
HAL Id: hal-03452675
https://uca.hal.science/hal-03452675

Submitted on 27 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Election in unidirectional rings with homonyms
Karine Altisen, Ajoy K Datta, Stéphane Devismes, Anaïs Durand, Lawrence L

Larmore

To cite this version:
Karine Altisen, Ajoy K Datta, Stéphane Devismes, Anaïs Durand, Lawrence L Larmore. Election
in unidirectional rings with homonyms. Journal of Parallel and Distributed Computing, 2020, 146,
pp.79-95. �10.1016/j.jpdc.2020.08.004�. �hal-03452675�

https://uca.hal.science/hal-03452675
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Election in Unidirectional Rings with Homonyms?

Karine Altisena, Ajoy K. Dattab, Stéphane Devismesa, Anaïs Duranda, Lawrence L.
Larmoreb

aUniv. Grenoble Alpes, CNRS, Grenoble INP † , VERIMAG, 38000 Grenoble, France
bUNLV, Las Vegas, USA

Abstract

We study leader election in unidirectional rings of homonyms that have no a priori knowledge
of the number of processes. In this context, we show that there exists no algorithm that
solves the process-terminating leader election problem for the class of asymmetrically labeled
unidirectional rings. More precisely, we prove that there is no process-terminating leader
election algorithm even for the subclass of unidirectional rings where at least one label is
unique. Message-terminating leader election is also impossible for the class of unidirectional
rings where only a bound on multiplicity is known. However, we show that the process-
terminating leader election is possible for two particular subclasses of asymmetrically labeled
unidirectional rings where the multiplicity is bounded. We propose three efficient algorithms
and analyze their complexities. We also give some non-trivial lower bounds.

Keywords: Leader Election, Homonyms, Multiplicity, Unidirectional Rings

1. Introduction

We consider the leader election problem, which consists in distinguishing a unique process
of the network. This task is fundamental in distributed systems since it is a basic component
in many protocols, e.g., spanning tree construction, broadcasting and convergecasting meth-
ods. Leader election is especially helpful to achieve synchronization and self-organization in
a network. For example, in a wireless ad-hoc network (WSN), collected data are most of the
time aggregated at a leader node, called the sink, which can be a gateway between the WSN
and other kind of networks.

Leader election is essential, yet sometimes hard to solve, e.g., in 1980, Angluin [1] showed
the impossibility of solving deterministic leader election in networks of anonymous processes.

?This work has been partially supported by the anr projects Descartes (ANR-16-CE40-0023) and
Estate (ANR-16-CE25-0009).

Email addresses: karine.altisen@univ-grenoble-alpes.fr (Karine Altisen),
ajoy.datta@unlv.edu (Ajoy K. Datta), stephane.devismes@univ-grenoble-alpes.fr (Stéphane
Devismes), anais.durand@univ-grenoble-alpes.fr (Anaïs Durand), lawrence.larmore@unlv.edu
(Lawrence L. Larmore)

† Institute of Engineering Univ. Grenoble Alpes



This negative result led to two major opposite lines of research. The first approach circum-
vents the impossibility result by using randomization to break symmetries [2]. In the second
one, networks are assumed to be equipped with unique process identifiers to eliminate sym-
metries which allowed the design of deterministic algorithms [3]. The notion of homonym
processes has been introduced as an intermediate model between the (fully) anonymous and
(fully) identified ones. In this model, each process has an identifier, called here label, which
may not be unique. Let L be the set of labels present in a system of n processes. Then,
|L| = 1 (resp., |L| = n) corresponds to the fully anonymous (resp., fully identified) model.
This natural extension is motivated by the fact that assuming every process has unique
identifier is sometimes too strong in practice. For example, process identifiers often come
from MAC addresses and some of these addresses may be duplicated. As a matter of facts,
in systems such as Chord [4] or Pastry [5], addresses are the result of hash functions that
are subject to collisions. Moreover, in many cases, system users may wish to preserve some
kind of privacy. However, in fully anonymous systems where no identifiers are used, very few
problems (including leader election) are deterministically solvable [1, 6, 7, 8]. Consequently,
homonymy is an alternative solution to implement trustworthy level of privacy using, for
example, group or ring signatures [9, 10], where signatures are labels and each process of
a group share the same signature to anonymously sign messages on behalf of the group.
Notice that homonymy using group or ring signatures already have many applications, e.g.,
in e-voting [11], e-cash [12], and blockchains [13].

