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ABSTRACT

The motion of fluidised granular currents over horizontal surfaces is investigated experi-
mentally and by mathematical modelling of solid and fluid phases. Analytical solutions
for the bulk motion were tested by experiments involving material being introduced at a
constant volume flux, and a reasonable agreement found between theoretical predictions
and laboratory measurements.

INTRODUCTION

Aerated granular flows are a feature of large scale and destructive natural hazards that arise
from volcanism as pyroclastic flows and phenomena such as avalanches and landslides. They
are also utilised in industrial processes where the bulk transport of powders is required in
order to produce pharmaceuticals, agricultural materials and foodstuffs. An understanding
of the underlying physical processes that control these flows is necessary to avoid or avert
disasters and increase efficiency of these industrial processes.

Fluidised beds and the apparatus used in this investigation incorporate a porous base that
allows a flow of gas initially perpendicular to the base to permeate through the overlying
(granular) material. The presence of this gas flow exerts a drag on particles that constitute
the material and supports part, or all, of their effective weight.

Flows of dry granular material propagating over horizontal and inclined surfaces have been
treated extensively in the literature (see, for example, Savage & Hutter (1); Balmforth &
Kerswell (2); Pouliquen & Forterre (3)). Often the granular material is released from rest
behind a lockgate that is rapidly removed to initiate the flow, or the material is introduced
continuously at a particular point and flows rapidly away before undergoing a deceleration
phase. We consider only the latter case in this paper. As frictional forces between particles
as well as basal friction are responsible for this rapid attenuation, disruption of force chains
transmitting stress between particles by fluidisation suggests an increased mobility for flu-
idised granular flows (Roche et al. (4)).

In this paper we aim to determine a model for the flow of fully fluidised granular currents.
This will allow us to understand some of the complex physics associated with such phe-
nomena. In order to do this we first discuss the forces and interactions associated with
each phase, giving separate mass and momentum conservation equations for both. Next

1



Figure 1: Orientation of axes, and notation associated with modelling the currents. The
image shows a fluidised current approximately 65cm long and 2cm thick.

we explore simplifications that can be made for flows along horizontal surfaces and look for
analytical solutions to the resulting equation of motion. Then we describe the experiments
that were performed and analyse the resulting data with a view to evaluating our assump-
tions. Finally we give conclusions of the work.

THEORY

Background & assumptions

We consider a two-dimensional flow of a granular material over a horizontal surface. The
flow is thin so that its horizontal lengthscale, L, far exceeds typical values for its thickness,
H. The material is also assumed to be fully fluidised so that the weight of the solid phase
is entirely balanced by the drag from the imposed gas flow; there are no residual stresses
within the solid phase. Thus, as in figure 1, orientating the x and z coordinate axes to
be horizontal and vertical, respectively, and denoting the voidage of the material by ε, the
density of the solid phase by ρs and gravitational acceleration by −gẑ, this balance is given
by

0 = ffs · ẑ − (1− ε) ρsg, (1)

where ffs is the bulk drag force between the fluid and solid phases. Since the flow is thin,
vertical fluid accelerations are negligible and thus the pressure gradient in the fluid phase
must also balance the weight of the fluid and the drag between the phases. Thus denoting
the fluid pressure and density by pf and ρf

0 = −
∂pf
∂z
− ffs · ẑ − ερfg (2)

Thus from (1) and (2) we deduce that the fluid pressure is hydrostatic and given by
pf = ((1− ε)ρs + ερf ) g (h− z) where h is the height of the material surface.

