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et Cellulaire, France, and 9LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France

Cold temperature detection involves the process of sensory transduction in cutaneous primary sensory nerve terminals, which converts
thermal stimuli into depolarizations of the membrane. This transformation into electrical signals is followed by the subsequent propa-
gation of action potentials in cold-sensitive afferent nerve fibers. A large array of ion channels shapes this process; however, the precise
contribution of specific ion channel subtypes to cold perception and cold pain remains elusive. This review aims at giving an update on
our current understanding of the role played by TRPs, leak K � and voltage-gated Na � and K � channels in the transduction of cold by
nociceptors and in cold-induced pain.
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The perception of cold temperatures starts with the conversion of
thermal stimuli into electrical signals by molecular transducers in the
plasma membrane of primary sensory nerve terminals, a process
known as sensory transduction. Some of the cold-sensitive nerve
fibers detect moderate innocuous cold, whereas others detect nox-
ious cold temperatures ��19°C (Campero et al., 1996, 2001). Ulti-
mately, the intensity and duration of the stimuli are coded into trains
of action potentials by voltage-gated ion channels. A large array of
ion channels, including thermo-sensitive Transient Receptor Poten-
tial (TRP), sodium and potassium channels shape this process. Our
current understanding of the mechanisms of thermal transduction is
fairly incomplete, especially the transduction of cold stimuli that
appears to involve different cold transducers, some of which are yet
to be identified, and other ion channels playing an indirect role in
this process by setting the electrophysiological environment re-
quired by the transduction machinery. Pathological cold pain, a
common symptom in a range of neuropathic pain syndromes, may
also arise from dysfunctions of this transduction machinery, and
presents as cold allodynia, a pain response to cold temperatures that
do not normally provoke pain, and/or cold hyperalgesia, an in-
creased sensitivity to painful cold temperature (Yin et al., 2015). The

aim of this review is to provide an overview of our current knowledge
about the contribution of specific ions channels to physiological and
pathological cold transduction and cold-triggered pain, emphasiz-
ing on the recent progress made in the understanding of the identity
and respective roles and regulation of these channels. New findings
about the two thermo-TRP channels TRPM8 and TRPA1 recog-
nized as involved in cold perception will be presented. The contri-
bution of the voltage-gated sodium channel Nav1.9 to cold pain in
animals and humans will also be described together with the wide
diversity of potassium channels shown to be important for cold
sensation. Finally, we will present how different cold pain
conditions induced by toxins or chemotherapeutic agents al-
tering cold sensitivity give us insight regarding cold transduc-
tion and cold pain sensation.

Ion channels involved in the transduction of cold
temperature by nociceptors
TRP channels
TRP cation channel subfamily M member 8 (TRPM8), the re-
ceptor for menthol, was the first cold-transducer channel to
be described (McKemy et al., 2002; Peier et al., 2002). This non-
selective cation channel is directly activated by innocuous cooling
(�28°C, Q10 � 20), and in vivo behavioral studies showed an
involvement of TRPM8 channels in thermal discrimination
�25°C (Bautista et al., 2007; Colburn et al., 2007; Dhaka et al.,
2007). More recent studies have also shown a role for TRPM8
channels and TRPM8-expressing neurons in cold-triggered
nociception (Knowlton et al., 2011; Pogorzala et al., 2013).
Although TRPM8 involvement in non-noxious thermal discrim-
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ination �25°C is undisputable, its involvement in cold-triggered
nociception remains debated (Yin et al., 2015). Whereas TRPM8
activation by cold as well as by exogenous substances such as
menthol have been the matter of extensive studies (Almaraz et al.,
2014), endogenous activators or inhibitors of TRPM8 have more
rarely been identified. Interestingly, it was shown previously that
androgens increase TRPM8 expression in non-neural cells (L.
Zhang and Barritt, 2004; Y. Zhang et al., 2004; Thebault et al.,
2005). In addition to this genomic regulation by androgens, tes-
tosterone acts directly on the TRPM8 channel at subphysiological
concentrations (Asuthkar et al., 2015), and recent unpublished
work also shows that, in the presence of the androgen receptor,
physiological concentration of testosterone specifically inhibits
TRPM8 activity in transfected cells and primary sensory neurons
through direct interaction of the channel with the androgen re-
ceptor at the plasma membrane. Most interestingly, in vivo
experiments show that androgens reduce male sensitivity to
non-noxious cold temperatures through a TRPM8-dependent
mechanism (D.G. et al., unpublished data). This may be consis-
tent with the notion that elevated plasma levels of testosterone,
which usually accompany mating behaviors, physical activity,
stress, or aggression, by desensitizing TRPM8 would help to di-
minish the impact of environmental cold as a factor that may
impede taking necessary actions.

