Let µ be a spherically symmetric (radial) log-concave probability measure on R
n, n ≥ 2. Then

CP (µ) ≤
µ(|x|2)
n− 1

.

We can obtain a result similar to proposition 4.6 or proposition 4.12

Theorem 4.15. Let µ(dx) = Z−1
µ e−W (x)−h(|x|2) dx be a probability measure on R

n. We

assume that W is even and convex and that h is convex and non-decreasing on R
+, so that

µ is log-concave. W and h are also normalized so that W (0) = h(0) = 0 (and consequently
W and h are non-negative). Introduce

νh(dx) = e−h(|x|2) dx .

There exists an universal constant c such that

CP (µ) ≤ c

(

1 +

∫ +∞

2
e
−4t h′

(

1

(cn(µ) ln2(t))2/n

)

dt

)

,
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with

cn(µ) = Z−1
µ

πn/2

nΓ(n/2)
≤ inf

θ

{

πn/2

nΓ(n/2)

emax|x|=θ W (x)

νh(|x| ≤ θ)

}

= inf
θ

{

emax|x|=θ W (x)

n
∫ θ
0 rn−1 e−h(r2) dr

}

.

Remark 4.16. Let µλ(dx) = Z−1
µ λ−n e−W (x/λ)−h(|x|2/λ2) dx a dilation of µ. Notice that

λ2c
2/n
n (µλ) = cn(µ). Since one has a factor 1/λ2 in front of h′, we partly recover the ho-

mogeneity of the Poincaré constant under dilations. ♦

Proof. Once again we may assume that W and h are smooth, convolving with a tiny gaussian
kernel, that preserves convexity and parity. For simplicity we also assume that h′ is (strictly)
increasing, so that h′ is one to one.

For two vectors x and y we write xy for the vector with coordinates (xy)i = xiyi. It holds

Γ2f =
∑

i,j

(∂2
ijf)

2 + 〈∇f,HessW∇f〉+ 4h′′(|x|2) |x∇f |2 + 2h′(|x|2)|∇f |2

≥ 2h′(|x|2)|∇f |2

so that

uµ((Af)2) + µ

(

2h′(|x|2) ≤ 1

u

)

|||∇f |2||∞ ≥ µ(|∇f |2) . (4.10)

So µ satisfies a (WI Γ2 grad) inequality, with

β−1(u) = µ

(

2h′(|x|2) ≤ 1

u

)

= µr

(

h′(r2) ≤ 1

2u

)

= µr

(

r ≤
√

(h′)−1(1/2u)
)

where µr denotes the probability distribution of the radial part of µ. We have

µr(dv) = Z−1
µ nωn vn−1 e−h(v)

(
∫

Sn−1

e−W (vθ) σn(dθ)

)

dv

where σn denotes the uniform measure on the sphere Sn−1 and ωn = πn/2

nΓ(n/2) denotes the

volume of the unit (euclidean) ball. It follows, since W and h are non-negative,

µr

(

r ≤
√

(h′)−1(1/2u)
)

≤ Z−1
µ

πn/2

nΓ(n/2)
((h′)−1(1/2u))n/2

from which we deduce that we can choose

β(t) =
1

2h′((s/cn)2/n)
with cn = Z−1

µ

πn/2

nΓ(n/2)
.

It remains to apply proposition 3.1.

The next step is thus to get some tractable bound for cn, i.e a lower bound for Zµ. The
simplest way to do it is to use the fact that W is non-decreasing on each radial direction so
that for all θ > 0

Zµ ≥
∫

|x|≤θ
e−W (x)−h(|x|2) dx ≥ e−max|x|=θ W (x) νh(|x| ≤ θ) .

�
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Corollary 4.17. In particular if h(u) = up with p ≥ 1, we have

CP (µ) ≤ 12288 ln(2)
c
2(p−1)

n
n (µ)

4p
(4(p − 1))

4(p−1)
n .

Proof. If h(u) = up for p > 1, the corresponding dilation µλ is given by hλ(u) = λ−2pup.
Recall that cn(µλ) = λ−ncn(µ).

We shall use that

ln(t) ≤ 1

α 2α
tα + (ln(2) − (1/α)) for t ≥ 2 and α > 0.

If t ≥ 2, we thus have ln(t) ≤ 1
α 2α tα if α ≤ 1 and ln(t) ≤ tα if α ≥ 1.