The imposed interstitial gas flow plays a crucial role in fluidised systems and in our model
it is represented through the drag term ffs. We model this using the Ergun equation (see
Rhodes (5)) given by

ffs =
150µf (1− ε)2

d2
pε

3
(u− v) +

1.75ρf (1− ε)

dpε3
|u− v|(u − v). (3)

where µf is the viscosity of the gas, dp is the particle diameter, u and v are the gas and
solid velocities, respectively. In this report we chose to write the z component of the gas
velocity as the sum of the imposed gas speed, ugi and the motion induced by the presence
of particles uz, or u = (ux, uz + ugi). Ignoring numerical factors, the ratio of the two
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terms in the Ergun equation is equivalent to a Reynolds number for the gas flow through
the fluidised bed, Rebed; typical values for physical parameters in the experiments reported
later give this to be O(1) so the flow through the bed is laminar and only the left hand
term of (3) is considered during the analysis. To ease writing, we combine the group of
constants multiplying the difference in velocities as K = 150µf (1− ε)2/d2

pε
3 and thus we

approximate ffs = K(u− v).

We now consider the horizontal components of the momentum equations for each phase.
In general these could include the inertia of each phase, streamwise pressure gradients,
resistive forces and contributions from the inter-phase drag law. In this paper we assume
that inertia is negligible. This requires that the reduced Reynolds number is small, given by

a2Re¿ 1

where a is the aspect ratio of the flow (a = H/L) and Re = ρsUH/µ, where U and µ are
a velocity scale and the effective viscosity respectively.

Observations made during laboratory experiments suggest that the flows are not inertially
driven. For instance, if the flow rate of gas into the apparatus is shut off, the flow of
material stops instantaneously. This behaviour is in agreement with Eames & Gilbertson
(6) who observed steady flows and concluded that fluidised granular flows propagate in a
similar manner to a viscous fluid as described by Huppert (7).

Experiments performed with rotating paddle viscometers such as those performed by Math-
eson et al. (8), Furkawa & Ohmae (9) and Schügerl et al (10) using a fluidised bed
contained within two concentric cylinders all agree in giving the observed viscosity of fully
fluidised beds to be in the range of 0.05 to 2Pas. Caution must be paid to these results,
however, as along with ‘viscous’ losses there is an associated momentum loss due to the
acceleration of the particles. Furthermore, the results of such experiments are only valid for
low applied shear gradients as the particles have a tendency of migrating to the outside of
the cylinder/paddle due to their inertia thus creating a non-homogeneous suspension. This
does suggest, however, that the viscosity of a suspension of particles is somehow altered.

On this assumption of negligible inertial effects we find that the horizontal component for
the solid phase is given by

0 = K (ux − vx) (4)

thus implying the horizontal gas and solid velocities are identical. For the fluid phase we
find that

0 = −
∂pf
∂x
−K (ux − vx) +

∂τxz
∂z

(5)

where τxz is the shear stress within the fluid phase. We propose that ∂τxz/∂z scales
as ux/h

2 as it would for a viscous fluid with a constant of proportionality of the same
dimensions as viscosity. As shall be discussed later, we assume that ε is constant. Upon
integration of (5) and substitution into the depth integrated mass conservation equation
for the solid phase, we obtain the governing equation for evolution of the height profile

∂h

∂t
=
(1− ε)ρs + ερf

3µ
g

∂

∂x

(

h3∂h

∂x

)

, (6)

3



which can be solved numerically subject to the boundary conditions h(xf ) = 0 and vxh
∣

∣

∣

x=0
=

q where xf is the front position and q is the volumetric flux of material. The total volume
of material at any time is given by

∫ xf

0

h dx = q t. (7)

Analytic solutions

Huppert (7) obtained an equation of the same form as (6) and was able to construct
similarity solutions subject to an identical condition as (7). We follow the same method
(see also Barenblatt (11)) to obtain the following solutions in terms of the similarity variable,
ξ and similarity solution H(ξ)

x(t) =
(

Λq3/4t
)4/5

ξ, (8)

and
h(x, t) =

(

q2t/Λ
)1/5

H(ξ), (9)

where Λ = ((1− ε)ρs + ερf ) g/3µ. Normalising (8) with respect to the front position, xf
so that y = ξ/ξf and substituting (9) into the governing equation (6) leads, after rescaling,
to the following non-linear ODE in H(y)

H3H ′′ + 3H2
(

H ′
)2
+ 4/5yH ′ − 1/5H = 0. (10)

where a prime denotes differentiation with respect to y. H(y) and ξf can be found numer-
ically, subject to knowing Λ, allowing us to find xf .

