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This paper proposes a new decision-making framework in the context of Human-Robot
Collaboration (HRC). State-of-the-art techniques consider the HRC as an optimization
problem in which the utility function, also called reward function, is de� ned to accomplish
the task regardless of how well the interaction is performed. When the performance
metrics are considered, they cannot be easily changed within the same framework. In
contrast, our decision-making framework can easily handle the change of the performance
metrics from one case scenario to another. Our method treats HRC as a constrained
optimization problem where the utility function is split into two main parts. Firstly, a
constraint de� nes how to accomplish the task. Secondly, a reward evaluates the
performance of the collaboration, which is the only part that is modi� ed when
changing the performance metrics. It gives control over the way the interaction
unfolds, and it also guarantees the adaptation of the robot actions to the human ones
in real-time. In this paper, the decision-making process is based on Nash Equilibrium and
perfect-information extensive form from game theory. It can deal with collaborative
interactions considering different performance metrics such as optimizing the time to
complete the task, considering the probability of human errors, etc. Simulations and a real
experimental study on“an assembly task” -i.e., a game based on a construction kit-
illustrate the effectiveness of the proposed framework.

Keywords: human-robot collaboration, decision-making, game theory, Nash equilibrium, interaction optimality

1 INTRODUCTION

Nowadays, Human-Robot Collaboration (HRC) is a fast-growing sector in the robotics domain.
HRC aims to make everyday human tasks easier. It is a challenging research� eld that interacts with
many others: psychology, cognitive science, sociology, arti� cial intelligence, and computer science
(Seel, 2012). HRC is based on the exchange of information between humans and robots sharing a
common environment to achieve a task as teammates with a common goal (Ajoudani et al., 2018).

HRC applications can have social and/or physical bene� ts for humans (Bütepage and Kragic,
2017). Social collaboration tasks include social, emotional and cognitive aspects (Durantin et al.,
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2017) such as care for the elderly (Wagner-Hartl et al., 2020),
therapy (Clabaugh et al., 2019), companionship (Hosseini et al.,
2017), and education (Rosenberg-Kima et al., 2019). Social
robots, such as Nao, Pepper, iCub, etc., are dedicated to this
type of task; however, their physical abilities are very limited
(Nocentini et al., 2019). For the physical HRC (pHRC), physical
contacts are necessary to perform the task. They can occur
directly between humans and robots or indirectly through the
environment (Ajoudani et al., 2018). pHRC applications are
mainly used in industrial environments [e.g., assembly,
handling, surface polishing, welding, etc., (Maurtua et al.,
2017)]. pHRC is also used in the Advanced Driver-Assistance
Systems (ADAS) for autonomous cars (Flad et al., 2014).

Robots can adapt to humans in different situations by
implementing � ve steps in a decision-making process
(Negulescu, 2014): 1) gathering relevant information on
possible actions, environment, and agents, 2) identifying
alternatives, 3) weighing evidence, 4) choosing alternatives and
selecting actions, and 5) examining the consequences of
decisions. These steps are usually modeled in computer
science using a decision-making method with a strategy and a
utility function (Fülöp, 2005). The decision-making method
models the whole situation (environment, actions, agents, task
restrictions, etc.). The strategy de� nes the policy of choosing
actions based on the value of their reward. The utility function
(i.e., reward function) evaluates each action for each alternative
by attributing a reward to it.

On the one hand, previous works, known as leader-follower
systems (Bütepage and Kragic, 2017), focused the decision
process on choosing the actions that increase the robot’s
abilities to accomplish the task without considering how the
collaboration is done. Such as inDelPreto and Rus (2019), where
a human-robot collaborative team is lifting an object together, or
in Kwon et al. (2019), where robots in� uence humans to change
the pre-de� ned leader-follower agents to rescue more people
when there is a plane or ship crash in the sea.

On the other hand, other works deal with maximizing the
collaboration performance by promoting mutual adaptation
(Nikolaidis et al., 2017b; Chen et al., 2020) or reconsidering
the task allocation (Malik and Bilberg, 2019). However, they only
consider one or two unchangeable performance metrics for this
evaluation in their utility function: postural or ergonomic
optimization (Sharkawy et al., 2020), time consumption
(Weitschat and Aschemann, 2018), trajectory optimization
(Fishman et al., 2019), cognitive aspects (Tanevska et al.,
2020), and reduction of the number of human errors (Tabrez
and Hayes, 2019).

In this paper, we optimize and quantitatively assess the
collaboration between robots and humans based on the
resulting impact of some changeable performance metrics on
human agents. Hence, an optimized collaboration aims to bring a
bene� t to humans, such as getting the task done faster or reducing
the effort of human agents. However, an unoptimized
collaboration will bring nothing to humans or, on the
contrary, will represent a nuisance, such as slowing them
down or overloading them, even if the task is� nally
accomplished. The main contribution of this paper is that the

proposed framework allows optimizing the performance, based
on some changeable metrics, of the collaboration between one or
more humans and one or more robots. Contrary to previous
works, our framework allows us to easily change the performance
metrics without changing the whole way the task is formalized
since we isolate the impact of the metrics in the utility function.

The bene� t of this contribution is to increase the collaboration
performance without having to ameliorate the robot’s abilities.
This is important in relevant practical cases: for instance, when
using social robots that have great limitations (e.g., slowness in
their movements and/or reduced dexterity), and it is not easy or
even possible to ameliorate their abilities drastically. Therefore,
our work provides an interesting solution to enhance
collaboration performance with such limited robots.

Our framework uses the state-of-the-art decision-making
process composed of: a decision-making method, a strategy,
and a utility function. We divide the utility function into two
main parts: the collaboration performance evaluated by a reward
according to one or several performance metrics, and the task
accomplishment, which is considered as a constraint since we
only deal with achievable tasks.

The paper is organized as follows. First, we review related work
in Section 2. Then, we present our framework formalization in
Section 3. Section 4 includes all the details regarding the
decision-making process. The effectiveness of our new
formalization is shown inSection 5based on simulated and
experimental tests of an assembly task (i.e., a game1 that involves
placing cubes to build a path between two� gurines) shown in
Figure 1. Finally, we sum up the effectiveness of our contribution
and discuss the possible improvements inSection 6.

2 RELATED WORK

In this section, we present the most popular methods, strategies,
utility functions, and performance metrics used in the decision-
making process of human-robot collaboration to place our
contributions with regard to them. A decision-making method
models the relationship between the agents, the actions, the
environment, the task, etc. A strategy de� nes how to select the
optimal actions each agent can choose based on the reward
(utility) calculated by the utility function for each action. An
optimal action pro� le is made up of the best actions each agent
can choose. All methods and strategies can be used to perform
different tasks, and there is no pre-written rule that implies that
one will necessarily perform better than the others.

2.1 Decision-Making Methods
Decision-making methods are used, as mentioned before, to
model the relationship between the task, the agents
accomplishing it, their actions, and their impact on the
environment. Probabilistic methods, deep learning, and game

1Camelot Jr. is a game created by Smart Games: https://www.smartgames.eu/uk/
one-player-games/camelot-jr.
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theory are considered among the most widespread decision-
making methods.

Probabilistic methods are the� rst and most widely used in
decision-making processes. Markov’s decision-making processes
(e.g., Markov chains) are the most used ones. There are also
studies based on other methods such as Gaussian processes (e.g.,
Gaussian mixtures), Bayesian processes (e.g., likelihood
functions), and graph theory. InRoveda et al. (2021), a
Hidden Markov Model (HMM) is used to teach the robot how
to achieve the task based on human demonstrations, and an
algorithm based on Bayesian Optimization (BO) is used to
maximize task performance (i.e., avoid task failures while
reducing the interaction force), and to enable the robot to
compensate for task uncertainties.

