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We study the effect of electron spill-out and of nonlocality on the propagation of light inside a gap between two
semi-infinite metallic regions. We compare the predictions of a local response model taking into account only
the spill-out, to the predictions of a quantum hydrodynamic model able to take both phenomena into account.
We show that only the latter is able to correctly retrieve the correct limit when the gap closes, while the local
model suffers from undesirable features (divergence of the fields, overestimation of the losses). Finally, we show
that, to a certain extent, the correct results can be retrieved using a simple local approach without spill-out or a
conventional Thomas-Fermi approximation, but considering an effective gap width.

DOI: 10.1103/PhysRevB.104.155435

I. INTRODUCTION

The possibility to design extremely miniaturized devices,
even optical circuits, has fostered research in plasmonics for
decades. The most recent advances in fabrication processes
have led to metallic nanostructures where extremely narrow
gaps play a central role [1]. Metal-insulator-metal (MIM)
structures support a mode with a particularly large effective
index called the gap plasmon [2,3]. The insertion of MIM
sections in finite systems can thus lead to resonances in
exceptionally small volumes [4,5], while the quality factor
of the resonance [6] and its absorption cross-section [7] are
essentially preserved. The insulator gaps can be so small
(typically smaller than 1 nm [8]) that many questions arise
concerning the accuracy of the electromagnetic description at
such scales. Indeed, at these scales the classical local response
approximation (LRA), based on the Drude model, reaches
its limits [9], as the spatial dispersion due to the repulsion
between electrons inside the metal has a direct impact on the
optical response of the system. Electron-electron interactions
can be taken into account in a simple way in the framework
of the hydrodynamic theory (HT) with hard-wall boundary
conditions (i.e., no electron spill-out is allowed) by adding the
Thomas-Fermi (TF) electron pressure term [10,11].

When dealing with the near-atomic subnanometer length
scales, it becomes inevitable to consider the quantum na-
ture of electrons, and the quantum-mechanical effects, such
as electron spill-out and quantum tunneling, become impor-
tant. The TFHT cannot address these phenomena properly,
therefore more sophisticated theories are required for an ac-
curate description of electron dynamics [12–14]. Ab initio
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quantum-mechanical approaches, such as time-dependent
density functional theory (TD-DFT), provide an appealing
solution to such problems, although they are often computa-
tionally demanding, especially for large plasmonic structures
[15–17].

Within the LRA framework, it is still possible to account
for the tunneling by interposing between the metal regions
a fictitious material described by an effective conductivity
[18] or by using a finite-current boundary condition at the
metal-insulator interface [19–21]. However, when the LRA is
used to account for spill-out, nonphysical features (including
a divergence of the associated electric field) arise [22,23].
Due to this artificial divergence of the field, the imaginary
part of the propagation constant of the gap plasmon can be
largely overestimated, which consequently results in very high
mode-propagation losses.

In the past few years, a hybrid approach called quantum
hydrodynamic theory (QHT)—which adds a ∇n-dependent
correction (n being the charge density) to the TF kinetic
energy—has been developed to study nonlocal and quantum
effects (electron spill-out/tunneling) in plasmonic systems
more accurately [24–28]. The QHT method intrinsically ac-
counts for the electron spill-out and tunneling, but also
spatial dispersion (nonlocality), which is relevant in the uni-
directional plasmonic waveguides [29] and nonlinear optical
dynamics [30,31]. This approach is based on an orbital-free
description of quantum electronic systems, and its accuracy
relies on the exactness of a noninteracting kinetic energy
functional. Ideally, if the exact expression of such a functional
were known, QHT would be as accurate as TD-DFT [32].

Here we apply the QHT approach to the gap plasmon in
the vanishing gap limit, and we compare to the LRA model
in the presence of spill-out. We show that the unphysical
divergences predicted by the LRA lead to a large and artifi-
cial overestimation of the absorption when the gap plasmon
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propagates, but that including spatial dispersion in the de-
scription of the electron gas makes such features disappear. In
fact, the gap-mode propagation constant is influenced by the
presence of longitudinal modes (due to nonlocality) inside the
metallic region, which are determined by the hydrodynamic
equations and, in particular, by the quantum pressure term.
The correct limit, as the gap closes, is thus retrieved only when
both the spill-out and nonlocality are taken into account.

In Sec. II, we detail the theoretical background of our
study, first by deriving simplified equations corresponding to
the LRA in the presence of spill-out, and then by detailing
the differences with the QHT framework. In Sec. III, we
discuss our numerical results by comparing the behavior of the
effective index for the different approaches of interest (LRA,
TFHT, LRA with spill-out, and QHT). Finally, in Sec. IV we
discuss the implications of our work regarding the definition
of the actual optical edges of a metal. We show that it makes
sense to define an effective gap for the gap plasmon, allowing
us to understand why in so many works the LRA without
spill-out has been so successfully applied.

II. THEORETICAL FRAMEWORK

The propagation of the electric and magnetic fields, E and
H, of the gap plasmon is described by Maxwell’s equations:

∇ × E = −∂t μ0H,

∇ × H = ε0ε∞∂t E + J, (1)

where μ0 and ε0 are the vacuum permeability and permit-
tivity, respectively; ε∞ is the relative permittivity accounting
for any dielectric local response. J is the current inside the
electron gas. This current is given by J = −enu, where u is
the velocity of the electron gas, considered as a fluid, e is
the electron charge in absolute value, and n is the electron
density. In this framework, the velocity satisfies the following
equations [33,34]:

∂t n + ∇ · (nu) = 0,

∂t u + γ u + u · ∇u

= − e

m
(E + u × μ0H) − 1

m
∇ δG[n]

δn
, (2)

where m is the electron mass, and the energy functional G[n]
contains all the internal energy of the electronic system (here
the operator δ

δn indicates the functional derivative with respect
to the density n). The last term in the second equation gives
rise to a nonlocal contribution to the current J. Using the pre-
vious equations, we obtain the following evolution equation
for the current:

∂t J + γ J − 1

e

(
J
n
∇ · J + J · ∇ J

n

)

= ne2

m
E − μ0e

m
J × H + en

m
∇ δG[n]

δn
. (3)

Neglecting higher-order terms and taking n(r, t ) = n0(r) +
n1(r, t ) and E(r, t ) = E0(r) + E1(r, t ), with n0 being the
equilibrium charge density and E0 the electrostatic field, we

first obtain an equation for the dynamic part,

(∂t + γ )J = e2

m
(n0E1 + n1E0)

+ e

m

[
n0∇

(
δG[n]

δn

)
1

+ n1∇
(

δG[n]

δn

)
0

]
, (4)

where ( δG[n]
δn )0 and ( δG[n]

