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1 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000
Clermont-Ferrand, France
noemie.debroux@uca.fr

2 Normandie Univ, Institut National des Sciences Appliquées de Rouen, Laboratory
of Mathematics, 76000 Rouen, France
carole.le-guyader@insa-rouen.fr

3 Department of Mathematics, University of California Los Angeles, Hilgard Avenue,
Los Angeles, CA 90095-1555, USA

lvese@math.ucla.edu

Abstract. In the seminal paper E. Tadmor, S. Nezzar and L. Vese, A
multiscale image representation using hierarchical (BV,L2) decomposi-
tions, Multiscale Model. Simul., 2(4), 554–579, (2004), the authors in-
troduce a multiscale image decomposition model providing a hierarchical
decomposition of a given image into the sum of scale-varying compo-
nents. In line with this framework, we extend the approach to the case
of registration, task which consists of mapping salient features of an im-
age onto the corresponding ones in another, the underlying goal being
to obtain such a kind of hierarchical decomposition of the deformation
relating the two considered images (—from the coarser one that encodes
the main structural/geometrical deformation, to the more refined one
—). To achieve this goal, we introduce a functional minimisation prob-
lem in a hyperelasticity setting by viewing the shapes to be matched as
Ogden materials. This approach is complemented by hard constraints
on the L∞-norm of both the Jacobian and its inverse, ensuring that the
deformation is a bi-Lipschitz homeomorphism. Theoretical results em-
phasising the mathematical soundness of the model are provided, among
which the existence of minimisers, a Γ -convergence result and an ana-
lysis of a suitable numerical algorithm, along with numerical simulations
demonstrating the ability of the model to produce accurate hierarchical
representations of deformations.

Keywords: Multiscale analysis · registration · nonlinear elasticity · Og-
den materials · bi-Lipschitz homeomorphisms · Γ -convergence.

1 Introduction

Assuming that the considered grey-level images are L2-observations that may
include scale-varying objects, ranging from large homogeneous regions that are
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faithfully modelled by the smaller functional space BV , to oscillatory patterns/
texture that require more involved functional spaces, multiscale representation
can be viewed as the task which aims to accurately describe these different
levels of details. This means representing the noticeable characteristics of a
given image into suitable intermediate spaces/subclasses lying in between the
rougher space L2 (or Lp) and the smaller space BV of functions of bounded
variation. While, as previously mentioned, this latter space is the proper one
to describe homogeneous regions with sharp edges, finer details (whether it
be oscillatory patterns or noise) are generally captured by a function or dis-
tribution belonging to a larger space such as Lp or a dual space of distribu-
tions (such as {div~g |~g ∈ L∞}, {div~g |~g ∈ BMO (Bounded Mean Oscillation)}
or {∆g | g Zygmund function}, as suggested by Meyer ([11])). To identify such in-
termediate functional spaces, a standard strategy is interpolation (see [4] or [5]).
The theory of interpolation studies the family of spaces Y that are intermediate
spaces between Y0 and Y1, Banach spaces continuously embedded in the same
Hausdorff topological vector space Z, in the sense that Y0 ∩ Y1 ⊂ Y ⊂ Y0 + Y1.
The model investigated in [24] falls within this framework and proves to be a
special instance of the canonical form

Jp(f, η;X,Y ) = inf
u+v=f

{‖v‖pX + η ‖u‖Y }

(closely related to the so-called K-functional (cf. [26, Chapter 5])) for which the
intermediate spaces (X,Y )θ, θ ∈ [0, 1] with Y ⊂ X, ranging from (X,Y )0 = X
—the larger space —to (X,Y )1 = Y —the smaller one —are quantified by the
behaviour of Jp(·, η; ·, ·) as η tends to 0. More precisely, in [24], the authors
consider the larger functional space X to be L2, while Y is chosen to be BV ,
and intend to measure how accurately an L2-object can be approximated by its
BV characteristics by considering the family of J-functionals