The interest in using deep learning in decision-making
methods began very early due to unsatisfactory results of
probabilistic methods in managing uncertainties in complex
tasks. InOliff et al. (2020), Deep Q-Networks (DQN) are used
to adapt robot behavior to human behavior changes during
industrial tasks. The drawbacks of deep learning methods are
the computation cost and the slowness of learning.

Game theory methods in decision-making processes have only
recently been exploited. They can model most of the tasks
performed by a group of agents (players) in collaboration or
competition, whether the choice of actions is simultaneous
[normal form also called matrix form modeling (Conitzer and
Sandholm, 2006)] or sequential [extensive form also known as
tree form modeling (Leyton-Brown and Shoham, 2008)]. The
game theory methods have been used in different HRC
applications, for instance, in analyzing and detecting the
human behavior to adapt the robot’s one to it for reaching a
better collaboration performance (Jarrassé et al., 2012; Li et al.,
2019). Game theory has been also utilized in HRC in mutual
adaptation to achieve industrial assembly scenarios (Gabler et al.,
2017). We choose the game theory as a decision-making method
due to its simplicity and effectiveness in modeling most
interactions between a group of participants and their
reactions to each other’s decisions. We speci� cally use the
extensive form due to its sequential nature, which is suitable
for HRC applications.

2.2 Decision-Making Strategies
The decision-making strategy is the policy of choosing actions
based on the value of their reward calculated by the utility

function (i.e., the reward function). We present the most used
strategies for multi-criteria decision-making in HRC as well as
some of their application areas. The following strategies are used
intensively in deep learning and/or in Game theory (Conitzer and
Sandholm, 2006; Leyton-Brown and Shoham, 2008):

• Dominance: All the actions whose rewards are dominated
by others are eliminated. Researchers used it to assess the
human’s con� dence in a robot inReinhardt et al. (2017).

• Pareto optimality: An action pro� le is Pareto optimal if we
cannot change it without penalizing at least one agent. It is
used, for example, in disassembly and remanufacturing
tasks (Xu et al., 2020).

• Nash Equilibrium (NE): Each agent responds to the others
in the best possible way. The best response is the best actions
an agent can choose whatever others have done. This is the
main strategy used in Game theory. InBansal et al. (2020), a
NE strategy is used to ensure human safety in a nearby
environment during a pick-and-place task.

• Stackelberg duopoly model: The agents make their decision
sequentially: one agent (the leader) makes their decision
� rst, and all other agents (followers) decide after. The
optimal action of the leader will be the one that
maximizes its own reward and minimizes the follower’s
rewards. This means that the leader has always the biggest
reward. This strategy is used, for example, in a collaborative
scenario between a human and a car to predict the driver’s
behavior in this speci� c scenario (Li et al., 2017) such as the
driver’s steering behavior in response to a collision
avoidance control (Na and Cole, 2014).

2.3 Performance Metrics
After the decision-making process is settled and used to perform a
task by a human-robot collaborative team, other works tend to
evaluate the performance of the collaboration using some
performance metrics. On the one hand, some works focused
on evaluating one speci� c metric, as done inHoffman (2019),
where the author is evaluating several human-robot collaborative
teams, performing different tasks, using the� uency metric. On
the other hand, other works create a global framework to evaluate,
in general, the HRC based on several metrics. InGervasi et al.
(2020), the authors developed a global framework to evaluate the
HRC based on more than twenty performance metrics, among
which the cognitive load and the physical ergonomics.Table 1

FIGURE 1 | Agents solving the Camelot Jr. game.(A) Agents play sequentially: the human starts to play, and then it is the robot’s turn. (B) This puzzle starts with
four cubes to assemble.(C) The cubes are correctly assembled, and the puzzle is solved (i.e., a path composed by cubes is created between both� gurines).
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presents the main metrics considered, in the state-of-the-art, to
evaluate the optimality of the collaboration. We present in the
Supplementary Materiala more detailed table that introduces
more performance metrics and de� nes each metric according to
its usage in different task types.

2.4 Utility Functions
The utility is a reward calculated by the utility function to express
the value of an action. Thanks to these utilities, the decision-
making strategy can choose the right actions. Some previous
works in the literature only considered task accomplishment (and
no performance metrics) in their utility functions because their
focus was on complex task accomplishment. For example, in
Nikolaidis et al. (2017a), a human-robot collaborative team was
carrying a table to move it from one room to another. The goal
was to ensure mutual adaptation between the agents by having
the human also adapt to the robot. In this type of work, none of
the performance metrics inTable 1is considered.

More recent works include performance metrics (seeTable 1).
However, they considered that they are not changeable without
signi� cant changes in their framework. A relevant example is
Liu et al. (2018)where, by changing the task allocation, the
authors make the robot respect the real-time duration of the
assembly process while following the necessary order to
assemble the parts. In this case, they considered one metric
(the time to completion) since respecting the part’s assembly
order is a constraint to accomplish the task. However, this time
metric cannot be replaced by another (e.g., effort or velocity)
using this framework.

2.5 Contributions
Unlike the utility functions used in the state-of-the-art works, we
take into account a changeable unrestricted number of
performance metrics (fromTable 1) that are usually
optimized no matter how the human is behaving. To
summarize our contributions, we propose a framework that
allows us to:

• easily change the performance metrics from one scenario to
another without changing anything in our formalization
except the part in the utility function related to the
metrics, and

• improve the collaboration performance without having to
change the robot’s abilities.

In the following section, we de� ne the problem formalization
and present the utility function which optimizes the performance
metrics and aims to accomplish the task as a constraint.

3 FORMALIZATION

A HRC2 consists of a global environment {E} and a taskT. The
environment stateEk at each iterationk (with k � [1, kf], wherekf

is the� nal iteration of the task) comprises a group ofn agents
(humans and robots), each of them can carry out a� nite set of
actions (continuous or discrete).Ek changes according to the
actions chosen by the agents. The global environment {E} is the
set of changes in the environment state at each iteration.

{E} � { E1, E2, . . . , Ek, . . . , Ekf } (1)

Since the possible actions may change at each iteration, we de� ne
{A} as the global set of feasible actions for each iterationk: {A}k.

{A} � {{ A}1, {A}2, . . . , {A}k, . . . , {A}kf } (2)

The set {A}k contains a set of feasible actions for each agenti (with
i � [1, n]) at iterationk denoted by{Ai}

k.

{A}k � {{ A1}
k, . . . , {Ai}

k, . . . , {An}
k} (3)

Ak
i,a is theath feasible action of agenti wherea � [1, l] and l is the

number of feasible actions of the agenti at timek.

{Ai}
k � { Ak

i,1, . . . , Ak
i,a, . . . , Ak

i,l } (4)

At each iteration, an action pro� le( �A)k groups the actions chosen
by each agenti denoted byAk

i � {Ai}
k.

( �A)k � ( Ak
1, . . . , Ak

i , . . . , Ak
n) (5)

The optimal action pro� le ( �A)k
opt at iteration k is computed

through the decision-making functiondM,Sas presented inEq. 6.
dM,S relies on the decision-making methodM, the decision-
making strategyS, and the utility pro� le ( �U)k

A that contains
all the utilities for all possible actions {A}k at iterationk. The

TABLE 1 | Some metrics considered for the evaluation of HRC classi� ed based on the task types (Steinfeld et al., 2006; Bütepage and Kragic, 2017; Nelles et al., 2018).

Task Navigation Perception Management Manipulation Social Common metrics
that can be used
for all task types

Performance
metrics

Failure rate,
accuracy, ergonomy
or posture, time to
completion, and
rapidity

Velocity, accuracy,
time to completion,
effectiveness, and
number of errors

Time delivery, time
request, number of
human and robot
errors, trust, cognitive
load

Positional accuracy and
repeatability, velocity,
dexterity, time to
completion, and effort or
force

Persuasiveness,
engagement in social
characteristics, trust,
and compliance

Time to completion,
number of human and
robot errors, autonomy,
cognitive load, and
effectiveness

2We denote functions by lower case letters in bold, sets and subsets between braces
with upper case letters in bold, indexes by lower case letters, parameters by upper
case letters, and vectors (i.e., pro� les) by letters in bold topped by an arrow between
parenthesis.
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decision-making methodM takes into account the constraints
related to the task such as the order in which the agents act,
i.e., sequentially or simultaneously. The decision-making strategy
Sde� nes the way the agents must choose the actions according to
their utilities contained in( �U)k

A, as presented inFigure 2.

