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Background and Purpose: Opioids are effective painkillers. However, their

risk–benefit ratio is dampened by numerous adverse effects and opioid misuse has

led to a public health crisis. Safer alternatives are required, but isolating the

antinociceptive effect of opioids from their adverse effects is a pharmacological

challenge because activation of the μ opioid receptor triggers both the anti-

nociceptive and adverse effects of opioids.

Experimental Approach: TheTREK1 potassium channel is activated downstream of μ

receptor and involved in the antinociceptive activity of morphine but not in its

adverse effects. Bypassing the μ opioid receptor to directly activate TREK1 could

therefore be a safer analgesic strategy.

Key Results: We developed a selectiveTREK1 activator, RNE28, with antinociceptive

activity in naive rodents and in models of inflammatory and neuropathic pain. This

activity was lost in TREK1 knockout mice or wild-type mice treated with the TREK1

blocker spadin, showing that TREK1 is required for the antinociceptive activity of

RNE28. RNE28 did not induce respiratory depression, constipation, rewarding

effects, or sedation at the analgesic doses tested.

Conclusion and Implications: This proof-of-concept study shows that TREK1 activa-

tors could constitute a novel class of painkillers, inspired by the mechanism of action

of opioids but devoid of their adverse effects.
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1 | INTRODUCTION

Although opioids are reference analgesics, particularly for nocicep-

tive pain, their risk–benefit ratio is not optimal because of frequent

and potentially serious adverse effects. The risk of dependence, for

example, has led to the opioid crisis in some western countries, with

a rise in the misuse of prescription opioids and deaths by overdose.

Dependence on opioids has colossal repercussions both for public

health in general and for the economy (Volkow & Collins, 2017).

Unfortunately, the pharmacopoeia of analgesics is scarce and no

other class of painkiller available on the market can be substituted
Abbreviations: %MPE, percentage of the maximum possible effect; KO, knockout; NCBI,

National Center for Biotechnology Information; WT, wild-type.
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for opioids, which remain the therapy of reference, particularly for

nociceptive pain.

From a pharmacological point of view, the main obstacle to

improving this situation lies in the fact that the analgesic and

adverse effects (constipation, nausea, vomiting, sedation, respiratory

depression,and dependence) of opioids are due to the activation of

the same μ opioid receptor whose ubiquitous location is the

origin of the wide diversity of the effects of opioids (Marrone

et al., 2017; Matthes et al., 1996). Several pharmacological strate-

gies have been developed with the aim of preserving the analgesic

activity of opioids while reducing their adverse effects. The design

of biased agonists is undoubtedly the most advanced initiative with

products in clinical trials that seem to provide a satisfactory analge-

sic effect and to induce fewer adverse effects than opioids. How-

ever, respiratory and digestive functions still seem to be affected

(DeWire et al., 2013; Manglik et al., 2016) and these molecules

might retain abuse potential through G-protein signalling (Negus &

Freeman, 2018). The only biased opioid tested in humans is

oliceridine (TRV130), which completed phase 3 clinical trials. In

October 2018, however, the US Food and Drug Administration

decided not to grant it approval owning to doubts whether the

benefits associated with the drug outweighed the risks (Mores,

Cummins, Cassell, & van Rijn, 2019).

Against this background, we initiated a different strategy

involving direct activation of an analgesic effector protein down-

stream of the μ receptor. The strategy is based on the finding that

TREK1 potassium channels, activated downstream of the μ recep-

tor, play an important part in the antinociceptive effect of

morphine and fentanyl without being involved in opioid adverse

effects (Devilliers et al., 2013). TREK1 is a background two-pore

potassium (K2P2.1) channel broadly expressed in humans in the

peripheral nervous system and CNS (with high expression in the

cerebellum and putamen) and, to a lesser extent, in other regions

such as the heart, lungs, smooth muscle (myometrium), pancreas

and prostate (Fink et al., 1996; Medhurst et al., 2001;

Schwingshackl, Teng, Ghosh, & Waters, 2013; Wu, Singer, &

Buxton, 2012). Its role in pain perception as well as in anaesthesia,

neuroprotection and depression is well documented (Alloui

et al., 2006; Heurteaux et al., 2004, 2006).

The involvement of TREK1 in the antinociceptive effect

of opioids together with the role of this channel in polymodal

nociceptors prompted us to develop TREK1 activators that could

have an antinociceptive activity devoid of opioid-related

adverse effects (Rodrigues et al., 2014; Vivier et al., 2017). Here,

we show that one of these molecules, (2E)-2-cyano-3-(furan-3-yl)

prop-2-enoic acid (RNE28), is a specific TREK1-activator with

antinociceptive properties in naive mice and rodent pain models.

The antinociceptive activity of RNE28 is strongly reduced by the

pharmacological blockade of TREK1 and in TREK1 knockout

(KO) animals. Most interestingly, RNE28 treatment does not induce

constipation, respiratory depression, sedation or rewarding effects

at the analgesic doses tested, which validates the concept of

TREK1 activation as an alternative to opioids.

2 | METHODS

2.1 | Animals and models

Procedures were evaluated by a regional ethics committee (CEMEA

Auvergne) before approval by the French Ministry of Research and

Education (project TREKANALGESIA) under the European 2010/63/

UE directive. Animal studies are reported in compliance with the

ARRIVE guidelines (Percie du Sert et al., 2020) and with the recom-

mendations made by the British Journal of Pharmacology (Lilley

et al., 2020). We provide the Extended Methods Form recommended

for uniformity and transparency in the reporting of animal studies

(Rice et al., 2008) (Data S1).

Experiments were conducted on 20–25 g (5–8 weeks old) male

C57Bl/6J mice (RRID:MGI:5650797) and male Sprague Dawley rats

(RRID:MGI:5651135) weighting 150–175 g (about 4 weeks old, neu-

ropathic pain model) or 175–200 g (about 5 weeks old, carrageenan

pain model), purchased from Janvier Labs and kept under standard

conditions (21–22�C, 12/12-h light/dark cycle, 55% humidity). RNE28

is inspired by the mechanism of action of opioids and because sex dif-

ferences have been observed in opioid analgesia (Craft, 2003), we did

not include female animals in the study. Upon arrival, animals were

given a week to acclimatize before any experimentation. Treatment

groups were randomized according to the method of equal blocks and

experimenters were blind to the treatment and genotype. TREK1−/−

mice were generated by crossing mice carrying an allele of the Kcnk2

gene in which exon 3 was floxed (Heurteaux et al., 2006) (RRID:

MGI:3050295) with ZP3-Cre mice (de Vries et al., 2000) (RRID:

MGI:3835429), both in C57Bl6/J background. TREK1+/− F2 offspring

not carrying the ZP3-Cre transgene were crossed to generate

What is already known

• The μ opioid receptor drives both the antinociceptive and

adverse effects of opioids.