δn )1 are the zeroth- and first-order
terms of the potential, respectively. Second, we get an equa-
tion linking the static electron density to the static electric
field,

∇
(

δG[n]

δn

)
0

+ eE0 = 0, (5)

where E0 and n0 can be found using Gauss’s law:

∇ · (ε∞E0) = − e

ε0
(n0 − n+), (6)

n+ being the positive background density.
Finally, combining Eqs. (1) and assuming a harmonic field

oscillating at ω, we obtain

∇ × ∇ × E1 − ε∞k2
0E1 = iωμ0J, (7)

(γ − iω)J = e2

m
(n0E1 + n1E0)

+ e

m

[
n0∇

(
δG[n]

δn

)
1

+ n1∇
(

δG[n]

δn

)
0

]
, (8)

where k0 = ω/c.
Combining Eqs. (5) and (6), we obtain

∇
[
ε∞ · ∇

(
δG

δn

)
0

]
− e2

ε0
(n0 − n+) = 0. (9)

Note also that using Eq. (5), we can simplify Eq. (8) as

(γ − iω)J = e2

m
n0E1 + en0

m
∇

(
δG[n]

δn

)
1

. (10)

A. LRA in the presence of spill-out

We first derive the equations corresponding to the LRA
[18,22,23]. They have the merit to allow a better grasp of the
physics at play. The main assumption here is to neglect the
pressure term, i.e., G[n] � 0, making the description purely
local.

The impact of nonlocality alone in the case of vanishing
gaps (and hard-wall boundaries) has already been investigated
in Ref. [35], where it has been shown that the effective index
of the gap plasmon increases although staying finite (contrary
to the diverging behavior of the LRA case without spill-out
[36,37]). Yet, it does not tend to the expected value of the bulk
metal refractive index either.

Starting from Eq. (10), we get

J = 1

γ − iω

e2

m
n0E1. (11)

The current can always be incorporated into Eqs. (1) as an
effective polarization P f , by simply writing ∂t P f = J. This
finally allows us to introduce a local susceptibility by writing,
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just as for a Drude model, that

P f = −ε0

e2n0(r)
ε0m

ω2 − iγω
E1 = ε0χ f E1, (12)

except that the susceptibility is proportional to the electron
density and thus depends on the position here.

Now if we consider the propagation of a guided mode in
the z direction, and assume that all fields are invariant in the x
direction, Maxwell’s equations in the p-polarization reduce to

∂yEz − ∂zEy = iωμ0Hx, (13)

∂zHx = −iωε0ε(y)Ey, (14)

−∂yHx = −iωε0ε(y)Ez, (15)

where ε(y) = ε∞ + χ f (y) is the local permittivity.
Combining the previous equations to get rid of Hx, we

obtain

∂y∂zEz − ∂2
z Ey = iωμ0∂zHx = k2

0ε(y)Ey, (16)

∂2
y Ez − ∂y∂zEy = iωμ0∂yHx = −k2

0ε(y)Ez. (17)

Since we are looking for a guided mode, we take ∂z = ikz

so that we obtain
[
k2

z − ε(y)k2
0

]
Ey = −ikz∂yEz, (18)

and finally we manage to keep only the Ez field to write the
wave equation under the form

∂2
y Ez + k2

0 ε(y) Ez + ∂y

(
k2

z

ε(y) k2
0 − k2

z

∂yEz

)
= 0. (19)

We underline that such an approach is not self-consistent,
as it requires us to choose arbitrarily the electron density.
Putting aside the choice of electron density, our local model
with spill-out is identical to the model used in [22] and yields
perfectly similar results. In Ref. [22], the authors compute
n0 using a quantum-mechanical approach, whereas we use
a simple model density to approximate the electron spill-out
(details are given in the next section).

We have then converted this equation into a numerical
problem using a finite-difference scheme in order to look for
values of kz in the complex plan, which allows us to make the
determinant of the finite-difference matrix vanish. As such a
problem is extremely unstable numerically, obviously because
of the different scales involved (the gap being much smaller
than the skin depth), we have used the exponentially decaying
analytic solution inside the metal. This solution is known
when ε(y) is uniform and corresponds to the classical solu-
tion of Maxwell’s equations considering Drude’s model for
the metal. Connecting the finite-difference problem with the
analytic solution allows us to reduce the size of the problem
and to improve the stability, finally allowing us to compute the
wave vector of the gap plasmon, even for vanishing gaps. We
compared it with a finite-element-based approach, and both
are in almost perfect agreement (see the Appendix).

B. Self-consistent quantum hydrodynamic theory

Equation (9) with Eqs. (7) and (10) constitute the basis
of the QHT [24,26] linear response and allow us to calculate
the detailed electron gas dynamic at the metal surface. In this
work, we employ the following approximation:

G[n] = TTF[n] + λvWTvW[n,∇n] + EXC[n], (20)

where TTF is the TF kinetic energy, and TvW is the gradient-
dependent correction, namely the von Weizsäcker term, to the
TF functional, which allows us to take into account effects
depending on the gradient of the electron density n and thus
should not be neglected when spatially dependent densities
are considered. EXC is the exchange-correlation energy func-
tional. The parameter λvW in front of the von Weizsäcker
term can be related to the decay of the charge density from
a metal surface, and hence controls the amount of the electron
spill-out and tunneling. It has been shown in Ref. [26] that for
QHT, λvW is inversely proportional to the decay of the charge
density and can be related to the “equilibrium” and “induced”
electron spill-out. In general, λvW is a free parameter of the
kinetic functional that can be tuned depending on what the
figure of merit is (i.e., plasmon energy, equilibrium density,
asymptotic decay, tunneling, etc.). Most often, in the litera-
ture a value in the [1/9, 1] range is used for λvW, in which
λvW = 1/9 corresponds to a lower electron spill-out and a
faster decay of n0 from a metal surface, whereas λvW = 1
gives a higher spill-out and a slower decay of the charge
density. In general, using λvW = 1/9 approximates well the
Lindhard function for small k-vectors, while λvW = 1 gives
a good estimation for large k-vectors [38]. In fact, the von
Weizsäcker correction in Eq. (20) is the first-order term in
the expansion of the kinetic energy [39], and to construct a
more generally valid functional one would need to consider
higher-order terms (i.e., Laplacian dependence), which would
introduce more free parameters [40].