Finally, ring topologies, studied here, are the most natural candidates among classical
topologies for proof of concept before considering arbitrary ones since they are sparsely
connected. Moreover, paying attention to ring networks makes sense from a practical point
of view as some real world systems are based on a ring topology, e.g., the token ring standard
for local area networks. Ring topologies are also used in P2P systems [14, 15]. For example,
Self-Chord [15] decouples object keys from peer IDs and sorts keys along a ring.

Related Work. Several recent works [16, 17, 18, 19, 20, 21] studied the leader election problem
in networks with homonym processes. Yamashita and Kameda study in [16] the feasibility
of leader election in networks of arbitrary topology containing homonym processes. They
propose a process-terminating (i.e., every process eventually halts) leader election assuming
that processes know the size of the network. In [19], Chalopin et al. characterize families of
(labeled) graphs which admit a process-terminating election algorithm using the notion of
quasi-coverings.

In [17], Flocchini et al. study the weak leader election problem in bidirectional ring net-
works of homonym processes. In this problem, one or two processes are chosen as leaders.
In this latter case, the two elected processes must be neighbors. Under the assumption that
processes know a priori the number of processes, n, they show that the process-terminating
weak leader election is possible if and only if the labeling of the ring is asymmetric, i.e., there
is no non-trivial rotational symmetry (i.e., non multiple of n) of the labels resulting in the
same labeling. They also propose two process-terminating weak leader election algorithms
for asymmetric labeled rings of n processes, assuming that n is prime and that there are
only two different labels, 0 and 1. The first algorithm assumes a common sense of direction,

2



i.e., every process is able to distinguish between its clockwise and counterclockwise neigh-
bors. The second algorithm is a generalization of the first one, where the common sense of
direction is removed. No time complexity is given for the second algorithm.

In [20], Delporte et al. consider the leader election problem in bidirectional ring networks
of homonym processes. They propose a necessary and sufficient condition on the number of
distinct labels needed to solve the leader election problem. More precisely, they prove that
there exists a solution to message-terminating (i.e., processes do not halt but only a finite
number of messages are exchanged) leader election problem in bidirectional rings if and only
if the number of labels is strictly greater than the greatest proper divisor of n. Assuming
that condition, they give two algorithms. The first one is message-terminating and does not
assume any extra knowledge. On the contrary, the second algorithm is process-terminating
but assumes the knowledge of n. They show that their second algorithm is asymptotically
optimal in messages (O(n log n)). In [18], Dobrev and Pelc study a generalization of the
process-terminating leader election problem in both unidirectional and bidirectional networks
of homonym processes. They assume that processes know a priori a lower bound m and an
upper bound M on the (unknown) number of processes, n. They propose algorithms that
decide whether the election is possible and perform it, if so. They propose two synchronous
algorithms, one for bidirectional and one for unidirectional rings, and both use O(M) time
and O(n log n) messages. They also propose an asynchronous algorithm for bidirectional
rings using O(nM) messages and prove its optimality. No time complexity is given.

In [21], Dereniowski and Pelc study a generalization of the process-terminating leader
election in arbitrary networks of homonym processes where processes know a priori an up-
per bound k on the multiplicity of a given label ` that exists in the network, i.e., each
process knows that ` is the label of at least one but at most k processes. They propose a
synchronous algorithm that, under these hypotheses, decides whether the election is possi-
ble and achieves it, if so. They show that this algorithm is asymptotically optimal in time
(O(kD +D log(n/D)), where D is the diameter of the network).

Contributions. We explore the design and complexity of the (deterministic) process-termin-
ating leader election in unidirectional rings with homonym processes which, contrary to
[17, 18, 20], know neither the number of processes n nor any bound on it. Since we only
consider unidirectional rings, results of Delporte et al. [20] do not apply — the common sense
of direction may help processes to solve the leader election problem.

We consider five classes of unidirectional labeled rings: U∗, Kk, A, U∗ ∩Kk, and A∩Kk.
U∗ is the class of all rings in which at least one label is unique. Kk is the class of all rings
where no label occurs more than k times, so k is an upper bound on the multiplicity of the
labels. Finally, A is the class of all asymmetric labeled rings, i.e., all labeled rings that have
no non-trivial rotational symmetry. By definition, U∗ ∩ Kk ⊂ U∗ ⊂ A and A ∩Kk ⊂ A.