It follows

ln
4(p−1)

n (t) ≤ cβ t
β

for t ≥ 2 and 0 < β, with

cβ = 2−β

(

4(p − 1)

βn

)
4(p−1)

n

if
βn

4(p − 1)
≤ 1 ; cβ = 1 if

βn

4(p − 1)
≥ 1 .

This yields

e
−4t h′

λ

(

1

(cn(µλ) ln2(t))2/n

)

≤ e−κβ t1−β

for

κβ =
4p

cβ λ2 c
2(p−1)

n
n (µ)

.

A simple change of variables u = κβ t
1−β, together with the positivity of all constants yields

∫ +∞

2
e
−4t h′

λ

(

1

(cn(µλ) ln2(t))2/n

)

dt ≤ ((1− β)κβ)
−1

∫ +∞

0
u

β
1−β e−u1−β

du .

Choosing for simplicity β = 1/n, so that βn/4(p − 1) ≤ 1, for n ≥ 2 the final integral is

bounded independently of n for instance by c =
∫ +∞
0 u e−

√
u du = 12. It follows

CP (µλ) ≤ 1024 ln(2)



2 + c
λ2 c

2(p−1)
n

n (µ)

4p
(4(p − 1))

4(p−1)
n



 .

Using CP (µ) = λ−2CP (µλ) and letting λ go to infinity furnishes the result.

For p = 1 the result follows from strict convexity. �

Remark 4.18. If µr denotes the radial distribution of µ,

µr(dv) = ρ(v) vn−1 e−h(v) .

ρ is clearly an even function. Since for a fixed θ, v 7→ W (vθ) is even and convex, it is non-
decreasing, so that v 7→ ρ(v) is non-increasing. ρ is non necessarily log-concave, but we can
again apply Proposition 6 in [7] furnishing, with ν̄h = Z−1 νh,

CP (µr) ≤ CP (ν̄h) . (4.11)
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The measure ν̄h being log-concave, we know that

CP (ν̄h) ≤ 12Varν̄h(v) .

What is important here is that the Poincaré constant of the radial measure µr can be bounded
independently of W . ♦
Remark 4.19. Is the bound in Corollary 4.17 of the good order ? To see it look at the
particular case W = 0. In this case Zµ = nωn

2p Γ(n/2p) so that cn(µ) = 2p
nΓ(n/2p) , and our

bound furnishes

CP (µ) ≤ c
210(p−1)/n p6(p−1)/n

4p n2(p−1)/n

1

Γ2(p−1)/n(n/2p)
,

for some universal c. In this case the following very precise bounds were obtained by Bonne-
font, Joulin and Ma in [12],

µ(|x|2)
n

≤ CP (µ) ≤
µ(|x|2)
n− 1

.

Since

µ(|x|2) = Γ((n+ 2)/2p)

Γ(n/2p)

for n/p ≫ 1 (even for large p’s) we may use

Γ(z) ∼z→+∞
√
2πzz−(1/2) e−z

so that the Bonnefont, Joulin, Ma theorem furnishes

CP (µ) ∼ (2ep)−1/p n1−(1/p) . (4.12)

For the same asymptotics our bound furnishes (for some new constant c)

CP (µ) ≤ c p3(p−1)/n n1−(1/p) . (4.13)

Hence provided p ln(p) ≤ Cn, we get the good order (but of course not the good constant).
This shows that our bound is not so bad. ♦

5. The case of compactly supported measures.

Let us come back to the proof of Proposition 4.1 starting with

Γ2f =
∑

i,j

(∂2
ijf)

2 +
∑

i

h′′i (xi)(∂if)
2 + 〈∇f,HessW ∇f〉 . (5.1)

If W is convex, we thus have

µ(Γ2f) ≥
∑

i

µ((∂2
iif)

2 +
∑

i

h′′i (xi)(∂if)
2)

=
∑

i

µ(ηi,x((∂
2
iif)

2 + h′′i (xi)(∂if)
2)) (5.2)

Instead of adding and substracting ∂2
iiW (∂if)

2, consider ηi,x as a perturbation of

θi(dt) = z−1
i e−hi(t)dt

using the notation
ηi,x(dt) = Z−1

i,x e−Wi,x(t) θi(dt) .
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Since we integrate a non-negative quantity it holds