• TREK1 is activated downstream of μ receptor and con-

tributes to the antinociceptive effect of morphine.

What this study adds

• Direct pharmacological activation of TREK1 induces

antinociception without opioid adverse effects.

What is the clinical significance

• TREK1 activators could constitute a new class of analge-

sic drugs with improved risk–benefit ratio.
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TREK1−/− and TREK1+/+ littermates, weaned in separate cages after

genotyping using 2-mm tail samples taken at 10 days of age. Identifi-

cation was made by digital tattoos.

The post-operative pain model was induced in the mice by a ster-

ile 4-mm incision of the skin, fascia and muscle in the midline of the

left hind paw, from the base of the heel, before suture of the skin at

two sites. The procedure was performed under 3% isoflurane anaes-

thesia and pain thresholds were measured 24 and 48 h post-surgery.

The chronic constriction injury (CCI) model was induced in rats as pre-

viously described (Chaumette et al., 2018) and consists in tying four

loose ligatures around the common sciatic nerve under pentobarbital

anaesthesia so that the epineurial blood flow is decreased but not

interrupted.

2.2 | Materials

RNE28 (see Supplementary Methods section in the supporting infor-

mation for synthesis), spadin (Tocris Bioscience), duloxetine (Eli Lily),

morphine chlorhydrate (Coopération Pharmaceutique Française),

gabapentin (LeanCare), riluzole (Tocris Bioscience) and λ-carrageenan

(Sigma-Aldrich) were dissolved in 0.9% NaCl on the day of use, or the

day before with overnight stirring for λ-carrageenan and delivered by

oral gavage (p.o.), subcutaneous injection (s.c.) or intraperitoneal injec-

tion (i.p.) in a volume of 10 ml�kg−1 (mice) or 2 ml�kg−1 (rats). Intra-

cerebroventricular (i.c.v.), intrathecal (i.t.) and intraplantar (i.pl.)

injections in volumes of 2, 5 and 20 μl, respectively, were given to

mice under brief 2% isoflurane anaesthesia for the first two routes.

The intraplantar injection volume in rats was 200 μl. Positive controls

were used at the following doses: 5 mg�kg−1 morphine in rats for anal-

gesia (Tsutsui, Wood, & Craft, 2011), 3 mg�kg−1 morphine in mice for

analgesia and constipation (Devilliers et al., 2013), 50 mg�kg−1 mor-

phine in mice for respiratory depression (Devilliers et al., 2013),

15 mg�kg−1 morphine in mice for place preference conditioning

(Francès, Smirnova, Leriche, & Sokoloff, 2004), 10 mg�kg−1 duloxetine
for screening tests of antidepressant drugs (Zomkowski, Engel, Cunha,

Gabilan, & Rodrigues, 2012) and 100 mg�kg−1 gabapentin in rats for

neuropathic pain relief (Urban et al., 2005).

2.3 | Evaluation of pain thresholds

Thermal pain thresholds were assessed in mice by immersion of the

left hind paw up to the ankle in a 46�C water bath until shaking or

withdrawal of the paw was observed (Lolignier et al., 2011). Animals

were manually restrained in a dedicated piece of fabric with only one

paw and the tail out. To minimize stress, they were habituated to the

test twice a day for 2 weeks prior to testing, with the water bath tem-

perature set at 28�C. The first two latencies measured at no more

than a second apart were averaged and assigned as the pain thresh-

old. A cut-off time of 30 s was applied. Percentages of the maximum

possible effect (%MPE) were calculated as follows: 100 * (thresh-

old − baseline)/(cut-off − baseline).

Mechanical pain thresholds were assessed by applying von Frey

filaments (Bioseb) calibrated from 0.02 to 1.40 g perpendicularly to

the plantar surface of the left hind paw using the up-down method

(Chaplan, Bach, Pogrel, Chung, & Yaksh, 1994). Results were

expressed as the calculated force required to trigger a paw with-

drawal 50% of the time. Animals were habituated to the von Frey

chambers for 1 h twice the day before the experiment and 1 h

immediately prior to the experiment. In rats, mechanical pain thresh-

olds were assessed by the paw pressure test on a Randall–Selitto

apparatus (Takesue, Schaefer, & Jukniewicz, 1969) (Ugo Basil, probe

tip diameter of 1 mm). The test consists in applying an increasing

force to the left hind paw until withdrawal or vocalization. Pain

thresholds were the average of two consecutive measurements. The

cut-off was set at 450 g.

2.4 | Predictive tests for antidepressant drugs

We assessed the antidepressant-like and prodepressant-like effects of

drugs with two tests used for the screening of antidepressant drugs:

the forced swimming test and the tail suspension test (TST) (Porsolt,

Bertin, & Jalfre, 1977; Steru, Chermat, Thierry, & Simon, 1985). The

forced swimming test consisted in measuring the immobility time of

mice forced to swim for 6 min in a 13-cm-diameter glass beaker filled

with water at 22 ± 2�C. The tail suspension test consisted in measur-

ing the immobility time of mice taped by the tail to a string, the head

pointing down 15 to 20 cm above the bench. Drugs were adminis-

tered 30 min prior to each test.

2.5 | Conditioned place preference

Drug rewarding effects were assessed with an unbiased conditioned

place preference protocol (Hajasova, Canestrelli, Acher, Noble, &

Marie, 2018; Tzschentke, 2007). The conditioned place preference

apparatus (Imetronic) is made up of four identical boxes each of which

has two lateral chambers (15 × 15 × 20 cm) connected by a central

alley (5 × 15 × 20 cm) and two sliding doors to separate the alley from

the chambers. In each chamber, two Plexiglas prisms with triangular

bases (5 × 7 × 19 cm) were arranged to form different patterns and to

cover the same surface of the chamber. They were used, along with

two different types of embossed Plexiglas floors (gridded or striped

patterns), as conditioning stimuli. The protocol was performed in three

phases. (1) Preconditioning phase during which drug-naive animals

had free access to both chambers for 20 min and the time spent in

each chamber was recorded. (2) Conditioning phase lasting 4 days

during which the conditioning chambers were closed. In the morning

of the first conditioning day, mice received the vehicle and were

placed individually in one of the conditioning environments for

20 min. In the afternoon, they were given the drug in the opposite

compartment. This sequence was alternated over the next 3 days.