( �A)k
opt � dM,S ( �U)k

A� � (6)

The utility pro� le ( �U)k
A is computed by the utility functionfu

based on different sets including: 1) the set of performance
metrics{M} (cf. Table 1), 2) the set of constraints {G} to be
respected in order to make the taskT progress for
accomplishing it, 3) {R} the reward of each action in the
pro� le action which is calculated according to the task and
the metrics, and 4) {e} a set of weighting coef� cients (between 0
and 1) used to determine the importance of each metric (e.g.,
favoring one metric over the others, especially when it is in
opposition to others). We get:

( �U)k
A � f u({ M}, {G}, {R}, {e}) � ( Uk

A1
, . . . , Uk

Ai
, . . . , Uk

An
) (7)

Let us discuss how one can make changes to the different
elements involved inEq. 7. To only change the scenario of the
collaboration by changing the performance metrics{M} in fu, we
� rst need to change the value of the metrics{M}, and the value of
the reward {R} of each action, and afterwards recalculate the
utilities ( �U)k

A. To only modify the agent’s actions, the utilities
( �U)k

A should be recalculated for the new actions. To change the
task, we will need to modify the constraints {G} which de� ne the
task by setting the conditions that allow the agent to only choose
among the actions which permit to make the task progress. It will
then be necessary to recalculate the utilities( �U)k

A. We can, of
course, combine several modi� cations (e.g., changing the
performance metrics and the task) by making the appropriate
adaptations (e.g.,� rst modifying the metrics{M}, the rewards
{R}, and the task constraints {G}, and afterwards recalculating the
utilities ( �U)k

A).
To illustrate howEqs 6, 7 can be settled, let us consider the

example of a collaborative team composed of a human and a
robot, each holding an edge of a gutter on which there is a ball
(Ghadirzadeh et al., 2016). Their goal is to position the ball, for
instance, in the center of the gutter. Our solution using our
formalization for such task can be as follows:

• Agents: Agent 1 is the human, and agent 2 is the robot. Both
agents are making decisions simultaneously.

• Human actions{A1}
k: They are the angles of inclination of

the gutter. The actions are continuous. The set of human
actions remains the same for all the
iterations ({A1}

k � { A1}).
• Robot actions{A2}

k: They are angles of inclination of the
gutter by the robot end-effector. The decision-making
method will provide the correspondent joint values
needed to reach the desired position by the end-effector.
The actions are continuous (since it is a continuous control
task). The set of robot actions remains the same for all
iterations ({A2}

k � { A2}).
• Constraints {G}: The angles of inclination should be between

[� 30°, 30°], other values will be penalized.
• Performance metrics{M}: Time to completion and human

posture. Human posture is measured by ISO standards that
de� ne some uncomfortable work postures (Delleman and
Dul, 2007). These uncomfortable postures (or positions) will
lead, for example, to� nd that when the human inclines the
gutter with an angle out of the interval [� 20°, 20°], it is
getting painful for them.

• Rewards {R}: They will be calculated by the following
equation:� � Cb � Cg� p � . WhereCb is the position of the
center of the ball,Cgis the position of the center of the gutter
(the desired position), and� is a � xed gain for a case
scenario.� allows to privileged an action according to the
performance metrics ({M}) and the constraints ({G}).

• Weighting coef� cients {e}: It is equal to 1 for both
performance metrics.

• Decision-making methodM: It is the reinforcement learning
process that is based on trial and error learning. The agent 2
(the robot which learns) in statesmakes an actionA2,a which
changes the state tos�. The observation the agent got from
the environment describes the changes that happened by
moving from states to s�. The reward (R(s, A2,a)) evaluates
the taken actionA2,a (which leads to the new states�) with
respect to the desired learning goal. The statesis made up of
Cb, Cg, and the position of the robot’s end-effector. The
learning procedure of all reinforcement learning algorithms
consists of learning the value that is attributed to the state
V(s) de� ned below.

FIGURE 2 | Block diagram of our formalization of the decision-making process used to calculate the optimal action pro� le ( �A)k
opt at iterationk.
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• Decision-making strategyS: It is the dominance strategy.
Once theV(s) are learned for all possible states, the optimal
actions can be chosen. Most of the reinforcement learning
algorithms are based on the Bellman equation for choosing
the optimal actions (Nachum et al., 2017):

V( s) � max
A2,a

( R( s, A2,a) + cV( s�)) (8)

c is the discount factor that determines how much agent 2 cares
about rewards in the distant future relative to those in the
immediate future. max

A2,a

is the strategyS for choosing the

action (i.e., dominance strategy).
The decision-making method manages the way agents act

(simultaneously or sequentially) as well as the different types of
actions (continuous or discrete). It is also necessary to ensure that
the decision-making strategy can handle the nature of the actions
(discrete or continuous) and how they are chosen (sequentially or
simultaneously). As our framework allows us to easily change the
decision-making method and strategy, we just have to select them
according to the nature of the actions and how they are chosen.
Figure 2 summarizes our formalization of the decision-making
process using a block diagram. InSection 4, we explain the
selected decision-making method and strategy in our
experiments as well as the performance metrics that can be
taken into consideration.

4 APPROACH

To illustrate our contributions, we de� ne a constant decision-
making methodM and strategyS. We assume as decision-making
method the Perfect-Information Extensive Form (PIEF) of the
game theory (environment and actions are known) in which the
full � ow of the game is displayed in the form of a tree. Using Nash
Equilibrium as the strategy of the decision-making process
ensures optimality regarding the choice of the actions, which
is what we seek to guarantee.

4.1 Perfect-Information Extensive Form
As decision-making methodM in Eq. 6 we used the Perfect-
Information Extensive Form (PIEF). Using this method, the agent
has all the information about the actions and decisions of other
agents and the environment. A game (or task or application) in
PIEF in game theory is represented mathematically by the tuple
T � ({ N}, {A}, {H}, {Z}, � , � , � , { �U}) (Leyton-Brown and Shoham,
2008), with:

• T represents the game (i.e., the task) as a tree (graph)
structure.

• {N} is a set ofn agents.
• {A} is a set of actions of all agents for all iterations.
• {H} is a set of non-terminal choice nodes. A non-terminal

choice node represents an agent that chooses the actions to
perform.

• {Z} is a set of terminal choice nodes; disjoint from {H}. A
terminal choice node represents the utility values attributed

to the actionsAk
i each agenti chose in an alternative (i.e., a

branch of the tree).
• � : {H}1 {A}@His the action function, which assigns to each

choice nodeH a set of possible actions {A}@H.
• � : {H}1 {N} is the agent function, which assigns to each

non-terminal choice node an agenti � {N} who chooses an
action in that node.

• � : {H} × {A}1 {H} � {Z} is the successor function, which
maps a choice node and an action to a new choice node or
terminal node.

• { �U} � {( �U)1
A, . . . , ( �U)k

A, . . . , ( �U)
kf

A } is the global utility
pro� le for all iterations.

We apply this structure to represent the task in the following
sections. In our case, since the number of nodes is small,� , � , and
� are straightforward functions (cf.Figure 4).

From a high-level perspective, a perfect-information game in
extensive form is simply a tree (e.g.,Figure 4) which consists of:

• Non-terminal nodes (squares): each square represents an
agent that will choose actions.

• Arrows: each one represents a possible action (there are as
many arrows as available actions{Ai}

k for agent i at
iteration k).

• Terminal nodes (ellipses): each ellipse represents the utilities
calculated for each action chosen by each agent in an
alternative (i.e., a branch of the tree).