ηi,x((∂
2
iif)

2 + h′′i (xi)(∂if)
2) ≥ e− supWi,x θi((∂

2
iif)

2 + h′′i (xi)(∂if)
2)

≥ e− supWi,x SG(θi) θi((∂if)
2)

≥ e−OscWi,x SG(θi) ηi,x((∂if)
2) , (5.3)

provided

θi(Γ2g) = θi((Lig)
2)

with Lig = g′′ − h′ig
′. Notice since Wi,x is convex, its Oscillation cannot be bounded on R,

unless Wi,x is constant. Hence the previous result has no interest on R
n and we shall only

consider the case where the process lives in a bounded domain D.

We have thus obtained some variation of the renowned Holley-Stroock perturbation result
namely

Proposition 5.1. Let µ(dx) = Z−1 e−W (x)−
∑n

i=1 hi(xi) 1D(x) dx be a probability measure on
the hypercube D =

∏

i]ai, bi[ . Assume that

(G1) For all i, the one dimensional diffusion dyit =
√
2 dBi

t−h′i(y
i
t)dt satisfies (H) on ]ai, bi[

with reversible measure θi(du) = z−1
i e−hi(u) 1u∈]ai,bi[ du.

(G2) W ∈ C∞(Rn) and is convex.

Introduce the one dimensional conditional log-density

Wi,x(t) = W (x1, ..., xi−1, t, xi, ..xn) .

Then

CP (µ) ≤ max
i

sup
x

eOsc(Wi,x) max
i

CP (θi) .

Since maxi supx eOsc(Wi,x) ≤ OscW we recover (provided W is convex) Holley-Stroock result
for a product reference measure on a hypercube. But what is important here is that we only
have to consider the Oscillation of W along lines parallel to the axes.

Proof. The only thing remaining to prove is that we can work with C∞
b (D) functions f so

that u 7→ f(x1, ..., xi−1, u, xi+1, ..., xn) is also C∞
b (]ai, bi[) and we may use (G1) to justify the

calculations we have done before. It is thus enough to show that (H) is satisfied for the full
process i.e. with V = W +

∑

i hi.

Since ∇W and ∆W are bounded on D̄, the law of Xx
. is absolutely continuous w.r.t. to the

one of (y1. , ..., y
n
. ) thanks to Girsanov theory. It follows that the exit time of D is almost surely

infinite since the same holds for (y1. , ..., y
n
. ) according to (G1). In addition the Feynman-Kac

representation of the density FT (on C0([0, T ],D)) is again given by the formula of Example
7.1, so that, as we have seen, (H) is satisfied. �

Corollary 5.2. Let µ(dx) = Z−1 e−W (x)−∑n
i=1 hi(xi) 1D(x) dx be a probability measure on the

hypercube D =
∏

i]ai, bi[ . Assume that the hi’s and W are convex and C2
b (D̄). Then, with

the notations of Proposition 5.1 we have

CP (µ) ≤ 12 max
i

sup
x

eOsc(Wi,x) max
i

CP (θi) .
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Proof. As usual, using smooth approximations, we may assume that W ∈ C∞(Rn). We shall
perturb µ in order to apply the previous proposition. To this end, on the interval ]ai, bi[
define

hiε(u) = ε

(

1

u− ai
+

1

bi − u

)

.

Consider

µε(dx) = Z−1 e−W (x)−∑

i (hi(xi)+hi
ε(xi)) 1D(x) dx .

Denote giε = hi + hiε.

Assumptions (G1) and (G2) of proposition 5.1 are satisfied. We already assumed (G2). In
order to show (G1) it is first enough to use Feller test of non explosion for a one dimensional
diffusion, i.e. to check that for ci =

1
2 (ai + bi),

∫ ai

ci

exp

(∫ y

ci

(giε)
′(u)du

)

dy = −∞

(replacing ai by bi we similarly get +∞) according for instance to [26] Chapter VI, Theorem
3.1, which is immediate. It follows that (1.1) is satisfied. In addition (giε)

′ ∈ L
2(θiε(du)) where

θiε(du) = z−1
ε e−giε(u) 1]ai,bi[(u) du, so that we are in the situation of Example 7.2 ensuring that

the one dimensional y. in (G1) satisfies (H).