The TRP cation channel subfamily A member 1 (TRPA1), or
ANKTM1, is another thermo-TRP channel expressed in nocice-
ptive DRGs and trigeminal neurons. TRPA1 is activated by
pungent compounds and was initially characterized as a cold-
sensitive ion channel (Story et al., 2003), but this has remained
contentious ever since, with a number of studies presenting sup-
porting (Fajardo et al., 2008; Karashima et al., 2009; Moparthi et
al., 2014) or conflicting evidence (Jordt et al., 2004; McKemy,
2005; Bautista et al., 2006; Knowlton et al., 2010). However, phar-
macological inhibition or genetic inactivation of TRPA1 clearly
revealed the importance of TRPA1 for the behavioral response to
noxious cold (�5°C) in vivo (Kwan et al., 2006; Karashima et al.,
2009; Gentry et al., 2010). In contrast, the absence of TRPA1 does
not influence the behavior of mice in thermal preference tests
designed to evaluate comfort temperature preferences (Knowl-
ton et al., 2010), suggesting that TRPA1 most specifically controls
the responsiveness to noxious cold, but not to innocuous cool.
Several reports have also identified TRPA1 as a physiological
sensor of critical importance for cold hypersensitivity associ-
ated with inflammatory and neuropathic pain (Zygmunt and
Högestätt, 2014). Recent unpublished observations suggest a
novel mechanism for TRPA1 regulation of cold nociception and
cold pain. It is hypothesized that TRPA1 regulates cold sensitivity
in vivo indirectly, rather than by simply acting as a sensory trans-
duction molecule (D.A. et al., unpublished data).

The discovery of the cold-triggered activation of the TRP
cation channel subfamily C member 5 (TRPC5) has expanded
the list of cold-sensitive TRP channels expressed in DRG neu-
rons (Zimmermann et al., 2011). However, it is not clear
whether TRPC5 plays a role in somatosensory cold sensation
as, although TRPC5�/� fibers have an increased responsive-
ness to cooling, TRPC5�/� mice show normal response to
noxious cold and cold preference over wild-type mice.

These findings also point to another aspect of cold transduc-
tion by DRG neurons because 30%–50% of isolated DRG neu-
rons in culture are sensitive to cold but unresponsive to either
agonists of TRPA1 or TRPM8, indicating that a fraction of sen-
sory neurons most probably relies on a different, yet unidentified,

mechanism to transduce cold stimuli (Alloui et al., 2006; Munns
et al., 2007).

Potassium channels
Potassium channels are hyperpolarizing inhibitory channels and
therefore key determinants of neuronal excitability, regulating
resting membrane potential, spike threshold and duration, and
repetitive firing activity. Primary sensory neurons express a com-
plex complement of potassium channels that modulates their
transducing properties and shape their excitability (Gold et al.,
1996; Belmonte and Viana, 2008; Tsantoulas and McMahon,
2014). The diversity of K� channels expressed in DRG neurons
was confirmed at the single-cell transcriptome level (Usoskin et
al., 2015). A number of studies have highlighted the role of dif-
ferent potassium channels in the modulation of cold sensitivity
(for review, see Belmonte and Viana, 2008). Their expression and
function change following neuronal injury, which contributes to
nociceptors hyperexcitability and pain symptoms, such as me-
chanical and cold allodynia (Chien et al., 2007; Descoeur et al.,
2011; Pollema-Mays et al., 2013; Pereira et al., 2014; Tsantoulas
and McMahon, 2014).

