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Abstract: Polysaccharides are highly variable and complex biomolecules whose inventory of struc-
tures is still very incomplete, as nature still preserves unexplored biotopes. Plants, macroalgae
and microalgae are an integral part of the daily life of human being regardless of culture, time, or
knowledge development of a country. Natural medicine is an ancestral knowledge widely distributed
throughout the world, handed down for centuries from generation to generation by those commonly
referred to as “nganga” healers or shamans. It is also called alternative medicine or traditional
medicine, and has been associated for millennia to legends. This review gives an emphasis regarding
the ethnobotanic approach associated to the structural variability of poly- and oligosaccharides for
designing the new polysaccharide-based drugs and hydrocolloids of tomorrow. The guiding thread
is to survey the potential of plants (and some macroalgae) from Africa as a source of polysaccharides
with original structures and, secondly, to correlate these structures with biological and/or functional
properties in particular to address and advance the sustainable development and economic growth
of mankind.

Keywords: Africa; polysaccharides; ethnobotany; plants; macroalgae; biological activities

1. Introduction

Polysaccharides are biomolecules that are among the most abundant substances on
Earth, which can be found in plants, animals, micro-organisms, and algae [1]. These poly-
mers play mechanical protective and energetic roles but are also involved in many biological
processes, including cell-to-cell communication, infection of bacteria and/or viruses, and
immunity [2]. These biomolecules have been used for decades in traditional medicine and
their usage is increasing in various industries, particularly in food [3]. Bioactive polysaccha-
rides refer to polysaccharides showing biological activities towards “organisms” [4]. They
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will be of great importance for the following years due to their physico-chemical and biolog-
ical properties [5] such as stability, biodegradability, and biocompatibility [6,7]. In the era of
“Make our planet green again”, polysaccharides have great potential in many areas such as
agriculture, food processing, pharmaceuticals, cosmetics, etc. [4,8,9]. However, biological
activities of polysaccharides are strongly influenced by their chemical structures and chain
conformations. Macromolecular structures of polysaccharides are extremely complex due
to the presence of different monosaccharides such as building blocks, sequence patterns,
linkages, branching and distribution of side chains [10]. Polysaccharides from algae, plants
and animals are often physically and/or chemically entangled with other biomolecules
such as proteins, lipids, and certain inorganic minerals [11]. Plus, structural features of
polysaccharides vary according to environment changes.

This review aims to explore, via the ethnobotanic approach, the potential of African
plants (including some examples of macroalgae) as a source of polysaccharides with
novel/original structures, biological and/or functional properties (Figure 1). It gives an
overview of the identification, isolation, characterization, and application of bioactive
polysaccharides derived from natural sources. This emphasis could be used for newcomers
interesting by working on (African) polysaccharides as a summary and short reference
documents for identifying application potentials to design new polysaccharide-based
products. The framework is at the core of sustainable development issues and could
contribute to a better understanding of Africa’s economic growth in the following decades.
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2. A Spoon of (African) Sugar?
2.1. Common Knowledge about Polysaccharides

Polysaccharides are an important class of biopolymers. These polyosides are abun-
dant polymers with physico-chemical and biological properties such as high stability,
biocompatibility, biodegradability and non-toxicity [12]. Physicochemical and structural
characteristics of polysaccharides mainly depend on the (i) composition of the main back-
bone (including the nature of the glycosidic units), repetition patterns and branching
configurations, (ii) macromolecular chain flexibility, (iii) molar mass distribution, (iv) type
and ratio of functional groups (substitution) carried throughout the main chain [13]. Pri-
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mary to quaternary structures are used to macromolecularly describe polymers, including
polysaccharides. The primary structure corresponds to the chemical sequence of covalently
bonded units within a chain, including inter- and intramolecular bonds. The secondary
structure refers to the arrangement of locally ordered units. The tertiary one corresponds
to the overall spatial organization of the object, which cannot be divided without cleavage
of covalent bonds. Finally, the quaternary structure regards the structure of a molecule that
cannot be divided. It forms the extended three-dimensional network [14]. Polysaccharides
provide a wide diversity of roles from C-storage capacity (starch, glycogen, etc.), structural
support in cell walls (cellulose, pectin, chitin.), and adaptation to environmental changes
(exopolysaccharides) to cellular regulation and communication (glycosaminoglycans) [15].
Some examples of plants and macroalgae “biotopes” (Table 1) described in the literature are:
arabinoxylan, cellulose, glucan hemicellulose (including galactomannan, glucuronoxylan,
etc.), inulin, mannan, pectin (including arabinogalactan types I and II, homogalacturo-
nan, rhamnogalacturonan types I and II, etc.), starch, xylan, xyloglucan, agaroid, alginate,
carrageenan, fucoidan, laminaran, porphyrin, and ulvan. These polysaccharides can be
neutral or acidic, linear, or branched with oligosaccharide chains. They may contain up
to 10 different monosaccharides and the main backbone but also side chains that can be
substituted with functional groups such as sulfate (in macroalgae polysaccharides only),
pyruvate, methyl, and/or acetyl groups. Finally, this structural variability strongly depends
on the plant source and/or species, environment conditions and harvest period.

A common error is to not identify the extraction and/or purification procedures
as “potential significant bias” for well determining the structural features of polysaccha-
rides. Newcomers but also experienced users should not attribute structural changes of
polysaccharides to biotic/abiotic conditions if the methodology is poorly understood or
inappropriate. Extraction methods greatly depend on the material availability, the final
needs (first approach, industrial developments, etc.) and the will to ensure respect for the
famous “12 rules” of Green Chemistry. Addressing sustainable development in Africa
enforces the evaluation of both traditional (from traditional healers) and laboratory meth-
ods. Ethnic extractions are mostly rudimental procedures using natural products (water,
stones, wood stick, etc.). The benefit of this approach is the low cost and speed to “analyze”
the final properties. This methodology has often a low efficiency because of unprecise
protocols, instrumentation, and a low biochemical understanding of the products (cream,
drug, powder, solution, etc.) composition. This kind of extraction de facto excludes the
so-called biorefinery approach where all the different parts from the plants (or macroalgae)
and byproducts should be used. For instance, specific flours (cissus, etc.) were extracted
using the traditional methods used by people in rural areas of Nigeria. The seed coats
were removed after boiling the seeds in hot water for 45–60 min. The white cotyledons
were put in water for 1 h before being washed three times with cold water then soaked in
water overnight to remove the remaining residues. The cotyledons were sun-dried for 24 h,
grounded into a powder (less than 1 mm diameter) and were air-dried at room temperature
for 24 h [16].

Extractions using high temperatures and solvents are most common, hot extractions
being ones of the most used maceration approaches. Regarding the use of solvents, ethanol
and water are must-haves, since they are user-friendly, inexpensive, and particularly
adapted for extracting hydrophilic compounds such as polysaccharides. Other solvents
such as chloroform [10] or acetone [17] might be used as upstream steps for the removal
of polyphenols, lipids, and proteins before extracting the polysaccharide content. Overall,
many recent papers and reviews can be found in the literature, which should be surveyed
to adapt the extraction strategy to the experimental bioresources, and above all, to the type
and location of the expected polysaccharides [15,18–21]. Those steps are often realized
by successive extractions using solvents with growing polarity. The speed and efficiency
of this methodology are quite good even if recalcitrant polysaccharides, from insoluble
parts of the plant and/or because of their low water-solubility, can be hardly extracted
and should need specific procedures. Purification steps are commonly performed to
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remove contaminations from other materials (e.g., polyphenols, proteins, lipids, etc.)
even if the extraction procedures were previously well-defined. Overall, cold alcoholic
precipitation (3/1 v/v) or ultrafiltration, including purifying (100, 50 and/or 10 kDa cut-off)
and concentrating steps, are described to enhance the global purity of the final enriched-
polysaccharide fractions. For instance, Fleurya aestuans L. and Pelargonium capitate leaves
were dried and grounded to a fine powder and resuspended in boiling ethanol (80% v/v)
for 30 min. The pellets were extracted using successively 90% dimethyl sulfoxide (DMSO),
MeOH-CHCl3, MeOH-acetone and finally acetone-water. The residues were air-dried at
80 ◦C and resuspended in acetate buffer (pH = 5.4) to recover the cell-wall materials. The
starch content was enzymatically (α-amylase/amyloglucosidase) removed at 80 ◦C. The
pectic fraction was then separated from the cell wall materials using boiled ammonium
oxaloacetate for 1 h. Xylan and oligoxylan (hemicellulosic fractions) were finally obtained
using 4 M KOH solution and enzymatic digestion [17].

Table 1. Some polysaccharide “families” which could be extracted from African plants and macroalgae.