The explicit expressions of the energy functional G[n] and
its functional derivative, i.e., ( δG

δn )1, can be found in Ref. [26].
We further note that Landau damping is another important fac-
tor to consider, and it can also be incorporated into Eq. (10),
as was done in Ref. [27] in the context of QHT. We expect
that the Landau damping will result in increased damping
inversely proportional to the gap size. Since the main objective
of the present work is to analyze the impact of nonlocality
and electron spill-out on the gap plasmons, we neglect Landau
damping. It is informative to note that considering a spatially
constant n0 = nb, nb being the charge density of the bulk
metal, and G[n] = 0 in Eq. (20) leads to the usual Drude-type
relation (LRA) for the polarization, and using TvW = Exc = 0
yields G[n] = TTF, the standard hydrodynamic theory in the
Thomas-Fermi approximation (TFHT).

In contrast to the conventional theories in plasmonics,
QHT can efficiently take into account the nonlocal, electron
spill-out, and tunneling effects, and it can provide the details
of the microscopic distribution of the fields, which usually
cannot be described by conventional approaches. The QHT is
highly dependent on the spatially varying equilibrium charge
density n0, and consequently the approximation of the optical
response of a nanoplasmonic system relies strongly on the
description of n0. Over the past few years, QHT has been
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applied to probe linear plasmonic properties of a variety of
individual nanoparticles as well as nearly touching nanos-
tructures (i.e., in the tunneling regime) [26,41–43], and a
fairly good agreement between the QHT and TD-DFT calcu-
lations has been reported [41]. Very recently, electron spill-out
effects in singular metasurfaces have been analyzed using
QHT, showing that the spill-out effectively blunts the sharp
singularities [44]. QHT has also been applied to study non-
linear optical properties of thick metal films, and it has been
shown that there exist spill-out-induced resonances that can be
exploited to achieve very large second-harmonic-generation
efficiencies [31]. These resonances cannot be excited in the
LRA and TFHT, as electron spill-out is overlooked in these
approximations. Therefore, it becomes important to take into
account the nonlocal and quantum effects when dealing with
plasmonic structure with subnanometer geometrical features.
Despite the fact that QHT gives a very good prediction of
the plasmon resonances by adding a ∇n-dependent correction
to the kinetic energy, it also suffers some limitations. For
example, it predicts unexpected modes between the surface
and bulk plasmon frequencies lying in the far tail region of
the exponentially decaying charge density. Very recently, a
development in the QHT theory based on the Laplacian-level
kinetic energy functionals has been presented [40]. The intro-
duction of Laplacian-dependent charge density results in more
robust numerical solutions, but its implementation becomes
more complex. Since in the present study we only consider
very small gaps, the tail of the charge density never extends
to the problematic region. Therefore, we expect that the QHT
approach in the limit of the von Weizsäcker approximation
used herein gives us results with the same level of accuracy
and with the advantage of avoiding additional numerical com-
plexity, arising from the Laplacian-level functionals. We adopt
the jellium approximation [45] in implementation of the QHT,
which assumes that the electrons in a metal are confined by a
constant positive background charge n+ = ( 4

3πr3
s )−1, where

rs indicates the Wigner-Seitz radius (rs = 4 for Na and rs = 3
for Ag).

To compute the gap-plasmon mode and its dispersion rela-
tion, we first compute the space-dependent equilibrium charge
density using Eq. (9) and then solve Eqs. (7) and (10) as-
suming a solution of the type E(r) = Ẽ(y) eikgpz (with similar
expressions for J), where kgp is the propagation constant of
the gap-plasmon mode. For a given angular frequency ω, we
solve this system of equations using the finite-element method
to compute the associated propagation constant kgp(ω), as well
as the mode Ẽ(y).

III. RESULTS

Let us consider a MIM configuration as schematically
shown in Fig. 1, that is, a dielectric gap g sandwiched between
two semi-infinite metallic regions. For simplicity, we use air
as the dielectric. We examine the impact of nonlocality and the
electron spill-out on the gap plasmon, the unique mode guided
in p-polarization in the structure and propagating along the
z direction. More precisely, we compute the effective index
neff = kz

k0
of the gap plasmon according to the different models

described above, and we compare the results, in particular in
the gap size range (<1 nm) where the charge densities from

FIG. 1. Visual representation of overlapping of the equilibrium
charge densities n0(y) due to electron spill-out in the dielectric gap
g between two semi-infinite bulk metals. Deep inside the bulk metal,
n0 is equal to the constant density of the bulk metal nb. The magnetic
mode profile Hx (y) of a p-polarized light propagating along the z-
direction is also shown. The structure is invariant along the x- and
z-directions.

the two surfaces significantly overlap, as schematically shown
in Fig. 1. We begin with the LRA with spill-out for simple
Drude metals, i.e., sodium (Na), which we compare with the
LRA and the TFHT approximation without spill-out as well
as with the QHT. Finally, we consider the case of silver (Ag)
in the QHT framework, and we compare it to the commonly
used LRA and TFHT without spill-out.

A. LRA with spill-out

We begin with the simplified case presented above in which
the equilibrium electron density n0(r) can be described by an
exponentially decaying profile with the following analytical
function:

n0(y) = nb

[
1

1 + eκ(y+ g
2 )

+ 1

1 + e−κ(y− g
2 )

]
, (21)

where the parameter κ defines the spill-out or the decay of
the charge density from the metal surface. In what follows,
we set κ � (0.7a0)−1, with a0 being the Bohr radius, which
we get by fitting the analytical function with the decay of
the self-consistent charge density [see Eq. (9)], considering
λvW = 1/9. We take rs = 4, ε∞ = 1, and h̄γ = 0.16 eV, val-
ues that correspond to Na. Although it is impossible to work
with Na in practical applications, due to its high reactivity, it
presents an ideal Drude response as the impact of interband
transitions can be omitted, thus offering a convenient theoret-
ical study platform.

In Fig. 2, we compare the results of our simplified LRA
with spill-out against the commonly used LRA without any
spill-out. The input equilibrium charge-density profiles used
in both approaches are plotted in Fig. 2(a) for g = 1 nm. In
Figs. 2(b) and 2(c), we compare the behavior of the real and
imaginary parts of the effective mode index. As expected,
for large gaps (g > 1 nm) spill-out can be neglected; the
LRAs with and without electron spill-out agree very well.
The spill-out has a noticeable impact on the real part of the
effective index for gaps that are typically around 1 nm or less:
it increases the effective index, signaling a plasmonic slow
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FIG. 2. A comparison between the local response approximation
(LRA) with and without electron spill-out from the metal surfaces.
(a) Equilibrium electron density n0 normalized with the bulk density
nb for g = 1 nm. The (b) real and (c) imaginary parts of the effective
refractive index neff plotted at E = 1 eV. The inset in (b) depicts a
zoom-in of the region where the spill-out has a significant impact
on the mode index. The horizontal dashed gray line marks the re-
fractive index of the bulk metal, nbulk. The dotted red lines represent
the region where it becomes hard to find a proper solution due to
numerical artifacts. Parts (d)–(f) present a comparison between the
electric and magnetic field components considering g = 1 nm and
E = 1 nm. The plots in the right column are normalized with the
field value at the center of the gap, except in (e) where the field is
zero at the center of the gap and the maximum value of the field is
considered for normalization.

down of the mode which is larger than without any form of
spill-out. This is understandable, as the Poynting vector inside
a plasma is opposite to the propagation direction, leading to a
plasmonic drag [46], to a lower group velocity, and finally to
a larger wave vector.