We have thus obtained

CP (µε) ≤ max
i

sup
x

eOsc(Wi,x) max
i

CP (θ
i
ε(dt)) .

Using Lebesgue’s bounded convergence Theorem, for all f ∈ C0
b (D) it holds

lim
ε→0

∫

D
f(x) e−W (x)−

∑n
i=1 giε(xi) dx =

∫

D
f(x) e−W (x)−

∑n
i=1 hi(xi) dx

so that using this result for f and 1, µε weakly converges to µ. It follows

CP (µ) ≤ lim inf
ε→0

CP (µε) ≤ max
i

sup
x

eOsc(Wi,x) lim inf
ε→0

max
i

CP (θ
i
ε) .

We may now use the fact that θiε is log-concave since both hi and hiε are convex. We thus
have

CP (θ
i
ε) ≤ 12Varθiε(xi) .

Once again θiε weakly converges to θi and since xi 7→ x2i is continuous and bounded on [ai, bi],

Varθiε(xi) → Varθi(xi)

so that the conclusion follows from the immediate V arθi(xi) ≤ CP (θi). �

6. Super Γ2 condition

As there are weak Poincaré inequalities, Super Poincaré inequalities (SPI) have also been
introduced by Wang [42] as a concise description of functional inequalities strictly stronger
than Poincaré inequalities, in particular logarithmic Sobolev (or more generally F -Sobolev)
inequalities.
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(SPI) is often written in the following form: ∀s > 0, there exists a non-increasing β :]0,∞[7→
[1,+∞[ such that

µ(f2) ≤ sµ(|∇f |2) + β(s)µ(|f |)2. (6.1)

Applying (6.1) to constant functions one sees that β(s) ≥ 1 for all s. Since 1 is assumed to
belong to the range of β, the (SPI) inequality implies a Poincaré inequality with CP (µ) ≤
β−1(1), and one has β(s) = 1 for s ≥ CP (µ) . When β(s) = aeb/s for positive a and b,
then the Super Poincaré inequality is equivalent to a logarithmic Sobolev inequality (see [19]
lemma 2.5 and lemma 2.6 for a precise statement).
It is also possible to consider SPI with a Lp norm rather than the L1 norm, so that we will
introduce general (p-SPI) for 1 ≤ p < 2 and all s > 0,

µ(f2) ≤ sµ(|∇f |2) + β(s)µ(|f |p)2/p. (6.2)

This time, (6.2) does not imply a Poincaré inequality, so that it is natural to assume in
addition that CP (µ) ≤ +∞. In this case we have the following

Lemma 6.1. Assume that CP (µ) < +∞ and that the following centered (cp-SPI) inequality
is satisfied for all s > 0,

Varµ(f) ≤ sµ(|∇f |2) + βc(s)µ(|f − µ(f)|p)2/p , (6.3)

where β is non increasing. Then (p-SPI) holds with β(s) = 1 + 4βc(s).

Proof. Since CP (µ) < +∞ we may choose βc(s) = 0 for s > CP (µ). Let f be given. It holds

µ(|f − µ(f)|p) ≤ 2p−1 (µ(|f |p) + µp(|f |)) ≤ 2p µ(|f |p)
yielding

µ(|f |2) = Varµ(f) + µ2(f) ≤ sµ(|∇f |2) + βc(s)µ
2/p(|f − µ(f)|p) + µ2(|f |)

≤ sµ(|∇f |2) + (4βc(s) + 1)µ2/p(|f |p) .
�

It is then natural to introduce an integrated super Γ2 condition: for some 1 ≤ p < 2, there
exists a positive non-increasing function β such that ∀s > 0

(pSI − Γ2) µ(|∇f |2) ≤ s µ(Af)2) + β(s)µ(|f |p)2/p.
In the sequel we assume that CP (µ) < +∞, so that for all s ≥ CP (µ) one may take β(s) = 0.