Type Name Composition Type of Sources
(Organism, Part of the Plant, . . . )

Ref. for
Instance

Plants

Arabinogalactan β-(1,4)-D-arabinogalactan (type I) Cactus (cladodes) [22]

Arabinoxylan Branched β-(1,3)-D-arabinoxylan Plant seeds [23]

Cellulose β-(1,4)-D-glucan Grains, fruits, vegetables, [21]

Galactomannan β-(1,4)-D-mannan randomly substituted at
O-6 position with α-Galp Plant seeds [24]

B-Glucans β-(1,4)-D-glucan
β-(1,3)-D-glucan Barley grains, Fruits, seeds, Oats [25]

“Gums” (Arabino)galactan, xylan, xyloglucan,
glucuronic mannan type

Exudates of trees or isolated from
seeds [26]

Hemicellulose Xylan, mannan, β-glucan and xyloglucan Vegetative and storage tissues [27]

Heteroxylan Highly branched β-(1,3)-D-Xylp and
β-(1,4)-D-Xylp backbone Plant seeds [28]

Inulin β-(1,2)-D-fructan Onion, root, wheat [29]

Pectin α-(1,4)-D-GalA and Rha backbone, Ara, Gal,
Xyl side chains

Plant primary cell wall, leaves,
soft tissues of fruit and vegetable [30]

Xyloglucan β-(1,4)-D-glucan backbone with
α-(1,6)-D-xylose branches Tree fruits, seeds [31]

Macroalgae

Alginate α-L-guluronate (G)/ β-D-mannuronate (M)
block structure Brown algae [32]

Glucan Cellulose, laminaran, starch Brown/Green algae [33]

Porphyran
Alternating β-(1,3)-linked-D-Gal units and

α-(1,4)-linked L-Gal, (1,6)-sulfate, or
3,6-anhydro-α-L-Gal units

Red algae [34]

Sulfated fucoidan Branched α-(1,3), α-(1,4)-L-fucan, O-2, O-3,
O-4 sulfation Brown algae [32]

Sulfated galactan

Backbone of alternating β-(1,3)-linked
D-Gal units and α-(1,4)-linked L-Gal,

(1,6)-sulfate or 3,6-anhydro-α-L-Gal units.
D-Gal units linked on C-3 and C-6, and

sulfation mostly on O-4.

Red algae [35]

Sulfated
polysaccharides

(1,3(6))-linked Gal, (1,3(4))-linked Ara,
(1,4)-linked Glc and T-Glc, (1,4)-linked Xyl

residues
Green algae [36]

Sulfated rhamnan
(1-2)-L-rhamnan substituted by sulfate

groups at C-3,
and/or C-4

Green algae [37]

Ulvan Repeating disaccharide ulvanobiouronic
acid with Xyl, Glc, Rha, and sulfate groups Green algae [38]

Xylan β-(1,3)-xylan Green algae [15]
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Today, tool-assisted extractions (including the use of enzymes) are a classic for obtain-
ing biomolecules (including carbohydrates), such as microwaves, high-pressure systems,
or ultrasounds. It results in extracting polysaccharides faster, at lower-water temperatures
while conserving the polymer structural features [39]. Ultrasounds disrupt the cell walls of
plants and enhance mass transfer of cell content [40]. The method is used to minimize the
waste of polysaccharides in plants that might be an interesting resource of molecules [41].
It might also facilitate the drying process of aqueous ethanolic extracts. Tool-assisted extrac-
tions are generally dedicated for recovering non-polysaccharidic structures (polyphenols,
terpens, etc.) that easily fulfill the basic criteria for cosolvent extraction at low temperature
under heterogeneous (and/or non-conventional) conditions. Numerous decent reviews
can be found in the literature regarding the subject and should be firstly analyzed to make
practical and viable choices and improvements of polysaccharides extracting/purifying
strategies [18,19,21,42]. Figure 2 gives an overview of the main approaches for extracting
various (African) polysaccharides regarding their structural location in plants and/or
macroalgae. The importance of analytical methods used for determining the structure
of (African) polysaccharides is still poorly recognized. Depending on their bad (misun-
derstood) uses, structural changes of polysaccharides can be falsely observed, and errors
attributed to specific species, extraction procedures, etc.
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Overall, four main levels can be defined regarding the level of accuracy and details
needed for characterizing carbohydrates (Figure 3), i.e., (i) global composition, (ii) primary
composition, (iii) first structural analysis and (iv) full structural investigation. Delattre et al.
gave an emphasis about the strategies for determining the structure of (exo)polysaccharides
and experimenters should strongly read it in its entirely [43].
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(i) The total amounts of carbohydrates, neutral sugars and uronic acids, non-carbohydrate
substituents and main “contaminants” must be quantified, mainly by colorimetric assays.
The phenol and/or orcinol-sulfuric acid are usually used for measuring total carbohydrates
content [44]. Uronic acids content is mainly determined by the m-HDP (meta-hydroxydiphenyl)
assay [45] whereas neutral sugars content is monitored based on the resorcinol–sulfuric acid
assay method [46].

A corrective formula should be used for enhancing the results accuracy [47]. Non-
carbohydrate substituents such as (a) pyruvate, (b) methyl and acetyl, and (c) sulfate groups
can be quantified by performing respectively (a) the method of 2,4-dinitrophenylhydrazine [48],
(b) High-Performance Liquid Chromatography (HPLC) methodology prior a saponification
step and/or 1H Nuclear Magnetic Resonance (NMR) (most reliable method for determining
methyl and/or acetyl groups) [49], (c) the turbidimetric gelatin/BaCl2 method [50] and/or
the azure A method [51]. Finally, proteins and polyphenols contents can be determined using
respectively the “Smith”, “Bradford” or “Lowry” methods [52–54] and the Folin–Ciocalteu
assay [55]. Note that the presence of salts, ashes and moisture should be considered. Fourier
Transformed InfraRed (FTIR) spectroscopy could also provide useful information concerning
vibrationally functional groups of polysaccharides.

(ii) Determination of the primary composition requires the release of monosaccharides
by solvolysis, mostly by acidic hydrolysis or methanolysis [56]. This is an important step re-
garding the literature since the hydrolysis conditions (by mineral acids) greatly change the
possibility to quantify different types of monosaccharides (ketoses, aldoses, hexosamines
and uronic acids) [43]. The released monosaccharides, but also absolute configuration of
glycosides, can then be analyzed by various chromatographic methods such as HPLC,
high-performance anion-exchange chromatography or Gas Chromatography (GC). GC is
used for analyzing low molecular weight compounds which are not thermolabile and can
be vaporized. The method is not suitable for polar and/or high molecular compounds and
needs preliminary pretreatments (e.g., solvolysis) and derivatization steps to (a) convert
polar or non-volatile compounds to relatively nonpolar or volatile products; (b) improve
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thermal stability of target compounds; (c) increase detector response by incorporating
functional groups which lead to higher detector signals or improve GC separation per-
formance [57]. Commonly used derivatization reactions include silylation, esterification,
acetylation, and alkylation [58]. Note that derivatized monosaccharides are more easily
ionized especially if a mass spectrometer is used as a detector with electronic impact (EI).
Regarding their abundance, hydroxyl groups give weak volatile properties to polysaccha-
rides. Each released monosaccharide from solvolysis should thus be derivatized. Silylation
is probably the most used technique to analyze monosaccharides with GC. The polarity of
residues is reduced by switching hydrogens with alkyl-silyl groups. Silyl derivatives are
more volatile, less polar, and more thermostable compared to other compounds generated.
BSTFA (bis (trimethysilyl) trifluoroacetamide) and TMCS (trimethylchlorosilane) are the
most used reactants for trimethylsilylation [59].

(iii) Investigations by Mass Spectrometry (MS) and NMR spectroscopy are usually
performed to determine the main structural features of polysaccharide backbones and
associated branched patterns. The PerMethylated Alditol Acetates (PMAA) procedure is
often described since it allows the identification of glycosidic linkages, T-units, ring sizes
and branching points by GC/MS-EI (mainly EI). Briefly, permethylation of carbohydrates
is done followed by an acidic hydrolysis step (e.g., 2M TFA 90 min 120 ◦C). Solid NaOH
pellets in DMSO is one of the safer methodologies for the methylation of free hydroxyl
groups. The residues are reduced into alditols then peracetylated into final PMAA, NABD4
being preferred during the reducing step for facilitating the differentiation between primary
OH groups [60]. Specific GC/MS-EI fragmentation patterns of PMAA are widely described
in the literature [56]. NMR is a very popular technique used to determine the structure and
stereochemistry of polysaccharides. 1H NMR fingerprints and 13C spectra are classically
performed for identifying structural features (conformations, monosaccharides, linkages,
anomers, substituents, branching patterns, etc.) of polysaccharides [61].

(iv) Enhancing the data should be the last step for giving full and comprehensive
details of polysaccharide structures. Thus, uronic acid reduction, partial alkaline reduction,
acetolysis, periodate degradation, desubstitution of non-carbohydrate groups and/or
partial hydrolysis (solvents and/or enzymes) must be additionally performed. Two-
dimensional NMR techniques should be also used (COSY, NOESY, etc.) to improve the
structural description. Note that additional depolymerization (chemical, ozonolysis, hy-
drolysis, etc.) of polysaccharides can help to improve the quality and complexity of NMR
spectra [62].