J(f, λ) = J2(f, λ;BV,L2) = inf
u+v=f

{
λ ‖v‖2L2 + ‖u‖BV

}
,

with increasing λ’s. Note that the focus is shifted in comparison to the canonical
form, from smaller η’s to larger λ’s.
The weighting parameter λ serves as a scale level to discriminate properly the
two components: u, that captures the structural features of the observation f ,
while v encodes texture and oscillatory patterns, the discrimination between
the two constituents being dictated by the scale parameter λ. This principle is
embedded in a dyadic refinement process with λ0 a given initial scale, that reads
as:

f = u0 + v0, [u0, v0] = arg min
u+v=f

J(f, λ0),

vj = uj+1 + vj+1, [uj+1, vj+1] = arg min
u+v=vj

J(vj , λ02j+1), j = 0, 1, · · · ,

producing at the end of the kth step, the following hierarchical decomposition:

f = u0 + v0 = u0 + u1 + v1 = · · · = u0 + u1 + · · ·+ uk + vk,
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the uk’s resolving finer edges. A remarkable result ([24, Theorem 2.2]) states
that under the assumption f ∈ BV , the (BV,L2) hierarchical decomposition of

f ,
∑k
j=0 uj , strongly converges to f in L2.

In accordance with this framework, we propose transposing it to the case of reg-
istration, the task which aims to determine an optimal (in a sense to be specified)
diffeomorphic deformation ϕ that aligns the structures visible in an image called
Reference into their counterparts in another one —called Template —(see [12, 13,
23] for a relevant analysis of the registration problem), the underlying goal being
twofold: (i) obtaining a hierarchical decomposition of the sought deformation as
ϕ0 ◦ · · ·ϕk ◦ · · · ◦ϕn, ϕ0 encoding the main geometry-driven/structural deforma-
tion, while the ϕ0 ◦ · · · ◦ϕk’s capture more refined deformations; (ii) assessing to
what extent this hierarchical decomposition conveys the hidden structure of the
deformation to be recovered, and how it could be used to derive image statistics,
to measure variability inside a population, to retrieve the inherent dynamics of a
phenomenon, and so on. The introduced algorithm is patterned after the one in
[24] in the sense that it embeds successive applications of a refinement step —the
composition of deformations is now a substitute for the sum of the scale-varying
constituents of the seminal model [24] —, and can be schematised as follows.
Given R (resp. T ) the Reference (resp. Template) image and its related mul-

tilayered/hierarchical decomposition
∑k
j=0 Rj (resp.

∑k
j=0 Tj), the algorithm

reads as, F being a general functional that will be specified later on,

ϕ0 = arg min
ϕ

F(ϕ;R0, T0),

.

.

. (D)

ϕk = arg min
ϕ

F(ϕ0 ◦ · · · ◦ ϕk−1 ◦ ϕ;

k∑
j=0

Rj ,

k∑
j=0

Tj).

Before depicting in depth our model, we would like to point out that prior
related works ([17–19], [14]) suggest to foster the use of this image multiscale
representation in a registration setting.
The work [17] is focused on (rigid) multiscale image registration for the regis-
tration of medical images degraded by significant levels of noise. Where conven-
tional methods fail to correctly align the image pair, i.e., to remove the artificial
differences while highlighting the real differences due to intrinsic variations of
the objects —whether it be ordinary registration techniques alone or sequen-
tial treatments including a prior step to denoise the image pair and then the
application of a classical registration algorithm —, their proposed joint model
achieves accurate registration. Given f an image with hierarchical expansion∑k
j=0 uj —recall that for small k,

∑k
j=0 uj is a coarse representation of the im-

age f that actually encodes the structural/geometrical information of f whilst

removing small details —to be registered with g approximated by
∑k
j=0 vj ,

the authors suggest registering the truncated hierarchical representations rather
than f and g themselves, to get an accurate estimation of the deformation align-
ing them. Two main differences can be observed in comparison to our model:
(i) first, each hierarchical step k is treated independently of the previous ones,
that is, without connecting the optimal deformations Φ0, · · · , Φk−1 obtained at
previous steps and the optimal deformation Φk produced at step k, whereas in
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our approach, motivated by physical arguments stated below, deformation Φk
is built up by taking advantage of the Φ0, · · · , Φk−1’s; (ii) second, and this is
in some way a corollary of the first point, the optimal deformation Φ meant
to bring f and g into spatial alignment is computed as a weighted average of
the form 1