Let us begin by this simple proposition

Proposition 6.2. We have the following

(1) A (p− SPI) inequality is equivalent to

µ((Ptf)
2 ≤ e−2t/sµ(f2) + β(s)µ(|f |p)2/p(1− e−2t/s), (6.4)

for all s > 0 and all t ≥ 0.
(2) A (pSI − Γ2) condition is equivalent to

µ(|∇Ptf |2 ≤ e−2t/sµ(|∇f |2) + β(s)µ(|f |p)2/p(1− e−2t/s). (6.5)

for all s > 0 and all t ≥ 0.
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Proof. The first part is well known and is included in Wang’s work [42]. The second point
will follow the same line of proof. As already emphasized in the previous sections, denoting

F (t) = µ(|∇Ptf |2)
one has

F ′(t) = −2µ((APtf)
2)

so that the (pSI − Γ2) gives directly

F ′(t) ≤ −2

s
F (t) +

2β(s)

s
µ(|Ptf |p)2/p

and since µ(|Ptf |p)2/p ≤ µ(|f |p)2/p we conclude thanks to Gronwall’s lemma. The other
implication comes from differentiating with respect to time at time 0. �

6.1. From (p-SPI) to (pSI-Γ2).
We follow the same proof as in section 2, assuming that a (p − SPI) holds, i.e. we use
Cauchy-Schwartz inequality in order to get

µ(|∇f |2) = µ(−fAf)

≤
√

µ(f2)µ((Af)2)

≤
(

s µ(|∇f |2)µ((Af)2) + β(s)µ(|f |p)2/pµ((Af)2)
)1/2

.

Recall now the already used following fact: if 0 ≤ u ≤
√
Au+B then u ≤ A+B1/2. It yields

µ(|∇f |2) ≤ s µ((Af)2) +

√

β(s)µ(|f |p)2/pµ((Af)2)

≤ 3

2
s µ((Af)2) +

β(s)

2s
µ(|f |p)2/p.

We thus see that we have “lost” a factor 1/s but if we think to the logarithmic Sobolev
inequality, it roughly means the loss of a constant.

6.2. From (pSI-Γ2) to (p-SPI).
. Starting with

µ(|∇Ptf |2 ≤ e−2t/sµ(|∇f |2) + β(s)µ(|Ptf |p)2/p(1− e−2t/s)

and using

Varµ(f) = 2

∫ ∞

0
µ(|∇Puf |2)du

we get

Varµ(f) ≤ 2

∫ ∞

0
e−2u/sµ(|∇f |2)du+ 2β(s)

∫ ∞

0
µ(|Puf |p)2/p(1− e−2u/s)du.

Assume first that f is centered. If p > 1 then Poincaré inequality implies back an exponential
convergence in Lp norm (see [18] Theorem 1.3) so that for all centered f we get

µ(f2) ≤ sµ(|∇f |2) +Kpβ(s)µ(|f |p)2/p

where Kp depends on p and is going to infinity as p goes to 1. Applying lemma 6.1 we thus
obtain

µ(|f |2) ≤ sµ(|∇f |2) + (1 + 4Kpβ(s))µ(|f |p)2/p .
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7. Appendix: about the heart of darkness.

Let us come back to the framework of this work especially Proposition 1.2.

First of all, if (H) is satisfied, according to Theorem 2.2.25 and its proof in Royer’s book [40]
(also see the english version [41]), the following holds

(A1) Pt extends to a µ-symmetric continuous Markov semi-group e−tÃ on L
2(µ). We

denote by D(Ã) the domain of the generator Ã of this L2(µ) semi-group.

(A2) Any f ∈ C2(D) such that |∇f | is bounded and Af ∈ L
2(µ) belongs to D(Ã), and

Ãf = Af .
(A3) If f ∈ D(Ã) the set of Schwartz distributions on D, then f ∈ D′(D) and satisfies

Ãf = Af in D′(D).

Actually Royer only considers the case D = R
n, but the key point in the proof is that one can

apply Ito’s formula for such an f up to time t (without any stopping time) which is ensured
by the conservativeness in D.

In the case D = R
n the proof of ESA for C∞

0 the set of smooth compactly supported functions
is contained in [43] using an elliptic regularity result Theorem 2.1 in [24] (actually the latest
result certainly appeared in other places). The proof is explained in Theorem 2.2.7 of [40]

(also see Proposition 3.2.1 in [4]) when V is C∞. The structure of D(Ã) is also proved in the
same Theorem.

We shall explain the proof when D is bounded, still assuming for simplicity that V ∈ C∞(D).
The same elliptic regularity should be used to extend the result to V ∈ C2(D), but will
introduce too much intricacies to be explained here.