When the gap is as small as 0.5 nm it begins to “close,”
electromagnetically speaking: the electron density inside the
gap becomes so large that the propagation of the gap plasmon
is hindered. The real part of the effective index decreases
quickly, while its imaginary part is much higher when the
spill-out is taken into account. It is important to note that in
the limit of vanishing gaps, where the spill-out is expected
to virtually close the gap, both real and imaginary parts of
neff should ideally converge to the index of the bulk metal.
In Fig. 2(c), we notice that when g < 0.35 nm, i.e., the gap
distances where the gap is expected to vanish completely, the
imaginary part of neff tends to bend back. However, we have
found it to be very hard to obtain a proper solution in this
region. Indeed, the dotted line as shown in Figs. 2(b) and 2(c)
represents a region where we could not find a solution due to
numerical artifacts. When g < 0.28 nm, we find neff = nbulk,
where nbulk is the refractive index of the bulk metal. These
results are in agreement with the ones reported in [22].

We attribute the large imaginary part of the effective in-
dex to peaks in the electric field that can be seen when the
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FIG. 3. Equilibrium charge density n0 calculated self-
consistently for an air gap sandwiched between the Na metals.
(a) For a different gap size (g). The vertical dashed lines represent
the metal boundaries for the corresponding gaps. (b) A comparison
between the LRA, TFHT, and QHT for the spill-out parameter
λvW = 1/9 and 1, considering g = 1 nm and (c) the decay of the
charge density at λvW = 1/9 and 1. The results are normalized with
the bulk density nb, and the shaded gray area represents the metal
region.

electron density reaches a value so that χ f � 0, meaning
a vanishing local permittivity ε(y). The components of the
electric field in the transverse and longitudinal directions with
respect to mode propagation are shown in Figs. 2(d) and 2(e),
respectively. The extremely narrow peaks that the electric
field exhibits have already been seen in a similar context
[22] with a different electron gas density. This means that
they are fundamentally linked to the assumption that a local
permittivity is able to describe the spill-out accurately. A clue
that nonlocality may play an important role here is that ε = 0
is the condition for which volume plasmons are expected to
be supported inside the electron gas.

The peaks in the electric field drastically increase the losses
experienced by the gap plasmon, since the local absorption by
the electron gas is proportional to E1 · J∗, where ∗ denotes the
complex conjugate [47]. This explains the larger imaginary
part. We underline that, on the contrary, the magnetic field
remains smooth [see Fig. 2(f)].

B. QHT for simple metals

In the framework of QHT, we compute the self-consistent
ground-state density of a symmetric MIM waveguide from
Eq. (9). First we consider that the guiding structure is com-
posed of an air gap sandwiched between two semi-infinite
Na metals, to better grasp the difference with the simplified
spill-out model.

The self-consistent ground-state density n0(r) for a Na-air-
Na configuration is shown in Fig. 3(a) considering different
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FIG. 4. Effective refractive index neff of Na-air-Na configuration
as a function of gap distance g. A comparison between the LRA,
TFHT, and QHT is given. (a) Real and (b) imaginary parts of neff ,
plotted at E = 1 eV. The horizontal dashed gray lines represent the
refractive index of the bulk metal.

gaps. The metal-dielectric interfaces for each gap size are
indicated by the dashed lines. It can be seen that when the
interdistance of the metal surfaces is sufficiently large, there
is no overlap of the charge densities. In this scenario, the
system can be well described using a classical formulation.
However, when the gap spacing between the metal boundaries
decreases, the charge-density profiles start to overlap and the
electrons from the two surfaces start to tunnel across the gap.
For sufficiently small gaps, the charge transfer between the
metals is large enough to close the gap optically speaking,
despite the fact that the metal ion surfaces do not touch phys-
ically. Figure 3(b) presents a comparison of n0 between the
LRA, TFHT, and QHT for gap size g = 1 nm. In the LRA and
the TFHT approximation, we assume a constant n0 = nb in the
metal and zero outside. In the QHT case, the space-dependent
n0(r) is plotted for both λvW = 1/9 and 1. The parameter
λvW = 1/9 represents a lower spill-out and a faster decay of
the charge density, whereas λvW = 1 gives a higher spill-out
and a slower decay, as shown in Fig. 3(c).

In Fig. 4, we plot the effective refractive index as a function
of gap distance g. The results computed within the QHT, con-
sidering the self-consistent space-dependent charge density,
are compared against the LRA and TFHT without spill-out.
It is interesting to note that for extremely small gap sepa-
ration, the LRA predicts very large values of both real and
imaginary parts of neff , whereas the TFHT gives relatively
smaller values. Nonetheless, the trend is quite similar, i.e.,
neff increases monotonically as the gap decreases. In contrast,
in the QHT approximation, the neff first increases with the
decreasing gap size and then rapidly decreases after a certain
gap distance, getting a value of the refractive index of the
bulk metal. This is due to the fact that at a certain gap size, a
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FIG. 5. Normalized (a) electric |Ey| and (b) magnetic |Hx| field
components plotted along the y-direction, i.e., in the normal direction
to the interfaces, plotted under different approaches. The inset of
(b) is a closeup view of the |Hx| at the interfaces. The plots are
normalized by the field value at the center of the gap. Parts (c) and
(d) show decay of the fields at longer distances inside the metal. In
these plots, we have considered g = 1 nm, E = 1 eV, and λvW = 1/9
in the QHT case.

reasonable charge transfer through the gap occurs between the
metal surfaces due to the overlapping of the charge densities,
and a virtual fade-out of the physical gap appears when the
spacing between the metal boundaries is further decreased.
For sufficiently small gaps, the mode virtually vanishes due to
the electron tunneling, and both the real and imaginary parts of
neff converge to the real and imaginary parts of the refractive
index of the bulk metal, as shown in the inset of Figs. 4(a) and
4(b), respectively. The expected limit for the effective index
of the gap plasmon is in that case actually retrieved. In the
QHT case, results for both λvW = 1/9 and 1 are presented.
Since λvW = 1/9 entails the lower spill-out, the gap virtually
vanishes when g < 0.3 nm, however the gap disappears even
at higher separation (g < 0.45 nm) for λvW = 1, as it implies
higher electron spill-out.