EXPERIMENTAL SETUP

To test the hypotheses made in the previous section a series of experiments was devised
wherein material is introduced at a constant flux. These are similar to the experiments
performed by Eames & Gilbertson (6) except on a much larger scale so that data series over
sufficiently long timescales could be obtained. The apparatus used was designed specifically
for this investigation. An image of it is shown in figure 2. To avoid possible electrostatic
effects which have arrisen with perspex walled fluidised beds, glass was used for the front
and 15mm thick aluminium plate for the back and sides. This has the advantage of being
rigid and thus ensuring that the channel in which material flows is straight throughout its
length.

A basal distributor plates made from a ‘sandwich’ of porous Vyon D sheets from Porvair
Ltd. surrounding a layer of Geldart A particles ranging from 45-90µm. This causes a large
pressure drop so that the gas flow is constant along their length and that the presence of
particles above the distributor plates does not locally affect the gas supply.

Experiments were recorded using a digital camera. As the apparatus is quite long a wide
camera angle must be used in order to capture the flows in their entirety. It was found to
be easier to determine the position of the front by viewing the flows from above; at the
same time it is desirable to see how the height profile evolves. To resolve these issues a
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Figure 2: a) (left) Front view of the apparatus. b) (right) Schematic of the experimental
set up.

mirror was positioned above the apparatus as is shown in figure 2b so that both could be
recorded simultaneously. Data extraction was done by viewing still images taken from the
videos using the UTHSCSA ImageTool programme. Assuming that the front position can
be determined from an image to within a few pixels and the 100cm length of apparatus
equates to something in the order of 450 pixels, then we estimate the error in our measure-
ments to be O(1)cm. This is accounted for as error bars of this magnitude in the plots of
data in the next section.

The particles used were glass spheres in the range of 250-500µm (Potters Ballotini grade
C) corresponding to a Geldart B powder. Before starting any experiments, the powder
was conditioned by vigorous fluidisation. Viewing the experiments from above presented
the problem that the slightly off-white particles were hard to distinguish from the white
Vyon sheet. To ease visualisation they were coloured using very dilute artists acrylic paint
and then dried thoroughly to leave only the pigment. Using particles of this size ensured
non-cohesive behaviour. Bed expansion using these particles is negligible so we assume that
ε is constant for all values of ugi used in the experiments.

Standard fluidisation curves were constructed using data for the pressure drop through
various bed heights from independent experiments (as described in Davidson & Harrison
(12); Rhodes (13) etc.) from which the minimum fluidisation velocity, umf was found to
be 10.78cm/s. This is in agreement with theoretical predictions made by equating the
first term from the Ergun equation (3) with the bed weight per unit volume which gives
5.854cm/s ≤ umf ≤ 23.416cm/s 1.

RESULTS

We expect from (8) that xf ∼ (q3t4)1/5. With knowledge of the constant Λ it should
be possible to predict accurately the position of the front at any point in time. There is,
however, at least one physical variable in Λ that is not well defined, namely the mixture
viscosity, µ. This should be some function of ε, but the exact relationship is not currently
clear. The voidage itself may also be hard to measure for any given experiment due to
bed expansivity. However, for not too high values of ugi, we assume that ε is close to that

1physical parameters used were ρs =2500kg/m3, g =9.81m/s2, µf =1.862×10
−5Pas. εmf was taken to

be 0.4 and the density of air was neglected.
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Figure 3: a) (left) Front position, xf as a function of time, t for different volume fluxes of
material and gas flow rates: q = 2.544cm2/s, ugi/umf = 1.3 (×); q = 5.2cm2/s, ugi/umf =
1.3 (◦); q = 9.515cm2/s, ugi/umf = 1.3 (♦); q = 9.515cm2/s, ugi/umf =1.48 (+); q =
9.515cm2/s, ugi/umf = 1.86 (¤). b) (right) The same data for xf but scaled with q3/4t.
Also plotted is a best fit curve (—) according to (11) using A = 5.701 and n = 0.634 and
the curve predicted by (8) (− · −) with A = 2.75 and n = 0.8

measurable when unaerated.