m

∑m−1
l=0 blΦl, the bl’s being weights appropriately chosen, while we

promote composition of deformations. This work is then extended to the case of
landmark-driven registration ([18]) in a B-spline setting and then, to the case
of non-rigid deformations ([19]). The main motivation in our work to promote
composition of deformations stems from the following fact stated in [25]. As
mapping a point through a first transformation and then through a second one
is equivalent to mapping the point through the composition of these two spatial
transformations, the most natural and geometrically meaningful operation the
space of non-parametric spatial transformations can be endowed with, is the
composition. Note, on the contrary, that addition of spatial transformations has
no geometric meaning.
More recently in [14], Modin et al. propose constructing analogous hierarchical
expansions for diffeomorphims, the sum being replaced by composition of maps,
in the context of image registration. Their method can be seen as a series of
Large Deformation Diffeomorphic Metric Mapping (LDDMM) steps with vary-
ing weighting parameters (note that the adjective multiscale applies more to the
way these weighting parameters are set at each iteration, i.e., on how strong
penalisations on the data fidelity term and on the deviation of the deformation
composition from the identity mapping are, since they do not exploit the multi-
scale expansions of the images contrary to us). Although our method and theirs
have in common the composition of deformations to refine the registration pro-
cess, there are several key differentiating points in addition to the above: among
them, the deformation model we embrace to describe the setting in which the
objects to be matched are interpreted and viewed. In our case, it originates from
physical considerations (i.e. elastic models in which the shapes to be matched
are considered as the observations of a same body before and after being sub-
jected to constraints) contrary to the model developed by Modin et al. which, to
our point of view, is rather rooted in pure mathematical considerations and dis-
connected in some way from the physics of the problem. This choice of devising
a model connected to physical considerations and especially to the hyperelas-
ticity framework was motivated by the fact that it proves to be suitable when
dealing with large and nonlinear deformations and that many applied problems,
e.g. biological tissue behaviour, are modelled within this setting.
In [10], the authors propose decomposing the transformation f of the domain
D ⊂ R2 in which the object is embedded, using quasi-conformal theories. As a de-
sirable one-to-one representation of an orientation-preserving mapping f : D →
D can be achieved via its Beltrami Coefficient (BC) µ(f) : D → C (—measure of
non conformality, i.e., to what extent a deformation deviates from a conformal

map, and uniquely related to f by µ(f)(z) =
(
∂f
∂z̄

)
/
(
∂f
∂z

)
—), the authors sug-

gest applying a wavelet transform to the Beltrami coefficient, yielding a decom-
position of the BC into different components of different frequencies compactly
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supported in different sub-domains. Quasi-conformal mappings related to dif-
ferent components of the BC (different scales) can thus be reconstructed, those
yielding a multiscale decomposition of the deformation.
Finally and for the sake of completeness, we refer the reader to [2], [9], [20] and
[22] for alternative approaches.
We now turn to the mathematical formulation and analysis of the proposed
physics-based multiscale modelling. We would like to point out that the core of
the paper is on the fine theoretical properties exhibited by our modelling. The
proofs being long, we have deliberately chosen to focus primarily on the asymp-
totic result, which, in our view, is the most significant one. A section is dedicated
to the design of a suitable algorithm, but this does not constitute the crux of the
manuscript. Extensive numerical simulations are currently being carried out to
put this mathematical model to the test, and to assess its ability to unveil the
hidden structure of the deformation to be retrieved.

2 Mathematical Modelling

2.1 Depiction of the Model

Let Ω be a connected bounded open subset of R2 of class C1, thus satisfying the
cone property. Let us denote by R : Ω̄ → R the reference image and by T : Ω̄ →
R the Template image, assumed to belong to the functional space BV (Ω). For
theoretical and numerical purposes, we assume that T is compactly supported on
Ω to ensure that T ◦ ϕ is always well-defined. Of course, in practice, the sought
deformation should be with values in Ω̄, but from a mathematical point of view,
if we work with such spaces, we lose the structure of vector spaces. Nonetheless,
we can show that our model retrieves deformations with values in Ω̄ —based
on Ball’s results [3]. A deformation is a smooth mapping that is orientation-
preserving and injective, except possibly on ∂Ω. The deformation gradient is
∇ϕ : Ω̄ → M2(R), the set M2(R) being the set of real square matrices of order
2. The sought deformation is seen as an argument of minimum of a specifically
designed cost function comprising a regularisation on ϕ prescribing the nature of
the deformation, and a term measuring alignment, or how the available data are
used to drive the registration process. To allow large deformations, the shapes to
be matched are viewed as isotropic (exhibiting the same mechanical properties
in each direction), homogeneous (showing the same behaviour everywhere inside
the material), hyperelastic materials (they exhibit both nonlinear behaviour and
large changes in shape), and more precisely, as Ogden ones. Note that rubber,
filled elastomers and biological tissues are often modelled within the hyperelastic
framework, which motivates our approach. This perspective dictates the way
the regularisation on the deformation ϕ is devised, based on the stored energy
function of an Ogden material. Recall that the general expression of the stored
energy function of such a material (see [6]) is given by WO(F ) =