2.2. Screening the Biological Potential of Polysaccharides: Randomly or Not?

Oligo- and polysaccharides have many biological and pharmacological activities
such as immunomodulatory, immuno-restorative, immunoregulatory, anti-inflammatory,
antibacterial, antioxidant, antiviral, etc. [1,4,6,11,18–22,25,30,34–38,40–43,63]. Thus, nu-
merous reports on the biological activity of polysaccharides extracted from plants and
used in traditional medicines have been published. Minor structural differences, e.g.,
monosaccharide composition and distribution, chain conformation, macromolecular behav-
ior, branching degree and pattern, chemical structures, and presence of non-carbohydrate
substituents [13,24], can significantly affect the biological activity of polysaccharides [64]:
this is the so-called structure-function relationship. Changes of sulfate content, molecular
weight and/or molar ratio greatly affect both biological functions and rheological behavior.
Specific neutral sugars (Rha, Fuc, etc.) and uronic acids (GalA, GlcA, GulA, ManA, etc.)
are also responsible of specific biological activities. ManA/GulA are well known for their
capacity to trap water, especially in presence of divalent cations (eggbox model of alginates
extracted from macroalgae) [65]. The main bioactive sites seem to be located both in the
most peripheral parts of the molecule and in the inner core, as instance for rhamnogalac-
turonan (RG) and arabinogalactan (AG) regions which are often extracted from (African)
plants and herbs [66]. This statement seems true for both arabinan, arabinogalactan types
I (AG-I) and II (AG-II) but also rhamnogalacturonan types I (RG-I) and II (RG-II) [67].
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β-D-(1,4) carbohydrate structures as well as β-D-(1→3,6)-galactan can contribute to the
immunomodulation of immunocompetent cells in Peyer patches or macrophages [68]. The
main mechanism involves toll receptors [13] including the complement 3 receptor, trapper
receptor, dectin-1, mannose receptor, galectin 3 and TLR4. These receptors modulate the
activity of leukocytes. Certain polysaccharides are capable of activating macrophages and
B cells by interacting with TLR4, activating TNF secretion induced by ZPF1 [69]. Some
pectin-like structures can also activate monocytes, leading to modulation of cytokine pro-
duction [3] in macrophages via TLR4-mediated signaling pathways [3,69]. For example,
a potent immunomodulatory pectic arabinogalactan, Vk2a, showed high complement
fixation activity (human complement) and independent induction of B-cell proliferation by
T cells, in addition to the promotion of chemotaxis by human macrophages, T cells and
NK cells [66,70]. Several studies have also shown that the biological activity of pectin-like
structure on the immune system is mainly linked to the RG-I side chains [17]. It has also
been reported that RG-II consisting of homogalacturonan (9-10 GalA units) and substi-
tuted by four highly conserved side chains can present significant immunomodulatory
properties [68]. In addition, β-D-4-O-methyl-GlcpA or β-D-GlcpA-1,6-β-D-Galp-β-D-1,6-β-
D-Galp inside RG-I structures could be the most active groups responsible of this kind of
biological activity [68]. Galactosyl chains substituted by T-GlcA, 4-O-Me-GlcA can induce
B-cell proliferation. Galactan oligomers composed of β-D-(1,3) and (1,6)-Galp units in
the main backbone and some branches (1→3,6) have been reported for their complement
activities [17]. Finally, the reported effects range from complement fixation, antiulcer
function [71] to the activation of macrophages and dendritic cells [70]. Overall, many
polysaccharides (including AG and RG) isolated from botanical sources have excellent
immunomodulatory activities. The wide range of efficiency may be probably due to the
structural heterogeneity as stated above [63]. Note that immunomodulatory polysaccha-
rides do not cause damage and additional stress to the body, because they only act as
modifiers of the biological response [24].

Polysaccharides (not only from plants, herbs or macroalgae) are also a promising
source of antioxidants [13]. They have nutraceutical effects and act as scavengers of
DPPH, hydroxyl, and lipid peroxidation radicals. It can be attributed to specific groups
such as –OH, –O–, –SH, –PO3H2, –C=O, –COOH, –NR2 or –S– [65]. Specific side chains,
such as 1→2, 1→4 or 1→6, can also modify these activities as well as Rha, Fuc or Man
residues. In addition, cationic and anionic functional groups, such as uronic acids, are also
considered to affect the antioxidant activity of polysaccharides. Low molecular weight
polysaccharides and/or oligosaccharides have the best antioxidant activities due to the
higher ratio of terminal reducing units [65]. Thus, polysaccharides may be useful as
free radical scavengers against oxidative damage. Many natural polysaccharides are
now being used as sources of new potential dietary antioxidants for pharmaceutical and
food applications [63]. The antioxidant activity is explained by the chelating activity of
polysaccharides. It is achieved by inhibiting the production of superoxide anions (O2

◦-). In
other words, it limits the activation of NADPH oxidase by inhibiting the phosphorylation
of p47 phox and its translocation to the plasma membrane. Antioxidant sugars may also
inhibit DFO degranulation. Polysaccharides therefore have a strong antioxidant action
on neutrophils. Anti-inflammatory and hepato-protective activities are also reported as
biological properties of natural polysaccharides [72]. Polysaccharides may help to dampen
or regulate the strength of inflammatory processes [70]. This activity is exerted by inhibiting
neutrophil functions, limiting the spread of reactive oxygen species to neighboring tissues
and preventing the degranulation of primary human phagocytes. Certain carbohydrates
are effective in inhibiting the superoxide anion of neutrophils induced by PMA or fMLF.
Thus, stimulation of leukocytes by polysaccharides could improve resistance to infection [3].
Hemostatic, antiseptic and antiparasitic activities on wounds and skin infections are also
reported for polysaccharides extracted from plants. These carbohydrates can also be used
as tonic, stomach, abortifacient, antipyretic and for rheumatism [73] and some plants also
have a piscicidal property. Polysaccharides can provide lubrication and thus facilitate the
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propulsion of colon contents by acting as a short-chain fatty acid production [13]. Finally,
there are anti-diuretic, anti-fatigue and anti-nocturnal enuresis and obesity activities [1]. As
an ingredient in medicine and food, these polysaccharides can then be used in functional
and health products because of their abundant pharmacological effects.

Obviously, this short enumeration could not be exhaustive and hundreds of decent
reviews described tens of biological activities for polysaccharides, including natural ones
extracted from plants, macroalgae or herbs. Thus, the first questions before screening the
biological potential of a “new” polysaccharide (e.g., from Africa) should come down to
the final needs or purposes of the investigations (Figure 4). It is easy to find a positive
“biological activity” regarding the quantities of friendly-users in vitro tests, for which no
real understanding of the intrinsic understanding is needed. From today, the real challenge
for the following decades should address a strong scientific lock: “apprehending the
relationship between structural features and biological activities” by precisely targeting
oligo- and/or polysaccharides/cells interactions, in vivo. Without this, no real outbreak
will happen for the discovery of “the new enriched-polysaccharide drugs” for tomorrow
(in particular for emerging countries like Africa). Note that this approach is clearly not
compatible with the actual fast-publishing contest in 2021.
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3. Discovering Polysaccharides in Africa

The diversity of Africa flora can be explained by the various climates of the continent,
i.e., equatorial, tropical wet and dry, tropical monsoon, semi-arid, hyper-arid and arid,
subtropical of the highlands, etc. Some of those climates might be hard for the development
of a plant because of the lack of water or drastic changes of temperatures. Many plants
learned to adapt and changed their biochemical and cellular mechanisms, leading to
structural changes that appeared over time. African flora is composed of about 62,000
species of flowering plants and more than 200 new species are found every year [74]. A
strong biodiversity can be observed especially in the East African region with more than
21,000 higher plant species counted in 2009 [75]. Geophytic flora is particularly based
in the winter-rainfall region of South Africa, which is considered as one of the biggest
natural stock of geophytes in the world. The main specificity of geophytic plants is their
adaptation to hostile environment. The growth period is during winter and spring under
more favorable conditions. Note that 40% of the total flora in Africa is represented by the
geophytic plants [76,77].
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3.1. Research Methodology

In Section 3, the three last decades have been reviewed with a strong focus on papers
and reviews published during the last one (and if possible, the last 5 years). Polysaccharides
from plants have been mainly reviewed using the keywords “polysaccharide” AND/OR
“oligosaccharide” AND/OR AND/OR “natural polymer” AND/OR “exudate” AND/OR
“gum” AND/OR “exopolysaccharide” “African plant” AND/OR “ethnobotany” AND/OR
“biological activity” AND/OR “structure” AND/OR “phytochemistry” AND/OR “Africa”
AND/OR “Ethnopharmacology” AND/OR “properties” AND/OR “uses” AND/OR “ac-
tive molecules” AND/OR “Acacia” AND/OR “Argania” AND/OR “Opuntia” AND/OR
“Plantago” AND/OR “Astragalus” AND/OR “Pheonix” AND/OR “Retama” AND/OR
“Zyzyphus” AND/OR “economic interests” AND/OR “market” AND/OR “valoriza-
tion” AND/OR “bioprocess” AND/OR “biotechnology” AND/OR “elicitation” AND/OR
“anti-inflammatory” AND/OR “anticomplement” AND/OR “diabete” AND/OR “antioxi-
dant” AND/OR “prebiotic” AND/OR “disorders” in Scopus, NCBI (National Center for
Biotechnology Information), ScienceDirect and PubMed data bases.

