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Abstract
Soft actuators can be classified into five categories: tendon-driven actuators, electroactive
polymers, shape-memory materials, soft fluidic actuators (SFAs), and hybrid actuators. The
characteristics and potential challenges of each class are explained at the beginning of this
review. Furthermore, recent advances especially focusing on SFAs are illustrated. There are
already some impressive SFA designs to be found in the literature, constituting a fundamental
basis for design and inspiration. The goal of this review is to address the latest innovative
designs for SFAs and their challenges and improvements with respect to previous generations,
and to help researchers to select appropriate materials for their application. We suggest seven
influential designs: pneumatic artificial muscle, PneuNet, continuum arm, universal granular
gripper, origami soft structure, vacuum-actuated muscle-inspired pneumatic, and hydraulically
amplified self-healing electrostatic. The hybrid design of SFAs for improved functionality and
shape controllability is also considered. Modeling SFAs, based on previous research, can be
classified into three main groups: analytical methods, numerical methods, and model-free
methods. We demonstrate the latest advances and potential challenges in each category.
Regarding the fact that the performance of soft actuators is dependent on material selection, we
then focus on the behaviors and mechanical properties of the various types of silicone that can
be found in the SFA literature. For a better comparison of the different constitutive models of
silicone materials proposed and tested in the literature, ABAQUS software is here employed to
generate the engineering and true strain-stress data from the constitutive models, and compare
them with standard uniaxial tensile test data based on ASTM412. Although the figures
presented show that in a small range of stress–strain data, most of these models can predict the
material model acceptably, few of them predict it accurately for large
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strain-stress values. Sensor technology integrated into SFAs is also being developed, and has the
potential to increase controllability and observability by detecting a wide variety of data such as
curvature, tactile contacts, produced force, and pressure values.

Keywords: soft robotics, fluidic elastomer actuators, constitutive models, soft materials,
FEM analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

For many decades, scientists have tried to bring their robot
designs closer to human body performances. Advances in
materials and soft components are expanding the range of new
types of robots that perform complex tasks and interact more
closely with humans. They have pushed back the boundaries in
the field of robotics with their remarkable capabilities, includ-
ing lightweight, hyper redundancy, fast assembly and cost-
effective materials [1]. Furthermore, soft robots can be actu-
ated using different strategies, such as pneumatic or hydraulic
fluids, electric motors, heat, chemical reactions, etc [2]. Unlike
soft robots, conventional robots are rigid and consist of a num-
ber of links connected together by joints; they are designed
to work in specific environments and satisfy recurrent high-
precision tasks. Although these manipulators are very com-
mon in many industries such as automotive and food, they
have some limitations, such as limited dexterity and an insuffi-
cient number of degrees of freedom (DOFs). These limitations
restrict their movements in arbitrary workspaces. Inspired by
nature, soft robots have emerged and reduced the gap between
human interaction and robotic environments. Additionally,
they provide interesting new capacities in comparison with
other robotic architectures; for instance, soft robots are capable
of maneuvering through congested environments with min-
imum inducing stress concentrations or damage.

Many classification approaches have been used to charac-
terize satisfactorily their structures and performances. Trivedi
et al divided robots into two classes, according to their mater-
ials and DOFs: soft and hard robots [3]. Soft robots were cat-
egorized as a subset of continuum robots. This means that
soft robots are able to act with continuous deformation, but
not all continuum robots are soft. For instance, some of them
include several hard links and joints, creating more DOFs. A
number of DOFs largely higher than the number of actuat-
ors puts them in the hyper redundant robot class. Although
many DOFs are not controllable, they increase the shape con-
figuration adaptability of a robot with various objects. Sev-
eral reviews on soft robots have been carried out and can
be found in the literature; most of them are focused on the
recent advances in this field [4–9]. Shintake et al [10] clas-
sified soft grippers in three separate groups based on their
grasping technology: actuation, adhesion control and variable
stiffness control. Boyraz et al [2] presented a comprehensive
comparison of soft robot actuators and mentioned their chal-
lenges. Gorissen et al [11] and Walker et al [12] separately
reviewed the design, manufacturing and control of soft pneu-
matic actuators. They focused on soft pneumatic actuators

with positive pressure, while soft fluidic actuators (SFAs) with
negative pressure play a significant role in achieving soft robot
milestones. In this study, we classify soft robots based on
their actuation mechanism into five classes: 1—tendon-driven
actuation, 2—electroactive polymers (EAPs): dielectric elast-
omer actuators (DEAs) and ionic polymer-metal composites
(IPMCs), 3—shape-memory materials: shape memory alloys
(SMAs) and shape memory polymers (SMPs), 4—SFAs (see
figure 1), 5—hybrid actuators. Although additional soft actu-
ators such as a soft magnetic robot [13], soft grippers using
gecko-adhesion [14], fishing line actuator [15], electrorheolo-
gical fluids [16], and magnetorheological fluids [17] are repor-
ted in the literature, due to their rare usage, in this study, we
have focused on reviewing these five mentioned classes of soft
actuators.

We first position SFAs in relation to other soft actuation
technologies, then we suggest a general classification of the
SFA domain by considering all pressurized and vacuum tech-
nologies. We then summarize the most effective SFA designs
that could be a source of inspiration for future approaches. Fur-
thermore, SFA functions are strongly dependent on the type
and properties of the selected material. Silicone is the most
commonly-used material in SFAs. Due to its highly nonlinear
behavior, modeling and operating prediction are themain chal-
lenging aspects of SFAs. In this paper, we study a wide variety
of silicones and review the different modeling methods.

2. Soft actuation technologies and SFAs

As mentioned, this review paper is focused on SFAs as one
of the most common actuation mechanisms in the field of soft
robots, but it is necessary to explain briefly the other actuation
methods to help to clarify the reason for choosing SFAs to
review as one of the soft robot actuator approaches. Moreover,
in hybrid designs, SFAs can be integrated with other actuation
types to enhance robot performance. Figure 1 shows the most
representative actuator technologies in soft robots based on
previously published results. The major advantages and chal-
lenges of each actuation method are summarized in table 1 and
explained in the remaining part of this section.

The first category concerns tendon-driven actuation. It is
widely used in continuum soft robots. This technology enables
them to reach the desired position with many different con-
figurations, so they have high dexterity and superior perform-
ance in congested environments [15, 24, 50 51]. In a con-
tinuum soft robot, a moment is applied at the tip of the arm
with the tendon mechanism, then the whole arm deforms

2
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Figure 1. Different types of actuation in soft robots. (a) Tendon-driven mechanisms. Reproduced from [18]. (b) Dielectric elastomer
actuators (DEAs). Reproduced from [19]. CC BY 4.0. (c) Ionic polymer-metal composites (IPMCs) Reproduced from [20]. CC BY 4.0. (d)
Shape memory alloys (SMAs). Reprinted from [21], (e) Shape memory polymers (SMPs). Reproduced from [22] (f) Soft fluidic actuators
(SFAs). Reproduced from [23]. CC BY 4.0.

Table 1. Different type of soft robot actuators.

Design parameters Power supply Advantages Challenges

Tendon driven mechanisms Electric motor Large stroke bending with a high
produced force

Require external motors

Dielectric elastomer
actuators (DEAs)

Electric Large actuation strokes,
self-sensing capability, fast
response time, requiring small
currents

Require high voltages; difficult
fabrication procedure for complex
geometry

Ionic polymer-metal
composites (IPMCs)

Electric Bending in both directions,
variable stiffness, large bending
strokes with low actuation
voltages, self-sensing

Slow response and low produced
force

Shape memory alloys
(SMAs)

Electric or thermal High active stress, high elastic
modulus, conductivity without the
need for an external heater, act as
a strain sensor at the same time

Slow response and speed,
hysteresis, require high currents

Shape memory polymers
(SMPs)

Thermal or electric Variable stiffness capability Low produced force

Fluidic actuators Pneumatic or
hydraulic

High force generation, large stroke
bending

Require external pumps, bulky
and heavy

smoothly and continuously (figure 1(a)). It can transmit com-
pressive forces, which enabling it to perform perfectly in com-
plex conditions or when encountering obstacles. Due to their
inherent design, continuum robots can grasp objects by using
whole arm manipulation, and carry payloads without causing

damage. Recently, a variety of actuators, joints, and mechan-
isms inspired by nature have been built, such as those con-
necting several small links [52], Serpentine Robot [53], and
elephant trunks with a single flexible backbone actuated by
wires [54]. Xu and Simaan designed human body surgery

3
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Figure 2. Examples of different actuation types in the soft robotics field: (a) surgery robot using a tendon-driven mechanism. Reproduced
from [25]. CC BY 4.0. (b) DEA soft gripper. Reproduced with permission from [37]. (c) IPMC gripper for manipulating the object
Reproduced from [46]. CC BY 4.0. (d) SMA spring soft actuator Reproduced from [47]. CC BY 4.0. (e) SMP soft gripper. Reproduced
from [48]. CC BY 4.0. (f) Soft pneumatic actuator. Reproduced from [49] CC BY 4.0.