(3) Test phase which took place 1 day after the final conditioning ses-

sion and was carried out similarly to the preconditioning phase.
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Conditioned place preference scores (in seconds) were calculated as

the difference between the time spent in the drug-paired compart-

ment during the test phase and the time spent in the same compart-

ment during the preconditioning phase.

2.6 | Sedation

Sedation was assessed in animals by locomotor activity recordings using

an IR actimeter and by motor coordination using the rotarod test

(Bourin, Hascoet, Mansouri, Colombel, & Bradwejn, 1992). The IR

actimeter (Apelex) is a set of 26 × 21 × 10-cm dark boxes crossed by

two IR beams originating perpendicularly from the centre of two adja-

cent walls at a height of 1 cm. Thirty minutes after drug administration,

mice were placed in the boxes with no prior habituation and

the number of beam interruption was counted over 10 min. For the

rotarod test (Bioseb), animals were first habituated to stay on the

motionless rod for 10 min followed by another 10 min at a rotational

speed of 4 rpm. Animals received the drug immediately after the training

and the test was performed 30 min later. The test consists in measuring

the latency to fall of animals as the rotation increases from 4 to 40 rpm

linearly over 5 min. The two closest values of three trials were averaged.

2.7 | Whole-body plethysmography

Respiratory rate was assessed in conscious mice by whole-body pleth-

ysmography (Devilliers et al., 2013). Animals were placed in the cham-

ber (Buxco, unrestrained whole-body plethysmograph) 15 min before

drug administration and their respiratory rate was subsequently mea-

sured continuously for 240 min.

2.8 | Gastrointestinal transit

Gastrointestinal transit was firstly monitored by oral gavage with 10%

methylene blue in a volume of 20 ml�kg−1, 30 min after drug adminis-

tration (Devilliers et al., 2013). Fifteen minutes after methylene blue

gavage, animals were killed and the small intestine was removed to

measure the ratio of the length travelled by the dye over the total

length of the small intestine, from the stomach to the caecum. To

evaluate colonic transit, we used the bead expulsion test (Raffa,

Mathiasen, & Jacoby, 1987). After 20-min habituation to the cage, a

3-mm bead was inserted into the distal colon with a catheter 2 cm

away from the anus. The time to expulsion of the bead was measured

before injection of the drug. The test was performed again 30 min

after drug administration and the result is given baseline-subtracted.

2.9 | Constructs

Human TREK1 (Moha ou Maati et al., 2011) (KCNK2, National

Center for Biotechnology Information [NCBI] RefSeq NM_014217),

TREK2 (Lesage, Maingret, & Lazdunski, 2000) (KCNK10, GenBank:

BC069462.1), and TRAAK (Lesage, Terrenoire, Romey, &

Lazdunski, 2000) (KCNK4, NCBI RefSeq NM_033310.3) and

chimeras were cloned into pIRES2-eGFP vector (Clontech). All

the chimeras were obtained by overlapping PCR and inserted

into the same vector. All the constructs were verified by DNA

sequencing.

2.10 | Cell culture and transfection

HEK-293 cells (RRID:CVCL_0045) were grown in DMEM (Gibco, Life

Technologies) supplemented with 10% fetal calf serum (Hyclone,

Thermo Fisher Scientific GMBH) and 1% penicillin–streptomycin

(Gibco, Life Technologies) in a humidified incubator at 37�C, 5% CO2.

For electrophysiology, cells were plated on 35-mm dishes at a density

of 30,000 cells per dish, transfected 2 h after plating with 0.8-μg DNA

per dish using JET PEI according to the manufacturer's instructions

(Polyplus transfection). Experiments were performed over the follow-

ing 1–2 days.

2.11 | Electrophysiology

For whole-cell patch-clamp recordings, dishes were continuously

perfused with control bath solution containing (in mM) 140 NaCl,

10 tetraethylammonium-Cl, 5 KCl, 3 MgCl2, 1 CaCl2 and 10 HEPES

and adjusted to pH 7.4 with NaOH. The pipette solution contained

(in mM) 155 KCl, 3 MgCl2, 5 EGTA and 10 HEPES and was

adjusted to pH 7.2 with KOH. Currents were recorded with a RK

400 patch-clamp amplifier (Bio-Logic Science Instruments), low-pass

filtered at 3 kHz and digitized at 10 kHz with a Digidata-1322

(Axon Instrument). Clampex 8.2 software was used for current

recordings and voltage stimulations. Patch pipettes were double

step-pulled and had resistances of 2–4 MΩ. Whole-cell patch-

clamp configuration was obtained at a holding potential of

−80 mV. Voltage ramp protocols consisted of a step to −100 mV

(20 ms in duration) followed by a ramp from −100 to +60 mV

over 400 ms, applied every 5 s. Currents were recorded during

control bath solution perfusion and during perfusion of bath solu-

tion supplemented with RNE28.

2.12 | Data and statistical analysis

Data were analysed with GraphPad Prism 6.07 (RRID:SCR_002798).

Outliers were removed by the ROUT method with Q = 0.1%.

Statistical significance was tested by non-parametric tests

(Mann–Whitney for comparing two groups and Kruskal–Wallis for

comparing three groups or more) and by parametric tests when all

groups passed the D'Agostino and Pearson omnibus normality test

(Student's t-test for comparing two groups and one-way ANOVA

for comparing three groups or more). Two-way ANOVA was used
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for comparing two groups or more with two varying factors. Post

hoc tests (Sidak's, Dunnett's, or Dunn's tests) were ran in accor-

dance with the experimental design and are indicated in the figures

legends. Median effective doses (ED50) and concentrations (EC50)

were calculated following least square fit of the data with sigmoidal

four-parameter dose–response curve and ED50 and Emax were com-

pared between groups with the extra sum-of-squares F test. All the

data are presented as mean ± SEM, except for non-linear regression

results (Emax, ED50 and EC50), presented as mean ± SD. Significance

threshold was *P < 0.05. Details of the statistical analyses

(n numbers, outliers, normal distribution, tests and post hoc tests)

and their results (F and P values for each factor and their interac-

tion) are given in Table S1. Statistical analysis was undertaken only

for studies in which each group size was at least n = 5 and n num-

bers account for independent values only, not technical replicates.

Group sizes were set at the minimum to give reproducible and sta-

tistically significant differences between positive and negative con-

trol groups. The data and statistical analysis comply with the

recommendations of the British Journal of Pharmacology on experi-

mental design and analysis in pharmacology (Curtis et al., 2018).

2.13 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander et al., 2019).