Now, to show the influence of the electron spill-out on the
mode profile, we plot here the electric |Ey| and magnetic |Hx|
fields in the orthogonal direction to the metal-air interfaces un-
der different approximations for g = 1 nm and E = 1 eV, as
shown in Fig. 5. Both in the LRA and TFHT, |Ey| is constant
throughout the gap and then exponentially decays in the metal,
as can be seen in Figs. 5(a) and 5(c). QHT, on the other hand,
predicts that |Ey| has a maximum value at the center of the gap
and it decreases as it moves away from the center. The effect
of the electron pressure in the metal in the TFHT can also be
observed on the field profile. The |Hx|, as plotted in Fig. 5(b),
remains quite similar in the gap in all approximations expect
near the interfaces, where QHT predicts a bit lower value. The
decay of fields is given in Figs. 5(c) and 5(d), which show
that the fields decay faster in QHT and slower in TFHT with

155435-6



INFLUENCE OF THE ELECTRON SPILL-OUT AND … PHYSICAL REVIEW B 104, 155435 (2021)

-2 -1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

C
ha

rg
e

de
ns

ity
(a

bs
ol

ut
e

va
lu

e)

y-direction (nm)

n0

n1
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respect to the LRA fields, essentially because the wave vector
along z and thus the decay along the y axis is slightly different.

Now, we analyze the impact of electron spill-out and tun-
neling on the induced charge density. We, in fact, consider
the spill-out and tunneling in both the equilibrium charge
density and in the linear response, as the modification of the
equilibrium density gives a more enhanced overlap of the
induced charge densities. The induced charge density indeed
is the equivalent of the transition density in the TD-DFT, and,
in the limit of the kinetic energy functional approximation,
it represents the sum of all possible electron transitions, in-
cluding those describing the tunneling. As an example, we
plot in Fig. 6 the induced charge density n1 along with the
equilibrium charge density n0 in the same scenario as consid-
ered in Fig. 5. The peak of the induced charge density from
each interface lies outside the jellium edge, and the tails of the
densities go more into the dielectric medium, consequently
showing more overlap.

Finally, it is interesting to compare the QHT and the sim-
plified LRA with spill-out, as shown in Fig. 7. The real part of
neff in both cases accords well until the gap closes [Fig. 7(a)],
whereas, as described previously, the imaginary part is much
higher in the simplified spill-out model [Fig. 7(b)]. This really
means that nonlocality avoids the existence of the peaks in
the electric field when the electron density reaches a particular
value, making the imaginary part much closer to the prediction
of the LRA without spill-out.

C. QHT for noble metals

Noble metals, such as Ag, show in general a more complex
behavior compared to Drude-type metals due to the contri-
bution of interband transitions and core electrons. In what
follows, we use rs = 3 a.u. and h̄γ = 0.03 eV for Ag, and
we account for interband effects with a constant background
dielectric constant ε∞ = 5.9 [31], which adds a local contri-
bution to the free-electron metal permittivity. The effective
refractive index for the Ag-air-Ag configuration as a function
of the gap size computed using different models is plotted
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FIG. 7. (a) Real and (b) imaginary parts of neff within the LRA
with electron spill-out and full self-consistent QHT for λvW = 1/9.
The inset shows a zoom-in of the effective mode index in the tun-
neling regime. The dotted red lines represent the gap sizes, where it
becomes hard to find a proper solution due to numerical artifacts, as
was discussed in the caption of Figs. 2(b) and 2(c).

in Fig. 8. The real and imaginary parts of neff are plotted
in Figs. 8(a) and 8(b), respectively, showing quite similar
behavior as seen for the Na-Air-Na case in the previous sec-
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plotted at E = 1 eV. The dashed gray line represents the refractive
index of the bulk metal.
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tion. LRA and TFHT clearly show the unphysical increasing
character of the effective index when subnanometer gaps are
in question. QHT, on the other hand, predicts that in the
tunneling regime, for sufficiently small metal separation, the
gap virtually fades away completely and the effective index
converges to the refractive index of the bulk Ag. Note that in
Fig. 8, the QHT gives a different threshold for g at which the
gap virtually vanishes, depending on the amount of electron
spill-out considered from the metal surface, i.e., λvW = 1/9
or 1.

So far, we have analyzed the effective mode index of the
MIM waveguide as a function of air gap between the metals. It
is also important to examine the behavior of neff as a function
of energy. Figures 9(a) and 9(b) present the real and imaginary
parts of neff , respectively, as a function of energy (E in eV) for
a Ag-air-Ag waveguide, considering a gap size g = 1 nm—a
width that is experimentally rather easy to obtain [9].

This underlines the differences between the predictions of
the different approaches regarding the effective index of the
mode. The LRA predicts a bend back for the real part and
a much larger imaginary part in this region. The TFHT, on
the contrary, predicts a much lower imaginary part at any
frequency. The QHT approach predicts a more reasonable
behavior of the gap plasmon with no bend back in the effective
index and values of its imaginary part that can be much lower
than for the LRA at higher frequencies.

The lower the imaginary part of the effective index, the
larger the typical propagation length of the gap plasmon, and
finally the larger the quality factor of an eventual cavity for
the gap plasmon [48]. This underlines the importance of an
accurate prediction in this regime.

IV. EFFECTIVE GAP

To summarize qualitatively the above results, the spill-
out seems to be able to close the gap electromagnetically
speaking before it is actually spatially or mechanically closed.
In addition, we have seen that when the spill-out is taken
into account, whether in the simplified model or within the
QHT framework, the effective index of the gap plasmon is
slightly larger than when the spill-out is neglected, however
it presents a very similar trend. All of these results suggest
that everything occurs as if the gap were narrower when the
spill-out is taken into account, which seems physically sound.
The fact that, for the simplified model, peaks seem to appear
when the electron density reaches a certain value suggests that
it should be possible to define the electromagnetic edges of
the metal, as well as an effective value for the gap width. We
define this value as the width that should be considered in the
LRA model or in the TFHT approach for the gap plasmon
to fit the effective index of the gap plasmon provided by the
QHT.

The effective gap is thus given by

ge = g − δg,

where g is the actual gap between the edges of the metal. Said
otherwise, in order to retrieve the results of the QHT, one can
use the LRA (or the TFHT) with hard-wall boundaries, but
simply use a diminished size of the gap to take the spill-out
into account.