Note that this kind of tree is made for all the possible
alternatives (considering all the actions an agent might
choose) even if some of them will never happen (the agent
will never choose some of the available actions). In this way,
the tree represents all possible reactions of each agent to any
alternative chosen by the others, even if, in the end, only one of
these alternatives will really happen.

4.2 Subgame Perfect Nash Equilibrium
As decision-making methodSin Eq. 6we used Nash Equilibrium
(NE). The gameT can be divided into subgamesTk at each
iteration. In game theory (Leyton-Brown and Shoham, 2008), we
consider a subgame ofT (in PIEF game) rooted at nodeH as the
restriction ofT to the descendants ofH. A Subgame Perfect Nash
Equilibrium (SPNE) ofT is all action pro� les( �A)k such that for
any subgameTk of T, the restriction of( �A)k to Tk is a Nash
Equilibrium of Tk.

Nash Equilibrium in pure strategy (game theory) at iterationk
is reached when each agenti best responds to the others (denoted
by � i). The Best Response (BR) atk is de� ned mathematically as:

A*k
i � BR( Ak

Ši) iff � Ak
i � {Ak

i }, Uk
A*

i |AŠi
� Uk

Ai |AŠi
(9)

Hence, NE will ultimately be expressed as follows:( �A)k
opt

� ( Ak
1, . . . , Ak

i , . . . , Ak
n) is an optimal pro� le of actions following

Nash’s equilibrium in pure strategy iff� i, Ak
i � BR( Ak

Ši).
From a high-level perspective, to ensure that the actions

chosen by one agent are following the NE strategy, it is
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enough to verify that each agent chooses the actions that have the
maximum possible utilities.

4.3 Performance Metrics
As long as a metric can be formulated mathematically or at least
can be measured during the execution of the task and expressed as
a condition to calculate the task reward, it can be considered in
choosing the actions through the performance metrics{M} (some
examples are given inTable 1). In the next section, we present the
tests conducted, and we mention the chosen performance metrics
for each scenario.

5 EXPERIMENTS

We conduct real and simulated tests to prove the effectiveness of
our formalization. We test three different utility function case
scenarios in which the reward values change according to the
chosen performance metrics. In the state-of-the-art case scenario,
no metric is optimized. In the real experimental tests, the time to
completion metric is optimized. In the simulated tests, we
optimize the time to completion by considering the probability
of human errors and the time each agent takes to make an action.

5.1 The Task
We chose to solve Camelot Jr. as a task. To successfully complete
this task, all the cubes must be positioned correctly to build a path
between the two� gures. We have divided the task completion
process into iterations during which each agent chooses an action
sequentially.

5.1.1 Experiments Context
We make the collaborative team ({N}), composed of a human (h)
and the humanoid robot Nao (r), do a task (T) that consists of
building puzzles (cf.Figure 1). Nao is much slower than the
human (tAr > tAh) in doing physical tasks (e.g., pick-and-place
tasks), and we want to minimize the total task time ({M}). This
slowness depends on the nature of the robot itself (its motor capacity
combined with the use of its camera) and the complexity of the
puzzle. For the robot, the puzzle is more complex as the number of
cubes to assemble increases. It is quite different for the human the
complexity depends on their“intelligence” which means that the
puzzle is easier as the human is“intelligent”. By “intelligent”, we
mean that the human can discover rapidly and without making
mistakes where the correct position of each cube is.

The advantage of collaborating with the robot is that it knows
the solution to the construction task. Therefore, the robot is
always performing well, even if it is slower than the human. The
human agent, however, can make mistakes. The human begins to
play, and then, it is the robot’s turn. The robot will correct the
human’s move if this move is wrong. The changes in the robot’s
decision-making between the three case scenarios, including all
the details we will present in the following sections, are shown in
Figure 6. The implementation procedure and computation times
for the conducted experiments are presented in the
Supplementary Material.

5.1.2 Assumptions
To illustrate the contributions of this paper, we consider the
following assumptions:

• The task is always achievable. We solve the task while
optimizing the performance metrics through the utility
function. The optimization of the metrics does not have
an impact on the solvability of the task.

• We limit the number of agents to two: a human (h) and a
robot (r). Hence, {N} � {h, r} 0 n � 2.

• We limit agents to choose only one discrete action per
iteration (i.e.,|Ak

i | � 1) and to maximize only one metric
(time to completion) in the real experiment and two metrics
(time to completion by considering the probability of
human errors) in the simulated experiments.

• The task is performed sequentially through iterations. An
iterationk includes the human making an action, then the
robot reacting.

• The agent set of actions and the time the agent takes to make
an action are invariable by iteration.

5.1.3 The Actions
The set of human actionsEq. 10and the set of robot actionsEq.
11 are the same at every iteration, and each one of them consists
of three actions:

• Ah,g � Ar,g: perform the good action (i.e., grasp a free cube
and release it at the right place).

• Ah,w � Ar,w: wait (i.e., the agent does nothing and passes its
turn).

• Ah,b: perform the bad action (i.e., the human makes an error:
grasping a free cube and releasing it at the wrong place).

• Ar,c: correct a bad action (i.e., the robot removes the cube
from the wrong place).

{Ah}
k � { Ah} � { Ah,g, Ah,w, Ah,b} (10)

{Ar }
k � { Ar } � { Ar,g , Ar,w, Ar,c} (11)

5.1.4 Utility Calculation
The following equation is the adaptation ofEq. 7to the current
task. So, the utility of every available actiona for each agenti is
calculated as follows:

Uk
Ai,a

� UAi,a �
1

tAi,a

× GAi,a × RAi,a� � t (12)

with:

• tAi,a: the duration of actiona of agenti,
• t: the total time for an iteration (t � � n

i� 1tAi,a, here having
n � 2, thereforet � tAh,a + tA

r,a�
),

• GAi,a: the constraint that ensures the task progression by
penalizing the actions which make the task regress (cf.
Table 2),

• and RAi,a: the reward of actiona of agenti.
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5.1.5 Strategy of Action ’s Choice
In our formalization, we mentioned that the agents are choosing
Nash Equilibrium (NE) as the decision-making strategy. But since
the behavior (the decision-making strategy) of each human is
different from one to another, we cannot claim that they will
follow the NE for choosing their actions. For the robot, however,
we restrict it to choose the actions by using the NE strategy. That
is why the robot is choosing the action with the highest utility
knowing the one chosen by the human. Note that, in our case
scenarios, the robot reacts to the human’s action since they are
doing the task sequentially, and the human starts.

5.2 State-of-the-Art Utility Function
In state-of-the-art techniques, there is no optimization of the task.
This is equivalent to always consider:� a, i RAi,a � 1 in our
approach (inEq. 12). For each iteration (each agent chooses
an action with a utility), we can represent the task with the tree
structure ofFigure 4A. We will refer in the rest of the article to
this case scenario by usingC1.

In this case, using NE, the robot’s reaction to the human action
will be as follows:Ar,g if the human choseAh,g or Ah,w, andAr,c if
the human choseAh,b.

5.3 Real Experiments with Time Metric
We conducted tests3 with a group of 20 volunteers. The objectives
were to prove that the framework is applicable for a real task and
to check human adaptation to the robot.

5.3.1 Experiment Procedure
After explaining the game rules to the participants, we asked them
to complete two puzzles to make sure they understood the
gameplay. Afterward, we asked each participant to complete
three puzzles, chosen randomly among� ve, by collaborating
with the Nao Robot.

The participant began the game. Then, it was Nao’s turn. It
continued until the puzzle was done. At each time, the participant
had 20 s (tAh) to make an action or to decide to skip their turn.
Nao takes on average 60 s( tAr ) to do an action. It was skipping its
turn when humans were well-doing and correcting them when
they made an error. Nao did not move the cubes on its own (for
human safety), but it was showing and telling the human which

cube should be moved and where by pointing it.Figure 3
illustrates, as an example, the steps of solving puzzle two by a
participant and Nao.