∑K
i=1 ai ‖F‖γi+

Γ (detF ), with ∀i ∈ {1, · · · ,K}, ai > 0, γi ≥ 0, and Γ :]0,+∞[→ R, being a
convex function satisfying limδ→0+ Γ (δ) = limδ→+∞ Γ (δ) = +∞. The first term
penalises changes in length, while the second one restricts the changes in area.
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The latter one also ensures preservation of topology by enforcing positivity of
the Jacobian almost everywhere. In this work, we focus more specifically on the
following energy, ‖ · ‖ denoting the Frobenius norm,

WOp(F ) =

{
a1‖F‖4 + a2(detF − 1)2 + a3

(detF )10 − 4a1 − a3 if detF>0

+∞ otherwise,

which fulfils the previous assumptions. The two latter terms govern the distri-
bution of the Jacobian determinant. While the middle term promotes Jacobian
determinants close to 1, the rightmost one prevents singularities and large con-
tractions by penalising small values of the determinant. The constants are added
to comply with the energy property WOp(I) = 0, where I stands for the identity
matrix. In the following, we will set WOp(F ) =WOp(F,detF ).
This stored energy function is complemented by the term 1{‖.‖L∞(Ω,M2(R))≤α}(F )

+1{‖.‖L∞(Ω,M2(R))≤β}(F
−1), with α ≥ 1, and β ≥ 1, where 1A denotes the convex

characteristic function of a convex set A, the underlying idea being to recover
deformations that are bi-Lipschitz homeomorphisms.

Remark 1. In terms of functional spaces, if ϕ ∈W 1,∞(Ω,R2) (suitable space o-
wing to the L∞ hard constraints), det∇ϕ is automatically an element of L∞(Ω).
Penalising the L∞ norm of ∇ϕ thus entails control over the Jacobian determi-
nant. This additional term implicitly gives an upper and lower bound on the
Jabobian determinant ensuring thus topology preservation.

The aforementioned regulariser is then applied along with a classical L2-
discrepancy measure, yielding the following minimisation problem

inf
ϕ∈W

{
F (ϕ) =

λ

2
‖T ◦ ϕ−R‖2L2(Ω) +

∫
Ω

WOp(∇ϕ,det(∇ϕ)) dx (P)

+ 1{‖·‖L∞(Ω,M2(R))≤α}(∇ϕ) + 1{‖·‖L∞(Ω,M2(R))≤β}((∇ϕ)−1)

}
,

withW = {ψ ∈ Id+W 1,∞
0 (Ω,R2) | ‖∇ϕ‖L∞(Ω,M2(R)) ≤ α, ‖(∇ϕ)−1‖L∞(Ω,M2(R))

≤ β, det(∇ϕ) > 0 a.e. in Ω}, and λ > 0.

2.2 Theoretical Results

The first theoretical result claims that problem (P) admits at least one min-
imiser. Due to the limited number of pages, we only sketch the proof here.
Theorem 1. Problem (P) admits at least one minimiser in W.

Proof. The proof mainly relies on the following elements. Ball’s results ([3])
enable one to conclude that any minimising sequence is such that ∀k ∈ N, ϕk is
a homeomorphism from Ω to Ω —and even from Ω̄ to Ω̄ owing to [3, Theorem

2]—, and more particularly, a bi-Lipschitz homeomorphism. Also, ϕk
∗
⇀

k→+∞
ϕ̄ in W 1,∞(Ω,R2) and similar arguments to those previously used enable one to
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get that ϕ̄ is a bi-Lipschitz homeomorphism from Ω to Ω and even from Ω̄ to
Ω̄. By continuity of the trace operator, one gets that ϕ̄ ∈ Id + W 1,∞