For silver, shifting the LRA curve of δg = 0.15 nm or
the TFHT curve of δg = 0.22 nm allows us to retrieve the
effective index of the gap plasmon as computed with the QHT
extremely accurately, as long as the gap does not start closing
(which occurs around g � 0.6 nm). The results for the QHT
reported in Fig. 10 are for λvW = 1/9, however the QHT result
for λvW = 1 can also be nicely reproduced from the LRA and
TF approximations considering δg � 0.25 nm and δg � 0.32
nm, respectively. The idea that the gap plasmon is sensitive to
the effective gap between the metals is thus well founded, as
it yields quantitative results. This can be understood because
the spill-out causes the response of the electron gas outside the
metal to be similar to the response inside the metal, as soon
as the electron density is high enough. However, we point out
that we have not found another way to define the effective gap
based on the profile of the electron density or of the fields.
The values we give are simply the ones that yield the best fit,
and there does not seem to be any simple way to predict such
values.

This discussion finally underlines that at such scales, for
the gap plasmon, the tiny difference (a rule of thumb would
be, according to our results, to consider a 0.1 nm difference )
that exists between the actual edge of the metal and the “elec-
tromagnetic edge” has its importance and must be considered
in the limit of vanishing gaps.

V. CONCLUSIONS

In this article, we analyzed the impact of both electron
spill-out and nonlocality on the propagation of gap plasmons
in MIM waveguides using the full self-consistent QHT, which
can efficiently take into account both spatial dispersion inside
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FIG. 10. The effective mode index for Ag-air-Ag waveguide
(a) real and (b) imaginary part as a function of gap distance g between
the metal edges plotted at E = 1 eV. The LRA and TFHT curves
are shifted by δg to cope with the QHT results, which allows us
to introduce the concept of an effective gap that can be defined as
ge = g − δg. The ge seems to appear smaller than the mechanical gap
g by an amount of δg. In particular, using δg = 0.15 nm in the LRA
and δg = 0.22 nm in the TF approximation gives a good fit with QHT.
The insets plot neff as a function of the actual gap.

the electron gas and the spatial variation of the electron den-
sity outside of the metal. We also compare our results with
the commonly used approaches (LRA and TFHT) without any
spill-out and with a popular LRA approach for the spill-out
[18,22,23].

Peaks in the electric field profile and a large imaginary
part for the effective index of the gap plasmon are predicted
by the latter approach. Such features are, however, absent in
the framework of the QHT, showing that nonlocality is key
to an accurate description of the gap plasmon. We underline
that only in the QHT framework does the effective mode
index converge to the refractive index of the bulk metal, as
expected from physical considerations. Hence QHT, without
being affected by the artifacts present in the local description,
provides a good measure of the effective mode index and of
the local field amplitudes, which are particularly relevant for
nonlinear optical processes where the response of the system
is strongly affected by the local intensities. These points rein-
force the idea that QHT is the right tool for plasmonics at the
subnanometer level, while using a LRA model for the spill-out
may lead, at least in the case of gap-plasmon resonators, to
an overestimation of the losses and an underestimation of the
quality factor of the resonance entirely due to the fact that
nonlocality has been neglected.

Our study thus shows that the spill-out indeed imposes an
upper limit on the effective index of the gap plasmon, confirm-
ing previous studies [22]. A gap plasmon is very unlikely to
present an effective index larger than 15 for noble metals in the
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FIG. 11. Comparison between the finite-element method (FEM)
and the finite-difference method (FDM). (a) Real and (b) imaginary
parts of the effective refractive index neff . The horizontal dashed gray
line represents the refractive index of the bulk Na.

visible, which puts a theoretical limit to the miniaturization of
gap-plasmon resonators in the visible.

Importantly, whatever model is chosen to describe the spill-
out, it seems possible to introduce an effective gap width
between metals, smaller than the gap size defined as the
distance between the atoms of the metal across the gap. This
effective gap width allows us to take simply the effect of the
spill-out into account, as long as the gap can be considered
open to the propagation of the mode. In many experiments, the
definition of the gap between metals is of crucial importance
[7,9]. Our reasoning suggests that using optical characteri-
zation methods (like ellipsometry typically) to determine the
thickness of a material deposited at the surface of a metal is
particularly relevant in the context of gap-plasmon resonators,
as the optical thickness that is retrieved probably takes the
spill-out partially into account. The gap width deduced from
such measurements is in that way probably closer to the
effective gap width we have defined here. This may thus
explain why hard-wall approaches have so far been surpris-
ingly successful at predicting the experimental behavior of
gap plasmons in the limit of vanishing gaps.
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APPENDIX: NUMERICAL DETAILS

We implement Eqs. (7), (9), and (10) in a finite-element-
method based commercial simulator COMSOL MULTIPHYSICS.
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The complete set of equations in their weak formulation,
recalling ∂t P f = J, can be expressed as∫

(∇ × E) · (∇ × Ẽ
) −

(
ε∞

ω2

c2
E + μ0ω

2P f

)
· Ẽ dV = 0,

(A1)
∫

− e

me

(
δG[n]

δn

)(∇ · P̃ f
)

+ 1

n0

[(
ω2 + iγω

)
P f + ε0ω

2
pE

] · P̃ f dV = 0, (A2)
∫

−(∇ · P f )
(∇ · F̃

) − eF · F̃ dV = 0, (A3)

∫
−ε∞∇

(
δG[ξ 2]

δn

)
ξ=√

n0

· ∇ξ̃ + e2

ε0

(
ξ 2 − n+)

ξ̃ dV = 0,

(A4)

where the field quantities with a tilde (∼) indicate the test
functions. Since the energy functional contains the second-
order derivatives, therefore, we introduce in Eq. (A3) a
working variable F, such that F = ∇n1, where n1 = 1

e ∇ · P f .
We compute the self-consistent equilibrium charge density n0

from Eq. (A4), and we find that the solution converges more
quickly by using a transformed variable ξ = √

n0. Equation
(A2) predicts the linear response of the system within the
framework of QHT, with G[n] as given by Eq. (20). Assuming
n0(r) = n0 and G[n] = TTF[n] with the hard-wall boundary
condition gives the standard TFHT, and considering G[n] = 0
yields the LRA. In the simplified spill-out model given by
Eq. (19), we use the model density as given by Eq. (21), taking
electron spill-out into account. We have solved Eq. (19) by an
iterative procedure based on a finite-difference scheme. For
a thin gap, the decay length of the solution becomes much

larger than the gap size. The presence of these two scales is
a source of numerical instabilities. To obtain an accurate res-
olution of the lengthscale associated with the gap, we reduce
the computation domain. This is obtained by introducing an
artificial interface inside the metal at a distance L from the
origin. We solve the problem in the interval [0, L], and we use
the analytical solution at the interface as a boundary condition
in the finite-difference scheme. To illustrate the numerical
scheme, we focus on the term ∂y(v(y)∂yEz ), where we have

defined v
.= k2

z

ε(y) k2
0−k2

z
. The other terms are treated similarly.