3 | RESULTS

3.1 | RNE28 is aTREK1 activator with
antinociceptive activity in naive mice and rodent pain
models

Screening of a series of previously synthetized compounds (Vivier

et al., 2017) enabled us to identify RNE28 as an activator of the

human TREK1 channel. In patch-clamp experiments, TREK1 current

at +60 mV was increased with an Emax of 4.46-fold and an EC50 of

37.37 μM (Figure 1a). At 100-μM RNE28, TREK1 activation reached

F IGURE 1 Activation of TREK1 by RNE28 and its antinociceptive activity in mice. (a) Currents recorded at +60 mV in HEK-293 cells
transfected with the humanTREK1 channel in response to 0.1 (n = 6), 1 (n = 6), 10 (n = 5), 20 (n = 6), 50 (n = 7), 100 (n = 7) and 200 (n = 5) μM of
RNE28, expressed as the ratio of currents recorded after and before RNE28 exposure. TREK1 dose–effect curve was generated by the least
square method. Responses to 100-μM RNE28 of cells transfected with the humanTREK2 (n = 10) and TRAAK (n = 5) channels are indicated. The
insert shows RNE28 skeletal formula. (b) Left, time course of the antinociceptive effect induced by 0 (n = 5), 15 (n = 8), 30 (n = 7) and 60 (n = 8)
mg�kg−1 RNE28 administered orally in naive mice. Pain thresholds were assessed by paw immersion in 46�C water and plotted as %MPE. Right,
AUCs calculated from 0 to 90 min post-administration. (c) Left, time course of the antinociceptive effect induced by 0 (n = 5), 15 (n = 7), 30 (n = 7)

and 60 (n = 8) mg�kg−1 RNE28 administered orally in mice 3.5 h following paw inflammation induction by intraplantar carrageenan injection (20 μl,
3%). Pain thresholds were assessed by paw immersion in 46�C water and plotted as %MPE. Right, AUCs calculated from 0 to 90 min post-
administration. (d) Dose–effect curves of the antinociceptive activity of RNE28 30 min following oral gavage in naive (a) and carrageenan-injected
(b) mice. Datasets were fitted with the least square method and fits were compared with the extra sum-of-square F test. ED50, Emax, and P and
F values are shown on the right. *P < 0.05 versus vehicle (b, c) or naive (d). Two-way ANOVA followed by Dunnett's post hoc test (b, c left),
Kruskal–Wallis followed by Dunn's post hoc test (b, c right) and two-way ANOVA followed by Sidak's post hoc test (d). n numbers represent cells
(a) or mice (b–d)
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its maximum with a current increase of 4.54-fold. In contrast,

TREK2 and TRAAK currents were only increased by 1.78-fold and

1.38-fold, respectively. RNE28 binding to 81 different receptors,

channels and transporters was also assessed with no positive hit

(Figure S1). We consequently aimed to assess whether RNE28,

which has an interesting selectivity for TREK1 over the

evolutionary-related TREK2 and TRAAK channels, could have an

antinociceptive activity. Oral administration of RNE28 in naive mice

induced a dose-dependent antinociceptive effect peaking at 30 and

15 min and lasting for 30 and 45 min at 30 and 60 mg�kg−1, respec-
tively (Figure 1b). A low dose of 15 mg�kg−1 had no effect on the

pain thresholds of naive mice. However, in animals undergoing

carrageenan-induced paw inflammation, a reduction in pain thresh-

olds was observed from 15 mg�kg−1 (Figure 1c) and the percentage

of the maximum possible effect (%MPE) achieved at 30 and

60 mg�kg−1 was higher than in naive animals. At these two doses,

the peak of antinociception was observed 30 min after gavage and

the antinociceptive effect lasted for 45 to 60 min. Plotting and

fitting of the %MPE values obtained for the three RNE28 doses in

both naive and inflamed mice at 30 min post-administration resulted

in two separate dose–effect curves (Figure 1d). While ED50 were

not different between naive and carrageenan-injected mice

(26.47 ± 3.72 and 28.40 ± 5.65 mg�kg−1, respectively), Emax was

higher in inflamed animals (77.50 ± 7.10%) than in naive animals

(46.55 ± 8.28%). Compared to morphine, RNE28 was 10 to 5 times

less potent in naive animals and in the carrageenan model, respec-

tively (ED50 of morphine: 2.96 ± 0.13 and 6.09 ± 0.14 mg�kg−1,
respectively, Figure S2), with a very similar maximum effect

(77.60 ± 6.13% and 84.16 ± 3.90%, respectively). In a different

post-operative pain model induced in mice by subplantar incision,

we found that the 15 mg�kg−1 dose of RNE28 was also able to

reduce hyperalgesia in response to both thermal (heat) and mechani-

cal stimulation modalities (Figure 2a,b). The 30 mg�kg−1 RNE28 dose

had an effect of 57% of that of 3 mg�kg−1 morphine for heat-

triggered hypersensitivity, considering AUC for the whole 90-min

time course and 77% for mechanical hypersensitivity. We then

assessed the effect of RNE28 on mechanical pain thresholds in rats,

in which we had first estimated the plasma half-life of RNE28 to be

F IGURE 2 RNE28 effect on thermal and mechanical pain thresholds in inflammatory and neuropathic rodent pain models. (a) Left, time
course of the antinociceptive effect induced by 3 mg�kg−1 morphine (n = 8) or 0 (n = 8), 15 (n = 8) and 30 (n = 8) mg�kg−1 RNE28 administered
orally in mice 24 h following post-operative pain induction by paw incision and suture. Pain thresholds were evaluated by the von Frey test. Right,
AUCs calculated from 0 to 90 min post-administration. (b) Left, time course of the antinociceptive effect induced by 3 mg�kg−1 morphine (n = 10)
or 0 (n = 10), 15 (n = 10) or 30 (n = 10) mg�kg−1 RNE28 administered orally in mice 48 h following post-operative pain induction by paw incision
and suture. Pain thresholds were assessed by paw immersion in 46�C water. Right, AUCs calculated from 0 to 90 min post-administration. (c) Left,