robots with multiple flexible backbones actuated in push-
pull mode [55], applicable for tele-operated surgery in the
throat and upper airways [56]. Figure 2(a) shows the snake-
like robot design by Ouyang et al [25]. This design is com-
posed of a base disk, an end disk, several spacer disks, and
four arranged super-elastic NiTi tubes. The central tube is
the primary backbone, while the remaining three tubes are
the secondary backbones. By pulling two of these three sec-
ondary backbones in each section and changing their lengths,
the end disk can be oriented in any required direction in
space. To study more about the other types of tendon-driven
soft robots, the reader may refer to [3, 26, 57]. The second
class of soft robot actuators is EAPs. They respond to elec-
trical stimulation with significant changes in dimension or
shape [27]. DEAs and IPMCs are the two most well-known
EAP technologies, especially in the robotics field [28, 58–
60]. DEAs consist of a thin elastomer membrane between two
compliant electrodes (figure 1(b)) [19]. By applying a voltage,
the elastomer starts to deform, and consequently mechan-
ical actuation appears [61]. The main performance advant-
ages of DEAs can be highlighted by large deformation [62],
high energy density, fast responses [29], lightweight and low
cost [30]. Moreover, DEAs self-sensing [31, 32] and variable-
shape configuration capabilities make them a wise choice in
soft robotic actuators [33, 34]. Anderson et al [35] reviewed
DEA applications as artificial muscle to generate many trans-
lational and rotational DOFs, especially for soft machines. The
DEAs’ multifunctionality in actuation and sensing capability
provide feedback control in the closed-loop system without
requiring any external sensor. In addition, they remarked
the most important self-sensing potential factors in DEAs,

namely material development, reliability, manufacturability,
and miniaturizing. Araromi et al [36] proposed a small-scale
gripper consisting of a pre-stretched elastomer DEA actuator.
By applying a voltage, the 0.65 g gripper can bend up to 60
degrees and produce a 2.2 mN gripping force. As shown in
figure 2(b), a stiff layer of polyvinyl chloride sheet can be
added to DEA elastomer [37]. This layer increases the gen-
erated grasping force to 168 mN. The potential challenge of
DEAs is that they require high voltages in the kV range, which
not only raises the cost and size of the kV control electron-
ics but also increases the risk of electrical discharge, undesir-
able in many applications, especially with human interaction
[38–40]. A potential solution to this problem is decreasing the
dielectric membrane thickness. The optimum range of DEA
thickness is between 20 and 100 µm, whereby reducing more
than this range increases fabrication challenge [41]. Ji et al
[42] presented low-voltage stacked DEAs with an operating
voltage below 450 volts to fabricate an ultralight (1 g) insect-
sized (40 mm long), and fast (30 mm s−1 tethered, 12 mm s−1

untethered) device. Moreover, the operating voltage of DEAs
can also be decreased by increasing the elastomer permittiv-
ity [43, 44] or reducing the elastic modulus [45]. Gu et al
reviewed recent works in the DEA-driven soft robot field; they
tried to summarize the challenges and opportunities for fur-
ther mechanism design, dynamics modeling and autonomous
control [63].

Hydraulically amplified self-healing electrostatic (HASEL)
is a similar mechanism to DAE which has been advanced
recently by Acome et al [64]. Like DEA, HASEL actuators
include two flexible layers but use liquid dielectric instead
of elastomers. The electric field applies electrostatic force
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to drive shape change in a soft fluidic architecture by trans-
porting fluid through a system of channels. Unlike DEAs,
HASEL actuators are fabricated without a pre-stretch layer
or rigid frames, making them suitable for building soft actu-
ators [65]. Moreover, liquid dielectric provides an electric-
ally self-healing capability in the event of a dielectric break-
down. As a result, HASEL actuators generate large strains and
fast response while having self-sensing capabilities, especially
for developing closed-loop control of soft robots [66]. How-
ever, the potential challenges of HASEL actuators similar to
DEA, for achieving fats response required very high voltages
(≈20 kV). Besides, for sealing fabrication of the elastomers
for the layers, two standard molding cast or metal die methods
are used, which are time-consuming processes for different
geometries and designs [67]. Recent techniques have focused
on miniaturizing high-voltage dc-dc converters as a promising
solution for both HASEL and DEA actuation [68]. The XP
Power and Pico Electronics are two famous commercial con-
verters that can produce up to 10 kV using a 5 V input [69].
Although the functionality of the HASEL actuators is more
similar to the DEAs, due to the pressurizing the fluid, some
applications with HASEL can be classified as a soft pressur-
ized fluidic actuator (SPFA). More details about these types
of actuators in soft robots are explained in the corresponding
section.

Another widespread type of EAP material is IPMC, which
bends in response to electrical activation [70]. A typical IPMC
consists of chemically-plated gold or platinum on a perfluoro
sulfonic acid membrane, which is known as an ion-exchange
membrane. When an input voltage is applied to the metal lay-
ers, the cations move toward the cathode. This translation gen-
erates strain and the IPMC starts to bend toward the anode
[20] (figure 1(c)). Shahinpoor et al [71] classified their IPMC
study in a series of four reviews to present a summary of the
fundamental properties and characteristics: various techniques
and experimental procedures in manufacturing [72], modeling
and simulation analysis [73], and finally industrial and med-
ical applications for IPMC [74]. Due to several advantages,
including a low activation voltage (1∼ 3 V), self-sensing cap-
ability, ease of miniaturization, and operation in wet condi-
tions, IPMC technology has been used in actuators and sensors
in soft robotics for the last two decades. Kashmery [46] fab-
ricated grippers composed of an IPMC membrane actuator to
manipulate a small object by applying 5 V DC (figure 2(c)).
Slow actuator response and low produced stress are the most
challenging issues when using IPMC as an actuator [10].
Recent technologies and applications of IPMCs are reviewed
in [75–77]. Hao et al reviewed the latest advances in IPMCs
for soft actuators and sensors, especially in the field of soft
robotics [78].

Shape memory materials are another actuation method
widely used in soft robotics, due to their deformation in
response to electrical stimuli or temperature. SMAs and SMPs
are the two kinds of materials which exhibit these character-
istics. Figure 1(d) shows the two well-known properties of
SMAs. The first is the phenomenon of phase transformation
between martensite and austenite, which leads to mechanical

actuation and subsequent return to their original shape [79].
The second feature of SMAs is the superelastic effect, which
is the ability of the material to recover its large elastic deform-
ations upon removal of the load [80]. As is the case for tendon-
driven actuation, this second property of SMAs is widely
used in continuum robots to push/pull cables. This kind of
SMA is a nickel-titanium alloy known as Nickel-titanium. The
amount of deformation and stroke produced during a heat-
ing/cooling cycle is depended on the shape of the SMA and
its thermomechanical treatment. Nowadays, the use of SMAs
as actuators in soft robots is growing because of the prom-
ising advantages of being able to significantly reduce actuator
size, the available rapid manufacturing techniques, the large
actuation force, and the displacement. Cianchetti et al [47]
designed soft actuators with a combination of SMA springs
and braided sleeves for multi-purpose applications in water
(figure 2(d)). The conductivity features of SMAs enable them
to utilize the direct Joule heating technique without needing
an external heater [81]. However, the potential challenges of
using SMAs as actuators remain; for instance, their slow oper-
ation frequency, controllability, accuracy, energy efficiency,
and recovery speed are important issues [21].

SMPs are considered as memorized polymers that can
change shape under heat or light stimulation and transform
from a temporary shape to a memorized permanent shape
[82, 83] (figure 1(e)). Because of low recovery speed and hys-
teresis, few works can be found using SMPs as the main actu-
ators of soft robots [84]. Figure 2(e) shows a SMP small-
scale gripper with four fingers. The gripper can hold small
objects such as a screw after heat actuation [48]. SMPs are
usually integrated into other technologies such as SMAs [85]
and SFAs [86] to vary the stiffness of the robot. These hybrid
mechanisms will be discussed in more detail in the dedicated
section. Recent progress on SMPs and their potential chal-
lenges are reviewed in [83–89].

The SFA is one of the most ubiquitous actuation mech-
anisms in soft robotics due to its many advantages, includ-
ing simple assembly, cost-effective materials, large deform-
ation, and high generated force [23, 90] (figure 1(f)). These
unique characteristics make them promising candidates for
various applications, such as gripping [10, 91–93], mobil-
ity [94], robotic manipulation [95–97] medical applications
[98, 99], and rehabilitation and assistive robotics [100, 101].
By applying positive or negative pressure inside the chamber,
the soft actuator, depending on the type of surface where the
pressure is applied, starts to bend, extend, twist, or contract
[49, 102] (figure 2(f)). Moreover, in hybrid designs SFAs can
be integrated with other actuation types to enhance robot per-
formance [2].