5.3.2 Utility Function for Optimizing the Time
The reward valuesEq. 13in the utility functionEq. 12ensure
to maximize the time metric by penalising the action taken by
the robot (the slower agent, i.e.,RAi,a � Š 1) if the human (the
faster agent denoted byi�) chooses the correct action (denoted
by a�). This penalization will prevent the robot from
interfering with the human actions if the human makes the
right decision:

RAi,a �
Š1 if GAi,a > 0 andGA

i� ,a�
� 1 andtA

i� ,a�
< tAi,a

1 otherwise
� (13)

Thus, for each iteration, we can represent the task with the tree
structure ofFigure 4B. We will refer in the rest of the article to
this case scenario usingC2. In this case, using NE, the robot’s
reaction to the human action will be as follows:Ar,w if the human
choseAh,g, Ar,g if the human choseAh,w, andAr,c if the human
choseAh,b.

5.3.3 Results
Experiments with humans (presented inSection 5.3.1) were
those where the robot used the utility function optimizing the
time metric (case 2 (C2)). It was very dif� cult to have enough
participants to also test the case where the robot does not
optimize any metric (the state-of-the-art case (C1)). The only
change in the procedure of the experiments usingC1 will be that
even if the human is well-doing, the robot will not pass its turn
(Ar,w) but will perform the good action (Ar,g). Hence, to compare
the achieved results of our technique and the state-of-the-art
techniques, we assumed that human actions remain the same in
the caseC1 as in the caseC2, and we merely changed the robot
reactions.

We chose to keep human actions unchanged between the two
cases to ensure that only the switching of the utility function (C2

to C1) affects the robot reaction and not the in� uence of human
behavior.Table 3provides an example of a scenario for solving
puzzle two withC2 and C1 (Figure 3). We also calculated in
Figure 5 the average time and the standard deviation of the
measured times among the experiments (C2) and the deducted
times (C1).

In C2, we assumed that if the human does the good action
once, they will continue to do it each time. We notice from
Figure 5thatC1 works better when the human is not“intelligent”,
i.e., they make lots of errors. That is why, the standard deviation
values usingC2 are bigger than usingC1. This is the case for the
last three puzzles where the average time usingC2 is bigger than
usingC1. For the� rst puzzle, however, the average time usingC2

is smaller than usingC1, but the standard deviation values using
C2 are bigger than usingC1. The standard deviation values of this
puzzle (usingC1 andC2) are the biggest ones among all puzzles
presented inFigure 5. Having big standard deviation values
means that this puzzle was harder to solve for some
participants and easier for others. That is why the average

TABLE 2 | The value of the constraint of the task accomplishment for each action:
making the task progress (GAi,a � 1), making no progression (GAi,a � 0), and
making the task regress (GAi,a � Š 1).

Action G Ai,a Task progress

Human Ah,g 1 Progression
Ah,w 0 No progression
Ah,b � 1 Regression

Robot Ar,g 1 if Ah � Ah,b or � 1 otherwise Progression
Ar,w 0 No progression
Ar,c 1 if Ah � Ah,b or � 1 otherwise Progression

3The experiment protocol was approved by the ethics committee of the Clermont-
Auvergne University under the number: IRB00011540-2020-48.
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time and the standard deviation values usingC2 and C1 do not
have the same trend.

On the contrary,C2 performs better when the human is
“intelligent”. Therefore, the time taken to accomplish the task
depends on human“intelligence” that is related to the probability
of human errors and the ratio between the time each agent takes
to do an action. Without taking into account these two additional
metrics, we cannot optimally ensure to minimize the time to
completion when the human makes many mistakes.

In the next case (C3), we present a third utility function that
takes into account the time taken by the agents to make an action
and optimizes the time to completion by encouraging the human
agent to reduce the number of errors. Each metric has the same
weight � � 1 (Eq. 7) since all these metrics are compatible. It

means that optimizing one metric depends on optimizing the
others.

5.4 Simulated Experiments with Time and
Number of Human Errors Metrics
We use case (C3) to prove that our framework can handle
the changes in the performance metrics from one case
scenario to another. In this case (C3), we select betweenC1

and C2 the case that minimizes the total time by considering
the probability of human errors and the ratio between the
time each agent takes to make an action. The difference
betweenC1 and C2 lies in the robot reaction when the human
agent makes the good action (Ah,g). With C1, the robot makes the
good action (Ar,g), while withC2, the robot decides to wait (Ar,w),
to not slow down the human.Figure 6presents an algorithmic
block diagram showing which case the robot will choose to make
an action.

5.4.1 Assumptions on Humans
We did not have enough participants to do real tests so we chose
to do simulated tests. For this, we simulated the human decision
process as a probability distribution among the set of feasible
actions such that:P(Ah,g) � I1, P(Ah,w) � I2, andP(Ah,b) � I3 � 1 �
(I1 + I2). I1, I2, andI3 are variable from one participant to another
and 0< I1 + I2 	 1.

FIGURE 3 |Example of the solving steps of the puzzle two by a participant and Nao.(A) The human puts a cube in a wrong position.(B) Nao asks him to remove
that cube. (C) The human puts a cube in a correct position, then the robot does nothing.(D) The human puts another cube in a correct position and the puzzle is solved.

FIGURE 4 |Tree representation of the task based on the utility function inC1 and C2. Notice that the difference between both� gures is the utility value of the action
Ar,g, of the robot (1.33 and� 1.33). It is becauseC1 (on the contrary ofC2) does not minimize the time, so the robot continues to make an action even if the robot is slower
than the well-performing human.(A)This tree is obtained by simulating an iteration of the task without optimization (C1). The utilities (� rst for human agent and second for
robot in green ellipses) are calculated fortAh � 20 s, tAr � 60 s and t � 80 s. (B)This tree is obtained by simulating an iteration of the task optimized by the time metric
(C2). The utilities (� rst for human agent and second for robot in green ellipses) are calculated fortAh � 20 s, tAr � 60 s and t � 80 s.

TABLE 3 | The adaptation of time calculation fromC2 to C1 for the resolution of
one scenario of puzzle two.

Iteration 1 Iteration 2 Iteration 3 Total time
(s)

C1 Human actions Ah,b (20s) Ah,g (20s) 160
Robot reactions Ar,c (60s) Ar,g (60s)
Iteration time 80 s 80 s

C2 Human actions Ah,b (20s) Ah,g (20s) Ah,g (20s) 140
Robot reactions Ar,c (60s) Ar,w (20s)
Iteration time 80s 40s 20s
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5.4.2 Utility Function for Optimizing the Time to
Completion While Considering the Probability of
Human Errors
Compares toEq. 12, only the reward values (RAi,a) change. The
reward values of the utility function forC3 are calculated by the
following function:

RAi,a �
Š1 if GAi,a > 0 andGA

i� ,a�
� 1 andtC2 < tC1

1 otherwise
� (14)

WheretC2 < tC1 decides which case (1 or 2) is the best to optimize
the total time (cf.Figure 6) and thus reduce the number of
human errors. So, iftC2 < tC1 is true,C2 will be faster thanC1, and
vice versa.tC is the generic equation for calculating time payoffs
tC1 and tC2 Eq. 15. It considers the probability that the human
agent will perform each feasible action (P(Ai�) � probability
distribution of human actions) which we assume as known
and the time that the agents will take to make an action.tA

i� ,a�

is the time required for the other agenti� (i.e., human) to make the
chosen actiona� and tAi,a is the time taken by the agenti
(i.e., robot) to react by making the actiona. Nc is the number
of cubes correctly placed by taking actionsa and a�.