time course of the antinociceptive effect induced by 5 mg�kg−1 morphine (n = 8) or 0 (n = 8), 100 (n = 8) or 200 (n = 8) mg�kg−1 RNE28
administered orally in rats 4 h following paw inflammation induction by intraplantar carrageenan injection (200 μl, 2%). Pain thresholds were
assessed by the paw pressure test. Right, AUCs calculated from 0 to 120 min post-administration. (d) Left, time course of the antinociceptive
effect induced by 100 mg�kg−1 gabapentin (n = 7) or 0 (n = 9), 100 (n = 10) or 200 (n = 10) mg�kg−1 RNE28 administered orally in neuropathic rats
14 days following chronic constriction of the sciatic nerve. Pain thresholds were assessed by the paw pressure test. Right, AUCs calculated from
0 to 120 min post-administration. *P < 0.05 versus vehicle. Two-way ANOVA followed by Dunnett's post hoc test (a–d left) and Kruskal–Wallis
followed by Dunnett's post hoc test (a–d right). n numbers represent mice (a, b) and rats (c, d)
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0.2–0.3 h (Figure S3). We used two pain models of different aetiol-

ogies: the inflammatory pain model induced by intraplantar carra-

geenan injection and a neuropathic pain model induced by loose

ligation of the sciatic nerve (CCI model). In a rat model of inflamma-

tory pain, hyperalgesia was reduced by RNE28 at 100 and

200 mg�kg−1, with the latter inducing an antihyperalgesic effect sim-

ilar to that of 5 mg�kg−1 morphine (AUC of 7,636 ± 955 and

7,960 ± 733, respectively, Figure 2c). In neuropathic animals, both

100 and 200 mg�kg−1 doses of RNE28 had an antihyperalgesic

activity, with 200 mg�kg−1 RNE28 being as effective in relieving

hypersensitivity as 100 mg�kg−1 of gabapentin (AUC of 4,573 ± 934

and 4,519 ± 1,440, respectively), the reference molecule in the

treatment of neuropathic pain, a condition particularly resistant to

conventional painkillers including opioids. It is noteworthy that both

gabapentin and RNE28 only partially reversed hypersensitivity in

neuropathic rats, whereas an increase in pain threshold up to base-

line values was observed in inflamed rats given morphine or RNE28.

3.2 | The antinociceptive activity of RNE28 is
mediated by TREK1

To assess the contribution of TREK1 channels to the antinociceptive

effect of RNE28, we treated naive wild-type (WT) and TREK1 KO

mice with 30 mg�kg−1 RNE28 (ED50 RNE28 = 28.4 mg�kg−1,
Figure 1d) and followed for 60 min the evolution of pain thresholds

in response to paw immersion in 46�C water. As previously

reported (Alloui et al., 2006), we observed that TREK1−/− mice have

lower basal heat pain thresholds than WT animals (6.4 ± 0.3 s

vs. 8.7 ± 0.3 s, respectively, P < 0.05, unpaired two-tailed Student's

t-test). Thirty minutes after RNE28 administration, the %MPE score

was 66.5 ± 18.8% in WT animals but was down to 25.1 ± 5.2% in

TREK1−/− mice (Figure 3a). Over the 60-min time course, the AUC

of the antinociceptive effect of RNE28 was reduced by 45.4% in

KO mice in comparison to WT animals. To further confirm the con-

tribution of TREK1 to the antinociceptive effect of RNE28, we used

pharmacological inactivation of TREK1 with spadin, a known selec-

tive blocker of the channel (Mazella et al., 2010) able to block the

effect of RNE28 on TREK1 current in vitro (Figure S4). We adminis-

tered a dose of 1 mg�kg−1 spadin because we found it was suffi-

cient to reduce the antinociceptive activity of 3 mg�kg−1 morphine

by 91.8% (Figure 3b). Similarly to what we observed in KO animals,

systemic administration of spadin at 1 mg�kg−1 induced a reduction

in the antinociceptive effect of 30 mg�kg−1 RNE28 (Figure 3c). At

30 min post-injection, RNE28 had an antinociceptive effect of

6.07 ± 1.4% MPE when co-administered with spadin compared to

15.8 ± 1.1% in animals given RNE28 alone. AUC of the anti-

nociceptive effect over 90 min was also decreased by 58% with

spadin co-administration.

To gain further insight into the site of action of RNE28, we

administered spadin locally to block TREK1 at the periphery

(intraplantar injection), in the spinal cord (intrathecal injection) or at

the supraspinal level (intracerebroventricular injection), together with

intraperitoneal injections of RNE28 at 30 mg�kg−1. Intrathecal injec-
tion of 10 ng (5 pmol) spadin resulted in a strong decrease in RNE28

antinociceptive activity, with a 72% AUC reduction in the spadin-

treated group and an antinociceptive effect at 30 min of 2.8 ± 1.5%

versus 18.2 ± 2.6% MPE in animals given RNE28 alone (Figure 3d).

Injection of 4 ng (2 pmol) spadin in the lateral ventricular space of

the brain resulted in a reduction of the antinociceptive effect of

RNE28 by 52% (AUC), with a maximum possible effect at 30 min

dropping from 17.1 ± 3.7% to 7.2 ± 1.7% MPE (Figure 3e). Finally,

peripheral blockade of TREK1 channels by intraplantar delivery of

40 ng (20 pmol) spadin was also effective in decreasing the anti-

nociceptive activity of RNE28, albeit to a lesser extent. AUC was

reduced by 23% in animals injected with spadin, whose pain thresh-

olds at 30 min were 7.3 ± 2.8% MPE versus 12.8 ± 2.6 in the control

group (Figure 3f).

Spadin has been described for its antidepressant effect which is

characterized in mice by a decreased immobility time during predictive

tests for antidepressant drugs such as the forced swimming test and

the tail suspension test (Mazella et al., 2010). We therefore decided

to look for an effect of RNE28 in the same tests. Naive mice were

given RNE28 at 15 or 30 mg�kg−1 and were submitted to the forced

swimming test or to the tail suspension test at 30 min post-adminis-

tration, which corresponds to the peak of RNE28 antinociceptive

activity. In both tests, the average immobility time of mice did not dif-

fer between the three groups given RNE28 and the control group

while the antidepressant duloxetine given at 10 mg�kg−1 had a strong

effect (Figure 3g,h).

3.3 | TREK1 activation by RNE28 requires the N-
terminal domain of the channel

RNE28 at 100 μM was observed to strongly activate the human

TREK1 channel without activating the evolutionary-related human

TRAAK channel (Figure 1a) and so we generated seven different

hTREK1/hTRAAK chimeric clones to determine which of the TREK1

domains was/were involved in the activation by RNE28 (Figure 4a).

Clones were expressed in HEK-293 cells and changes in whole-cell

current in response to 100-μM RNE28 were explored by patch-clamp.