As seen in this section, each actuation strategy has some
capability which differs drastically in terms of performance
from the others, such as response speed, stroke, amount of
force produced, and variable stiffness. SFAs have particularly
wide application areas and are reported frequently [103]. Due
to the huge potential of SFAs, we focus in this review paper
on some of the developments in their various applications in
soft robotics and discuss the recent progress of soft robots

5



Smart Mater. Struct. 31 (2022) 013001 Topical Review

Figure 3. Timeline showing major production advances in the field of SFAs: (a) PAM mechanism developed by Suzumuri et al [104]
(Reprinted from Xing et al [105]). (b) OctArm. Reproduced with permission from [106]. (c) PneuNets. Reproduced from [107]. (d)
Universal gripper. Reproduced with permission from [108]. (e) Origami soft structure [109] VAMPs design. Reproduced from [110], and (g)
HASEL actuator [64] Reproduced from Mitchell et al [111]. CC BY 4.0.

using SFAs. In the following sections we review recent devel-
opments in the field of SFA regarding classification, design,
computational procedures, and the history of the most effect-
ive SFAs design mechanisms which have inspired many works
over the last two decades.

3. History and classification of SFAs

We classify SFAs based on the applied pressure in three mains
categories: SPFAs, soft vacuumed fluid actuators (SVFAs),
and hybrid mechanisms including a combination of SFA with
the other existing types of soft actuators explained in the soft
actuation section. In SPFAs, positive pressure is used to inflate
channels in a soft material and cause the desired deformation,
while in SVFAs, vacuuming the air inside the chamber causes
contraction. We review the most significant research based on
these three categories. Figure 3 shows the timeline.

3.1. Soft pressurized fluidic actuators (SPFAs)

Pneumatic artificial muscles (PAMs) [112], also known as
McKibben actuators, are one of the first generations of SPFAs.
This soft actuator is composed of hollow elastomer tubes rein-
forced by fiber stiffness layers. Depending on their design,
they will either expand or contract when pressure is applied.
The invention of this artificial muscle is generally attributed to
RichardH.Gaylord (1958), but it was popularized at the begin-
ning of the 1960s by Joseph L McKibben [113]. The first SFA
gripper, with four fingers, was demonstrated by Suzumori et al
[104] in 1989 (figure 3(a)). These fingers include three cham-
bers that give them three DOFs and can bend in any direction.
This gripper can grasp a wide range of objects. There is a lot
of research on soft robots that can be found using this actu-
ation mechanism. For instance, Polygerinos et al [100] sug-
gested a flexible glove for robot-assisted rehabilitation. The
device utilized the McKibben mechanism not only to sup-
port precise functional grasping but also to remain light and
low profile (figure 4(a)). Some approaches tried to combine

multiple McKibben actuators to increase SFA functionality
with more complex motions. As an example, Al Abeach et al
[114] developed McKibben muscles for a three-fingered grip-
per. Both extensor and contractor McKibben designs were
deployed to provide the form and efficient force for grasping
ability, respectively.

PAM elastomer actuators exhibit complex nonlinear snap-
through instabilities. This behavior allows the actuator to
gradually store elastic energy, before releasing it suddenly to
exert rapidmotion or high force [115]. As shown in figure 4(b),
Overvelde et al [116] developed this kind of nonlinear mech-
anism to exert high force and trigger large geometrical changes
by sequential steps. Rothemund et al [128] designed a bistable
soft valve. They calculated the required switching pressure
as a function of the geometry and valve’s material McKib-
ben’s muscles are also employed in the actuation of con-
tinuum robots. Tsukagoshi et al [117], presented an elephant
trunk-type manipulator named Active Hose, consisting of a
spiral tube turned around the manipulator backbone like a coil,
to generate bending moment. This can be useful in rescue
operations.

The other type of manipulator which benefited from PAM
actuators is OctArm. It was first presented by Grissom et al
[106] (figure 3(b)) and consists of three serial sections that
are actuated separately. By applying pressure inside the cham-
ber of each section, the arm starts simultaneously to bend and
extend longitudinally for the whole-arm grasping of objects
[118]. A large manipulator continuum robot with McKib-
ben actuators consisting of six sections is reported by [119]
(figure 4(c)). Applying air pressure of around four bars causes
a 66% extension in section and 380◦ rotation in less than
0.5 s. Walker et al [118] in 2005 developed cephalopod
robots incorporating 12 McKibben actuators. The consider-
able length of the robots (120 cm), acting like a manipulator,
achieves more kinematic DOFs than in previous pneumatic
arms and is more similar to the real biological inspiration.
SPFAs can be made using highly extensible elastomer mater-
ials such as silicones. With these materials, highly deform-
able and adaptable soft actuators appeared. In these kinds of
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Figure 4. Some examples of SPFAs: (a) PAM mechanism used for rehabilitation gloves. Reprinted from [100] (b) Snap-through
instabilities mechanism changes by sequential shape changes. Reproduced with permission from [116]. (c) Large manipulator continuum
robot with McKibben’s muscles. Reproduced from [119]. (d) Soft pneumatic artificial sleeved muscles. Reproduced from [125].
CC BY 4.0. (e) PneuNets actuator developed by Mosadegh et al [126], and (f) Peano-fluidic muscle. Reproduced from [127].

actuators, one or more embedded chambers are actuated and
deformed by applying pressurized fluid, which can be operated
pneumatically [94, 120,121,129], or hydraulically [122–124].
On account of their light weight and cleanness, pneumatic sys-
tems in most cases are preferred over hydraulic designs espe-
cially in gripper design (figure 4(d)) [125].

Pneumatic networks (PneuNets) are a famous pneumatic
version of these actuators working as a gripper. This was
first presented by Needleman [130] in 1977. He demonstrated
that PneuNets, comprising a series of channels in an elast-
omer, can inflate like balloons for actuation. This mechan-
ism was later developed and used as a soft gripper by Ilievski
in 2011 [107] (figure 3(c)). This gripper consists of six legs
for grasping soft fragile objects like an egg or even a live
small animal like a mouse. In an interesting work, Mosadegh
et al [126] developed the PneuNets architecture, achieving
rapid response and more durable actuation cycles by propos-
ing a gap layer between the walls of each chamber. Inex-
tensible fibers are added to the FEAs to boost local stiff-
ness and consequently the weight-object ratio in the grasping
application (figure 4(e)). In [131], they employed polyaramid
fibers to prevent the local weakening of the elastomer dur-
ing repeated actuations. Deimel and Brock [132] developed a
SPFAwith a three-fingered hand and flexible palm. The fingers
are made of fiber-reinforced silicone, and the palm has sub-
stantial passive compliance. The RBO Hand shows the capa-
city to grasp a wide variety of objects, including water bottles,
eyeglasses, and sheets of fabric. Later, they presented the RBO
Hand 2, composed of a five-finger and palm configuration

with similar fiber-reinforced actuation technology to develop
an SPFA hand [133]. It demonstrated dexterity similar to a
human hand with the ability to perform most human grasping
tasks.

Various types of PAMs have been developed in recent years.
A famous one is a Peano-fluidic muscle presented by Veale
et al [134]. It consists of flat layers of thermoplastic, textile
reinforced plastic, or textile/silicone composite. The intervals
of these layers are bonded perpendicularly in the direction of
contraction. When air pressure is applied, the shapes of tubes
become round with a contract ratio between 15% and 30%.
The geometries of the tube affect the static and dynamic beha-
vior of Peano-muscles [127] (figure 4(f)). The optimum chan-
nel should not exceed 20% for maximizing performance. The
narrower channels increase flow restriction, subsequently, a
damping force model was applied to Peano’s muscle for high-
accuracy controllability and further suitability in uncontrolled
environments [135].

As discussed in the previous section, a similar mechan-
ism to the Peano-muscle is the HASEL actuator. It was intro-
duced in 2018 [64] and designed to produce linear contrac-
tion with stack (figure 3(g)). Peano-HASEL is one type of
HASEL actuator, exhibits fast and precise linear motion that
closely resembles muscle-mimetic activation without stack,
prestretch, or rigid frames. It was developed by Kellaris et al
[69] and made of a rectangular shell formed by flexible poly-
mer films filled with a liquid dielectric, and planting a pair of
electrodes on either side of the shell . When a charge opposes
the electrodes zip together due to the electrostatic force, hence
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the fluid squeezes into the volume of the shell which is not
surrounded by the electrodes and creates linear contraction of
the actuator. This linear actuator can lift more than 200 times
its weight with a strain rate of 900% per second at 10 kV.
The fast response speed, self-sensing and self-healing advant-
ages of HASEL actuators make them a promising candidate
for applications in different soft robotic mechanisms such as
untethered soft robots for manipulation and continuum applic-
ations [111], tubular pump [136], and prosthetic finger driven
by Peano-HASEL [137]. Rothemund et al [67] reviewed the
latest advances and future opportunities of HASEL in the soft
actuators field.