We first establish that the time complexity of any process-terminating leader election
algorithm for U∗ ∩ Kk (with k ≥ 2) is Ω(k n) times units. We then show that any message-
terminating leader election algorithm for U∗∩Kk (with k ≥ 2) requires to exchange Ω(kn+n2)
bits. By definition, these two lower bounds also hold for A ∩ Kk. Using our lower bound
on the time complexity, we derive a simple impossibility result on the process-terminating

3



leader election in U∗, and so in A. Finally, using a direct extension of the impossibility
results of Angluin [1], we know that the message-terminating leader election is impossible in
Kk for any k ≥ 2.

Hence, we focus on the process-terminating leader election in U∗ ∩ Kk and A ∩ Kk by
proposing three algorithms for these classes. The first algorithm, Uk, solves the process-
terminating leader election algorithm in U∗ ∩ Kk. Uk is asymptotically optimal in time, as
its time complexity is O(k n) time units. Its message complexity is O(n2 + kn). Finally, Uk

is asymptotically optimal in space, as it requires O(log k+ b) bits per process, where b is the
number of bits required to store a label.

Then, we propose two process-terminating leader election algorithms, Ak and Bk, for the
more general class A ∩Kk. Those two algorithms show a trade-off between time and space.
Ak is asymptotically optimal in time (O(k n)), but it requires O(knb) bits per process and
O(kn2) messages are exchanged during an execution. On the contrary, Bk requires only
O(log k + b) bits per process (which is asymptotically optimal), but its time and message
complexities are both O(k2n2).

Finally, notice that our assumptions on the initial knowledge of processes are not compa-
rable in general with those made in [18, 20]. As a matter of fact, Dobrev and Pelc [18] explain
that there are simple cases where the knowledge of some lower bound m and upper boundM
on n does not permit their (process-terminating) leader election algorithm to succeed. They
illustrate this statement with an example where the initial knowledge of processes is m = 3
and M = 6. In this case, the 3-node ring with labels 1,2,2 matches those bounds. Now,
for this ring their algorithm decides the input is ambiguous and so does not elect a leader
because nodes are unable to distinguish whether they are in the 3-node ring with labels
1,2,2 (which is asymmetric), or in a 6-node ring with label 1,2,2,1,2,2 (which is symmetric).
We have not such an ambiguity in our settings. Indeed, in our settings (i.e., assuming the
knowledge of k and a common orientation), our process-terminating algorithms elect a leader
in the 3-node ring with labels 1,2,2 since it (in particular) belongs to U∗ ∩Kk. Similarly, the
assumptions made in [20] (i.e., the knowledge of n and the fact that the number of labels
is strictly greater than the greatest proper divisor of n) exclude the 6-node ring with label
1,2,2,2,2,2. Indeed, in this labeled ring, the number of labels is 2 and the greatest proper
divisor of 6 is 3. Now, in our settings, our algorithms are able to elect a leader in this labeled
ring since it belongs (in particular) to U∗ ∩ Kk.

Roadmap. Section 2 is dedicated to model and definitions. Lower bounds and impossibility
results are presented in Sections 3 and 4. Algorithms Uk, Ak, and Bk are proposed in
Sections 5, 6, and 7, respectively, together with their correctness and complexity analysis.
We conclude in Section 8 with some perspectives.

Extension of two conference papers. This journal paper is an extension of two preliminary
versions, respectively published in the proceedings of SSS’2016 [22] and IPDPS’2017 [23].
Compared to those two conference papers, this journal paper contains significantly new
material. Indeed, the lower bounds on the exchanged bit complexity in Section 3 (i.e.,
Theorem 1 and its associated corollary, Corollary 3) are totally new. Then, concerning

4



impossibility results, Theorem 2 (Section 4) is also new. Concerning now the algorithmic
part, Algorithm Uk (Section 5) was originally presented in [22], yet without any proof of
correctness or complexity analysis. We have filled all these important blanks in the present
paper. Furthermore, it is worth noting that the time and space complexity bounds we prove
here are very precise. Finally, we have refined both the correctness proof and complexity
analysis of Algorithm Bk initially proposed in [23]. In particular, we have revised the time
complexity analysis of Algorithm Bk to obtain tighter bounds.