Voltage ramps from −100 to +60 mV were applied starting from a

holding potential of −80 mV. We confirmed the activation of TREK1

(Figure 4b) but not that of TRAAK (Figure 4c) by 100-μM RNE28. We

then compared the average current produced by different chimeras at

+60 mV (Figure 4d). Replacing the first (chimera 2), second (chimera

3), or both TRAAK extracellular loops (chimera 1) by those of TREK1

did not affect the sensitivity of the channel to RNE28 and nor did the

replacement of the C-terminal tail of the channel (chimera 5), even

with the addition of the third and fourth transmembrane domains

(chimera 7). However, we found that chimera 4, in which the N-

terminal domain of TRAAK was replaced by that of TREK1, was

activated by RNE28 (Figure 4e). The increase in current at +60 mV

produced by RNE28 in cells transfected with chimera 4 was 73%. In

chimera 6, carrying a TREK1 sequence including the N-terminus and
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F IGURE 3 Contribution of TREK1 to RNE28-induced antinociception in mice. (a) Left, time course of the antinociceptive effect induced by
30 mg�kg−1 RNE28 administered orally in WT (n = 9) and TREK1−/− (n = 8) mice. Spadin was injected 10 min before RNE28. Pain thresholds were
assessed by paw immersion in 46�C water and plotted as %MPE. Right, AUCs calculated from 0 to 60 min post-administration. (b) Left, time

course of the antinociceptive effect induced in mice by co-treatment with 3 mg�kg−1 subcutaneous morphine and 0.1 (n = 9), 1 (n = 9) and 10
(n = 6) mg�kg−1 subcutaneous spadin or vehicle (n = 6). Spadin was injected 10 min before morphine. Pain thresholds were assessed by paw
immersion in 46�C water and plotted as %MPE. Right, AUCs calculated from 0 to 90 min post-administration. (c) Left, time course of the
antinociceptive effect induced in mice by co-treatment with 30 mg�kg−1 intraperitoneal RNE28 and 1 mg�kg−1 subcutaneous spadin (n = 10) or
vehicle (n = 9). Spadin was injected 10 min before RNE28. Pain thresholds were assessed by paw immersion in 46�C water and plotted as %MPE.
Right, AUCs calculated from 0 to 90 min post-administration. (d) Left, time course of the antinociceptive effect induced in mice by co-treatment
with 30 mg�kg−1 intraperitoneal RNE28 and 5-pmol intrathecal spadin (n = 10) or vehicle (n = 10). Spadin was injected 10 min before RNE28. Pain
thresholds were assessed by paw immersion in 46�C water and plotted as %MPE. Right, AUCs calculated from 0 to 90 min post-administration.
(e) Left, time course of the antinociceptive effect induced in mice by co-treatment with 30 mg�kg−1 intraperitoneal RNE28 and 2-pmol
intracerebroventricular spadin (n = 10) or vehicle (n = 9). Spadin was injected 10 min before RNE28. Pain thresholds were assessed by paw
immersion in 46�C water and plotted as %MPE. Right, AUCs calculated from 0 to 90 min post-administration. (f) Left, time course of the
antinociceptive effect induced in mice by co-treatment with 30 mg�kg−1 intraperitoneal RNE28 and 20-pmol intraplantar spadin (n = 10) or
vehicle (n = 9). Spadin was injected 10 min before RNE28. Pain thresholds were assessed by paw immersion in 46�C water and plotted as %MPE.
Right, AUCs calculated from 0 to 90 min post-administration. (g) Immobility time of mice submitted to the forced swimming test 30 min after
administration of 10 mg�kg−1 duloxetine (n = 9) or 0 (n = 9), 15 (n = 9) or 30 (n = 9) mg�kg−1 RNE28. (h) Immobility time of naive mice submitted to
the tail suspension test 30 min following administration of 10 mg�kg−1 duloxetine (n = 8) or 0 (n = 8), 15 (n = 8), or 30 (n = 8) mg�kg−1 RNE28.
*P < 0.05 versus WT (a) or vehicle (b–h). Two-way ANOVA followed by Sidak's post hoc test (a–f left), unpaired two-tailed Student's t-test
(a right, c, d right), unpaired two-tailed Mann–Whitney test (e, f right), one-way ANOVA followed by Dunnett's post hoc test (g) and
Kruskal–Wallis followed by Dunn's post hoc test (b left, h). n numbers represent mice
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the first two transmembrane domains, the effect of 100-μM RNE28

was more pronounced, with an increase in current of 130% (Figure 4f).

3.4 | RNE28 does not induce opioid-related adverse
effects

The rationale behind the development of TREK1 activators with an

analgesic perspective resides in part in the fact that morphine loses its

antinociceptive activity in TREK1-deficient mice while opioid-related

adverse effects are unaffected by the absence of functional TREK1

channels (Devilliers et al., 2013). TREK1 is therefore only involved in

the antinociceptive effect of morphine and its activation could result

in antinociception without the induction of opioid-related adverse

effects. Thus, we investigated for constipation, sedation, respiratory

depression and rewarding effects in mice treated with the same

15, 30 and 60 mg�kg−1 doses given orally.

We first assessed the gastrointestinal transit of RNE28-treated

mice by two different tests, with the aim of quantifying transit in the

colon as well as in the stomach and small intestine. First, we moni-

tored the expulsion time of a 3-mm bead inserted into the distal colon

of mice, 2 cm from the anus (Figure 5a). While the latency to bead

expulsion was increased 30 min after gavage with 3 mg�kg−1 mor-

phine, RNE28 up to 60 mg�kg−1 had no effect on colonic transit. We

then administered methylene blue orally to mice 30 min after

3 mg�kg−1 morphine or RNE28 at 15, 30 and 60 mg�kg−1. Fifteen

minutes after gavage with methylene blue, the dye had covered

61 ± 3% of the stomach–caecum distance in vehicle-treated animals

(Figure 5b). In animals given morphine, the dye progression was only

36 ± 4% while in RNE28-treated mice, no difference in methylene

blue transit was observed in comparison to the control group.

RNE28-induced sedation was assessed by locomotor activity

recordings (IR actimeter, Figure 5c) and motor coordination (rotarod

test, Figure 5d) in mice following RNE28 administration. Thirty

minutes after oral gavage with RNE28 up to 60 mg�kg−1, no impair-

ment of motor function was observed in either test.

The respiratory rate of mice was also followed over 240 min

after oral gavage of RNE28 by whole-body plethysmography

(Figure 5e). While 50 mg�kg−1 morphine induced a strong respiratory

depression, characterized by a reduction of the respiratory rate in

mice lasting for 180 min, the respiratory rate of mice given 15, 30 or

60 mg�kg−1 RNE28 was undistinguishable from that of mice treated

with the vehicle.