0 (Ω,R2).
Now, ϕ−1

k is uniformly bounded according to k in W 1,∞(Ω,R2) using Poincaré-
Wirtinger inequality, thus there exist a subsequence still denoted by ϕ−1

k and

ū ∈ W 1,∞(Ω,R2) such that ϕ−1
k

∗
⇀

k→+∞
ū in W 1,∞(Ω,R2). On the one hand,

ϕ−1
k ◦ ϕ̄ →

k→+∞
Id in L∞(Ω,R2) due to the β-Lipschitz property of ϕ−1

k , thus

almost everywhere in Ω up to a subsequence. On the other hand, ϕ−1
k uniformly

converges to ū in C0(Ω̄,R2), yielding ϕ−1
k ◦ ϕ̄ →

k→+∞
ū ◦ ϕ̄ pointwise in Ω̄. By

uniqueness of the limit, ū ◦ ϕ̄ = Id a.e., leading to ū = ϕ̄−1 a.e. in Ω. It remains
to address the question of weak lower semicontinuity. Since T ∈ BV (Ω) and
all ϕk and ϕ̄ are bi-Lipschitz homeomorphisms, we get that ∀k ∈ N, T ◦ ϕk ∈
BV (Ω) ⊂ L2(Ω) and T ◦ ϕ̄ ∈ BV (Ω) (see [1, Theorem 2.6]). We then prove that
ϕk ◦ ϕ̄−1 strongly converges to Id in C0,α(Ω̄,R2), which is a cornerstone step to
prove that T ◦ ϕk →

k→+∞
T ◦ ϕ̄ in L2(Ω).

We now include a multiscale representation of the deformation in our model,
relying on the hierarchical decomposition into the sum of scale-varying com-
ponents introduced in [24]. Let (Tj)j ∈ BV (Ω) and (Rj)j ∈ BV (Ω) be the
sequence of varying scale structural features of respectively T and R coming
from the following problems —S standing for either R or T below — :

(S0, v0) = arg min
(u,v)∈BV (Ω)×L2(Ω) |S=u+v

{λ0 ‖v‖22 + TV (u)},

(Sj+1, vj+1) = arg min
(u,v)∈BV (Ω)×L2(Ω) | vj=u+v

{2j+1λ0 ‖v‖22 + TV (u)}, j = 1, . . . ,

λ0 being an initial scale parameter provided by the user. We refer the reader to
[24] for a thorough description and analysis of this multiscale representation of
an image.
In this work, we assume that T and R have similar scale structures and that each

level of the following hierarchical decomposition of T ,

(
k∑
j=0

Tj

)
, can be matched

to the corresponding level of hierarchical decomposition of R,

(
k∑
j=0

Rj

)
. We then

derive a corresponding hierarchical decomposition of the deformation, going from
global structural deformations to more locally refined ones, and based on the
composition operator —a more natural and physically meaningful operator than
the addition for transformations —. This multiscale decomposition is described
as follows :

ϕ0 = arg min
ϕ∈W

{F(ϕ, T0, R0)},

ϕk = arg min
ϕ∈Xk

{F(ϕ0 ◦ ϕ1 ◦ . . . ◦ ϕk−1 ◦ ϕ,
k∑
j=0

Tj ,
k∑
j=0

Rj)},
(Pk)
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with

F(ϕ, T,R) =
λ

2
‖T ◦ ϕ−R‖2L2(Ω) +

∫
Ω

WOp(∇ϕ,det(∇ϕ)) dx

+ 1{‖·‖L∞(Ω,M2(R))≤α}(∇ϕ) + 1{‖·‖L∞(Ω,M2(R))≤β}((∇ϕ)−1),

and Xk = {ψ ∈ Id + W 1,∞
0 (Ω,R2) |det∇ψ > 0 a.e., (∇(ϕ0◦ϕ1◦...◦ϕk−1◦ψ))−1 ∈

L∞(Ω,M2(R))}. The next theoretical result is a Γ -convergence result.

Theorem 2. Problem (Pk) admits at least one minimiser and the associated
functional Γ -converges to the functional related to problem (P) according to De
Giorgi’s definition.

Proof. For the existence of minimisers, the same arguments as those previously
used can be applied since orientation-preserving bi-Lipschitz homeomorphisms
form a group stable for the composition, and BV (Ω) is stable for the sum.
The Γ -convergence result mainly relies on [24, Theorem 2.2] stating the strong
convergence of hierarchical decompositions to the initial image in L2(Ω), as well
as Ball’s results [3]. These enable one to prove both inequalities required for the
Γ -convergence property.