Instead we chose to try to collapse the data onto a single curve by scaling the front position
with q3/4t so that

xf = A
(

q3/4t
)n

, (11)

where A and n are constants to be determined. Comparing this with (8) shows clearly that
if n is in the region of 4/5 then our model is likely to be valid. Also A is related to Λ and
we may hence be able to find a value for the mixture viscosity. The front propagation data
is shown in figure 3a, and then as a function of q3/4t in figure 3b.
Figure 3 shows the data points collapse well for all the experiments except when the values
of ugi/umf are particularly high. When at such high gas flow rates, the powder bubbles
vigorously which may alter the mechanisms that transport powder within the bulk; other-
wise particle movement was as a bulk motion.

Fitting a curve through all the data, we find that A = 5.701 and n = 0.634. We observed
a section of the distributor plate that might not be delivering the same flowrate of gas as
along the rest of its length. As this only accounted for the last 10cm of the apparatus, it
is reasonable to simply ignore the motion over this part. Furthermore, it takes a little time
for the flow to become fully developed and enter the intermediate asymptotic regime that
gives rise to the similarity solutions. With this in mind, the data points corresponding to
the first 30cm and final 10cm of the apparatus were ignored and another curve fitted to
the remaining data. This gave A = 5.225 and n = 0.659. Both values are a little short of
the 4/5 power we might have expected.
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Figure 4: Front position after 1s as a function of the volume flux of material. Data from
Eames & Gilbertson (6) (+) where ugi/umf = 1.26 is plotted along with our own data for
ratios of 1.3 (©), 1.48 (♦), 1.67 (¤), & 1.86 (×) respectively and lines corresponding to
(11) for various values of A and n

Figure 4 displays new data from our experiments along with those of Eames & Gilbertson
(6). Using (11) with n = 0.8 seems to best fit their data whilst none of the curves seem
to fit our data. On being introduced to the apparatus, the material freefalls 0.5m before
encountering the distributor plate2. Its kinetic energy causes it to scatter forwards which
would affect the results at such a short time. The flows were certainly not fully developed
and hence not in the intermediate asymptotic regime meaning that similarity solutions do
not apply here, so we should not expect any of the curves to fit the new data.

Comparing (9) and (11) gives Λ = (A/ξf |α=1)
1/5 = 3779.56 for A = 5.225. Rearrang-

ing Λ = ((1− ε)ρs + ερfg) 3µ, and using the values stated earlier in this paper gives
µ = 0.0129Pas.

CONCLUSIONS

We have presented data on the propagation of fluidised granular currents for several values
of material volume fluxes and ratios of ugi/umf for Geldart B powder in the range of 250-
500µm. The minimum fluidisation velocity was determined by independent experiments
to be 10.78cm/s. Comparisons have been made to theoretical predictions by use of simi-
larity solutions and a suggestion made for the value of a mixture viscosity by use of the data.

A plot of the front position, xf against rescaled time (q3/4t) gives a power-law distribution
whose exponent, n = 0.66. According to the theory presented we expect the exponent to
be 0.8, although the experimentally determined value is not unreasonable.

Our model is mathematically identical to that determined by Huppert (7) for viscous fluids.

2This is compared to about 20cm in the case of Eames & Gilbertson (6)
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We believe that this is because the flows are driven by streamwise pressure gradients and
retarded by stresses that scale as vx/h

2. These are analogous to viscous stresses found
in fluids. This gives rise to viscous-like behaviour in the fluidised granular flow. Using
experimental and numerically determined values we find a value for the mixture viscosity
to be µ = 0.0129Pas, which not too dissimilar to viscosities found by Matheson et al. (8),
Furkawa & Ohmae (9) and Schügerl et al (10).
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