We also treated animals twice daily with 30 mg�kg−1 RNE28 for

9 days to look for the development of a tolerance to the analgesic

activity of RNE28. We observed a non-significant reduction in the

analgesic effect of RNE28, suggesting that tolerance to the product

could develop over time (Figure S5).

Finally, using the conditioned place preference test, we assessed

whether RNE28 could induce rewarding effects (Figure 5f). After

4 days of conditioning, during which mice received a daily administra-

tion of the drug in one compartment and of vehicle in the other one,

F IGURE 4 Responses of TREK1/TRAAK chimeras to RNE28. (a) Schematic description of humanTREK1 (orange), TRAAK (purple) and
TREK1/TRAAK chimeras constructions. (b, c) Current–voltage curves obtained from HEK-293 cells transfected withTREK1 (b) or TRAAK
(c) clones in response to a voltage ramp protocol from −100 to +60 mV before (black) and after (red) application of 100-μM RNE28. (d) Relative

current increase at +60 mV in presence of 100-μM RNE28 (red), expressed as percentage of the baseline recorded with the control perfusion
(black). (e, f) Current–voltage curves obtained from HEK-293 cells transfected with chimera 4 (e) or chimera 6 (f) clones in response to a voltage
ramp protocol from −100 to +60 mV before (black) and after (red) application of 100-μM RNE28. *P < 0.05 versus baseline. Two-way ANOVA
followed by Sidak's post hoc test (b–f left). n = 13 TREK1, n = 6 TRAAK, n = 11 chimera 1, n = 7 chimera 2, n = 10 chimera 3, n = 20 chimera 4,
n = 6 chimera 5, n = 14 chimera 6 and n = 8 chimera 7. n numbers represent cells
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animals were allowed to explore both compartments freely. Mice

treated daily with 10 mg�kg−1 morphine developed conditioned place

preference, characterized by an increase in the conditioned place

preference score (time spent in the drug-paired compartment minus

the time spent in the same compartment before the conditioning

phase) compared to that of the vehicle-treated group. In

RNE28-treated animals, no preference for or aversion to the drug-

paired compartment was observed, whatever the dose. In parallel, we

tried to induce naloxone-precipitated withdrawal in mice given

RNE28 twice a day for 9 days and observed no jumping behaviour,

which is characteristic of opioid withdrawal (Figure S6).

4 | DISCUSSION

This study provides a proof-of-concept of the antinociceptive activity

and safety of selectiveTREK1 pharmacological activation in mice using

the newly developed compound RNE28. RNE28 activates the human

TREK1 channel with an EC50 of 37.4 μM, which is higher than that of

other known TREK1 activators such as BL-1249 (Pope et al., 2018)

(EC50 = 5.5 μM), ML335 (Lolicato et al., 2017) (EC50 = 5.2 μM), ML402

(Lolicato et al., 2017) (EC50 = 5.9 μM), ML67-33 (Bagriantsev

et al., 2013) (EC50 = 9.7 μM) and GI-530159 (Loucif et al., 2018)

(EC50 = 0.9 μM). However, these compounds are all described as dual

F IGURE 5 Opioid-related adverse effects monitoring in RNE28-treated mice. (a) Latency to expulsion of a 3-mm-diameter bead inserted
intrarectally in mice 30 min after oral gavage with 3 mg�kg−1 morphine (n = 6 mice) or 0 (n = 6), 15 (n = 6), 30 (n = 5) or 60 (n = 6) mg�kg−1 RNE28.
Results are shown in minutes as differences between post-gavage and baseline latencies (baseline-subtracted). (b) Left, intestinal progression of

methylene blue administered by oral gavage in mice 30 min after oral gavage with 3 mg�kg−1 morphine (n = 9 mice) or 0 (n = 9), 15 (n = 9), 30
(n = 9) or 60 (n = 8) mg�kg−1 RNE28. Mice were killed 15 min after methylene blue gavage. Results are expressed as percentage of the stomach to
caecum distance covered by methylene blue. Right, representative intestines of mice treated with the vehicle, 3 mg�kg−1 morphine or 60 mg�kg−1
RNE28. Red arrows indicate the distance travelled by the dye. (c) Locomotor activity of mice, monitored by IR actimetry 30 min after oral gavage
with 0 (n = 9), 15 (n = 10), 30 (n = 10), or 60 (n = 10) mg�kg−1 RNE28. (d) Motor coordination of mice, assessed by the rotarod test 30 min after
oral gavage with 0 (n = 9), 15 (n = 10), 30 (n = 10) or 60 (n = 10) mg�kg−1 RNE28. (e) Respiratory rate of conscious mice monitored by whole-body
plethysmography for 240 min after oral gavage of 50 mg�kg−1 morphine or 0, 15, 30, or 60 mg�kg−1 RNE28 (n = 6 mice per group). (f) Place
preference of mice for the drug compartment after 4 days of conditioning consisting in daily oral gavage with the vehicle in the control
compartment and 15 mg�kg−1 morphine (n = 9 mice) or 0 (n = 12), 15 (n = 12), 30 (n = 12) or 60 (n = 12) mg�kg−1 RNE28 in the drug compartment.
*P < 0.05 versus vehicle. Two-way ANOVA followed by Dunnett's post hoc test (a), one-way ANOVA followed by Dunnett's post hoc test (b, d, g)
and Kruskal–Wallis followed by Dunn's post hoc test (c, f). n numbers represent mice
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TREK1/TREK2 activators, in addition to being TRAAK activator for

ML67-33. RNE28 is the first compound shown to activateTREK1 spe-

cifically among TREK1, TREK2 and TRAAK channels. No data regard-

ing the antinociceptive effect of BL-1249, ML335, ML402, ML67-33

and GI-530159 have yet been generated, but we show that activation

of TREK1 alone by RNE28 is able to produce an antinociceptive effect

in naive animals. RNE28 was even more effective in relieving hyper-

sensitivity in an animal model of inflammatory pain, as shown by the

increased maximum possible effect and the lower minimum effective

dose in mice after injection of carrageenan into the paw. In this model,

RNE28 increased mechanical pain thresholds and totally reversed

thermal hyperalgesia. In these two conditions of nociceptive pain,

RNE28 was 5 to 10 times less potent than morphine, depending on

the model. In a traumatic model of neuropathic pain, a condition that,

because it is generally resistant to opioids, is best treated by antide-

pressants or antiepileptic drugs, RNE28 also decreased hypersensitiv-

ity, but in a less marked way since neuropathic rats only partially

recovered pre-injury pain thresholds. The antinociceptive profile of

RNE28 is therefore similar to that of morphine, whose antinociceptive

activity was shown to rely on TREK1 channels (Devilliers et al., 2013).