2. Preliminaries

Ring Networks. We assume unidirectional rings of n ≥ 2 processes, p0, . . . , pn−1, operating in
asynchronous message-passing model, where links are FIFO and reliable. pi can only receive
messages from its left neighbor, pi−1, and can only send messages to its right neighbor, pi+1.
Subscripts are modulo n. The state of a process is a vector of the values of its variables.
The state of a link (pi, pi+1), noted S(pi,pi+1), is the ordered list of messages it contains. A
configuration is a vector of states, one for each link and each process of the ring. Let γ be
a configuration. The state of process p in γ is denoted by γ(p). The value of the variable x
of p in γ is denoted by γ(p).x. Processes communicate using the functions send and rcv.
Since every link (pi, pi+1) is reliable, calls to send by pi and rcv by pi+1 are the only way to
modify S(pi,pi+1). When pi executes send m, the message m is added at the tail of S(pi,pi+1).
Let now explain how a call of pi+1 to rcv works. Each message is of the form 〈x1, . . . , xk〉,
where x1, . . . , xk is a list of values, each of a given datatype. We say that a value x conforms
to y if y is a value and x = y, or y is a variable and has the same datatype as x. A message
in S(pi,pi+1) remains in this list until pi+1 receives it by calling the function rcv (no message
loss). The received messages are processed FIFO. So, the function rcv is message-blocking:
A call to rcv 〈v1, . . . , vz〉 by pi+1 returns True if and only if the head message 〈x1, . . . , xz〉 of
S(pi,pi+1) satisfies ∀j ∈ {1, . . . , z}, xj conforms to vj. When a call to rcv 〈v1, . . . , vz〉 by pi+1

returns True, the head of S(pi,pi+1), 〈x1, . . . , xz〉, is removed from S(pi,pi+1) (each message is
received exactly once) and ∀j ∈ {1, . . . , z}, vj is assigned to xj if vj is a variable. Otherwise,
rcv does not modify S(pi,pi+1).

A distributed algorithm is a collection of n local algorithms, one per process. We assume
that processes have no knowledge about n, and each process p has a label, p.id; labels may
not be distinct. For any label ` in the ring R, let mlty(`), the multiplicity of ` in R, be
the number of processes in R whose id is `. Comparisons (order and equality) are the only
operations permitted on labels. We denote by b the number of bits required to store any
label. In our distributed algorithms, all local algorithms are identical, except maybe for the
labels. In particular, every execution begins at a so-called initial configuration, where each
process is at a designated initial state and all links are empty. The local algorithm of each
process p is given as a list of actions of the form 〈guard〉 → 〈statement〉. A guard is a
predicate involving the variables of p and calls to rcv. An action is enabled if its guard is
True. A process p is enabled if at least one of its action is enabled. A statement contains
assignments of p’s variables and/or calls to the function send. The statement of an action
can be executed by p only if the action is enabled at p. We assume that the actions are

5



atomically executed, i.e., the evaluation of the guard and the execution of the corresponding
statement, if executed, are done in one atomic step. We enforce the local algorithm of each
process p to contain at most one action triggerable without the reception of any message.
This action should be executed by p first in all executions.

Processes are fairly activated, i.e., if a process is continuously enabled, then it eventually
executes one of its enabled actions. Let 7→ be the binary relation over configurations such that
γ 7→ γ′ if and only if γ′ can be obtained from γ by the atomic execution of one or more enabled
processes in γ; γ 7→ γ′ is called a step. An execution is a maximal sequence of configurations
Γ = γ0 . . . γi . . . such that (1) γ0 is the initial configuration, (2) ∀i > 0, γi−1 7→ γi, and (3)
processes are fairly activated in Γ. Maximal means that Γ is either infinite, or ends in a so-
called terminal configuration where no process is enabled. Time complexity [24] is evaluated
in time units, assuming that message transmission time is at most one time unit, and the
process execution time is zero. Roughly speaking, time complexity measures the execution
time of the algorithm according to the slowest messages: the execution is normalized in such
a way that the longest message delay (i.e., the transmission of the message followed by its
processing at the receiving process) becomes one unit of time.