3.2. The Concept of Ethnobotany for Giving Birth to Ethnopharmacology and Phytochemistry

Ethnobotany is defined as how people of a particular culture and region make use of
indigenous plants, such as food, medicine, shelter, dyes, fibers, oils, resins, gums, soaps,
waxes, etc. [78]. This concept gathers many other sciences such as history, botanic and
bio-ethnology. Most of the time, the first part of the study is an investigation of the
population [79]. Questioning people about how they use living plants found in their
environment is of primary importance. Then, ethnobotanists focus on the methodology
people use for making their formulations. These data combined to folklore knowledge can
help for identifying structure, functions, and biological activities of these plants [78]. This
simple but fundamental way of investigation can be summarized by the following items: (i)
basic documentation of traditional botanical knowledge; (ii) quantitative evaluation of the
use and management of botanical resources; (iii) experimental assessment of the benefits
derived from plants, both for subsistence and for commercial ends; and (iv) applied projects
that seek to maximize the value that local people attain from their ecological knowledge and
resources [80]. Ethnopharmacology and phytochemistry directly derive from ethnobotany
and are based on social information from medical ethnography and physiologic action
of medicines. Both deal with the study of chemicals produced by plants, particularly
secondary metabolites. It considers synthesis of secondary metabolites, plant metabolisms,
elicitation, and cell communication mechanisms. It also obviously encompasses medicinal,
industrial, and commercial applications of plant natural products [81]. Overall, a general
understanding and use of these concepts allow:

(i) Discovering new natural drugs or reusing existing ones for treating disorders,
(ii) Developing new chemicals mimicking active structural features,
(iii) Rising knowledge on:

• Characteristics and functions of medicinal plants;
• Toxicity level of plants,
• Biosynthetic pathways and metabolomics;
• Classification, chemical variability (inter and intraspecific);
• Biotechnology and genetic engineering for optimizing the synthesis of specific

compounds;
• Phytoremediation, plant growing and elicitation.

These concepts are not really applied today to macroalgae which is probably a strong
misunderstanding, probably due to harvesting conditions and a certain variability of their
compositions and metabolites.
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3.3. A Focus on Bioactive and/or Functional Polysaccharides from Arid and Semi-Arid Lands

Herbs, plants and trees growing up in particular climates, e.g., arid or semi-arid,
exhibit specific adaptations and changes for accumulating storage substances and water.
Obviously, polysaccharides play a major role as hydrocolloids but the inventory of their
other biological functions, in close relation with new structural (original) features, is
clearly incomplete [82]. Table 2 gives some examples of African plants described for their
bioactive polysaccharides regardless the climate conditions. Most of them were founded
by ethnobotanical and/or ethnopharmaceutical studies.

Table 2. Some African plants which were investigated regarding ethnobotanical and/or ethnopharmaceutical approaches.

Name Region Type Part(s) Properties and Uses Active
Molecules Ref.

Aloe vera
Barbadensis
Miller

Northern Algeria Plant Leaves Anti-inflammatory,
antioxidant

Pectin-like
structure [30]

Angelica acutiloba Sahara Perennial herb Roots Anti-complement activity Arabinogalactan [83]

Annona
senegalensis Pers. Western Mali Plant Bark, roots

Anti-complement,
antiparasitic, insecticide,
antiulcer, antispasmodic,

wound healing

Glucan,
pectin-like
structure

[84]

Astragalus armatus Septentrional
Algerian Sahara Perennial plant Seeds Anti-complement activity,

antioxidant Galactomannan [63]

Astragalus gombo Septentrional
Algerian Sahara Perennial plant Seeds Antioxidant, prebiotic,

texturing agent Galactomannan [24]

Bauhinia
thonningii
Schumach.

Western Mali Savanna tree Leaves
Anti-complement,

antitussive, hemostatic
activity, wound healing

Arabinan [84]

Biophytum
petersianum
Klotzsch

Western Mali Flowering plant Aerial parts Anti-complement, wound
healing

Pectic
arabinogalactan [84]

Burkea Africana
Hook. Western Mali Savanna tree Bark

Anti-complement,
immunomodulator,

hemostatic activities,
wound healing

Arabinan, glucan,
pectic-like
structure

[84]

Carica papaya L. Western Africa Flowering plants Leaves

Buruli ulcer, liver damage,
dysentery, diabetes,

constipation, and chronic
indigestion

Extracts [85]

Cassia sieberiana Western Africa Leguminous
plant Bark, roots, stem Diabetes, malaria - [86]

Catharanthus
roseus Madagascar Flowering plant Areal parts Anti-leukemic agents Glycosides [87]

Ceratonia siliqua Middle East Tree Seeds

Diarrhea, eye infection,
visual disturbances,
intestinal parasite

infestation

Glycosides [88]

Cereus triangularis Madagascar Cactus Cladodes

Anti-inflammatory,
anti-complementary,

gastro-protectors,
immuno-modulators,

prebiotic

Arabinogalactan
(Type I) (poly-

and
oligosaccharides)

[22,89]

Chamaecrista
nigricans (Vahl)
Green

Western Mali Woody plant Leaves
Anti-complement,

antiulcerogenic property,
wound healing

Arabinan,
pectin-like
structure

[84]

Citrullus
colocynthis Sahara Desert viny plant Fruits

Diabetes, asthma,
gastrointestinal disorders,

different microbial
infections

Glycosides, oils [90]

Cochlospermum
tinctorium Western Africa Flowering plants Bark, roots

Anti-complement,
anti-Malaria, anti-viral,

hepatoprotective

(Rhamno)galactan,
glucan [84]

Codonopsis pilosula Sahara Flowering plant Roots Anti-complement activity
RG-I containing
AG-I and AG-II

sidechains
[91]
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Table 2. Cont.

Name Region Type Part(s) Properties and Uses Active
Molecules Ref.

Cola cordifolia
(Cav.) R. Br. Western Africa Tree Bark, leaves,

stems

Abdominal pain,
anti-complement, fever,

anti-ulcer, headache, wound
healing

Pectic
arabinogalactan,

glucan
[84]

Commiphora
myrrha Engl.

Septentrional
Algerian Sahara

Small tree or large
shrub Gum-resin Antihyperglycemic and

phagocytic activities

Arabinogalactan-
like

structure
[92]

Crossopteryx
febrifuga (Afzel.
ex G. Don) Benth.

Western Mali Tree Bark, fruits

Anti-complement,
antimicrobial property,

respiratory disorder, wound
healing

Glucan,
pectic-like
structure

[84]

Cymbopogon
citratus Madagascar Tropical plant Leaves Fever Extracts [93]

Cyperus esculentus Cameroon Edible plant Tubers Prebiotic, texturing agent Starch [94]

Entada africana Tropical and
subtropical Africa Tree Bark, leaves, roots Hepatic diseases

Pectin-like
structure, RG-I,

AG-II
[95]

Fenugreek Northern Africa Leguminous
plant Leaves, seeds

Promoting digestion and
reducing blood sugar levels

in diabetics

Galactomannan,
glycosides [96]

Gomphrena
celosioides Western Africa Herbaceous

perennial
Areal parts and

roots

Viral hepatitis A and C, liver
damage, urinary tract,

kidney stones
Extracts [97]

Harrisonia
abyssinica Tropical Africa Shrub Bark, roots Infectious diseases Extracts [98]

Lannea velutina A.
Rich. Western Africa Tree Bark (stem)

Anticomplement,
anti-inflammatory effect,

wound healing
Arabinogalactan [94]

Morinda lucida Central Africa Flowering plant Leaves, roots

anti-allergic,
anti-carcinogenic, anti-

inflammatory, antioxidant,
anti-proliferative, anti-viral

Crude extract
including

polysaccharides
[99]

Nitraria retusa Northern Africa Shrub plant Aerial parts

Antioxidant, anti-α-amylase,
anti-inflammatory,

antinociceptive activities,
anti-edematous effects

Pectin-like
structure [100]

Northern Africa Shrub plant Fruits Antioxidant, hypolipidemic
activity

β-(1→3)-glucan,
traces of pectin [25]

Ocimum canum Sahara Perennial herbs Mucilage, roots,
seeds

Antiparasitic, antioxidant,
antiulcer

Acidic
“bacterial-like”
polysaccharide,

acidic xylan,
(galacto-)

glucomannan

[101]

Olive tree Northern Africa Tree Wastewater Antioxidant, biobased
polymer films, prebiotic

Glucan,
xyloglucans,

pectin fractions
[102]

Opilia celtidifolia
Endl. Ex Walp. Western Africa Tree Leaves

Complement fixing,
immunomodulator,

macrophage stimulator,
regulating inflammatory

Type II
arabinogalactan,
Rhamnogalactur-

onan I
regions

[3]

Opuntia ficus
indica Northern Africa Cactus Cladodes Antioxidant, bioassay

applications, texturing agent Pectin fractions [103]

Phyllanthus
amarus Western Africa Flowering plant Roots Anti-hyperglycemic,

antiviral, anti-ulcer

Crude extract
including

polysaccharides
[104]

Parkia biglobosa Western Africa Perennial tree Bark, seeds Antiviral, complement
fixation, immunomodulator,

Type II
arabinogalactan [105]

Podaxon
aegyptiacus Mont. Western Mali Mushroom Spores Anticomplement,

burn/wound healing (Galacto)mannan [84]

Plantago ciliata
Desf.