3.2. Soft vacuumed fluid actuators (SVFAs)

Vacuum mechanisms have also been widely employed in soft
robots as actuators. Negative-pressure operations are safer,
more compact, and more robust compared to pressurized actu-
ators. They cannot burst when the actuator collapse.Moreover,
decreasing their volume enables them to go through congested
or narrow areas compared to their nominal sizes. One of the
representative examples of SVFAs is the universal soft grip-
per developed by Brown et al [108] as shown in figure 3(d).
Because of its simple structure, it is one of the earliest andmost
famous soft vacuum grippers. Unlike other soft robot actuation
mechanisms, it is simply composed of a membrane filled with
granular materials; the stiffness of the bag is changed by evac-
uating air and provides sufficient force for lifting and hold-
ing objects. It shows promising performance, especially when
the shape or material properties of the object are unknown
or when precise grasping is not required. This gripper was
able to pick up a wide variety of objects of different sizes
and shapes, such as a wooden hemisphere, spring, small LED,
tube, cups, raw egg, shock absorber, etc. The device can rap-
idly grasp and release a wide range of objects; however, it
is not appropriate for grasping flat or soft objects. The uni-
versal gripper was commercialized in [138] and has inspired
several research applications, such as a prosthetic jamming
terminal device [139], human collaborative robot [140], uni-
versal hand for position adjusting and assembly tasks [141],
deep-sea sample-collecting device [142], flexible endoscope
[143] (figure 5(a)), and soft multi-modulus manipulator for
minimally invasive surgery [144] (figure 5(b)). Amend and
Lipson [145] presented two simple two-fingered configura-
tions with pockets of granular material used as end-effectors
at the fingertips. This design enables each of the fingertips
to work separately as independent universal grippers, or to
work together like a finger and a thumb. The variable stiff-
ness, lightweight, and energy efficiency of granular jamming
make it popular for use in the soft robotics field [146]. The
granule particles can be coffee, glass, plastic, or beans. The
application determines the grain size; for example, powder-
like granular size is generally utilized in soft robotic grip-
pers [143, 147]. Soft manipulators, which require greater stiff-
ness, normally employ larger grains [148]. Sayyadan et al
[149] studied the impact of various mechanical parameters
(stiffness, curvature radius, applied moment, internal stresses,

and defection) on the behavior of cantilever membrane beam
samples by presenting a simplified formulation under differ-
ent vacuum pressure conditions. They designed various exper-
imental tests with latex membranes filled with granular mater-
ials such as hemp, sun-dried barberries, black peppers and
datura seeds.

Another important class of SVFAs was created by Yang
et al [110] as a vacuum-actuated muscle-inspired pneumatic
structure (VAMPs) (figure 3(f)). It uses the buckling of elast-
omeric beams to generate muscle-like motions when negat-
ive pressure is applied. Its mechanism differs from those of
previous elastomeric pneumatic actuators such as PneuNets or
McKibben. They can generate a linear motion similar to bio-
logical muscles. This mechanism is very similar to the per-
formance of human muscles. Unlike other pneumatic actu-
ation such as McKibben and PneuNets, the deformation is not
obtained from area expansion and occurs inside the structure.
The VAMP actuator made by Yang was able to lift 400 g.
Figure 5(d) shows the performance of the VAMP. They also
built a muscle-like actuator to simulate a skeleton arm moving
similarly within the human body. It can contract up to 40%
of its length, with loading stresses up to 65 KPa. The final
displacement of the muscle is nearly five times the primary
length of the VAMP. With this design, the gripper can pick up
a volleyball weighing 274 g. VAMPs actuators are fast, with
low cost, are easy to fabricate, lightweight, and operate safely
with human interactions [150] (figure 5(c)). Verma extended
Yang’s works by combining a pressurized and vacuum actu-
ator for a soft robot climbing in a tube application [154].
This climbing robot is composed of a VAMP actuator for lin-
ear motion and two ring-shaped pneumatic actuators at its
extremities to hold the robot in position inside the tube. These
linear actuators integrated one DOF and provided one single
motion. While Jiao et al [151] proposed a multi-task actu-
ator to offer many different types of motion at the same time,
such as twisting, radial and linear movement (figure 5(d)).
Their design included seven SVFAs to provide five crawl
deformations.

Origamis are new innovative structures that have large
potential use in soft robotics because of their lightweight, low-
cost, easily available materials, and simple design for complex
motions. They do not need hinges or joints and are actuated by
applying positive or negative pressure. Therefore, according to
their design and application, they can be SPFA or SVFA. Ori-
gami is the art of generating 3D structures by folding 2D sheets
[155]. In [109], Martinez et al proposed a wide range of ori-
gami soft actuators by combining a stretchable elastomer with
a non-stretchable but easily bendable sheet (figures 3(e) and
6(a)). These actuators can perform a range of complexmotions
that would be difficult to achieve with hard robots. Figure 6(b)
shows the origami-based robotic grippers proposed by Chen
et al [152]. It is inspired by a paper fortune teller origami
design. Its reconfigurable mechanism makes the gripper be
able to pick up flat-surface or non-planar objects. Li et al [156]
suggested fluid-driven origami-inspired artificial muscles with
multiaxial complexmotions . Their origami actuator is fast and
powerful, with a very low manufacturing cost. A soft active
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Figure 5. Some examples of SVFAs: (a) Flexible endoscope. Reproduced from [143], (b) Soft multi-modulus manipulator for minimally
invasive surgery. Reproduced from [144]. (c) VAMPs actuator made by Yang et al [150] (d) Soft robot multi-task actuator application [151].

Figure 6. Origami fluidic soft actuators: (a) Combining a stretchable elastomer with a non-stretchable bendable sheet [109]. (b) Soft
origami gripper. Reproduced from [152]. (c) Soft origami actuator with a payload of 1 kg. Reproduced from [153].

origami robot with a self-actuation design without the assist-
ance of any external actuators is reported in [157]. In [153]
Lee et al suggested a mathematical model for predicting the
energy efficiency of a soft origami actuator and connected
pump together. This model can be applied for the automation
of low-cost off-grid operations and human-robot collaboration
(figure 6(c)). Paez et al [158] presented a lightweight origami
shell-reinforced bending module within the desired range of
displacement and force requirements. Rus et al reviewed the
design, fabrication, actuation, sensing, and control of origami
robots with their applications in the different robotic areas
[159].

3.3. Hybrid mechanisms

SFAs have been combined with other techniques to improve
their performance, including constructability, variable
stiffness, and operational range criteria. Table 2 summarizes

various novel hybrid actuation approaches to address poten-
tial advances in the performance of SFAs. SMPs [160] and
low melting point alloys (LMPAs) [161, 178] are deployed
with SFAs to enhance shape configurability by changing
and controlling the position and bending angle (figure 7(a)).
Particle jamming and layer jamming can be integrated by the
SFA to increase the stiffness of soft robots [162, 163, 185]
(figure 7(b)). Adhesion technology such as electro-adhesive
material [164] (figure 7(c)) and Gecko adhesion technique
[188] (figure 7(d)) are added to SFA grippers to enhance
grasping performance by increasing the lifting weight ratio
and object shape diversity. Combining soft and rigid robot
characteristics can build new capabilities for soft robots. For
instance, Stokes et al proposed a hybrid soft robot consist-
ing of a wheeled robot (hard robot part) and PneuNet SPFA
(soft robot part) to manipulate and grasp an object at the same
time. Pagoli et al [182] (figure 7(e)) introduced the innov-
ative variable stiffness soft finger. Its soft pneumatic sliding
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Table 2. The hybrid design of SFAs with other actuation mechanisms.