Leader Election. We consider two definitions of the problem of leader election in the message-
passing model: the message-terminating and the process-terminating leader election [24].
Informally, in a process-terminating solution, every process eventually halts, whereas, in a
message-terminating solution, processes do not halt but only a finite number of messages is
exchanged.

Definition 1 (Message-terminating Leader Election). An algorithm Alg solves the message-
terminating leader election problem in a ring network R if every execution e of Alg on R
satisfies the following conditions:

1. e is finite.
2. Each process p has a Boolean variable p.isLeader such that, in the terminal configura-

tion of e, `.isLeader is True for a unique process ` (i.e., the leader).
3. Every process p has a variable p.leader such that, in the terminal configuration, p.leader =

`.id, where ` satisfies `.isLeader.

Definition 2 (Process-terminating Leader Election). An algorithm Alg solves the process-
terminating leader election problem in a ring network R if it solves the message-terminating
leader election in R and if every execution e of Alg on R satisfies the following additional
conditions:

4. For every process p, p.isLeader is initially False and never switched from True to
False: each decision of being the leader is irrevocable. Consequently, there should be
at most one leader in each configuration.

5. Every process p has a Boolean variable p.done, initially False, such that p.done is
eventually True for all p, indicating that p knows that the leader has been elected. More
precisely, once p.done becomes True, it will never become False again, `.isLeader is
equal to True for a unique process `, and p.leader is permanently set to `.id.

6



6. Every process p eventually halts, i.e., locally decides its termination, after p.done be-
comes True.

Ring Networks Classes. An algorithm Alg solves the message-terminating (resp. process-
terminating) leader election for the class of ring networks C if it solves the message-terminating
(resp. process-terminating) leader election for every ring network R ∈ C. In particular, Alg
cannot be given any specific information about the network (such as its cardinality or the
actual multiplicity of labels) unless that information holds for all ring networks of C. Indeed,
Alg must work for every R ∈ C without any change whatsoever in its code.

A ring network R of n processes is said to be symmetric if a non-trivial rotation of the
labels results in the same labeling, i.e., there is some integer 0 < d < n such that, for all
i ≥ 0, pi and pi+d have the same label. Otherwise, R is said to be asymmetric.

We mainly consider the three following classes of ring networks.
• A is the class of all asymmetric unidirectional ring networks.
• U∗ is the class of all unidirectional ring networks in which at least one process has a

unique label. By definition, U∗ ⊂ A.
• Kk, with k ≥ 1 a given integer, is the class of all unidirectional ring networks where no

more than k processes have the same label: k is an upper bound on the multiplicity of
labels in R ∈ Kk. Notice that K1 ⊂ U∗ and K1 ⊂ K2 . . .

3. Lower Bounds

We first establish a lower bound that depends on k on the execution time of any process-
terminating leader election algorithm in U∗ ∩ Kk (with k ≥ 2). Even though, it has been
written independently, it appears that the proof of the technical result below is essentially
an adaptation of the proof of the "Quasi-Lifting corollary" [19] to our context.

Lemma 1. Let k ≥ 2 and Alg be an algorithm that solves the process-terminating leader
election for U∗ ∩ Kk. ∀R ∈ K1, the synchronous execution of Alg in R lasts at least
1 + (k − 2)n time units, where n is the number of processes.

Proof. Let k ≥ 2 and Alg be a process-terminating leader election algorithm for U∗ ∩ Kk.
Let Rn ∈ K1 be a ring of n processes, noted p0, . . . , pn−1 with distinct labels `0, . . . , `n−1
respectively, see Figure 1a. SinceK1 ⊆ U∗∩Kk, Alg is correct forRn and so, the synchronous
execution e = (γi)i≥0 of Alg on Rn is finite and a process is elected. Let T be the execution
time of e: within T time units in e, pL.isLeader becomes True for some 0 ≤ L ≤ n−1, i.e.,
pL is the leader in the terminal configuration γT of e. We now build the ring Rn,k ∈ U∗ ∩Kk

of kn + 1 processes, q0, . . . , qkn, with labels consisting of the sequence `0, . . . , `n−1 repeated
k times, followed by a single label X /∈ {`0, . . . , `n−1}, see Figure 1b. Let e′ = (γ′i)i≥0 be the
synchronous execution of Alg on Rn,k. Since Rn,k ∈ U∗ ∩ Kk, Alg is correct on Rn,k so
e′ is finite and there is no configuration along e′ such that two processes declare themselves
leader. By construction, after t ≥ 0 time units, only the processes qi, with i ∈ {0, . . . , t− 1},
can have received information from process qkn of label X, see the gray zone on Figure 1b.