We discretize the interval [0, L] by an equispaced grid with
size �. We apply a second-order central scheme

∂y(v∂yEz )(yi ) =Ei−1v
−
i − Ei(v+

i + v−
i ) + Ei+1v

+
i

2�2
,

where Ei = Ez(yi ) represents the field at the discrete position
yi = (i − 1)� and v±

i
.= v(yi±1) + v(yi ). At the boundary,

∂y(v∂yEz )(L) =v(L)
[
Ez(L − �) + Ez(L)(eikz� − 2)

]
�2

,

where we use the fact that for y > L, the field has the expo-
nential form Ez = Ez(L)e−ikz (y−L). We obtain a homogeneous
linear system for the discrete field E (yi ) parametrized by the
wave number kz. The plasmon resonances are associated with
the kz for which the system has a nontrivial kernel. We use an
iterative procedure based on the Nelder-Mead simplex algo-
rithm [49] where we vary kz in the complex plane in order to
minimize the singular values of the matrix associated with the
linear system. The results are depicted in Fig. 11, where we
show the agreement of the results obtained by the simplified
model based on a finite-difference scheme with the solution
of Eqs. (A1)–(A4) obtained by a finite-element method.

[1] J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R.
Smith, Extreme nanophotonics from ultrathin metallic gaps,
Nat. Mater. 18, 668 (2019).

[2] X. Wang and K. Kempa, Plasmon polaritons in slot waveguides:
Simple model calculations and a full nonlocal quantum me-
chanical treatment, Phys. Rev. B 75, 245426 (2007).

[3] J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, Gap plasmon-
polariton nanoresonators: Scattering enhancement and launch-
ing of surface plasmon polaritons, Phys. Rev. B 79, 035401
(2009).

[4] G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C.
Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, Probing
the mechanisms of large purcell enhancement in plasmonic
nanoantennas, Nat. Photon. 8, 835 (2014).

[5] T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R.
Smith, and M. H. Mikkelsen, Ultrafast spontaneous emission
source using plasmonic nanoantennas, Nat. Commun. 6, 7788
(2015).

[6] J. Yang, C. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and
P. Lalanne, Ultrasmall metal-insulator-metal nanoresonators:
Impact of slow-wave effects on the quality factor, Opt. Express
20, 16880 (2012).

[7] A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J.
Wiley, A. Chilkoti, and D. R. Smith, Controlled-reflectance
surfaces with film-coupled colloidal nanoantennas, Nature
(London) 492, 86 (2012).

[8] T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen,
J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi,
Plasmonic black gold by adiabatic nanofocusing and absorption
of light in ultra-sharp convex grooves, Nat. Commun. 3, 969
(2012).

[9] C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-
Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R.
Smith, Probing the ultimate limits of plasmonic enhancement,
Science 337, 1072 (2012).

[10] S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A.
Mortensen, Unusual resonances in nanoplasmonic structures
due to nonlocal response, Phys. Rev. B 84, 121412(R) (2011).

[11] C. Ciracì, J. B. Pendry, and D. R. Smith, Hydrodynamic model
for plasmonics: A macroscopic approach to a microscopic prob-
lem, ChemPhysChem 14, 1109 (2013).

[12] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Robust Subnanometric Plasmon Ruler by Rescaling of the Non-
local Optical Response, Phys. Rev. Lett. 110, 263901 (2013).

155435-10

https://doi.org/10.1038/s41563-019-0290-y
https://doi.org/10.1103/PhysRevB.75.245426
https://doi.org/10.1103/PhysRevB.79.035401
https://doi.org/10.1038/nphoton.2014.228
https://doi.org/10.1038/ncomms8788
https://doi.org/10.1364/OE.20.016880
https://doi.org/10.1038/nature11615
https://doi.org/10.1038/ncomms1976
https://doi.org/10.1126/science.1224823
https://doi.org/10.1103/PhysRevB.84.121412
https://doi.org/10.1002/cphc.201200992
https://doi.org/10.1103/PhysRevLett.110.263901


INFLUENCE OF THE ELECTRON SPILL-OUT AND … PHYSICAL REVIEW B 104, 155435 (2021)

[13] L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P.
García-González, Performance of nonlocal optics when ap-
plied to plasmonic nanostructures, J. Phys. Chem. C 117, 8941
(2013).

[14] W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P.
Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier,
Quantum mechanical effects in plasmonic structures with sub-
nanometre gaps, Nat. Commun. 7, 11495 (2016).

[15] J. Zuloaga, E. Prodan, and P. Nordlander, Quantum description
of the plasmon resonances of a nanoparticle dimer, Nano Lett.
9, 887 (2009).

[16] C. A. Ullrich, Time-Dependent Density-Functional Theory:
Concepts and Applications (Oxford University Press, Oxford,
2011).

[17] G. Aguirregabiria, D. C. Marinica, R. Esteban, A. K. Kazansky,
J. Aizpurua, and A. G. Borisov, Role of electron tunneling in
the nonlinear response of plasmonic nanogaps, Phys. Rev. B 97,
115430 (2018).

[18] R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua,
Bridging quantum and classical plasmonics with a quantum-
corrected model, Nat. Commun. 3, 825 (2012).

[19] M. N. Feiginov and V. A. Volkov, Self-excitation of 2D plas-
mons in resonant tunneling diodes, J. Exp. Theor. Phys. Lett.
68, 662 (1998).

[20] V. Ryzhii and M. Shur, Plasma instability and nonlinear tera-
hertz oscillations in resonant-tunneling structures, Jpn. J. Appl.
Phys. 40, 546 (2001).

[21] D. Svintsov, Z. Devizorova, T. Otsuji, and V. Ryzhii, Plasmons
in tunnel-coupled graphene layers: Backward waves with quan-
tum cascade gain, Phys. Rev. B 94, 115301 (2016).

[22] E. J. H. Skjølstrup, T. Søndergaard, and T. G. Pedersen, Quan-
tum spill-out in few-nanometer metal gaps: Effect on gap
plasmons and reflectance from ultrasharp groove arrays, Phys.
Rev. B 97, 115429 (2018).

[23] E. J. H. Skjølstrup, T. Søndergaard, and T. G. Pedersen,
Quantum spill-out in nanometer-thin gold slabs: Effect on the
plasmon mode index and the plasmonic absorption, Phys. Rev.
B 99, 155427 (2019).

[24] G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl,
F. Evers, H. Xu, N. Asger Mortensen, and M. Wubs,
Resonance shifts and spill-out effects in self-consistent
hydrodynamic nanoplasmonics, Nat. Commun. 6, 7132
(2015).