C2 did not work well because it was assuming that if the human
does the good action once, they will continue to do it each time.
That is why inEq. 13the comparison of the times (tA

i� ,a�
< tAi,a)

was not including the probability of the human actions (including
probability of making errors). In case the human often performs
the bad action (e.g.,I3 � 0.6), the robot is encouraged not to wait
but to perform the good action (C1), despite its slowness. This is
done to reduce the number of iterations and thus reduce the
number of times the human will make a mistake, as they will have
fewer turns to play (i.e., reducing the number of human errors).
That is why inC3, we consider the probability distribution of
human actions, including that of doing the bad action
(committing errors) while calculatingtc (cf. Eq. 14). The robot

choosesC1 if the human will make many errors andC2 in the
opposite case.

tC �
� l

a� � 1 P( Ai� ,a� )( tA
i� ,a�

+ tAi,a)

� l
a� � 1 P( Ai� ,a� )N c

(15)

5.4.3 Simulation Conditions
A simulated test depends on:

• The values ofI1 andI2 (we tested forI1 � (0 : 0.1 : 1) andI2 �
(0 : 0.1 : 1) except forI1 � I2 � 0).

• The ratio betweentAh andtAr (we tested for 1/1, 1/1.5, 1/2, 1/
3, 1/4, 1/5).

• The number of cubes required to solve the puzzle (we tested
for 2, 3, 4, and 5).

• The number of simulations (10000) we conducted to
calculate the average time and the standard deviation.

5.4.4 Simulation Results
We illustrate the ef� ciency of our utility functionC3 by showing
the improvement in time to completion and the reduction of the
number of human errors obtained while solving the puzzles.

5.4.4.1 Time Improvement
We validate the ef� ciency of our utility functionC3 by comparing
the resulted average total times with similar cases usingC1 over
10000 simulations4. Like real experiments, we assumed that
human actions are constant, and we change merely the robot
actions.

FIGURE 5 | The average time and the standard deviation in seconds of the time taken to do the task with the state-of-the-art utility function (C1) and the utility
function used to optimize the time (C2), which is our contribution.

4All the results are presented on https://github.com/MelodieDANIEL/Optimizing_
Human_Robot_Collaboration_Frontiers.
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We calculate the time improvementEq. 16by comparing the
average total times( �DC3) calculated using the utility function of
C3 to the average total times( �DC1) calculated using the state-of-
the-art utility function (i.e.,C1). This is illustrated inFigure 7for
a 4-cube puzzle with a ratiotAh/tAr � 1/5. As it can be observed,
the experiment times are improved up to 66.7%. Another
example is given inSupplementary Material for a 3-cube
puzzle with a ratiotAh/tAr � 1/3. The percentage of the time
improvement depends on how much the human participant is
“intelligent”.

Percentage of time improvement�
�DC1 Š �DC3

�DC1

p100 (16)

Theoretically, however, this percentage can reach a value close to
100%for a very small time taken by the human (which lead to a
very small�DC3) and a very big time taken by the robot (which lead
to a very big�DC1). We can note that having the time improvement
percentage equal to 0 signi� es that we are usingC1; while utilizing
C2 increases the value of the time improvement percentage. It
means that in the worst-case scenario, the ef� ciency of our
method is as the state-of-the-art peers.

5.4.4.2 Reduction of the Number of Human Errors
For reducing the time to completion, we consider the probability
of human errors inEq. 15. So, we choose betweenC1 andC2 the

FIGURE 6 | C3 algorithm block diagram.
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case which minimizes the time by reducing the number of
iterations needed for solving the puzzle. This means choosing
the case which reduces the number of human errors as
explained in Section 5.4.2. We calculate, inEq. 17, the

percentage of human errorsreduction (PHER) using the
difference between the predicted probability of human errors
I3 and the average (over the 10000 simulations) measured
probability of human errorsNhe

Nha
.

FIGURE 7 | Percentage of time improvement betweenC3 and C1 for a 4-cube puzzle.tAh � { 15,0,15} and tAr � { 75,0,75}, so the ratiotAh/tAr � 1/5. P(Ah,g) � I1,
P(Ah,w) � I2, and P(Ah,b) � I3 � 1 � (I1 + I2). In this� gure, each dotted line is equivalent to a speci� c I1 value. Each dot corresponds to aI2 value (read on the x-axis). For each
dot knowing I1 and I2, we can deduce its I3 value usingI3 � 1 � (I1 + I2). For illustrating, we giveI1, I2, and I3 values of the dot marked in the� gure.

FIGURE 8 |Percentage of human errors reduction between the predicted probability of human errors and the measured one for a 2-cube puzzle.tAh � { 15,0,15}
and tAr � { 15,0,15}, so the ratiotAh/tAr � 1/1. P(Ah,g) � I1, P(Ah,w) � I2, and P(Ah,b) � I3 � 1 � (I1 + I2). In this� gure, each dotted line is equivalent to a speci� c I1 value. Each
dot corresponds to a I2 value (read on the x-axis). For each dot knowingI1 and I2, we can deduce its I3 value usingI3 � 1 � (I1 + I2).
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Percentage of human errors reduction

�

I 3 Š
N he

N ha

� �

I 3

�																	


������������������

p100 ifI 3 > 0

0 if I 3 � 0

��������
�������

(17)

Where I3 is the predicted probability that the human makes a
wrong move (makes an error),Nhe the measured number of
human errors, andNha the measured total number of human
actions. So,Nhe

Nha
will be the measured probability that the human

makes an error after one simulation. The reduction of the number
of human errors is as big asNhe

Nha
is small.

The reduction percentage of the number of human errors
increases with the reduction oftAr (the time the robot takes to
make an action) and the reduction of the number of cubes that
should be assembled to solve a puzzle. In other words, the human
will have fewer turns to play and so fewer chances to make
mistakes. The best result we got is presented inFigure 8(for a 2-
cube puzzle withtAh � tAr ): the reduction percentage of the
number of human errors is up to 50.6%. The result can be
better in case that the robot is faster than the human in
performing an action (tAr < tAh). Note that, when theI3 is
equal to 0%, the percentage of human errors reduction is also
equal to 0%. It means that the human never makes errors so, there
is nothing that needs to be improved. Another example is
presented inSupplementary Materialfor a 3-cube puzzle with
a ratio tAh/tAr � 1/3.

6 CONCLUSION AND FUTURE WORK

We propose a new formalization of the decision-making process to
perform the task and accomplish it more ef� ciently. We assess
through the experiments that our formalization can be applied to
feasible tasks and optimize the human-robot collaboration in terms
of all de� ned metrics. We also prove through the experiments that
we can change the three studied case scenarios by changing the
performance metrics in the utility function (i.e., reward function)
without changing the entire framework.

Validating this, experiments are carried out by simulating the
task of solving the construction puzzle. It shows that using our
proposed utility function instead of the state-of-the-art utility
function improves the experiment time up to 66.7%, hence
improves the human-robot collaboration without extending the
robot’s abilities. Theoretically, this improvement can reach a value
close to 100%. We also got a percentage of human errors reduction
up to 50.6% by considering the predicted probability that the
human makes errors for optimizing the time to completion.

We note that there are still some points to improve
in future work. First, we want to add to the formalization
a predictive function to estimate human behavior
through a realistic database that can be used in a
reinforcement learning procedure. Secondly, we set in
this paper the decision-making method and the
strategy. We want to develop another formalization in
which they will be variable and dynamically adaptable to
the task.
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Supplementary Material

1 PERFORMANCE METRICS
We present, in Table S1, the performance metrics used for the evaluation of the Human-Robot Collaboration
(HRC) classi�ed based on the task types. We de�ne each metric according to its usage in the different
task types. We also introduce some common metrics used for evaluating HRC in general rather than the
performance of a speci�c task.

2 IMPLEMENTATION OF THE CONDUCTED EXPERIMENTS
In �gure S1, we present a block diagram of our implementation of the conducted experiments. First, the
participant �nishes their turn. Then, it is the turn of the robot which will be mainly made up of three
parts:

� Perception: Nao's camera captures the markers, then using the Aruco library (Garrido-Jurado et al.,
2014), we can estimate the pose of the cubes. This allows us to compute the state of the puzzle and to
identify the human action.