Hybrid design The improvement goal Application Reference

SFA + SMP Changing the bending point, shape configuration, and
variable stiffness

Soft gripper [160, 177]

SFA + LMPAs Changing the bending point and shape configuration Soft gripper [161, 178]
SFA + Gecko
adhesion

Higher-strength grasps at lower pressures Soft gripper [14]

SFA + DEA Handling soft and delicate target objects Soft gripper [179]
Minimizing the size of SFAs with 2 DoFs Soft actuator [180]

SFA+ Tendon Accurate control of the bending angle by servo motor Quadrupedal, soft gripper [181]
Miniaturizing the actuator Soft gripper [165]

SFA+ Hard
robot

Changing the bending point, shape configuration,
variable stiffness

Dexterous finger, soft gripper [182, 183]

Capable of multiple functions Locomotion and grasping [184]
SFA+ Electro
adhesion

Gripping delicate, flat, and complex-shaped objects Soft gripper [164]

SFA + Layer
jamming
mechanism

Variable stiffness and shape control Soft gripper [162, 163]

SFA + Particle
jamming
mechanism

Variable stiffening of soft robotic actuators Soft gripper [185]

SPFA + SVFA Variable stiffening of soft robotic actuators Soft gripper [186]
Variable stiffening of soft robotic actuators Minimally invasive surgery [144]
Linear motion Soft climbing robot [154]
Increasing actuating and motion capability Soft crawling robot [187]

Figure 7. Hybrid design of SFAs: (a) LMPA + SPFA. Reproduced from [161]. (b) SFA + Layer jamming mechanism [162] John Wiley &
Sons. © 2018. (c) Electro adhesion + SPFA. Reproduced from [164]. CC BY 4.0. (d) Gecko adhesion technique +SPFA. Reproduced from
[188]. CC BY 4.0. (e) SFA+ hard: changing the bending point and variable stiffness. © [2020] IEEE. Reprinted, with permission, from
[182]. (f) Tendon + SPFA Reproduced from [165]. CC BY 4.0.
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joint can move and rotate along with the finger by using two
electric motors. The changing position of the bending point
increases the capability of the finger in terms of shape control
and variable configuration. The stiffness, and consequently the
applied force, at the tipping point of the finger is controlled
by the pneumatic pressure inside the soft silicone link. As
explained in the previous section, the climbing robot designed
by Verma et al [154] includes two kinds of pressurized (SPFA)
and vacuumed actuators (SVFA) and thus can also be classi-
fied in the hybrid design domain. Hybrid design can also be
found in origami soft robots by using simultaneously positive
(SPFA) and negative pressure (SVFA) to increase the actuat-
ing capability. A hybrid crawling soft robot is illustrated in
[187] utilizing these characteristics for mobility. Li et al [181]
suggested a pre-charged hybrid gripper with a combination
of SPFA and tendon-driven mechanisms. The pushing/pulling
cable controls the bending angle of the SPFA, the advant-
age of the proposed mechanism being that controlling cable
movement is much easier and more accurate than pneumatic
pressure. Kim et al [165] integrated SPFA with an origami
pump which is controlled by a tendon-driven mechanism
(figure 7(f)). The main advantage of the proposed gripper is
that it can work without needing an external pneumatic source
such as a compressor. This design helps to miniaturize soft
robot actuators.

4. Material and fabrication methods

4.1. Materials of SFAs

Advances in the field of soft robotics largely depend on the
knowledge of material behavior in the design of soft robotic
structures and the control of these robots. Silicone rubbers
are the most common material used in soft robotic systems,
because of their hyper-elastic properties, lightweight, low cost,
and fast and simple fabrication. Several SFA design architec-
tures that can be found in the literature use silicone rubbers.
They produce high power-to-weight ratios, requiring small
input air pressures yet generating large deformations. Fur-
thermore, they can easily be shaped into different configur-
ations which makes them suitable for building soft actuators
with a complex design. The actuation performance, such as
response time, stiffness and the amount of generated force,
is dependent on the type of silicone. The mechanical prop-
erties of widespread types of silicones used in soft robotic
systems are listed in table 3. Several companies producing
elastomer silicone can be found on the market; the most well-
known brands are Smooth-On [166], Gelest [189], Dow Corn-
ing [167], andWacker [168].Most applications of these mater-
ials in soft robotic systems, especially in SFAs, are reviewed
in this section.

EcoFlex is one of the popular silicones that are frequently
used. It is commercialized by Smooth-On with several Shore
hardness ratings, ranging from 00–10–00–50. The mechanical
properties of three widely-used EcoFlex Shores in soft robotic
applications are listed in table 3. They include hyperelasticity

capability, which enables them to be streched several times
their original size without rupturing. This characteristic makes
them convenient in soft applications. For instance, EcoFlex
00–50 and 00–30 are very useful for developing differ-
ent types of soft sensors, including prosthetic strain sensors
[169], hyperelastic pressure sensors [170], flexible and wear-
able pressure sensors [171], healthcare biomedical wearable
sensors [172], and piezoresistive sensors for human motion
detection applications [173]. Furthermore, their large elong-
ation properties make them appropriate for actuation mech-
anisms. Elsayed et al [174] studied the material properties of
silicones and their effects on the bending angle of a soft pneu-
matic actuator. They designed and built the same geometry
module with two different silicone materials, EcoFlex 00–30
and 00–50. Their experimental tests showed that the softer
EcoFlex 00–30 module required a lower pressure of 0.1 bar,
while the other material needed 0.32 bar to reach 90 degrees.
Their approach shows that the behavior of the soft actuator
is dependent on the type of silicone used. Studying and com-
paring different types of silicon in this review paper can thus
help to select the proper material for SFA actuators. Several
works on the use of EcoFlex materials in SPFAs can be men-
tioned. For instance, Calisti et al [175] proposed an octopus
with six flexible limbs made from EcoFlex 00–30 with the
dual capability of locomotion and grasping objects. Flexible
limbs are responsible for the stability and correct balancing
of the octopus in water. They also provide an effective push-
ing force to move the robot forward and to grasp the object
by wrapping themselves around it. Tian et al [176] developed
an SPFA human hand made of EcoFlex 00–30. It consisted of
five fingers and a palm, with two joints in the thumb and three
joints in the other four fingers. This soft hand can reach any
point in a 3D workspace, using a variety of shapes and con-
figurations. It also produces low resistance and carries fragile
objects without damage [176].

Dragon Skin is another range of silicone commercialized
by Smooth-on. Unlike the EcoFlex series, Dragon Skins have
a higher Young’s modulus and require more fluid pressure
to actuate as SFAs. On the other hand, their greater hard-
ness enables them to apply a larger force during actuation.
Yap et al [190] studied and characterized the curvature radius
and the force in SPFAs with different material stiffnesses.
They fabricated four types of silicone rubber (EcoFlex 00–
30, EcoFlex 00–50, Dragon Skin 10, and Dragon Skin 20).
They defined a ratio coefficient to compare the behavior of
these materials in terms of stiffness and output force by divid-
ing the curvature radius by the original length. Their exper-
imental results showed that for SPFAs with a 10 mm thick-
ness, EcoFlex 00–30 achieved a minimum ratio of 0.088 at
42 kPa, while EcoFlex 00–50 reached this ratio at 52 kPa.
The required pressure for Dragon Skin 10 to attain the min-
imum ratio of 0.092 was 180 kPa, and for Dragon Skin 20, the
minimum ratio because of higher hardness was not lower than
0.199, when applying 380 kPa. On the other hand, the max-
imum force of the SPFA increased when the stiffness of the
material increased. For example, the maximum force output
for EcoFlex 00–10 and 00–50 was 2.33 at 42 kPa and 3.98 at
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52 kPa respectively. For Dragon Skin 10 and Dragon Skin 20,
the output force ratio was higher, reaching 8.82 at 180 kPa and
9.96 at 380 kPa, respectively.

Another popular silicone rubber in soft robot applications is
Sylgard 184, due to its characteristics, including optical trans-
parency, low viscosity, average tear resistance, and the ability
to be sealed by plasma-activated surface bonding [196]. It is
commercialized by Dow Corning [197]. The viscosity and
Young’s modulus of this silicone are 3500 cp and 3.9 MPa
respectively. The high modulus of Sylgard 184 makes it a
stiff and inappropriate choice for SFA applications, since it
requires a higher pressure than EcoFlex to function as an actu-
ator. However, it can be useful, especially in soft grippers if
integrated with other actuation methods such as DEA [198]
or Gecko adhesion [199]. It is also found in a wide range of
sensor products, e.g. capacitive strain sensor [200], pressure
sensor [201], and tactile sensor [202]. White et al [203] fab-
ricated Sylgard 184 silicone layers with gallium–indium alloy
as a resistant sensor to measure the geometry changes due to
deformations. They were deployed to build a sensor for soft
robots. This sensor was able to measure uniaxial strain and
curvature, and could be applicable in soft skin sensors. In a
similar approach, Markvicka et al [204] studied the mechan-
ical behavior of an elastomer composite with four different
blends of Sylgard 184 and Sylgard 527 containing liquid metal
droplets. It ruptured when mechanical damage occurred and
could be a suitable sensor for damage detection in soft robots
with self-healing properties.

In recent years, self-healing materials have been developed
to recover their structure entirely from mechanical damage,
without using external stimuli [205]. This autonomous cap-
ability increases the commerciality of SFAs, especially in
unstructured environments. On the other hand, self-healing
polymers are usually more expensive and require more
synthetic steps and chemical modification processes [206].
Diels–Alder networks are popular thermo-reversible polymers
deployed by Terryn et al [207] to heal SFAs ripped, perfor-
ated, or scratched by sharp objects. Later they have shown
the safe healing ability of SFA’s applications in safe human-
robot interactions such as social robots, household robots, and
hand rehabilitation devices. Shepherd et al [131] developed a
soft fluid actuator integrated with polyaramid fibers (Kevlar)
reinforcement. After actuating with positive pressure, this SFA
could seal itself after being punctured with a 14-gauge needle.
Even after removing the needle, the pressure was retained
inside the chamber [208]. Bilodeau et al [209] reviewed recent
advanced and future self-healing applications and damage-
resilient materials in soft robotic systems.