Among the different families of K� channels, several mem-
bers of the KCNK channel family, also known as 2-pore domain
(K2P) potassium channels, were found to play a key modulatory
role in cold sensation. These channels mediate voltage-inde-
pendent background leak K� currents and participate in setting
the resting membrane potential of many neurons (Chemin et al.,
2003). There are 15 members of this family, with different bio-
physical properties and distinct expression profiles in sensory
neurons (Mathie and Veale, 2015). Some of these channels (e.g.,
TREK-1, TREK-2, and TRAAK) are highly temperature-sensitive
(Maingret et al., 2000; Kang et al., 2005). Analysis of TREK and
TRAAK deficient mice suggests their participation in nociception
and thermal sensitivity (Alloui et al., 2006; Noël et al., 2009;
Pereira et al., 2014). More specifically, TREK2�/� mice show
enhanced responses to moderate cold temperatures but no signs
of abnormal cold pain. In contrast, TREK1�/� and TRAAK�/�

mice have augmented responses to noxious cold. The expression
of TREK1, TREK2, and TRAAK channels in DRGs was also found
to be diminished in a mice model of neuropathic cold hypersen-
sitivity induced by the antineoplastic agent oxaliplatin (Descoeur
et al., 2011; Pereira et al., 2014). Thus, in some forms of neuro-
pathic pain conditions, reduced background potassium activity
may contribute to heightened cold sensitivity.

Transcriptome analysis of fluorescent-activated cell sorting of
TRPM8-expressing mouse cold thermoreceptors revealed the
differential expression of TASK-3, a pH-sensitive K2P leak chan-
nel, a finding confirmed by immunocytochemistry and RT-PCR
(Morenilla-Palao et al., 2014). Application of a selective TASK-3
blocker shifted the temperature threshold of cold-sensitive TRPM8-
expressing DRG neurons to warmer temperatures. Moreover, anal-
ysis of cold thermoreceptors in TASK-3 KO mice revealed a higher
sensitivity to cooling and augmented responses to electrical and
thermal stimulations. This argues that combinatorial expression of
cold-sensitive hyperpolarizing and depolarizing channels in primary
sensory nerve terminals can lead to functional diversity.

The voltage-gated potassium channels Kv1 and Kv7.2/7.3 have
been implicated in the physiology of cold sensing and in the patho-
physiology of cold pain. In TRPM8-expressing cold-sensitive neu-
rons, differential expression of a fast activating, slowly inactivating,
dendrotoxin- and 4-aminopyridine-sensitive, voltage-gated K�

current (Kv1.1 and Kv1.2 subunits), known as IKD, plays a major
role in modulating threshold temperatures to cold stimuli (Madrid
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et al., 2009). Activation of IKD dampens the depolarizing effect of
the cold-activated TRPM8-dependent current, shifting the temper-
ature thresholds of individual neurons to colder values and reducing
their overall response to temperature drops. In a fraction of sensory
neurons, application of micromolar doses of 4-aminopyridine can
transform their functional phenotype leading to abnormal cold sen-
sitivity (Belmonte and Viana, 2008), an effect also found in intact
and damaged peripheral sensory axons (Roza et al., 2006). More-
over, after local blockade of IKD in the hindpaw of mice, normally
innocuous cool stimuli elicited nociceptive behaviors, suggesting
that IKD acts as a brake to cold sensitivity in vivo (Madrid et al.,
2009). Thus, IKD sharpens the tuning of sensory neurons to relevant
stimuli.

KCNQ channels Kv7.2/3, the molecular components of the
M-current, also modulate the response of nociceptors to cold in
synergy with TRPM8 channels. Indeed, pharmacological block-
ade of the M-current increases the excitability of a large fraction
of C fibers in response to cold, in which TRPM8 channels activa-
tion is required (Vetter et al., 2013). Sensitization of nociceptors
to cold by the cooling agents camphor or menthol has also been
shown to involve concomitant Kv7.2/3 blockade and TRPM8
activation.

Voltage-gated sodium channels
Nav1.7, Nav1.8, and Nav1.9 are the most abundant voltage-
dependent Na� channel isoforms in peripheral afferent fibers.
Genetic variants of these channels are associated with a spectrum
of distinct inherited pain disorders, ranging from congenital pain
insensitivity to severe neuropathic pain syndromes. Two of these
voltage-gated Na� channels, the tetrodotoxin-resistant Nav1.8
and Nav1.9 channels, are expressed in nociceptors and involved
in the response of cold-sensitive fibers to noxious cold. The inac-
tivation properties of Nav1.8 and Nav 1.9 channels are less af-
fected by cooling than the tetrodotoxin-sensitive channels, which
makes them able to contribute to action potentials initiation in
cold-sensitive fibers at low temperatures.