� Decision-making process: The robot chooses its action according to the human's one. The utility
function calculates a utility for each of the robot's actions. The robot chooses, based on the Nash
equilibrium, the action that has the highest utility. This is illustrated in Figure 6 of the main paper.

� Robot's action: If the robot passes its turn (Ar;w ), it tells the human. In this case, the robot does not
have to make any movement. On the contrary, if the robot corrects the human's action (Ar;c ) or helps
them by indicating where to place a cube (Ar;g ), the robot will have to speak and move its arm to point
out the cube to move.

3 ENTIRE EXAMPLE OF A SIMULATED TEST ON THE ASSEMBLY TASK
In the main paper, we presented the best-simulated results for illustrating the percentage of the time
improvement and the percentage of the reduction of the number of human errors. In this section, we want
to present both results for the same simulated test as an example. We consider a 3-cube puzzle with a ratio
of the time taken by each agent (the humanh and the robotr ) to make an action equals to:tAh =tA r = 1=3.
This ratio is the same as the one we had while doing the real experiment with Nao and a human participant.
We de�ne P(Ah;g) = I 1 as the probability that the human does the good action,P(Ah;w ) = I 2 as the
probability that the human is passing their turn and,I 3 = 1 � (I 1 + I 2) as the probability that the human
makes an error.

We note from Figure S2 that the percentage of the time improvement using our utility function (C3)
instead of the state-of-the-art one (C1) for this puzzle is up to40%. From Figure S3, the percentage of
human errors reduction for the same puzzle is up to27:9%. In both �gures, each dotted line is equivalent to
a speci�c I 1 value. Each dot corresponds to aI 2 value (read on the x-axis). For each dot knowingI 1 andI 2,
we can deduce itsI 3 value usingI 3 = 1 � (I 1 + I 2).

We have performed a lot of simulated tests, the results of which can be found on:https://github.
com/MelodieDANIEL/Optimizing_Human_Robot_Collaboration_Frontiers .
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Figure S1. Implementation of the conducted experiments using ROS

Figure S2. Percentage of time improvement betweenC3 andC1 for a 3-cube puzzle.tAh = f 15; 0; 15g
andtA r = f 45; 0; 45g, so the ratiotAh =tA r = 1=3.
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Figure S3. Percentage of human errors reduction between the predicted probability of human errors and
the measured one for a 3-cube puzzle.tAh = f 15; 0; 15g andtA r = f 45; 0; 45g, so the ratiotAh =tA r = 1=3.

4 RESULTED TABLE OF SIMULATION TESTS
In this section, we present the resulted table (Table S2) of the percentage of the time improvement and
the reduction of the number of human errors for all the �gures presented in the main paper and the
supplementary material.

5 COMPUTATION AND EXECUTION TIME OF THE TESTS
Table S3 presents all the computation and execution times of the experiments in real and in simulation. As
we can notice, the average computation time of our decision-making framework is 0.5s. This computation
time is suitable for the targeted real tasks on which we want to apply this framework.
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Task Performance metrics De�nition or usability

Navigation Failure rate Percentage of navigation tasks completion failure

Accuracy The accuracy of the navigation

Ergonomy or posture Human ergonomy or posture

Time to completion The time needed to complete the task

Rapidity The time needed by the robot to adapt itself to the human or vice-versa

Perception Velocity The speed of the perception of the robot

Accuracy The accuracy of the navigation

Time to completion The time needed to complete the task

Fluency The �uency of the perception

Effectiveness Percentage of the success of the robot's perception

Number of errors The number of failures in the robot's perception

Management Time delivery The time needed to deliver the request from the robot to the human

Time request The time needed by the human (operator) to notice the request

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot is misinterpreting human desires

Trust Trust of the human in the robot

Number of actions The number of actions needed to accomplish the task from the human and the robot

Cognitive load The workload required for the human to adapt to the robot

Manipulation Positional accuracy The accuracy of the position reached by the robot

Positional repeatability The repeatability of the robot to reach the same position

Velocity The speed of the robot to do the manipulation

Time to completion The time needed to complete the task

Rapidity The time needed by the robot to adapt itself to the human or vice-versa

Cognitive load The workload required for the human to adapt to the robot

Ergonomy or posture Human ergonomy or posture

Dexterity The robot's dexterity in doing the manipulation

Effort or force The physical effort (or force) that the human must provide to perform the
manipulation

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot is misinterpreting human desires

Number of actions The number of actions needed to accomplish the task from the human and the robot

Social Persuasiveness The ability of the robot to persuade the human about something

Trust Trust of the human in the robot

Engagement in social
characteristics

Engagement in social characteristics such as emotion, dialogue, personality. The
engagement can be measured through the robot's acquisition time for capturing
human attention and the duration of holding human interest

Compliance The compliance of the robot in appearance, adherence to norms, etc.

Common metrics Effectiveness The percentage of the mission that was accomplished with the designed autonomy

Time to completion The time needed to complete the task

Number of human errors The number of times the human cannot identify the situation with awareness

Number of robot errors The number of times the robot is misinterpreting human desires

Number of actions The number of actions needed to accomplish the task from the human and the robot

Cognitive load The workload required for the human to adapt to the robot

Self-awareness The robot knows its accuracy

Autonomy The robot autonomy
Table S1. Some metrics considered for the evaluation of HRC classi�ed based on the task types (Steinfeld et al., 2006; Bütepage and Kragic, 2017; Nelles et al.,
2018)
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Percentage of time improvement Percentage of human errors reduction
I 1, I 2, andI 3 values Figure 6 (main paper) Figure S2 Figure 7 (main paper) Figure S3

I 1 = 0, I 2 = 0:1, andI 3 = 0:9 0.0 0.0 7.09412331431 4.37067607062
I 1 = 0, I 2 = 0:2, andI 3 = 0:8 0.0 0.0 12.6336858252 7.8020796966
I 1 = 0, I 2 = 0:3, andI 3 = 0:7 0.0 0.0 16.556882222 10.4704561576
I 1 = 0, I 2 = 0:4, andI 3 = 0:6 0.0 0.0 19.2303631915 13.3638679771
I 1 = 0, I 2 = 0:5, andI 3 = 0:5 0.0 0.0 22.3643444888 15.4993421616
I 1 = 0, I 2 = 0:6, andI 3 = 0:4 0.0 0.0 24.8542177267 17.9408050283
I 1 = 0, I 2 = 0:7, andI 3 = 0:3 0.0 0.0 28.4374851075 19.6044166944
I 1 = 0, I 2 = 0:8, andI 3 = 0:2 0.0 0.0 31.2453571429 22.1412554113
I 1 = 0, I 2 = 0:9, andI 3 = 0:1 0.0 0.0 29.2866666667 22.7585714286

I 1 = 0, I 2 = 1, andI 3 = 0 0.0 0.0 0.0 0.0
I 1 = 0:1, I 2 = 0, andI 3 = 0:9 0.0 0.0 17.5302972429 7.33482163197

I 1 = 0:1, I 2 = 0:1, andI 3 = 0:8 0.0 0.0 19.2143318311 10.5479301203
I 1 = 0:1, I 2 = 0:2, andI 3 = 0:7 0.0 0.0 21.3374721068 14.0052043345
I 1 = 0:1, I 2 = 0:3, andI 3 = 0:6 0.0 0.0 23.5786203979 16.5280674286
I 1 = 0:1, I 2 = 0:4, andI 3 = 0:5 0.0 0.0 26.7249188197 18.5858323843
I 1 = 0:1, I 2 = 0:5, andI 3 = 0:4 0.0 0.0 27.5937682456 20.9918095099
I 1 = 0:1, I 2 = 0:6, andI 3 = 0:3 0.0 0.0 28.9937657713 22.1913226588
I 1 = 0:1, I 2 = 0:7, andI 3 = 0:2 0.0 0.0 32.0019444444 22.9278030303
I 1 = 0:1, I 2 = 0:8, andI 3 = 0:1 0.0 0.0 34.205 23.5061904762
I 1 = 0:1, I 2 = 0:9, andI 3 = 0 0.646808142428 0.441773745339 0.0 0.0
I 1 = 0:2, I 2 = 0, andI 3 = 0:8 0.0 0.0 25.4460206798 12.376411145