[25] W. Yan, Hydrodynamic theory for quantum plasmonics: Linear-
response dynamics of the inhomogeneous electron gas, Phys.
Rev. B 91, 115416 (2015).

[26] C. Ciracì and F. Della Sala, Quantum hydrodynamic theory for
plasmonics: Impact of the electron density tail, Phys. Rev. B 93,
205405 (2016).

[27] C. Ciracì, Current-dependent potential for nonlocal absorption
in quantum hydrodynamic theory, Phys. Rev. B 95, 245434
(2017).

[28] K. Ding and C. T. Chan, Plasmonic modes of polygonal rods
calculated using a quantum hydrodynamics method, Phys. Rev.
B 96, 125134 (2017).

[29] S. A. H. Gangaraj and F. Monticone, Do truly unidirectional
surface plasmon-polaritons exist? Optica 6, 1158 (2019).

[30] S. A. Hassani Gangaraj, B. Jin, C. Argyropoulos, and F.
Monticone, Broadband Field Enhancement and Giant Nonlinear
Effects in Terminated Unidirectional Plasmonic Waveguides,
Phys. Rev. Appl. 14, 054061 (2020).

[31] M. Khalid and C. Ciracì, Enhancing second-harmonic genera-
tion with electron spill-out at metallic surfaces, Commun. Phys.
3, 214 (2020).

[32] E. Runge and E. K. U. Gross, Density-Functional Theory for
Time-Dependent Systems, Phys. Rev. Lett. 52, 997 (1984).

[33] G. Manfredi and F. Haas, Self-consistent fluid model for a
quantum electron gas, Phys. Rev. B 64, 075316 (2001).

[34] N. Crouseilles, P.-A. Hervieux, and G. Manfredi, Quantum hy-
drodynamic model for the nonlinear electron dynamics in thin
metal films, Phys. Rev. B 78, 155412 (2008).

[35] S. Raza, T. Christensen, M. Wubs, S. I. Bozhevolnyi, and N. A.
Mortensen, Nonlocal response in thin-film waveguides: Loss
versus nonlocality and breaking of complementarity, Phys. Rev.
B 88, 115401 (2013).

[36] S. I. Bozhevolnyi and J. Jung, Scaling for gap plasmon based
waveguides, Opt. Express 16, 2676 (2008).

[37] C. L. C. Smith, N. Stenger, A. Kristensen, N. A. Mortensen,
and S. I. Bozhevolnyi, Gap and channeled plasmons in tapered
grooves: A review, Nanoscale 7, 9355 (2015).

[38] Y. Wang and E. A. Carter, Orbital-free kinetic-energy density
functional theory, in Progress in Theoretical Chemistry and
Physics, edited by S. Schwartz (Kluwer, Dordrecht, 2000),
Vol. 5, pp. 117–184.

[39] G. Manfredi, P.-A. Hervieux, and F. Haas, Nonlinear dynamics
of electron–positron clusters, New J. Phys. 14, 075012 (2012).

[40] H. M. Baghramyan, F. Della Sala, and C. Ciracì, Laplacian-
Level Quantum Hydrodynamic Theory for Plasmonics, Phys.
Rev. X 11, 011049 (2021).

[41] M. Khalid, F. Della Sala, and C. Ciracì, Optical properties of
plasmonic core-shell nanomatryoshkas: A quantum hydrody-
namic analysis, Opt. Express 26, 17322 (2018).

[42] M. Khalid and C. Ciracì, Numerical analysis of nonlocal optical
response of metallic nanoshells, Photonics 6, 39 (2019).

[43] C. Ciracì, R. Jurga, M. Khalid, and F. Della Sala, Plas-
monic quantum effects on single-emitter strong coupling,
Nanophotonics 8, 1821 (2019).

[44] F. Yang and K. Ding, Electron spill-out effect in singular meta-
surfaces, Photonics 8, 154 (2021).

[45] M. Brack, The physics of simple metal clusters: Self-consistent
jellium model and semiclassical approaches, Rev. Mod. Phys.
65, 677 (1993).

[46] R. Ajib, A. Pitelet, R. Pollès, E. Centeno, Z. Ajaltouni, and A.
Moreau, The energy point of view in plasmonics, J. Opt. Soc.
Am. B 36, 1150 (2019).

[47] E. Sakat, A. Moreau, and J.-P. Hugonin, Generalized electro-
magnetic theorems for nonlocal plasmonics, Phys. Rev. B 103,
235422 (2021).

[48] C. Lemaître, E. Centeno, and A. Moreau, Interferometric con-
trol of the absorption in optical patch antennas, Sci. Rep. 7,
2941 (2017).

[49] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,
Convergence properties of the nelder-mead simplex method in
low dimensions., SIAM J. Opt. 9, 112 (1998).

155435-11

https://doi.org/10.1021/jp401887y
https://doi.org/10.1038/ncomms11495
https://doi.org/10.1021/nl803811g
https://doi.org/10.1103/PhysRevB.97.115430
https://doi.org/10.1038/ncomms1806
https://doi.org/10.1134/1.567925
https://doi.org/10.1143/JJAP.40.546
https://doi.org/10.1103/PhysRevB.94.115301
https://doi.org/10.1103/PhysRevB.97.115429
https://doi.org/10.1103/PhysRevB.99.155427
https://doi.org/10.1038/ncomms8132
https://doi.org/10.1103/PhysRevB.91.115416
https://doi.org/10.1103/PhysRevB.93.205405
https://doi.org/10.1103/PhysRevB.95.245434
https://doi.org/10.1103/PhysRevB.96.125134
https://doi.org/10.1364/OPTICA.6.001158
https://doi.org/10.1103/PhysRevApplied.14.054061
https://doi.org/10.1038/s42005-020-00477-0
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevB.64.075316
https://doi.org/10.1103/PhysRevB.78.155412
https://doi.org/10.1103/PhysRevB.88.115401
https://doi.org/10.1364/OE.16.002676
https://doi.org/10.1039/C5NR01282A
https://doi.org/10.1088/1367-2630/14/7/075012
https://doi.org/10.1103/PhysRevX.11.011049
https://doi.org/10.1364/OE.26.017322
https://doi.org/10.3390/photonics6020039
https://doi.org/10.1515/nanoph-2019-0199
https://doi.org/10.3390/photonics8050154
https://doi.org/10.1103/RevModPhys.65.677
https://doi.org/10.1364/JOSAB.36.001150
https://doi.org/10.1103/PhysRevB.103.235422
https://doi.org/10.1038/s41598-017-03064-6
https://doi.org/10.1137/S1052623496303470