Nav1.8 is important for nociceptors’ ability to remain excit-
able at low temperature, whereas the cold-induced inactivation
of other channels in other afferent fibers appears to contribute to
the loss of other sensory modalities (numbness) observed with
cooling of peripheral tissues (Zimmermann et al., 2007). Genetic
ablation of Nav1.8 in mice results, among other impairments of
pain sensitivity, in a decreased sensitivity to noxious cold (Ako-
pian et al., 1999; Zimmermann et al., 2007).

The ultra-slow inactivating tetrodotoxin-resistant Nav1.9
channel, whose expression pattern largely overlaps with Nav1.8
in DRG neurons, has also recently been found to be resistant to
cooling and to be involved in the painful response to cold (Loli-
gnier et al., 2015). Nav1.9�/� mice have an increased tolerance to
noxious cold (from �12°C) and nociceptors from Nav1.9�/�

mice show a decreased activation in response to cooling. In cold-
sensitive nociceptors, specifically, a strong increase in Nav1.9
current was observed. This increased inward Na� current is nec-
essary for the firing of cold-sensitive neurons in response to cool-
ing, in which the large and persistent Nav1.9 current amplifies
depolarizations generated by cold transducer channels. The iden-
tity of the cold transducer channel(s) expressed by Nav1.9-
positive/cold-responding sensory fibers is however still unclear as
the vast majority of these fibers appear not to express TRPM8 or
TRPA1. Nav1.9 is also involved in cold hypersensitivity in mice
(at 15°C-20°C) following treatment with oxaliplatin. This places
Nav1.9, together with Nav1.8, at the center of physiological and
pathological painful responses to cold. These two channels, to-

gether with leak and voltage-gated potassium channels, would
provide an ideal electrophysiological environment for the coding
and transmission of cold nociceptive information.

Inherited pain disorders associated with Nav1.9 genetic variants
Chronic pain syndromes associated with the Nav isoforms
Nav1.7, 1.8, and 1.9, include primary erythromelalgia, paroxys-
mal extreme pain disorder (PEPD), and small-fiber neuropathies
(Dib-Hajj et al., 2010). In particular, Nav1.7-dependent primary
erythromelalgia, a condition characterized by severe pain attacks
preferentially in the lower legs and arms as well as in the adjacent
joints, is recognized for its marked temperature dependence be-
cause warmth is often a strong trigger for painful episodes and
exacerbates symptoms while patients consistently experience
pain relief on cooling of affected body areas.

A heterozygous gain-of-function mutation in SCN11A,
caused by the missense mutation p.V1184A in Nav1.9 channels,
has recently been identified in a family with a history of early-
onset chronic peripheral pain (Leipold et al., 2015). Affected
family members suffer from pain attacks in their lower and upper
extremities lasting �20 –30 min, which are reminiscent of
erythromelalgia-associated pain episodes caused by hyperactive
Nav1.7 channels. However, patients exhibit a reversed tempera-
ture sensitivity of pain sensation because pain is aggravated by
cold and partially relieved by warmth. Electrophysiological eval-
uation of heterologously expressed Nav1.9-V1184A channels re-
vealed that the mutation increases the basal activity of Nav1.9
such that mutant channels require less depolarization to open,
effectively increasing the fraction of active mutant channels. In
agreement with these gain-of-function features, mutant channels
increase the resting membrane potential of murine DRG neurons
and subsequently render the neurons hyperexcitable. A reduced
cold-dependent attenuation of the excitability of neurons trans-
fected with p.V1184A compared with neurons transfected with
wild-type Nav1.9 was observed, which is in line with the temper-
ature dependence of the patients’ pain sensation and suggests that
the contribution of hyperactive Nav1.9-V1184A channels to no-
ciceptors excitability is more prominent at lower temperatures.
Thus, this study corroborates the link between Nav1.9 and cold-
pain sensation initially demonstrated by Lolignier et al. (2015).
However, the intrinsic temperature dependence of Nav1.9 was
not affected by mutation p.V1184A, suggesting that the role of
Nav1.9 in cold pain requires additional cellular factors. As dis-
cussed in the previous paragraph, yet unidentified cold transduc-
ers are possible candidate proteins. According to Lolignier et al.
(2015), Nav1.9 acts as an amplifier of cold transducer subthresh-
old signals. Hyperactive Nav1.9-V1184A mutant channels may as
a consequence cause cold-aggravated peripheral pain by signal
overamplification in cold-sensitive nociceptors.