Septentrional
Algerian Sahara

Spontaneous
flowering plant Seeds

Anti-inflammatory,
medicinal cream, prebiotic,

wound healing
Arabinoxylan [23]
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Table 2. Cont.

Name Region Type Part(s) Properties and Uses Active
Molecules Ref.

Plantago major Sahara Flowering plant Leaves Anti-complement activity,
prebiotic

Pectin-like
structure

(poly- and
oligosaccharides)

[106]

Plantago notata Septentrional
Algerian Sahara

Semi-annual
flowering plant Seeds Antioxidant, prebiotic Heteroxylan [28]

Pterocarpus
erinaceus Poir. Western Mali Tree Bark Anticomplement, wound

healing

Glucan,
pectin-like
structure

[84]

Sansevieria liberica Western Africa Flowering plants Leaves, roots Anti-inflammatory,
antioxidant

Crude extract
including
glycosides

[107]

Senna Alata L.
(Cassia alata) Western Africa Flowering

plant/herb

Bark, flowers,
leaves, roots,

seeds

antibacterial, antidiabetic,
antifungal,

anti-inflammatory,
antihelmintic, antimicrobial,

antioxidant, antitumor,
wound healing activities

Crude extract
including

reducing sugars
[108]

Stereospermum
kunthianum
Cham.

Western Mali Tree Bark, leaves Anticomplement,
burn/wound healing

(Rhamno)glucan,
pectic-like
structure

[84]

Strophanthus
hispidus Africa Liana Roots, seeds

Antidiabetic,
antihyperlipidemic, cardiac

insufficiency

Crude extract
including

polysaccharides
[109]

Tamarindus indica Eastern Africa Leguminous tree Fruits, seeds

Antidiabetic,
anti-inflammatory,
anti-hepatotoxic,

Antioxidant, antimutagen,
antimitotic, blood tonic,
digestive, carminative,

expectorant,
immunomodulator, laxative,

texturing agent

Heteropolysaccharide
(Gal, Man, Glc),

xyloglucan
[110]

Trichilia emetica
Vahl. Western Mali Tree Leaves

Anticomplement,
anti-inflammatory,

immunomodulatory,
phagocytic activities,

wound healing

Arabinogalactan,
traces of pectin [84]

Thymus vulgaris Sahara Flowering plant Leaves
Anti-complement,

antioxidant, complement
activator

Type II
arabinogalactan,
type I rhamno-
galacturonan

[111]

Vernonia
kotschyana
(Baccharoides
adoensis var.
kotschyana)

Sahara Annual plant Roots
Anti-ulcer properties

arthritis, complement fixing
activity, immunomodulator,

Glucan, inulin,
pectic

arabinogalactan,
type II

arabinogalactan

[67]

Xeroderris
stuhlmannii
(Taub.) Mendoça
and E.C. Sousa

Tropical Africa Tree Leaves Anticomplement, wound
healing

Pectic
arabinogalactan [84]

Ximenia americana
L. Western Africa Tree Bark, roots, leaves

Anticomplement,
carcinostatic, antibacterial

activity, wound healing
Arabinogalactan [84]

Xylopia aethiopica Western Africa Aromatic tree Bark, fruits, seeds Antioxidant, Buruli ulcer,
excipient, post-partum care

Mainly phenols
and flavonoids [112]

Ziziphus
mauritiana

Eastern and
Western Africa Tree Bark, leaves,

mucilage, roots

Anti-diabetic, epithelium
wounds and mucous

membrane irritation, skin
treatment,

Galactan, glucan,
rhamnan,
pectic-like
structure

[113]

Zygophyllum
album

Mediterranean
Africa Halophytic plant Areal parts

Asthma, diabetes, diuretic
agent, dermatosis,

indigestion, local anesthetic,
rheumatism

Essential oil [114]
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The following sections give some details concerning the structural variability of well-
known African plant polysaccharides from arid and semi-arid lands, i.e., Acacia, Argania,
Opuntia, Plantago, Astragalus, Phoenix, Retama and Zizyphus.

3.3.1. Acacia

More than 1000 of Acacia species were described around the world, but the gummy
exudates are produced from specific acacia trees growing in a large belt of semi-arid land across
sub-Saharan Africa. It extends through northern central Africa, from east Africa to southern
Africa. The world largest producer is Sudan with production achieving forty thousand tons in
1996 followed by Nigeria then Chad, Mali and Senegal [115]. Polysaccharides extracted from
Acacia species are often described as β-(1,3)-galactan, and the presence of other monosaccharides
such as Ara, Rha and GlcA are often also reported (Table 3).

Table 3. Monosaccharide compositions of polysaccharides extracted from some Acacia species in arid lands.

Acacia Species Main Monosaccharides (% Molar Ratio) Reference

Gal Ara Rha GlcA
A. glomerosa 46 27 15 - [116]
A. macracantha 43 30 5 22 [117]
A. senegal 39–42 24–27 12–16 15–16 [118]
A. seyal 38 45 4 7 [119]
A. tortilis var. raddiana 19 78 2 4.4 [120]

The polysaccharide isolated from A. glomerosa gum was very close to those reported from A.
senegal. It was mainly consisting of aβ-(1,3)-D-Galp backbone, and Ara residues can be branched
up to four units along to the galactan backbone in O-6 position. Terminal residues were often
described as Rha unit, and GlcA and its 4-O-Me derivative seemed to represent the two kinds
of uronic acids for this gum [116]. Water-soluble light brown gum was produced by Acacia
macracantha gum, found close to Madagascar [121]. This gum species was characterized for its
atypical features, such as negative specific rotations and a Gal/Ara ratio > 1 [122]; in comparison
to few reports for other Gummiferae spp. gums [121]. Regarding the literature, it was reported
as a complex arabinogalactan-protein [123]. Gal, Ara and GlcA, with a molar ratio around 3:2:1,
were the major monosaccharides described for A. macracantha gum polysaccharide. The main
backbone was essentially a β-(1,3)-galactan, with GlcA, Ara as well as Rha residues [117,123].
Arabic gum (GA), also known as Acacia gum, is obtained from exudates of A. senegal and A.
seyal trees, which can be found across the Sahelian area of Africa [124]. GA was described as a
naturally complex polysaccharide, used especially in food industry as emulsifier and stabilizer
agent [125]. The main backbone was described as a β-(1,3)-galactan with uronic acids and Rha
in terminal positions all along the structure and some side chains composed of uronic acids,
galactan or both [126]. Regarding the species, some differences can be found in the composition
of these β-(1,3)-galactan from A. senegal and A. seyal (Table 4).

Table 4. Main characteristics of A. senegal and A. seyal gums.

Characteristics General Information A. senegal Gum A. Seyal Gum

Specific rotations
Differences were described is due to the variation of

monosaccharide. A. seyal gum contained more Ara than Rha
residues [127]

Negative specific rotations: Positive specific rotations:
−26 to −34◦ [128] +60◦ [129]
−30◦ [127] +54◦ [127]

Rheological
behavior Gums are more described for their emulsifying properties Viscous [130] Low viscosity [130]

Molecular weight Molecular weights are often higher than 1M Da 0.485 × 106 g.mol−1 [131]
1.14 × 106 g.mol−1 for A. seyal [131]
2.1 × 106 for A. seyal var. fistula [132]
1.7 × 106 for A.seyal var. seyal [132]

Monosaccharide
composition

Both are rich in D-Gal and L-Ara in addition to some minor
carbohydrates, including L-Rha, D-GlcA and 4-O-Me-GlcA [18]

Ara/Gal ratio < 1 [126,130] Ara/Gal > 1 [126,130]
Higher proportion of rhamnose [130] Low rhamnose content [130]

Structural features

Main chain structures of β-(1,3)-D-Gal with numerous
branching points in O-6 positions of D-Gal residues. Lateral

chains have units of α-L-Araf,
α-L-Rhap, β-D Glcp and 4-O-Me-β-D Glcp, the last two

mainly as end-units [8,17,21,26].

Hyperbranched structure with degree
of branching up to 78% with more

branched Galp, shorter Araf
ramifications, and more Rhap in

terminal positions [125,133].