This result ensures that our multiscale decomposition gives a sequence of
bi-Lipschitz homeomorphic deformations which model more and more locally
refined distortions until it resembles the original deformation that maps T to R.
We now turn to the numerical resolution of our problem (Pk).

3 Numerical Resolution

Due to its non-linearity in both ϕ and ∇ϕ and its non-differentiability, problem
(Pk) is hard to solve numerically. Inspired by a prior work by Negrón Marrero [15]
followed by more related works [16, 7, 8] in which the proposed numerical method
is adapted to the image registration problem in a nonlinear elasticity setting,
we introduce auxiliary variables with quadratic penalty terms. Especially, this
enables us to decouple the deformation Jacobian from the deformation itself and

from its inverse. For the sake of conciseness, we denote by T̄k =
k∑
j=0

Tj and by

R̄k =
k∑
j=0

Rj . The decoupled problem is thus defined by :

inf
ϕ,ψ,φ,V,W

Fk = λ
2

∫
Ω

(T̄k ◦ φ− R̄k)2 dx+
∫
Ω
WOp(V,detV ) dx

+1{‖.‖L∞(Ω,M2(R))≤α}(V ) + 1{‖.‖L∞(Ω,M2(R))≤β}(W )

+γ1
2 ‖V −∇φ‖

2
L2(Ω,M2(R)) + γ2

2 ‖W −∇ψ‖
2
L2(Ω,M2(R))

+γ3
2 ‖ζ

−1
k−1 ◦ φ− ϕ‖2L2(Ω,R2) + γ4

2 ‖ψ ◦ φ− Id‖2L2(Ω,R2)

, (Pk,d)

in which φ simulates ϕ0 ◦ ϕ1 ◦ . . . ◦ ϕk−1 ◦ ϕ = ζk−1 ◦ ϕ, V mimics ∇φ while
W simulates ∇(φ−1), and ψ approximates φ−1. To design the L∞-bound on
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W , we used the fact that if u is a homeomorphism of Ω into Ω, and the in-
verse function u−1 belongs to W 1,q(Ω), the matrix of weak derivatives reads
∇(u−1) = (∇u)−1(u−1).
We then use a classical alternative scheme which consists of splitting the orig-
inal problem into sub-problems that are more computationally tractable. The
sketch of our numerical method of resolution is summarised in Algorithm 1.
We now present numerical simulations validating the accuracy of the multiscale
representation of the obtained deformation.

4 Numerical Experiments

We tested our model on 4DMRI4 acquired during free-breathing of right lobe
liver [21]. We chose the images (195× 166) corresponding to the liver in full ex-
halation and the liver in full inhalation to illustrate the capability of our model
to handle large deformations. The parameters were chosen as follows : N = 10
levels, λ = 1, a1 = 5.0, a2 = 1000.0, a3 = 4.0, γ1 = 80000, γ2 = 1.0, γ3 = 1.0,
γ4 = 1.0, α = 100, and β = 100. The coefficients a1, a2 and a3 involved in
the Ogden stored energy function affect respectively the averaged local change
of length, and the averaged local change of area. This leads to the following
phenomenon: the higher the ai’s are, the more rigid the deformation is. The γi
are chosen rather big to ensure the closeness between the auxiliary variables and
the original ones. The λ weighs the fidelity term, and a trade-off has to be met
between the accuracy of the registration with high values of λ and physically
meaningful smooth deformations with small λ. The obtained results are illus-
trated in Fig.1.

We remark that for each level, the deformed Template is well-aligned with
the Reference, demonstrating the ability of our model to deal with large deforma-
tions and localised small feature movements as the scale grows. The deformation
grids do not exhibit overlaps and hence show that the obtained transformations
are physically meaningful with a determinant remaining positive everywhere at
all scales. By looking at the last column, one can see that the hierarchical de-
composition of the deformations obtained with our model behaves as expected,
that is to say the deformations on the first scales are global and represent the
movements of the main organs and as k grows, the deformation becomes more
localised and more refined to model the movements of small features, i.e. blood
vessels imaged as small white dots.