Proof. First consider the Dirichlet form E(f, g) = µ(〈∇f,∇g〉) whose domain is the closure of
C∞
0 (D) denoted by H1

0 (µ,D). Since E is regular, Fukushima’s theory (see [25]) allows us to
build a symmetric Hunt process associated to (E ,H1

0 (µ,D)). This process is then a solution
to the martingale problem associated to A and C∞

0 (D). Since T x
∂ is almost surely infinite,

this martingale problem has an unique solution given by the (distribution) of the stochastic
process Xx

. .

In order to prove ESA it is enough to show that if g ∈ L
2(µ) satisfies µ(g (Aϕ − ϕ)) = 0 for

all ϕ ∈ C∞
0 (D) then g vanishes (see the beginning of the proof in [40] p.31). According to

the proof in [40] p.31, it implies in particular that g ∈ D′(D) and satisfies Ag = g. Using
that A is hypoelliptic since V ∈ C∞(D), we deduce that g ∈ C∞(D).

Using Ito’s formula (since the process is conservative) we have

√
2

∫ t

0
〈∇g(Xs), dBs〉 = g(Xt)− g(X0)−

∫ t

0
g(Xs) ds (7.1)

almost surely. If X0 is distributed according to µ, the right hand side belongs to L
2(P)

(P being the underlying probability measure on the path space), so that the left hand side
also belongs to L

2(P). The L
2 norm of this left hand side is equal to 2t µ(|∇g|2) so that

∇g ∈ L
2(µ).
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As a consequence

t 7→
∫ t

0
〈∇g(Xs), dBs〉

is a P martingale so that for all bounded h,

E(h(X0)g(Xt)) = µ(gh) +

∫ t

0
E(h(X0)g(Xs)) ds .

Since a regular disintegration of P is furnished by the distribution of the Xx
. ’s, it follows

Ptg = g +

∫ t

0
Psg ds

µ almost surely, so that g ∈ D(Ã) and satisfies Ãg = g. Hence

µ(g2) = µ(gAg) = −µ(|∇g|2)
so that g = 0.

The proof of the remaining part of the Theorem is the same as in [40] p.42. �

Finally we will indicate how to show that the semi-group is ergodic when D is bounded (we
already mention a possible way for D = R

n in section 2) . If Ptf = f for all t > 0 it follows
that f ∈ D(A) and satisfies Af = 0 so that f is smooth thanks to hypoellipticity. Applying
Ito’s formula we deduce that f(Xx

t ) = f(x) a.s. for all t > 0. Thanks to the Support Theorem
([26] chapter 6 section 8) we know that the distribution of Xx

t admits a positive density w.r.t.
Lebesgue measure, so that if f(y) 6= f(x) for some y, hence all z in a neighborhood N of y
by continuity, P(Xx

t ∈ N) > 0 and thus f(Xx
t ) 6= f(x) with positive probability, which is a

contradiction.

Let us give now some of the most important examples. In these examples we assume that
V ∈ C3.

Example 7.1. If either

(H1) V (x) → +∞ as x → ∂D (i.e. |x| → +∞ if D = R
n), and 1

2 |∇V |2−∆V is bounded
from below, or

(H2) D = R
n and 〈x,∇V (x)〉 ≥ −a|x|2 − b for some a, b in R,

then (H) is satisfied. If V is convex (H2) is satisfied with a = b = 0.

If D = R
n these two cases are detailed in [40] subsection 2.2.2 (conservativeness is shown in

Theorem 2.2.19 therein). In the (H1) case for a bounded domain the only thing to do is to
replace the exit times of large balls by the Tk’s in Lemme 2.2.21 of [40].

In all cases the law of (Xx
t )t≤T is given by dQ = FTdP where P is the law of a Wiener process

starting from 0 and

FT = exp

(

1

2
V (x)− 1

2
V (x+

√
2WT ) +

1

2

∫ T

0
(
1

2
|∇V |2 −∆V )(x+

√
2Ws)ds

)

. (7.2)

♦



30 P. CATTIAUX AND A. GUILLIN

Example 7.2. Assume now

µ(|∇V |2) < +∞ . (7.3)

(7.3) is an entropy condition related to the stationary Nelson processes (see [34, 33, 21,
22, 23]). The stationary (symmetric) conservative diffusion process is built in these papers.
Conservative means here that

T∂D = +∞ Pµ a.s (7.4)

i.e. if X0 is distributed according to µ.