Less degree of branching (around
59%) [125,133]
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A. tortilis is also called Israeli Babool or umbrella thorn. This species can tolerate
drought and stretches extensively over arid and semi-arid regions of Africa, Algeria,
Egypt, Israel, Asia and India. The seeds were composed of 14.3% fiber and 45.3% carbohy-
drates [134]. Kumar Lakhera indicated that the gum exudates of A. tortilis ssp. raddiana
(Savi) Brenan consisted of L-Ara, D-Gal, D-Glc, L-Rha and D-Man, with some molar ratios
around 78%, 18%, 0.6%, 1.7% and 0.7% respectively [120]. Gas chromatographic analyses
also showed the presence of 4% and 4.4% of D-GalA and D-GlcA respectively.

3.3.2. Argania

Sapotaceae is a family included eight genera, i.e., Syderoxylon, Tsebona, Bumelia, Argania,
Chrysophyllum, Pouteria, Calocapum and Pycnandra. Argania genus consists of unique
endemic species named A. spinosa. As example, A. spinosa L. skeels is an endemic species of
Algerian [135], Moroccan drylands where it plays a vital role against desertification [136].
Sequential alkaline extractions from A. spinosa leaf cell walls, pericarp of seeds and fruit
pulp, respectively allowed to obtain different hemicellulose-type polysaccharides with
variable yields [137]. Polysaccharides extracted from A. spinosa L. skeels leaves from
Morocco were reported as xylan, made up of a β-(1,4)-D-Xylp main chain, substituted with 4-
O-Me-D-GlcpA [138]. Hachem et al. described the same xylan structure in polysaccharides
extracted from Algerian A. spinosa L. Skeels leaves, but the main chain was also substituted
with L-Araf residues, in addition to 4-O-Me-D-GlcpA [139]. Other specific patterns and
distributions all along the main backbone were described in the literature, with specific
xyloglucan oligosaccharides such as XXXG, XXFG, XLXG/XXLG, XLFG fragments. A novel
XUFG motif was also distinguished for A. spinosa species, characterized by a lateral chain
consisting of two Xyl residues linked in β-(1,2). This disaccharide was attached on the sixth
carbon to the second Glc unit from the nonreducing extremity of the cellotetraose sequence,
as described by Ray et al. [138]. Water-soluble and water-insoluble fractions were also
obtained from pericarp of seeds, respectively [140]. The first one was composed of a 4-O-Me-
D-glucurono)-D-xylan, with 4-O-Me-D-GlcpA groups attached to the second carbon of the
xylan backbone. The second one, recovered after alcohol precipitation, consisted exclusively
of a neutral linear xylan. Note that Aboughe-Angone et al. obtained a xyloglucan from
argan fruits. This hemicellulosic polysaccharide had no novel XUFG fragment and was
mostly composed of XXGG, XXXG, XXLG and XLLG oligosaccharides (0.6:1:1.2:1.6 in molar
ratio) [137]. The same study indicated that pectin from Argania fruits were a combination
of non-equal homogalacturonan, rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II
(RG-II) fractions, where RGI was the predominant polysaccharide in contrast to RG-II.
Further, water-soluble pectic fractions (ALS-WSP) and soluble-chelating pectic fractions
(ALS-CSP) were isolated from argan tree leaves. The results showed the presence of high
rates of Ara and uronic acid residues in both fractions. AL-WSP was composed of a RG-I
structure, with arabinan and galactan side ramifications on the main chain in O-4 position.
Additionally, AL-CSP was described as a homogalacturonan fraction [141].

3.3.3. Opuntia

Opuntia genus has over 181 species (Cactaceae family). This intriguing genus are
widespread in dry, arid, and rocky pastural zones across the Mediterranean area but also
North and South Africa [142]. Opuntia ficus-indica (OFI) is probably one of the most species
studied and described in the literature for its content in polysaccharides, associated to
functional properties [143]. Hemicellulosic polysaccharides were isolated from the seeds
of OFI prickly pear fruits by alkaline extraction [144]. Six fractions of water non-soluble
and water-soluble polysaccharides were thus obtained and were mainly composed of Xyl
with minor quantities of Glc and Ara. Uronic acid amounts were variable depending on
the fractions. Both water-soluble and water non-soluble xylans had unique non-reducing
end of 4-O-Me-GlcA, for every 11 to 14 and 18 to 65 Xyl units, respectively [145]. Sec-
ondly, two major xylans CASF1 and HASF1 were extracted by sequentially cold and hot
alkali treatments, respectively, from depectinated cell walls material of seed endosperm.
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Interestingly, a fucosylglucuronoxylan was characterized in CASF1 and consisted of a
β-(1,4)-D-Xylp main chain, with 4-O-Me-GlcA and Fucp residues attached to the second
and third carbon of Xylp. HASF1 was fully composed of Xyl units with a backbone made of
β-(1,4)-D-Xylp [144]. Besides, polysaccharides extracted from skin, peeled or total OFI fruits
were also studied in many reports. On one hand, Habibi et al. highlighted the presence
of arabinogalactan type I. It was mainly composed of Gal and Ara with a molar ratio of
6.3:3.3, with some traces of Glc, Rha and Xyl, but no uronic acids [146]. The backbone
was described as a β-(1,4)-linked D-Galp, with sidechains of mono-L-Araf residues or
di-L-Araf linked in α-(1,5). Besides, another acid soluble pectin (ASP) was obtained after
sequential hot water and hot EDTA extraction from skin of OFI. Acid extraction yielded
8.7% of ASP, including a considerable amount of GalA (50.7%), in addition to variable
rates of neutral sugars, including Rha, Gal, Glc, Ara and Xyl (12.5%, 10.8%, 2.9%, 1.2% and
0.8%, respectively) [147]. Three main fractions called ASP1, ASP2 and ASP3 were studied.
The results revealed that the first one was a linear β-(1,4)-galactan. The main chain of the
second fraction was made of an alternation of homogalacturonan blocks and disaccharide
units [→2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→]. Lateral chains of β-(1,4)-galactan have been
connected to Rha residues in position O-4. The third fraction ASP3 was composed of
homogalacturonan blocks, i.e., α-(1,4)-D-GalA, and rhamnogalacturonan units, i.e., [→2)-
α-L-Rhap-(1→4)-α-D-GalpA-(1→] [147]. On the other hand, extraction of peeled fruits
allowed to obtain 3.8% of mucilage which was described as some heterogeneous polysac-
charides with 23.4% of GalA and no trace of proteins. Neutral sugars included Ara, Rha,
Xyl and Gal residues with molar ratios around 1.0:1.7:2.5:4.1 [148]. Additionally, Ishurd
et al. [149] obtained 0.65% of a water-soluble polysaccharide through hot soaking of peeled
OFI (L.) Miller. This homogeneous polysaccharide presented a positive optical rotation
value and an approximate average molecular weight of 360 kDa. It was highly rich in neu-
tral sugar (more than 80% w/w) and exclusively composed of Glc. The backbone was made
up of α-(1,4)-D-Glcp, while side chains were attached through (1,6)-linkages [149]. Lastly,
Lefsih et al. obtained three pectic fractions from whole cladodes of OFI [103]. The results
showed that all pectin fractions were mainly composed of GalA with ratios close to 66.6%,
44.3% and 81.1% for water-soluble, chelating-soluble, and acid-soluble pectin, respectively.

3.3.4. Plantago

Plantago spp. are valuable officinal plants belonging to the family Plantaginaceae.
They are distributed in temperate regions, tropical zones [150] but also in drier environ-
ments such as deserts and oases [151]. The most dominant polysaccharides in psyllium are
described as a complex of heteroxylans [152]. P. major, P. ovata and P. notata are largely de-
scribed in the literature. Plantago notata Lagasca is a spontaneous plant from Septentrional
Algerian Sahara used by the Ghardaïa population for its medicinal effects. Water-soluble
polysaccharides extracted from its leaves and seeds were mainly composed of neutral sug-
ars (around 80% w/w for both). Note that the polysaccharides from leaves were richer in
uronic acid than for the ones extracted from seeds, with values reaching 20.3% against 4.9%,
respectively [28]. Boual et al. studied the monosaccharides composition of a water-soluble
polysaccharide from P. notata leaves [153]. The polymer consisted of Gal (44%), Rha (20%),
Glc (11%), Ara (10%) and GalA (13%). In the same way, Benaoun et al. determined the
monosaccharide composition of water-soluble polysaccharide from P. notata seeds [28]. The
polysaccharide was an heteroxylan with a high molecular weight (2.3 × 106 Da), composed
of Xyl (77%) in addition to Rha (9%), Ara (8%), Gal (3%), Glc (1%) and GalA (2%). The
structural analysis revealed that the backbone was a β-(1,3) and β-(1,4)-linked D-Xylp.
Several lateral chains and terminal residues linked in O-2 and O-3 positions were identi-
fied, such as α-L-Araf -(1,3)-β-D-Xylp, β-D-Xylp-(1,2)-β-D-Xylp, terminal Xylp or terminal
Araf. As another example, P. ovata Forsk. called Isabgol is growing in drought prone
areas. Producing mucilage from this species has an economical importance, especially in
India [154]. The analysis of P. ovata Forsk. seeds mucilage revealed the presence of two
polysaccharide fractions, one soluble in cold water and the other one in hot water. The
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first fraction was composed of 46% of D-Xyl, 40% of an aldobiouronic acid, 7% of L-Ara,
and 2% of insoluble residue, whereas the second fraction contained 80% of D-Xyl, 14% of
L-Ara, 0.3% of aldobiouronic acid and traces of D-Gal [155]. Pawar et Varkhade found that
an arabinoxylan (73% w/w) structure could be extracted from Psyllium husk, composed
of a Xyl main chain branched with Ara, Rha and GalA [156]. More recently, Addoun et al.
described an arabinoxylan structure from Plantago ciliata seeds [23].