Pathological cold pain conditions
Although many pathological pain conditions, including diabetic
neuropathy, peripheral nerve injury, chemotherapy-induced
neuropathy, poststroke central pain, or ciguatera poisoning, can
result in the development of cold pain, the mechanisms by which
cold pain arises are still poorly understood and appear to vary
significantly in relation to the disease considered (for review, see
Yin et al., 2015).

The mechanisms of action of toxins altering cold sensitivity
give us insight regarding cold transduction beyond those pro-
vided by animals or humans harboring mutant channels. Patho-
logical cold pain is a frequent symptom of ciguatera poisoning, a
form of marine food poisoning arising from the consumption of
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tropical and subtropical fish contaminated with ciguatoxins from
microscopic algae of the Gambierdiscus family accumulated
through the marine food chain. Ingestion of contaminated fish
causes symptoms of dysaesthesias, paresthesias, and cold allo-
dynia in almost all ciguatera patients (Vetter et al., 2014). At the
molecular level, ciguatoxins are the most potent known sodium
channel activators and additionally enhance neuronal excitability
through inhibition of potassium channels. It is now clear that the
pathophysiological effects of ciguatoxins can be attributed di-
rectly to their action on peripheral sensory neurons, as local in-
tradermal injection in humans recapitulates spontaneous pain
and cold allodynia (Zimmermann et al., 2013). Similar symp-
toms can be observed after intraplantar injection in mice, an
effect that is mediated predominantly through peripheral sensory
neurons expressing TRPA1 (Vetter et al., 2012). Ciguatoxin-
induced cold allodynia can additionally be blocked by concomi-
tant treatment with selective Nav1.8 and Nav1.6 inhibitors,
consistent with profound effects on excitability of nociceptive
C- and A-fibers, respectively.

In contrast to ciguatera poisoning, cold allodynia elicited after
local injection of the chemotherapeutic agent oxaliplatin is un-
changed in Nav1.8 KO mice and develops independently from
cold-sensitive TRP channels (Deuis et al., 2013). Oxaliplatin-
induced cold allodynia is blocked completely by the selective Nav1.6
inhibitor GIIIA, suggesting a specific role for Nav1.6-expressing sen-
sory neurons in oxaliplatin-induced cold allodynia. However,
Nav1.6-expressing neurons seem not to be involved in physiological
cold sensation because intraplantar administration of the Nav1.6-
selective activator Cn2 elicits spontaneous pain and mechanical al-
lodynia but does not enhance cold sensitivity. Conversely,
intraplantar administration of the K� channel blocker 4-aminopyr-
idine mimicks oxaliplatin-induced cold allodynia, which is inhibited
by Nav1.6 blockers and potentiated by Nav1.6 activators (Deuis et
al., 2013). Therefore, it appears that inhibition of neuronal K� chan-
nels is a common mechanism underpinning the development of
enhanced cold sensitivity in both ciguatoxin- and oxaliplatin-
induced cold allodynia. Although the precise mechanisms leading to
specific changes in cold sensitivity remain to be determined, it is
likely that this effect arises at least in part from biophysical changes
induced by cooling, which include a decrease in the activation
threshold of the sodium currents, an increase in membrane resis-
tance, and closure of temperature-sensitive background potassium
channels. In normally cold-insensitive neurons, these effects are op-
posed by the continued activity of temperature-insensitive K� chan-
nels, which act as an excitability break. Pharmacological inhibition,
or reduced expression, of these channels can in turn drive normally
cold-insensitive neurons to respond to cooling, although it remains
to be determined whether temperature-sensitive TRP channels are
an absolute requirement for this phenomenon. Although these
channels likely include Kv1.1 in some types of neurons, the molecu-
lar identity of the K� channels contributing to cold sensitivity of
Nav1.6-expressing neurons remains to be determined.

In conclusion, these recent findings highlight the complexity
of cold transduction and coding of cold stimuli by sensory nerve
fibers. An array of ion channels is involved in physiological cold
sensation and pain and in pathological cold-pain states, either
directly or through the tuning of the electrophysiological prop-
erties of the cell membrane. The molecular mechanisms of cold
hypersensitivity, such as allodynia, affect multiple ion channels
and pathways in different ways depending on the pathology in
place, even when they look very similar or indistinguishable at the
phenotypic level.
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