7



`0

`1`n-1

p0

p1pn-1

(a) Ring Rn

`0
`1

`t-1

`n-1

`0
`1

`n-1

X
q0 q1

qt-1

qn-1

qn
qn+1

q2n-1

qkn

(b) Ring Rn,k

Figure 1: Illustration of the proof of Lemma 1. In gray, the processes of Rn,k that can have received
information from qkn of label X within t ≥ 0 time units.

Hence, we have the following property on e′: (∗) For every j ∈ {0, ..., kn − 1}, for every
t ≥ 0, if t ≤ j, then the state of qj in γ′t is identical to the state of pj mod n in γt.

Assume, by contradiction, that T ≤ (k−2)n. Let j1 = (k−2)n+L and j2 = (k−1)n+L.
Since L ∈ {0, ..., n − 1}, we have j1, j2 ∈ {0, ..., kn − 1}, hence T ≤ j1 < j2. Moreover,
j1 mod n = j2 mod n = L. So, by (∗) the states of qj1 and qj2 in γ′T are identical to the state
of pL in γT : in particular, γ′T (qj1).isLeader = γ′T (qj2).isLeader = True. This contradicts
the fact that Alg is a process-terminating leader election algorithm for Rn,k. (Bullet 5 of
the specification is violated in γ′T , see p. 6.) Hence, the execution time T of the synchronous
execution of Alg in Rn is greater than (k − 2)n.

Since K1 ⊆ U∗ ∩ Kk, follows:

Corollary 1. Let k ≥ 2. The time complexity of any algorithm that solves the process-
terminating leader election for U∗ ∩ Kk is Ω(k n) time units, where n is the number of
processes.

Furthermore, by definition U∗ ⊆ A, and so:

Corollary 2. Let k ≥ 2. The time complexity of any algorithm that solves the process-
terminating leader election for A∩Kk is Ω(k n) time units, where n is the number of processes.

The algorithm proposed by Peterson [25] to solve leader election in identified ring net-
works has message complexity O(n log n) and each message contains Θ(b) bits, i.e., the
amount of exchanged information is O(b n log n). As commonly done in the literature, we
can assume that b = Θ(log n) in identified networks, so O(b n log n) = O(n log2 n). Then,
as the algorithm of Peterson applies for U∗ ∩K1, we might expect that there exists a leader
election algorithm for class U∗ ∩ Kk whose required amount of exchanged information is
O(k n log2 n). Theorem 1 shows that, when k is fixed, the minimum amount of exchanged
bits needed to solve leader election in the worst case is greater than what we might expect
when n is large.

8



`3

`2

`1`14
`13

`11

`10

`8
`7 `6

`5

`4

p3

p2
p1p12

p11

p10

p9

p8
p7 p6

p5

p4

(a) RI

`10

`8

`7`6
`5

`4

`3

`2
`1 `14

`13

`12

q9

q8
q7q6

q5

q4

q3

q2
q1 q12

q11

q10

(b) RJ

Figure 2: Ring networks RI and RJ where m = 7, I = `8, `10, `11, `13, `14, and J = `8, `10, `12, `13, `14 used
in the proof of Theorem 1.

`3

`2

`1`14
`13

`11

`10

`8
`7 `6

`5

`4

p3

p2
p1p12

p11

p10

p9

p8
p7 p6

p5

p4

`10

`8

`7`6
`5

`4

`3

`2
`1 `14

`13

`12

q9

q8
q7q6

q5

q4

q3

q2
q1 q12

q11

q10

Figure 3: Ring network Rp
I#J where m = 7, p = 3, I = `8, `10, `11, `13, `14, and J = `8, `10, `12, `13, `14 used

in the proof of Theorem 1.

Theorem 1. Let k ≥ 2. For any message-terminating leader election algorithm Alg for
U∗ ∩ Kk, there exists executions of Alg during which Ω(kn+ n2) bits are exchanged, where
n is the number of processes.