3.3.5. Astragalus

Astragalus genus belongs to Fabaceae family considered as the vulgar genera of
flowering flora with roughly 3000 species, widespread in desert continental areas [63]. Ten
endemic Astragalus species are scattered in North Africa, such as A. armatus Willd. [157], A.
gombo Bunge in Algeria [158] or A. corrugatus in Tunisia [159]. Other species are founded in
Iraq drylands, such as A. hamosus, A. tribuloides, A. adscendens, A. susianus or A. verus [160].
The hot soaking of A. armatus Lam. seeds yielded 4.21% of a water-soluble polysaccharide
(WSPF) [63]. This fraction consisted of 83.4 ± 1.29% neutral carbohydrate with an average
molecular weight close to 1.59 × 106 Da. WSPF was identified as a galactomannan, with
a Man:Gal ratio around 1.13:1. WSPF was made up of a linear backbone of β-(1,4)-D-
Manp with α-(1,6)-D-Galp side chains. Besides, Chouana et al. extracted a water-soluble
polysaccharide (WSP) from A. gombo seeds [24]. The fraction had an average molecular
weight of 1.1× 106 g/mol and was composed of Gal (37%± 0.9) and Man (63%± 0.7), with
a Man:Gal ratio close to 1.7:1. WSP had a β-(1,4)-linked D-Manp main chain, substituted by
single α-Galp residues in O-6 positions.

3.3.6. Phoenix

Arecaceae or Palmae family included Phoenix genus can be detailed in 14 species.
Phoenix dactylifera or also date palm is the most known species and can be found in oases and
hot arid deserts [161]. Salem and Hegazi showed, after ethanolic extractions for P. dactylifera,
that flech was richer in total carbohydrates than seeds (72.5%) but contained less fiber
(17.9%) [162]. The analysis of these samples showed the presence of Glc, Fru and sucrose
in both parts with ratio around 19.5%, 1.1%; 15.4%, 1.8 % and 37.5%, 2.8% (w/w), for flesh
and seeds, respectively. Water-soluble polysaccharides extracted from P. dactylifera L. cv
aple variety seeds contained 71.8% % Man and 26.6% Gal with a molar ratio close to 2.69:1.
The identified galactomannan backbone constituted in β-(1,4)-D-Manp residues with side
chains of α-(1,6)-linked D-Galp residues [163]. Alkaline treatment (NaOH 4%) produced
20.4% of a cellulose-rich material [164]. The results showed a composition rich in Xyl and
4-O-Me-GlcA with a molar ratio of 5:1, but also minor quantities of Gal, Glc and Man.
The backbone of this polysaccharide consisted of (1,4)-linked D-Xylp residues. In the core
chain, for each five units of D-Xylp, a single residue of 4-O-Me-GlcA was identified [164].
Additionally, Bendahou et al. [165] characterized an arabinoglucuronoxylan from leaflets,
which were substituted in C-3 by Araf residues and a 4-O-methyl-glucuronoxylan structure
from rachis.

3.3.7. Retama

This genus is endemic to semi-arid and arid Mediterranean environments since these
shrubs can survive in periods of severe dryness. Two species are well described in the
literature, i.e., R. sphaerocarpa growing in semi-arid lands of central Spain and R. raetam
growing in arid regions of Tunisia. R. raetam, is a Saharan Fabaceae that prevalent desert
environments and which is used in Tunisia to reduce desertification process [166]. In
general, extraction of water-soluble polysaccharides from R. raetam seeds allowed to obtain
galactomannans. A specific structure was obtained in comparison to other studies about
galactomannans from R. raetam seeds [167]. This one contained occasional β-(1,4)-D-Manp
groups, with a main backbone of β-(1,3)-D-Manp. Some lateral chains of mono-D-Galp
residues were also reported and seemed to be attached in O-6 positions of D-Manp [167].
Wu et al. extracted, thanks to hot alkaline procedure, a polysaccharide from R. raetam Webb
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and Berthel. ssp. gussonei seeds (yield close to 16.9% w/w) [168]. This polymer was made
up of β-(1,4)-linked D-Xylp as the main backbone. For each seven or fifteen D-Xylp residues,
4-O-Me-GlcA or unique di-α-(1,2)-D-Glcp were identified.

3.3.8. Zizyphus

Ziziphus trees and shrubs can be found in arid environments and are thus naturally
tolerant drought stress. The major species of Ziziphus genus in dry lands are probably Z.
spina-christi in the hyper-arid deserts of Abu Dhabi, Z. lotus (L.) Lam. locally called “Sedra
or Sidr” in Laghouat and Djelfa-Algeria or Z. mauritiana L. in semi-arid region of Punjab-
India [113]. Z. jujuba has also been studied for its polysaccharide content. Elaloui et al.
studied the monosaccharide compositions in the pulps of four Z. jujuba Tunisian ecotypes
(Choutrana, Mahdia, Mahres and Sfax), and highlighted that the polysaccharides from
Mahdia ecotype was the richest in Glc, Gal and sucrose with 0.45, 136.51 and 113.28 mg/L,
respectively [169]. Z. lotus L., particularly found in the Mediterranean areas, including
southern European countries, but also in the northern Algerian Sahara [170], has also
been described for the polysaccharides extracted from its pulp (fruit). Chouaibi et al.
obtained a water-soluble polysaccharide containing 11% of uronic acids and many neutral
sugars, such as Glc (23%), Ara (9.6%), Man (8.3%), Rha (7.3%) and traces of Xyl and Gal
residues [171]. Pectin structures were also determined in in Z. lotus fruits (3.78% w/w) [170].
In general, these polysaccharides possessed high average molecular weight, higher than
2000 kDa [172]. Finally, Boual et al. determined the monosaccharides composition of a
water-soluble polysaccharide extracted from the leaves of Z. lotus and found significant
amount of Gal and GlcA (24% and 23% respectively), but also Glc (21.3%), Rha (20.3%) and
Ara (9.6%) [173].

4. Economic Interests

As natural biopolymers, polysaccharides have excellent bioavailability, biocompatibil-
ity, and biodegradability, which have versatile applications in food, medicine, cosmetics,
and nanomaterials [174]. In recent years, polysaccharides have led to strong development
in global industries such as food, pharmaceuticals, nutraceuticals, cosmeceuticals, and
functional products but also in many other sectors still under-exploited such as bioreme-
diation, pollution control and energy (Figure 5). This growth can be explained regarding
the will for industries to male more natural and organic products. 72% of consumers
estimate that organic products are better in quality [175]. Areas that can provide health
benefits beyond basic nutrition have therefore been the focus of increasing interest [174].
Global polysaccharide industry operates in a highly regulated environment and exploiting
plant material for polysaccharides extraction often requires respecting the famous Nagoya
rules [1]. This protocol is based on access to genetic resources and associated traditional
knowledge and the sharing of benefits arising from their use [1]. In other words, it aims to
(i) share in a fair and equitable manner the benefits; (ii) establish a climate of mutual trust
between users and providers; (iii) ensure legal security of transactions and (iv) encourage
users and providers to allocate in-kind and financial benefits for the conservation and
sustainable use of biodiversity.