Elastosil M4601 is commercialized by the Wacker Chem-
ical company and can be found in some of the soft robot-
ics literature. As shown in table 3, its Shore hardness and
Young’s modulus are very similar to Dragon Skin 30, but
unlike EcoFlex and the Dragon Skin series, it has low optical
transparency, which limits its applications as a soft opto-
electronic sensor. Nevertheless, its higher stiffness makes it
a good option for soft actuators, especially in soft gripper
applications. Galloway et al [210] developed an underwater

two-opposing-pairs soft robotic gripper made using M4601
silicone to manipulate fragile and delicate samples on deep
reefs. By applying a 310 kPa pressure, the gripper can pro-
duce a 52.9 N lift force. Mosadegh et al [126] replaced the
soft EcoFlex with a stiffer Elastosil M4601 and the actuation
pressure increased eight times for the same bending angle.
Robertson et al [211] suggested four parallel SPFAs made of
M4601 to produce a higher force, around 112 N. This is 23%
more than the volumetrically equivalent single SPFA. These
experiments demonstrated the interest of utilizing a multiple
SPFA for high-performance soft robotic applications rather
than existing uniform and non-optimal SPFA designs. At room
temperature, EcoFlex 00–30 (with a Shore hardness 00–30)
has the shortest pot life of 45min, while this value for Elastosil
M4601 with a Shore hardness of 28 A and Sylgard 184 with
Shore hardness of 43 A are 90 min. Wienzek et al [212] stud-
ied the increase in long-term storage of mixed silicone liquid
at low temperature for the strain-limiting top layer of a soft
gripper. They tested three types of silicone samples (Elastosil
M4601, EcoFlex 00–30, and Sylgard 184). They mixed and
maintained the samples at−25 ◦C for 12 weeks. Viscosity was
measured weekly to determine the curing characteristics. The
results show that EcoFlex 00–30 solidified after 14 d, while the
mixed sample solutions of Elastosil M4601 and Sylgard 184
were still liquid and usable for casting processes after period
of 8.7 and 12 weeks, respectively. This study helps to separate
the mixing and molding process and increase the fabrication
options for silicones.

As listed in table 3 for the production of SFAs, some
approaches utilize other types of silicone, such as translucent
RTV615 [213] with Shore hardness 44 A and commercialized
byMomentive, translucent KE-1603with Shore hardness 28A
[214, 215], blue color Mold Star 30 A [216], and ExSil 100
with Shore hardness 15 A. ExSil 100 was first introduced by
Goff et al [217] and later commercialized by Gelest. Although
it has high elongation up to 5000%, its Young’s modulus is
0.02MPa, which makes it too soft to use as an actuator or grip-
per. It is normally used in diaphragms, microfluidics, vibration
damping, high-performance seals, optics and electrical inter-
connectors [189].

As explained before, the stiffness and generated force in
SFAs are dependent on the type of silicon. Considering this,
some approaches combine different types of silicone materi-
als to attain the desired stiffness. Shepherd et al [94] developed
a multigate walking robot with different silicone layers. Due
to its high extensibility under low stresses, EcoFlex 00–30
was used as the actuating layer, and Sylgard 184 was selected
as a strain-limiting layer. This combination not only enables
the soft robot to operate at low pressures (7 psi), but also
provides the desired stiffness. In their next approach [129],
these authors replaced the actuation layer of EcoFlex 00–30
by M4601 to increase to larger loads such as the weight of the
robot body and components for untethered operation; inevit-
ably, material of this hardness requires higher pressure actu-
ation (22 psi). Hassan et al [218] proposed a tendon-actuated
soft three-finger gripper made by using three different types
of soft materials: Dragon Skin 30, Smooth-Sil 950, and a
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third type manufactured by combining Smooth-Sil 950 with
EcoFlex 00–30. The intrinsic properties of Dragon Skin 30
make it sticky compared to Sil 950. Thus, the first soft grip-
per made using Dragon Skin 30 shows a better performance
with respect to slipping than the second one. To overcome
this limitation in the second gripper, they suggested attaching
silicone strips made of Smooth-Sil 950 with EcoFlex 00–30
on the surface of the third gripper to guarantee stable grasp-
ing for lateral bending. Subramaniam et al [216] developed a
multi-material SVFA gripper with an active palm for grasp-
ing applications. They used different types of silicones such
as Mold Star30, Smooth Sil 940, Smooth Sil 960, and Eco-
Flex 00–30 to achieve the desired stiffness, Mold Star30 was
selected for the skin layer because of its high deformation at
low pressures.

All the silicone materials presented in the previous para-
graphs use molding techniques, while in recent years addit-
ive manufacturing (AM) techniques such as 3D printing have
also been employed to directly fabricate SFAs. The most suc-
cessful fused deposition modeling (FDM) material for soft
robotics is NinjaFlex (Shore hardness of 85 A) made of ther-
moplastic polyurethanes (TPU), which can withstand strains
above 700% with a Young’s modulus of around 10 MPa. The
SPFAs that are printed using this method can produce a block-
ing force of up to 75 N [102]. FilaFlex [219] and Agilus30
[220, 221] are the other two types of TPUs employed to print
SFAs. The mechanical properties of these materials and their
suppliers are listed in table 3. The manufacturing methods
of SFAs, and especially 3D printing technology, will be dis-
cussed in a dedicated section.

4.2. Manufacturing and fabrication of SFAs

The classical molding method can be used to fabricate dif-
ferent designs of the SFA actuator [222]. Thanks to the latest
developments in 3D printing technology, the design of mold
parts has improved significantly, which enables the designer
to make complex soft components with more accuracy. Nor-
mally, catalyzed silicone rubber consists of two parts that
should be mixed homogeneously with the specified ratio
according to the manufacturer’s instructions. In most cases
vacuum degassing for 4–5min is suggested to avoid air entrap-
ment. An alternative and more effective way is putting the
mixed silicone into a centrifuge machine. Cure time is variable
and differs from 30 min to 1 d at room temperature, depending
on the silicone viscosity. This time can be reduced to less than
an hour by putting the mixed liquid in an oven at a temperat-
ure of around 70 ◦C [223]. Molding complex structures, espe-
cially with undercuts and internal architectures, is very diffi-
cult [224]. To overcome this problem, AM methods have also
been proposed [225].

SFAs can be printed directly using 3D printers. The FDM
method is one of the most widely-used techniques for material
fabrication using 3D printers, at low cost and eliminating any
supporting molding material, easing changes in the material,
and also reducing the fabrication time. The working principle
is based on a heating filament and horizontally depositing

molten materials via extrusion nozzle onto a surface, layer
by layer. NinjaFlex is the most common material used in
the 3D printing of SFAs, due to its high strain and force-
producing ability when used as an actuator [102, 226]. Peele
et al [227] used the stereolithography (SL) technique to pro-
duce a SPFA layer by layer from an elastomeric precursor
material. The proposed DMP-SL printing process is a prom-
ising way to fabricate a monolithic actuator in one single pro-
cess. In the SL approach, the solidification of liquid resin
is controlled by photo-polymerization by a laser beam or
a digital light projector. In SL, unlike FDM, one resin can
be printed at one time, and this is the major potential chal-
lenge of using this technique. For more information about 3D
printing methods, the reader is referred to the review articles
[228–230].

5. Modeling

Based on previous research, SFAmodels can be classified into
three main groups: analytical methods, numerical methods,
and model-free methods. In this section, we present the latest
advances and potential challenges in each category.

5.1. Analytical methods

The earliest analytical model for SPFAs is Euler-Bernoulli’s
beam theory. In this theory, SPFAs are assumed to be canti-
lever beams with a fixed support on one side and a moment
on the other side. The model is useful when SFAs have
simple (particularly symmetric) structures. Several works can
be found in the literature using this theory, such as bi-bellow
actuators with three chambers developed by Shapiro [231],
pneumatic bending joints with anisotropic rigidity [232], and
soft biomimetic robotic fish [233]. This theory is not applic-
able for hyperelastic material with large bending deformations
such as silicone, where cross-sectional planes do not remain
perpendicular to the bending moment axis. Some approaches
have been tried to improve the result of this method. In most
of the previous works, Young’s modulus is assumed to be con-
stant, while experimental results show that the stress–strain
behavior of these materials is more complex, and the relation
between cross-section and curvature radius cannot be found
easily [234]. The analytical method approach is more success-
ful in continuum robot modeling, especially when the mater-
ial is not hyperelastic. The backbone curve approach [235]
was the first kinematic model for continuum robots. Later,
the constant curvature model (CCM) [54] was suggested for
the kinematics of multi-section soft robots. Trivedi et al [236]
deployed the work-energy principle to develop a geometric
model for SPFA manipulators, and showed that their model
is more accurate than the CCM. Polygerinos et al [237] used
analytical methods to model SPFAwith fiber-reinforced bend-
ing pneumatic actuators. Wang et al [238] presented a sim-
plified model of a soft pneumatic gripper with simple line
links connected by a set of viscoelastic joints. In conclusion,
SPA analytical models come with a lot of approximations and
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simplification in terms of shape and material properties, which
make them inaccurate and require a robust controller to com-
pensate for this lack of accuracy.