The proof in the bounded case is a simple modification of the one in [21]. The modification
is as follows (we refer to the notations therein):

(1) First the flow νt is stationary with νt = µ.
(2) Next the drift B = −∇V . Assuming in addition that D has a smooth boundary,

one can approximate in L
2(µ), B by Bk’s which are C∞

b (Rn) and coincide with B on
D̄k = {x ; , d(x, ∂D) ≥ 1/k} (for this we need ∂Dk to be smooth).

One can then follow the “Outline of proof” (4.9 bis) in [21] replacing the Tn therein by the
Tk we have introduced before (the exit times of Dk) so that (4.14) in [21] is trivially satisfied.
(4.16) is then justified when (1.1) is satisfied. The only remaining thing to prove is thus
(4.10) in [21]. For f ∈ C∞

0 (Rn) whose support contains D̄ we may then proceed as in the
proof of Theorem (4.18) in [21] in order to prove it.

In order to show the strong existence of the diffusion process starting from x (and not
the stationary measure) it is enough to show (1.1) is satisfied (the strong existence of the
diffusion process up to T x

∂D is ensured since V is local-Lipschitz). Since the stationary
process is conservative, so is Xx

. for µ, hence Lebesgue, almost all x. Standard results in
Dirichlet forms theory show that this result extends to all x outside some polar set. Actually
it is true for all x using the following (itself more or less standard 40 years ago): choose
a small ball B(x, ε) with ε < d(x, ∂D)/2 and introduce S the exit time of this ball. For
t > 0 the distribution of Xt 1t<S has a density w.r.t. Lebesgue’s measure restricted to the
ball (using e.g. Malliavin calculus). It follows from the Markov property and (7.4) that
Px(T

x
∂D < +∞ , t < S) = 0. Hence

Px(T
x
∂D = +∞) ≤ Px(t < S)

for all t > 0, the latter going to 0 as t → 0.

In all cases the Feynman-Kac representation of FT in (7.2) is obtained by using Ito’s formula
with V which is allowed since V ∈ C3(D) and (1.1) again. ♦

Example 7.3. If we do no more assume that the hitting time of the boundary is infinite,
assumption (H) is not satisfied. The space of interest should be H1

b (µ) the closure of C
∞
b (D)

for the Dirichlet form. The corresponding process is the symmetric reflected diffusion process.
A good reference is [37] where this normally reflected diffusion process is built (under much
more general conditions). Assume that the boundary is smooth.

A little bit more is needed. First if f ∈ H1
b (µ) and g ∈ D(A), one has, according to

Fukushima’s theory (see [25] (1.3.10)),

µ(〈∇f,∇g〉) = −µ(f Ag) . (7.5)
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If f is smooth (C2(D̄)) and belongs to D(A) it also holds

−µ(f Ag) = µ(〈∇f,∇g〉) +
∫

∂D
g 〈nD,∇f〉 e−V dσD

according to Green’s identity. Here nD denotes the normalized inward normal vector on ∂D
and σD denotes the surface measure on ∂D. Since the set of the traces on ∂D of bounded
functions in H1(µ) is dense in L

∞(σD), we deduce that

〈nD,∇f〉|∂D = 0 .

It is however not clear in general that Ptf is smooth (even if V is). If one assumes that ∂D
is C∞ and V ∈ C∞(D̄), Ptf ∈ C∞(D̄) is shown in [14] Theorem 2.9 by using the method
of [13] (see the proof of Theorem 2.11 therein). Notice that the proof of regularity is using
Sobolev imbedding theorem, so that one should relax the C∞ assumption but with dimension
dependent regularity assumptions. Other more important difficulties will be pointed out later.

The other major difficulty is that ESA is not satisfied in general.

In comparison with the previous example, the boundary term will disappear if e−V = 0 on
∂D. It is what happens if (H) is satisfied, but here again we do not need such a proof twhich
is not useful in the present work. ♦
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class of probability measures. Elec. Comm. in Prob., 13:60–66, 2008.
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Elec. Comm. in Prob., 15:270–280, 2010.
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H. Poincaré Probab. Statist., 30(1):83–132, 1994.
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processes” [Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 83–132; MR1262893 (95d:60056)].
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