Polysaccharides from plants could be an important potential for their use in the medi-
cal and biomedical field as they are natural products. The global biopharmaceuticals market
accounted for USD 186,470 million in 2017, and is projected to reach USD 526,008 million
by 2025, registering a CAGR (Compound Annual Growth Rate) of 13.8% from 2018 to
2025 [176]. As seen previously, the absence of polysaccharide toxicity (or very low) is an
important aspect for their medical use [177]. Toxicity testing is an important step in the
drug development process evaluating the potential of a medicinal plant before it can be
considered for clinical trials [73].
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Numerous patents have been filed on the use of natural polysaccharides as active
drug ingredients [178]. Polysaccharide products are applied almost exclusively by oral
administration as immunostimulants and less frequently by injection or immersion for
protection against pathogens. They could also reduce fatigue, enhance human immunity,
or disturb sleep, regulate the endocrine system, or delay aging [179]. Polysaccharides can
be used for tissue engineering, dressing (wound healing), and for administering controlled-
release drugs. They can also be used as biosensors, but also implantable devices or for
bio-imaging [180]. Polysaccharides have also enabled the development of biomedicine and
biomaterials technologies. Galactoglycogen nanoparticles could be used as a functional
material for multivalent binding with lectins [174]. Phytoglycogen nanoparticles possess
properties of high-water retention, low viscosity, and exceptional aqueous dispersion stabil-
ity, all of which will enable promising new technologies and therapies based on this natural
nanomaterial [179,180]. The other role of polysaccharides in nanomaterials functions as
a nano-factory for certain reactions. The specific characteristics of polysaccharides might
also be used for aerogels. Developing aerogels to mimic extracellular matrices (ECM)
in the body has led to various biomedical applications. Dynamic hydrogels are made
from different polymers, but among them polysaccharides seem to be the most suitable
mainly due to their abundance, low cost, adaptability, and biocompatibility. In addition,
the large functional groups in their backbone make polysaccharides ideal for making dy-
namic hydrogels. Such unique versatility allows these intelligent and durable hydrogels to
be used in a wide range of applications, such as tissue engineering, biomedical devices,
soft electronics, sensors, and actuators, among others; biomedical, controlled release and
bioelectrode devices, minimally invasive deployment, gastric mucosal seals and perfo-
rations, electronic skin and electrochemical display devices, agricultural systems [1,179].
An increasing number of studies have focused on polysaccharide-based nanoparticle syn-
thesis due to their unique structural properties [73]. One of the roles of these spherical
biopolymers is to act as stabilizers as nano-carriers. The most hit countries are in North
America, Europe, Asia-Pacific, and Latin America Middle East and Africa (LAMEA). Target
companies are mostly AbbVie Inc, Amgen Inc., Bristol-Myers Squibb Company, Eli Lily &
Co., Johnson & Johnson, Novartis AG, Novo Nordisk Inc., Pfizer Inc., GlaxoSmithKline
PLC, F. Hoffmann-La Roche AG [181].

The organic cosmetic market represented 4% of global market in 2007. The market
growth is estimated today between 30% and 40% every year. Polysaccharides also have
a powerful ability to protect the skin through a wide range of bioactivities. Sulphated
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polysaccharides have powerful antioxidant activity, tyrosinase, inhibit elastase and can
absorb and retain moisture in vitro. Therefore, these sugars can be used as an active
ingredient for skin protection [182]. Asia (China and South Korea) represents 30% of the
market and Europe represents 20%. USA and Brazil also represent an important part of the
market. The demand comes from traditionalist and neo-traditionalist companies. Many
major brands are willing to make green product: Nuxe, Sanoflore (bought by L’Oréal),
Yves Rocher. In 2013, they were more than 500 brands around the word interested in
organic cosmetic and the leading ones are mainly in Germany and France [183]. Telling a
fantastic and green story about new miraculous anti-aging polysaccharides from exotic
countries in Africa (e.g., Madagascar, etc.) is the trademark and guidelines for these
(commercial) approaches.

The safety and biodegradability of polysaccharides have also attracted the attention
of food industry. The organic food market is estimated more than 100 billion dollars
in 2018 and is facing an important growth for the last decade [181]. Polysaccharides
have versatile rheological properties, which affect their applications in food products [184].
Highly branched structures give to polysaccharides some good solubility, low viscosity, and
gelation properties. Therefore, they are a convincing source of emulsifier and stabilizer in
the food industry. Numerous studies have evaluated the effects of marine polysaccharides
on fish, shrimp, and other aquatic animals on growth index parameters such as weight
gain, length gain (LG), specific growth rate (SGR), or survival (SUR). Several marine
polysaccharides have been shown to be growth promoters in many aquatic species. Thus,
diets supplemented with polysaccharides are digested and absorbed more efficiently due
to the ability of polysaccharides to stimulate the secretion of digestive enzymes (amylases,
proteases, and lipases etc.) which leads to improve nutrient utilization and digestion, then
health and growth of aquatic animals [1,185]. Organic agriculture is now going mainstream,
demand remains concentrated in Europe and North America in 2019. 93 countries had
regulation laws concerning the organic agriculture. Major brand such as Nestlé and Danone
develop more and more natural product based on organic agriculture. However, the cost
of research and development on polysaccharide make the food industry a less attractive
target for the organic polysaccharides [186], which is particularly true for countries like
Africa for which niche markets are still the best chances of success for bringing out a new
active cost-effective polysaccharide.

Polysaccharides may also play a role in pollution clean-up. Global environmental
remediation market was valued at around 79.57 billion dollars in 2016 and is expected
to reach approximately 122.80 billion dollars in 2022. The CAGR is estimated between
7.5% between 2017 and 2022 [187]. Polysaccharides can be used as adsorbents for various
pollutants such as heavy metals from different environmental and food samples [188].
Their functionalities such as hydroxyl, carboxyl and amine groups along their chains give
them a high affinity for heavy metals [177,188]. The advantages of sugars (biodegradability,
non-toxicity, environmental friendliness) make them promising, ecological, and economical.
However, their application as adsorbents is generally hampered by their low mechanical
resistance [188]. These limitations can be reduced by chemical modifications due to their
various functional groups [156]. The adsorption capacities of these polysaccharides for
heavy metals can be improved for instance by carboxymethylation [188]. Polysaccha-
rides also have enormous potential as flocculants for use in wastewater treatment due
to their hyper-branched structures, numerous spatial cavities, and many terminal func-
tional groups [185]. Target companies are AMEC Earth & Environmental, Arcadis, Bechtel,
CH2M, Environmental Resources Management, Golder Associates Hill, Tetra Tech, URS
and Veolia Environmental Services North America [189]. The market is mostly located in
North America, Europe, Asia, Latin America, Middle East and Africa.

In 2019, the global biofuels market amounted to over 136 billion U.S. dollars. By 2024,
the market is expected to grow to almost 154 billion U.S. dollars [190]. Finally, research on
the cationization of polysaccharides could replace petroleum-derived polymers. This is
a particularly promising area for the replacement of synthetic materials that is still little
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researched [191]. As biofuel is viewed as an energy of the future, many companies are
developing biofuel from different sources (organic and inorganic): Acciona Energy, Anchor
Ethanol Ltd., Biodiesel International Ag (Bdi), China Clean Energy Inc., Cosan Group,
Inbicon, Ineos Enterprises Ltd., Novozymes, Shaval Biodiesel, Synthetic Genomics, etc. The
market is mostly located in North America, Europe, Asia Pacific, Latin America, Middle
East and Africa [192].

5. Conclusions

Today, many African plants but also macroalgae are used by people in traditional
medicine for their therapeutic properties. The change of lifestyle of these populations and
the use of modern therapeutic practices is resulting in the gradual disappearance of ethnob-
otanical knowledge accumulated over the last centuries. Inventorying this biodiversity is
also partly motivated by the search for new active ingredients which may, in the long term,
become one of the levers allowing the preservation of species facing the climatic and energy
challenges of the Mediterranean and African areas. Today, the very perceptible greenhouse
gas emissions constitute a real threat to natural resources, landscapes, biodiversity, and
the future of potentially new natural resources not yet discovered. The inventory of ex-
isting structures is still very incomplete while its exploration, through research running
programs, is often associated with the (i) identification of new polysaccharides carrying
biological activities, (ii) increase in structure-function relationships understanding and
(iii) scientific rationalization of traditional uses. For example, the EXPLORE 2019–2021
(PHC Maghreb, Campus France) international project between 4 countries (Algeria, France,
Morocco, and Tunisia) aims to (i) explore the potential of Saharan plants and macroalgae
from the Mediterranean coast of North Africa as a source of polysaccharides of original
structures and (ii) correlate these structures with technofunctional properties but also
biological activities (health and agronomy fields) potentially valuable.

Despite this favorable context where medicinal plants hold an important place in
the socio-economic development of Africa, the potential of many plants is not studied
because of geographic, geopolitics, economic and legal problems that are obstacles to
the development of new “revolutionary” products. Another challenge for the following
decades is also to address in vivo the relationship between structural features and biological
activities. Without this, no real outbreak will happen for the discovery of new enriched-
polysaccharide drugs for an emerging country like Africa. Obviously, questions should
also be raised about financial returns, types of targeted markets (niche markets in cosmetics
and/or nutraceutics, etc.) or regarding the 2021 current international context which clearly
shows the importance of having a large phytochemical library of molecules available for
quickly resolving major events such as an epidemic. Note that research on polysaccharides
will probably strongly evolve thanks to the use of “-omics” technologies which are changing
scientific work approaches.

Finally, we invite the readers and scientific community working on ethnobotany to
ask the following questions: Does the interest still only lie in the “finding and harvesting
of other new plants/carbohydrates” or is it in identifying active chemical structures to
mimic them in laboratories (using green biochemistry/bioprocess engineering)? In other
words, ultimately, taking inspiration from nature to create the new polysaccharide-drugs
of tomorrow.
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