5.2. Numerical methods

5.2.1. Off-line FEM simulation. Due to the highly nonlinear
responses of silicone rubbers, modeling and analyzing SPFAs
is quite challenging. The finite element method (FEM) has
widely been considered to predict the behavior of SPFAs.
Material properties, configuration cross-sections, compressib-
ility effects of the pneumatic cavity, and actuation boundary
conditions can be defined in the FEM software, and contrib-
ute to increasing simulation accuracy. Because of the powerful
FEM tools available to model hyperelastic materials, various
FEM solutions have been introduced in the literature. Optimal
design is the other advantage of using FEM simulation to
meet specific performance criteria such as reducing the geo-
metry dimensions [239], improving actuating speed [126], or
enhancing the performance of soft actuators by maximizing
the bending angle [221, 240]. Particularly in a commercial
application, it is necessary to use FEM optimization once and
then produce the SPFAs and prerequisites such as molding
devices to reduce the production costs and time. In table 4, we
summarize the different FEM solvers and the material proper-
ties which are used to predict the hyperelastic characteristics
of silicone. Silicone rubber is modeled as an isotropic, incom-
pressible and hyperplastic material. The mechanical behavior
of hyperelastic materials is characterized by the strain energy
function U, which is then given by [241]:

U=
N∑

i+j=1

Cij(̄I1 − 3)i(̄I2 − 3)
j
+

N∑
i=1

1
ki
(Jel− 1)2i (1)

where U is the strain energy potential per unit volume, Nis the
polynomial order, Ī1and Ī2 are the deviatoric strain invariants,
Cijis a material-specific parameter, Jel is the elastic volume
ratio and ki expresses compressibility. Considering the sil-
icone as an incompressible material, the term ki is omitted,
which simplifies the general polynomial form of the strain
energy potential. (1) can be fitted by different hyperelastic
models, i.e. Mooney–Rivlin, Yeoh, Ogden, or Neo-Hookean
models.

• Mooney–Rivlin material model

This model was one of the first hyperelastic models used to
predict the nonlinear behavior of isotropic hyperelastic mater-
ials [242]. The strain-energy function for this material model
is:

U=
N=2∑
i=1

Ci(̄Ii− 3)i. (2)

• Ogden material model

Based on the theory of elasticity, the Ogden model was
developed first time by Ogden [243] and has the general form:

U=
N∑
i=1

2µi
α2
i

(λαi
1 +λαi

2 +λαi
3 − 3). (3)

where µi and αi are material constants and λ, are principal
stretches.

• Yeoh material model

This model was first presented in 1990 for incompressible
materials [244]:

U=
3∑
i=1

Ci(̄I1 − 3)i. (4)

As shown in this equation, the strain-energy function in this
model relies only on the first strain invariant (̄I1).

• Neo–Hookean material model

It was presented by Holzapfel [267]. For the Neo–Hookean
material model, the function of the strain energy is related to
a linear equation for the principal strains

U= C1(̄I1 − 3). (5)

Table 4 summarizes the coefficients of these equations
based on previous approaches in the literature. These con-
stant parameters are calculated by stress–strain experiments.
The uniaxial test is more widespread and typical than biaxial
and planning tests. Selecting and designing the most appro-
priate test for the specimen of silicone increases the accuracy
of the model parameters. Several approaches were studied to
predict the nonlinear elastic behavior of silicone rubber under
different loading conditions in order to understand the mech-
anics by finding the best least square curve fitting the poten-
tial strain energy function. Marechal et al [245] provided a
database of the best constitutive models and the values of the
coefficients according to uniaxial tensile tests recommended
in the ASTM D412 for elastomers. Each silicone specimen
was cured at room temperature with the nominal mixing ratio
recommended by the manufacturers. We deployed this data-
base to compare different suggested constitutive models in the
previous approaches listed in table 4. The results for different
silicone materials are shown in figure 8. Abaqus is used as the
framework to reproduce the curve fitting of the suggested con-
stitutive model in each reference. Although the treatment con-
ditions, such as degassing, natural aging or the addition of pig-
ment may affect the mechanical properties of the hyperelastic
materials in this simulation, we assumed that these models
were extracted in general conditions, such as the mixing ratio
recommended by the manufacturer and curing at room tem-
perature, without considering differences in the testing pro-
cess and measurement equipment. Furthermore, most of the
reviewed articles do not mention which type of test data, true
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Figure 8. Comparison of the responses of proposed constitutive models for silicone materials in different references with uniaxial
experimental standard test data from Marechal et al [245]: (a) Engineering stress–strain comparison of EcoFlex 00–30. (b) True
stress–strain comparison of EcoFlex 00–30. (c) Engineering stress–strain comparison of EcoFlex 00–50. (d) True stress–strain comparison
of EcoFlex 00–50. (e) Engineering stress–strain comparison of Dragon Skin 10. (f) True stress–strain comparison of Dragon Skin 10.
(g) Engineering stress–strain comparison of Dragon Skin 30. (h) True stress–strain comparison of Dragon Skin 3.
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or engineering strain-stress, were used to predict the mater-
ial models. Note that engineering stress, also known as nom-
inal stress, is calculated by dividing the applied force by the
primary cross-section area of the material, while in true stress
this area is changed and calculated with respect to time. We
extracted the true and engineering strain-stress data from the
proposed constitutive models in these articles using ABAQUS
software. These figures help to compare the models by assum-
ing that the experimental protocol is the same and based on
ASTM D412. We take Marechal’s test data as the reference
and compare it with the other models for each type of silicone,
by true and engineering stress versus strain results, as presen-
ted in figure 8. This figure shows the experimental data com-
paredwith the best-fitting FEmodels results for the various sil-
icone rubbers. As shown in (figures 8(a) and (b)), for EcoFlex
00–30 in a small stress–strain range, most of the models are
fitted with acceptable divergence. The Yeoh model suggested
by Sareh et al [246] fits the experimental data with few dif-
ferences. In the EcoFlex 00–50 graphs (figures 8(c) and (d))
the variation between the proposed models and raw experi-
mental data is obvious even for small stress–strain values. The
Yeoh model by Low et al [247] (figures 8(e) and (f)) and the
first-order Ogdenmodel byAl-Rubaiai et al [248] (figures 8(g)
and (h)) predict the behavior of Dragon skin 10 and 00–30
respectively with minimum divergence, even in large stress
values.

5.2.2. Real-time FEM simulation. Although FEM software
applications such as Abaqus and Ansys can generate precise
calculations of SPFA, their slow simulation speed restricts
their usage in real-time problems. To speed up the simulation,
real-time software has been developed in recent years. One of
the real-time simulation engines that provide several iterative
algorithms and mechanical models for users is SOFA. It was
first released in 2007 [268]. Due to its open-source availab-
ility, it has steadily evolved and different libraries such as a
soft robot plugin have been added by users. SOFA uses gen-
eral layers such as an internal model with independent DOFs,
mass and material constitutive laws, a collision model, and
a visual framework for modeling an object [269]. Dynamic
control of SPFA is another advantage of using SOFA for sim-
ulation/control co-design procedures [270, 271]. SOFA can
interact with other software to co-design the controller; in this
case, SOFA is a real-time FEM simulator and Matlab/Scilab
are the control designer simulation engine [272]. However,
real-time constraints make the method possible only for rel-
atively coarse meshes and simple material constitutive laws.
Furthermore, anisotropic material models are not available
in SOFA and must be integrated with additional simulator
codebases [193].