The contribution of these channels to the antinociceptive effect of

RNE28 is confirmed by the marked decrease in its antinociceptive

effect in TREK1 KO mice or in WT animals co-treated with theTREK1

blocker spadin. Spadin was able to reduce the antinociceptive effect

of RNE28 at the peripheral, spinal and supraspinal levels, showing that

TREK1 is a signal modulator at different levels of the pain pathway

on which RNE28 can have an effect. This observation is in

accordance with TREK1 broad expression, observed in peptidergic

and non-peptidergic nociceptive peripheral sensory neurons (Alloui

et al., 2006), in the spinal cord (with a strong lamina II staining) and in

several brain regions such as cerebral cortexes, hippocampus, thala-

mus, basal ganglia and periaqueductal grey (Hervieu et al., 2001).

Given the dual central/peripheral effect of RNE28, future efforts for

pharmacological improvement of this molecule should not only focus

on increased affinity for TREK1 but should also promote blood–brain

barrier crossing, especially as we have observed no supraspinal

adverse effect with RNE28 treatment. The interest of pharmacological

activation of TREK1 as an analgesic strategy has been finally further

reinforced by a recent study (Poupon et al., 2018) in which we showed

that the non-specific and transient TREK1 activator riluzole was effec-

tive in relieving hypersensitivity in a peripheral neuropathic pain

model induced by the antineoplastic agent oxaliplatin. In this study,

spadin treatment was able to suppress the antinociceptive effect of an

acute or chronic riluzole treatment and riluzole was further shown to

be ineffective in reducing pain inTREK1 KO mice. We have conducted

similar experiments in the carrageenan-induced plantar inflammatory

pain model, which showed that riluzole also reduces hypersensitivity

in inflamed animals (Figure S7). The antinociceptive effect of riluzole

was absent in TREK1 KO animals but still present in TREK2 KOs,

supporting again the potential of TREK1 pharmacological activation as

an analgesic strategy.

Our data show that the N-terminus domain of TREK1 is neces-

sary and sufficient for RNE28 response. This is another difference

with known TREK activators. GI-530159 was shown to be active on

a TREK1 clone lacking the N-terminus (Loucif et al., 2018). ML67-33

action requires the C-type gate near the selectivity filter of the chan-

nel (Bagriantsev et al., 2013) and a cryptic binding site for ML335

and ML402 has been identified behind the selectivity filter at the

interface between P1 and M4 segments, which allow these

compounds to activate the C-type gate (Lolicato et al., 2017;

Şterbuleac, 2019). BL-1249 also stimulates the C-type gate but binds

to a different site. While the M2/M3 intracellular region of the chan-

nel is involved in the selectivity of BL-1249 for the two TREK chan-

nels and the cytoplasmic C-terminal region is important for the

response of TREK1 to the molecule (Pope et al., 2018), key residues

for BL-1249 response were identified in M2 and M4 helices (Schewe

et al., 2019). The C-terminus of TREK1 is responsible for the poly-

modal activation of the channel by proton, lipids, membrane stretch,

temperature, or phosphorylation signals by PKA and PKC, through its

crosstalk with the C-type gate (Bagriantsev et al., 2013; Chemin

et al., 2005; Honoré, Maingret, Lazdunski, & Patel, 2002; Patel

et al., 1998). Involvement in activation by RNE28 of the N-terminal

of the channel, a region of poor homology with TREK2, could account

for the selectivity of RNE28 for TREK1, whether the gating mecha-

nism is direct or indirect. Of note, a TREK2 activator with good selec-

tivity for TREK2 versus TREK1, pranlukast, was also found to bind a

different site to that of BL-1249 and ML335/ML402 (Wright

et al., 2019).

We previously showed that TREK1 channels are activated by

morphine, downstream of the μ receptor activation and are involved

in its antinociceptive effects but not in its adverse effect (Devilliers

et al., 2013) and so we speculated that TREK1 activators might be

devoid of opioid-like adverse effects. Hence, we looked for opioid-

induced adverse effects in RNE28-treated mice. RNE28 produced

robust antinociception from 30 mg�kg−1 in naive mice and

15 mg�kg−1 in inflamed mice, so we studied the occurrence of these

adverse effects at doses ranging from 15 to 60 mg�kg−1. At none of

these doses did we observe an effect of the product on respiratory

rate or gastrointestinal transit. RNE28 was not sedative and did not

have rewarding effects, whatever the dose tested. This is particu-

larly important given the current rise in prescription opioids misuse.

RNE28 also had no effect on predictive tests for antidepressant

drugs in naive animals. This observation is in agreement with a pre-

vious finding that riluzole has no prodepressant effects in mice and

is even able to reverse the depressive phenotype of WT but

not TREK1 KO mice with chronic neuropathic pain induced by

oxaliplatin (Poupon et al., 2018). This is an interesting result because

TREK1 is blocked by fluoxetine, a serotonin-specific recapture

inhibitor antidepressant which loses its activity in TREK1 KO

mice (Heurteaux et al., 2006; Kennard et al., 2005), while the

TREK1-selective blocker spadin, along with shorter analogues, has

an antidepressant effect in WT mice (Djillani et al., 2017; Mazella

et al., 2010). The mechanism by which TREK1 activation produces

antinociception without depression, while TREK1 inhibition has an

antidepressant effect without inducing pain hypersensitivity

(Moha ou Maati et al., 2012), remains to be elucidated. Note that
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this study was performed on male mice and rats and these findings

cannot be assumed to apply to females.

Dependence on prescription opioids, together with their unsatis-

factory safety profile, has prompted the development of different

new compounds with an improved risk–benefit ratio. Successful strat-

egies, such as biased μ agonists (DeWire et al., 2013), activators of

specific μ splice variants (Majumdar et al., 2011), a pH-dependent μ

agonist (Spahn et al., 2017) and a dual nociceptin/μ agonist (Ding

et al., 2018), have been developed. The originality of our concept

resides in its independence from the μ opioid receptor, since RNE28

acts on one of its downstream effectors specifically involved in

antinociception. As suggested by the previously observed loss of anti-

nociceptive effect of morphine in TREK1 KOs, while adverse effects

are not affected, we indeed show that targeting TREK1 allows the

antinociceptive and adverse effects of morphine to be completely dis-

sociated, including constipation and abuse potential which are the

most challenging for alternative strategies. In view of these results,

TREK1 selective pharmacological activation is potentially a powerful

and safe strategy to relieve pain.
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