I 1 = 0:2, I 2 = 0:1, andI 3 = 0:7 0.0 0.0 25.6904326925 15.6962303954
I 1 = 0:2, I 2 = 0:2, andI 3 = 0:6 0.0 0.0 27.5106709889 18.315465336
I 1 = 0:2, I 2 = 0:3, andI 3 = 0:5 0.0 0.0 30.0794412809 20.4125719276
I 1 = 0:2, I 2 = 0:4, andI 3 = 0:4 0.0 0.0 30.8272285354 22.0221180209
I 1 = 0:2, I 2 = 0:5, andI 3 = 0:3 0.0 0.0 31.9211207311 24.9664681615
I 1 = 0:2, I 2 = 0:6, andI 3 = 0:2 0.0 0.0 34.119047619 24.4444642857
I 1 = 0:2, I 2 = 0:7, andI 3 = 0:1 0.765528401311 0.0 0.0 27.6111904762
I 1 = 0:2, I 2 = 0:8, andI 3 = 0 2.4788012545 1.80659141302 0.0
I 1 = 0:3, I 2 = 0, andI 3 = 0:7 0.0 1.91789786313 30.2540826341 16.6733556418

I 1 = 0:3, I 2 = 0:1, andI 3 = 0:6 0.0 0.0 30.7411696561 19.7313028361
I 1 = 0:3, I 2 = 0:2, andI 3 = 0:5 0.0 0.0 31.3673661689 21.5925174216
I 1 = 0:3, I 2 = 0:3, andI 3 = 0:4 0.0 0.0 33.7247655123 23.7318043068
I 1 = 0:3, I 2 = 0:4, andI 3 = 0:3 0.0 0.0 34.3449001924 23.9794936545
I 1 = 0:3, I 2 = 0:5, andI 3 = 0:2 0.0 0.0 36.4016269841 26.2835119048
I 1 = 0:3, I 2 = 0:6, andI 3 = 0:1 2.77628815301 1.46088929863 36.7869047619 24.7346428571
I 1 = 0:3, I 2 = 0:7, andI 3 = 0 5.6292792232 4.03759880367 0.0 0.0
I 1 = 0:4, I 2 = 0, andI 3 = 0:6 0.0 0.0 36.3891268668 20.3970746112

I 1 = 0:4, I 2 = 0:1, andI 3 = 0:5 0.0 0.0 35.2710778111 22.4513601676
I 1 = 0:4, I 2 = 0:2, andI 3 = 0:4 0.0 0.0 35.8305131674 25.1917275086
I 1 = 0:4, I 2 = 0:3, andI 3 = 0:3 0.0 0.0 36.4988095238 26.7846236171
I 1 = 0:4, I 2 = 0:4, andI 3 = 0:2 2.97937356761 0.0 37.8678571429 26.1883928571
I 1 = 0:4, I 2 = 0:5, andI 3 = 0:1 6.8298290148 3.67128494973 35.0916666667 21.646547619
I 1 = 0:4, I 2 = 0:6, andI 3 = 0 10.0581040567 6.91767350379 0.0 0.0
I 1 = 0:5, I 2 = 0, andI 3 = 0:5 0.0 0.0 38.5427888223 22.5377313961

I 1 = 0:5, I 2 = 0:1, andI 3 = 0:4 0.0 0.0 39.8677200577 25.6673357198
I 1 = 0:5, I 2 = 0:2, andI 3 = 0:3 2.5889362939 0.0 40.2805687831 28.5753607504
I 1 = 0:5, I 2 = 0:3, andI 3 = 0:2 7.56507185318 2.4071413430 38.0336309524 21.5879166667
I 1 = 0:5, I 2 = 0:4, andI 3 = 0:1 12.187798206 7.11099379702 41.565 22.1403571429
I 1 = 0:5, I 2 = 0:5, andI 3 = 0 15.7060720797 11.0874137267 0.0 0.0
I 1 = 0:6, I 2 = 0, andI 3 = 0:4 0.0 0.0 41.0730555556 25.1399181374

I 1 = 0:6, I 2 = 0:1, andI 3 = 0:3 8.17205250781 0.0 42.012965368 28.6511640212
I 1 = 0:6, I 2 = 0:2, andI 3 = 0:2 14.1780122742 5.64235894103 43.109047619 21.2425054113
I 1 = 0:6, I 2 = 0:3, andI 3 = 0:1 18.8995795602 11.1593671564 45.3266666667 24.2171428571
I 1 = 0:6, I 2 = 0:4, andI 3 = 0 23.2260934025 15.568227852 0.0 0.0
I 1 = 0:7, I 2 = 0, andI 3 = 0:3 17.2439908187 3.33567251462 44.296547619 18.6905624931

I 1 = 0:7, I 2 = 0:1, andI 3 = 0:2 22.4988118634 10.0605063426 45.0121428571 20.8104816017
I 1 = 0:7, I 2 = 0:2, andI 3 = 0:1 27.4951742932 15.4641925539 43.6866666667 21.2117857143
I 1 = 0:7, I 2 = 0:3, andI 3 = 0 31.8854548846 21.023549533 0.0 0.0
I 1 = 0:8, I 2 = 0, andI 3 = 0:2 33.0590564877 14.5036859249 44.6876190476 22.0960714286

I 1 = 0:8, I 2 = 0:1, andI 3 = 0:1 37.9880475163 20.7778656126 45.2483333333 22.3210714286
I 1 = 0:8, I 2 = 0:2, andI 3 = 0 41.9390153589 26.6215414675 0.0 0.0
I 1 = 0:9, I 2 = 0, andI 3 = 0:1 49.8353835563 26.317921026 50.5583333333 21.8939285714
I 1 = 0:9, I 2 = 0:1, andI 3 = 0 53.3069306931 33.3469782673 0.0 0.0

I 1 = 1, I 2 = 0, andI 3 = 0 66.6666666667 40.0 0.0 0.0
Table S2. Time improvement percentage and human errors reduction percentage obtained for all the �gures of the main paper and the supplementary material.

Frontiers 5



Supplementary Material

Step Time in seconds

Real tests Computation time of the decision-making
(applying our formalization)

The robot takes an average of 0.5s to choose the action to
perform after knowing the state of the puzzle through the
perception part.

Time taken by the robot for the perception of the
puzzle state

The robot takes between 20s and 30s depending on how
well the cubes are placed and how many cubes are left to
assemble.

Time taken by the robot for doing a physical
movement

The robot takes on average 15s for doing a physical
movement.

Waiting time for the robot when it gives an
indication for the human

The robot waits between 5s and 15s each time it gives an
indication to the human, depending on its complexity (for
example, to ask the human to remove a cube, the robot waits
5s, and to ask the human to take a certain cube and place it
in a certain position, the robot waits 15s).

Global time taken by the robot to perform an
action

It is between 20s and 60s, depending on the complexity of
the movement (the number of cubes left to assemble at this
iteration) and if the robot gives indications to the human. We
considered that it was 60s.

Global time taken by the human to perform an
action

The human takes between 1s and 30s, depending on the
complexity of the movement (if they know what to do or
not). We considered that it was 20s.

Tests in
simulation

Time required for all probability distributions
of possible human actions without printing the
�gures (such as Figures S2 and S3)

The Python code takes between 80s and 100s on a Dell
laptop with an Intel Core i7 CPU and 32GB RAM.

Table S3. Computation and execution times of the experiments in real and in simulation
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