Vega-FEM is a free and open-source middleware C/C++
library for simulating 3D deformable objects based on phys-
ics rules. In Vega, various linear and nonlinear material mod-
els can be implemented, including linear and co-rotational
FEM elasticity, Saint-Venant Kirchhoff FEM model, invert-
ible FEM models, and mass-spring systems [273]. It can effi-
ciently predict the behavior of deformable materials such as

Figure 9. A flowchart of the fabrication procedure of SFA step by
step from choosing material to build a prototype.

silicone, and provides the base infrastructure to implement
additional force models [274]. The potential challenge in Vega
is it cannot correctly implement collision detection or con-
tact points, so its application in contact approaches is limited
[275]. Like SOFA, Voxelyze is another multi-material Open
Dynamics Engine for general static and dynamic analysis sug-
gested by Hiller et al [276]. It works based on lattice of voxels
of discrete points connected by spring-like beam elements
including translational and rotational stiffness to simulate
very large deformations and heterogeneous properties under
an applied force. Although some applications of Voxelyze
have been reported on soft robots [277, 278], it has some
limitations which hinder its wide expansion. For instance, a
precise approximation of some geometrical shapes requires an
increase in the number of voxels, which increases computa-
tion time. Moreover, beam theory in Voxelyze is used for the
mechanical modeling of the object, which is different from the
realistic deformation behavior of continuous material.

5.3. Model-free methods

The obstacles we have discussed to developing analytical and
numerical models have led to research attempts being made
to control soft robots using nonparametric methods based on
learning or vision. These aim to be a more efficient altern-
ative. Lee et al [279] proposed a nonparametric local learn-
ing technique to learn the inverse kinematics and control of
SFAs. The model is able to predict the end-effector position
of the robot accurately in the presence of an external dynamic
disturbance. They utilized FEM to generate a sample of kin-
ematic data to pre-train the initial control. A neural network
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Figure 10. Soft fluidic actuators with integrated sensors: (a) Combining resistive and capacitive sensors. Reproduced from [293].
CC BY 4.0. (b) Using a 3D printer to integrate hydrogel electrodes into silicone as a tactile sensor. Reprinted from [296], (c) 3D printed a
soft actuator ionically conductive gels [299] (d) Embedded magnetic curvature sensor in SFA. Reprinted from [303].

was applied in [280] to control a 1-DOF SPFA, with a vision-
based motion capture system acquiring unknown soft actu-
ator parameters. A feedforward neural network to learn the 3D
nonlinear inverse kinematic model of a soft octopus-arm was
implemented and tested in [281]. The potential challenges of
this method are the accuracy of the training-based kinematic
computation, dependent on properly selected datasets. Several
works can be found in the literature concerning the visual ser-
voing of soft actuators. Li et al [282] proposed an adaptive
Kalman filter for continuum robot path tracking. They used
pressures and tip position as input data. Then they estimated
the robot’s Jacobian of deformation by gathering the required
data from the vision system. Zhang et al [283] used real-time
FEM simulation using SOFA to predict the Jacobian matrix of
the robot. The correct position of the tipping point was modi-
fied in the feedback control law using a visual servoing system.
Although the vision-based methods are efficient to reduce the
number of sensors required to provide the state-space variables
of the robots, the hardware requirements and the complex cal-
ibration process are the main remaining challenges to using
this method in soft robot control scenarios [284, 285].

To summarize this section, figure 9 shows the steps of the
SFA fabrication procedure considering all the design paramet-
ers, including geometry, materials, constitutive law, and pres-
sure which affect each other during the analysis and manu-
facturing of soft actuators. It should be noted that selecting
the proper material for soft actuators depends on the different
factors calculated during analysis.

6. Sensing technology in SFAs

As discussed in the previous section, the modeling and con-
trol of SFAs, because of their nonlinear behavior, are gener-
ally difficult, and in most cases come with a lot of simplified

assumptions. Sensing technology is integrated into SFAs to
detect the strain, curvature, contact point, and applied force
to facilitate the control process of these kinds of actuators.
However, to be integrated into soft actuators, these kinds of
sensors must incorporate some special capabilities, such as
high stretchability and stiffness, similar to those of the actu-
ator, to prevent any motion restriction. Resistive or capa-
citive sensors are very popular in force, curvature, or tact-
ile sensing applications. Most of them consist of conductive
particles of carbon black [286, 287], graphene [288, 289],
metal nanowires, carbon or nano-tubes [290, 291]. McCoul
et al reviewed other types of electrode materials that are used
in stretchable sensors [292]. The main functional difference
between the resistive strain and capacitive sensor is that the
resistive sensor works by strain changes that alter the conduct-
ivity, while the capacitive sensors are dependent on the geo-
metry changes of the area between two electrodes. Yang et al
[293] printed resistive and capacitive sensors on a paper which
was embedded in the SFAs (figure 10(a)).

As they suggested, paper is cheap and can be used as
a strain-limiting layer. In some approaches, they integrated
commercial flex sensors in the SFAs to measure the bend-
ing angle [49, 294]. Kim et al [295] compared the perform-
ance of two commercial products, Bend Sensor® and Flex
Sensor®, to study the bending angle of the finger in hand pos-
ture estimation applications. These flex sensors only work in
one direction and the results are not accurate when the sensor
bends in a different direction. Robinson et al [296] demon-
strated a highly extensible capacitive sensor that was integ-
rated into SFAs. They use 3D printing to integrate hydrogel
electrodes into the silicone. This can also be used as a tact-
ile kinesthetic sensor (figure 10(b)). An optoelectronic sens-
ing method was integrated into SFAs by Zhao et al [297]. Its
principal functions are based on measuring Lossy waveguides
by using a photodetector to specify its deformation, and it
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just requires a transparent material to transmit the light. Com-
pared to resistive and capacitive sensors, there is no need to
embed conductive materials, and consequently no modifica-
tion to the stiffness of the actuator. Jung et al [298] deployed
this kind of sensor to estimate the configuration and shape con-
trol of SFAs. To increase optical resolution, the surface of the
chamber is coated with a reflective metal layer. As shown in
figure 10(c), Truby et al [299] proposed 3D printed ionically
conductive gels based on resistive sensors and a soft elast-
omer actuator, which were directly and simultaneously prin-
ted. Integrating this sensor on a soft gripper through a mul-
tilateral printing platform provides a fully integrated percept-
ive for haptic sensing applications with closed-loop feedback
via curvature, inflation, and contact. The use of a magnetic
sensor has recently been reported to indicate SFA curvature
[300–302]. The generated output voltage based on the Hall
effect is changed due to the position and orientation of the
magnet of the Hall element on a flexible circuit. Figure 10(d)
shows the developed embedded magnetic curvature sensor
in a SFA by Ozel et al [303]. Although a magnetic sensor,
unlike capacitive and resistive sensors, detects SFA curvature
accurately without requiring the application of external forces,
adding the magnet and the Hall element affect the stiffness and
performance of the actuator. Sensors play a significant role
in detecting the behavior of soft actuators, so developments
in this area will have promising effects on soft robot actuator
applications.

7. Summary and outlook

SFAs were the principal focus of this review study, due to their
advantages, including minimal assembly, cost-effectiveness,
large deformations, and high generated forces. These capabil-
ities make them suitable for various applications such as grip-
ping, mobility, robotic manipulation, medical tasks, rehabil-
itation and assistive purposes. We proposed a new general
classification of soft pneumatic actuators by considering pos-
itive and negative pressure as a power source. We then cat-
egorized SFAs based on their design and mechanism into
seven classes: Mckibben, continuum robot, PneuNets, uni-
versal gripper, origami soft structure, VAMPs and HASEL
design. This study provides various information on these well-
known approaches, as well as other related works which have
been inspired by these effective mechanisms. This classifica-
tion helps the researcher to present the general kinematic or
dynamic modeling or control strategies of each class. In the
Hybrid section, the combination of SFAs with other actuat-
ing mechanisms is illustrated. This hybrid strategy improves
the performance of SFAs with respect to shape configura-
tion, control ability, variable stiffness, and operation range. In
SFAs, material selection plays an important role and seems
very challenging. Considering this fact, we studied and com-
pared the mechanical properties of the various silicones which
are reported in the previous studies. After explaining the dif-
ferent types of modeling and simulation of SFAs, the con-
stitutive materials modeling reported in different articles was
reviewed. Toward a better understanding of the differences
between the constitutive equations, ABAQUS software was

utilized to regenerate the strain-stress data of each article and
depicted it in two different graphs, representing engineering
strain-stress and true strain-stress for the most popular silicone
rubbers. To be more realistic, we selected the Marechal et al
[245] database as a reference strain-stress database because
of its standard procedure of extracting uniaxial tensile stress–
strain data. Recent advances in sensor technology in the field
of SFAs are illustrated in the sensor section. Finally, two dif-
ferent strategies for SFA fabrication are briefly explained at
the end of this study.

Ongoing potential challenges of SFAs in future works can
be addressed by improving the controllability of SFAs by
embedding distributed sensors. These sensors should meas-
ure multi-contact points and simultaneously gather a wide
range of object information including surface texture andmass
while being stretchable and not increasing the actuators’ stiff-
ness. The other critical challenges of SFAs are their portability
limitation due to requiring an external source of compressed
air, especially for biomimicry applications. Several suggested
solutions can be found in the literature but have not been com-
mercialized as of yet. In addition, 3D printing of soft actuators
reduces the molding cost and assembly’s difficulties of current
fabrication methods of SFAs.
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