5 Conclusion

To conclude, we have introduced a mathematically sound and physically rele-
vant multiscale registration model inspired by the hierarchical decomposition
presented in [24]. It shows promising results on medical data, producing de-
formations from global coarse deformations to localised finer transformations

4 http://www.vision.ee.ethz.ch/ organmot/chapter download.shtml
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Algorithm 1 Our Proposed Method (L∞ constraints applied componentwise)

1 Start from φ−1 ← Id, V11,−1 ← 1, V12,−1 ← 0, V21,−1 ← 0,
V22,−1 ← 1, W11,−1 ← 1, W12,−1 ← 0, W21,−1 ← 0, W22,−1 ← 1
ψ−1 ← Id, ϕ−1 ← Id, and ζ−1 ← Id;

2 Choose N , the number of scales.

3 Compute (Tj)j=0,...,N and (Rj)j=0,...,N ;

4 for k = 0, . . . , N :

5 T̄k ←
k∑
j=0

Tj , and R̄k ←
k∑
j=0

Rj;

6 φk ← φk−1, V11,k ← V11,k−1, V12,k ← V12,k−1, V21,k ← V21,k−1,

V22,k ← V22,k−1, W11,k ←W11,k−1, W12,k ←W12,k−1,

W21,k ←W21,k−1, W22,k ←W22,k−1 ψk ← ψk−1, ϕk ← Id,
and ζk−1 ← φk−1;

7 for l = 1, . . . , nbIter:
8 for each pixel :

9 V11,k ← proj{‖.‖L∞(Ω)≤α}(V11,k − (4‖Vk‖2V11,k +2a2(detVk−1)

V22,k −
10a3V22,k

detV 11
k

+ γ1(V11,k −
∂φ1,k

∂x
)));

10 V12,k ← proj{‖.‖L∞(Ω)≤α}(V12,k − (4‖Vk‖2V12,k −2a2(detVk−1)

V21,k +
10a3V21,k

detV 11
k

+ γ1(V12,k −
∂φ1,k

∂y
)));

11 V21,k ← proj{‖.‖L∞(Ω)≤α}(V21,k − (4‖Vk‖2V21,k −2a2(detVk−1)

V12,k +
10a3V12,k

detV 11
k

+ γ1(V21,k −
∂φ2,k

∂x
)));

12 V22,k ← proj{‖.‖L∞(Ω)≤α}(V22,k − (4‖Vk‖2V22,k +2a2(detVk−1)

V11,k −
10a3V11,k

detV 22
k

+ γ1(V22,k −
∂φ2,k

∂y
)));

13 W11,k ← proj{‖.‖L∞(Ω)≤β}(
∂ψ1,k

∂x
);

14 W12,k ← proj{‖.‖L∞(Ω)≤β}(
∂ψ1,k

∂y
);

15 W21,k ← proj{‖.‖L∞(Ω)≤β}(
∂ψ2,k

∂x
);

16 W22,k ← proj{‖.‖L∞(Ω)≤β}(
∂ψ2,k

∂y
);

17 for each pixel

18 Solve the Euler -Lagrange equation with

respect to φk using an L2 gradient flow

with implicit Euler time stepping;

19 Solve the Euler -Lagrange equation with

respect to ψk using an L2 gradient flow

with implicit Euler time stepping;

20 ϕk ← ζ−1
k−1 ◦ φk;

21 return φk, ψk, V11,k, V12,k, V21,k, V22,k,W11,k,W12,k,
W21,k,W22,k, ϕk, T̄k ◦ φk;

at different levels. A theoretical analysis of our numerical scheme (asymptotic
result) complemented by additional tests with adapting parameters constitute
the next steps of our work, along with an extension to more involved fidelity
terms and a discussion on the possible statistics unveiled by this hierarchical
decomposition.
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Fig. 1. Multiscale registration results : each row represents a scale of the deformation;
the first column displays the Template image at scale k, i.e. T̄k, the second column
shows the Reference image at scale k, i.e. R̄k, the third one illustrates the deformed
Template obtained at scale k, i.e. T̄k◦φk, the fourth one exhibits the absolute difference
|T̄k ◦ ϕk − R̄k| at scale k, the fifth column presents the inverse deformation at scale k,
i.e. ψk ≈ φ−1

k ≈ (ϕ0 ◦ ϕ1 ◦ . . . ◦ ϕk)−1, the sixth column represents the composition of
deformations at scale k, i.e. φk ≈ ϕ0 ◦ϕ1 ◦ . . . ◦ϕk, and finally the last column displays
the deformation obtained at scale k, i.e. ϕk.
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