Proof. Let k ≥ 2. Let Alg be a message-terminating leader election algorithm for U∗ ∩Kk.
Let m ≥ 2 and let n = 2m. Let `1, . . . , `n be distinct labels. Let L be the set of non-
empty proper subsequences of (`m+1, . . . , `n), i.e., the subsequences of (`m+1, . . . , `n) whose
length is at least one but at most m− 1. For any I ∈ L, RI is the ring network containing
m + |I| processes, denoted p1, p2, . . . , pm, pm+1, . . . , pm+|I|, whose label sequence is ΛI =
`1, `2, . . . , `m, I. More precisely, in RI , for every i ∈ {1, . . . ,m}, pi.id = `i and for every
j ∈ {1, . . . , |I|}, pm+j.id = I[j] (the jth element of I). The ring network RI for m = 7 and
I = `8, `10, `11, `13, `14 is illustrated on Figure 2a.

Let R = {RI : I ∈ L}. Notice that |R| = 2m − 2 (since the empty sequence and
{`m+1, . . . , `n} are not in L). Furthermore, every label in RI is unique so RI ∈ U∗ ∩ Kk.
Hence, Alg is correct for every RI ∈ R. For every I, J ∈ L, let RI#J be the ring network
containing 2m+ |I|+ |J | processes whose label sequence is ΛIΛJ . RI#J can be obtained from
RI and RJ as follows (we denote by q1, . . . , qm+|J | the processes of RJ to avoid confusion).
For some p ∈ {1, . . . ,m− 1}, we obtain Rp

I#J when we join RI and RJ by removing edges
(pp, pp+1) and (qp, qp+1) and replacing them by edges (pp, qp+1) and (qp, pp+1). Figure 3 shows

9



the ring network Rp
I#J for p = 3, I = `8, `10, `11, `13, `14, and J = `8, `10, `12, `13, `14 obtained

by joining RI (see Figure 2a) and RJ (see Figure 2b).
Claim 1: For every p ∈ {1, . . . ,m− 1}, if I 6= J , then Rp

I#J ∈ U∗ ∩ Kk.
Proof of Claim 1: No label appears more than twice in Rp

I#J so Rp
I#J ∈ Kk. Then, without

loss of generality, assume |I| ≤ |J |. So, there is some `j ∈ J\I and `j is a unique label in
Rp

I#J . Hence, R
p
I#J ∈ U∗.

For every I ∈ L, let eI be the synchronous execution of Alg on RI . For each p ∈
{1, . . . ,m}, let σI,p be the stream (sequence) of bits sent by pp to pp+1 during eI .
Claim 2: For any I, J ∈ I and any p ∈ {1, . . . ,m− 1}, if σI,p = σJ,p, then I = J .
Proof of Claim 2: Let I, J ∈ I and p ∈ {1, . . . ,m− 1}. Assume that σI,p = σJ,p. Let Rp

I#J

the ring network obtained by joining RI and RJ at the edges (pp, pp+1) and (qp, qp+1). Let
epI#J be the synchronous execution of Alg on Rp

I#J .
First, we show by induction on the steps of epI#J that ∀x ≥ 1, every process pi, i ∈

{1, . . . ,m+ |I|} (respectively, qj, j ∈ {1, . . . ,m+ |J |}) sends the same bits during the xth

step of epI#J than in the xth step of eI (respectively, eJ).
Base Case: Alg is a deterministic algorithm and every process pi (respectively, qj) has the

same initial state (in particular, the same label) in epI#J than in eI (respectively, eJ).
Hence every process pi (respectively, qj) sends the same bits during the first step of
epI#J than during the first step of eI (respectively, eJ).

Induction Step: Assume that every process pi, i ∈ {1, . . . ,m+ |I|} (respectively, qj, j ∈
{1, . . . ,m+ |J |}) sends the same bits during the xth step of epI#J than in the xth step
of eI (respectively, eJ), x ≥ 1. Consider the (x+ 1)th step of epI#J .
Every process pi, i ∈ {1, . . . , p} ∪ {p+ 2,m+ |I|}, (respectively, qj, j ∈ {1, . . . , p} ∪
{p+ 2, . . . ,m+ |J |}) has the same predecessor in Rp

I#J than in RI (respectively, RJ).
By induction hypothesis, this predecessor sends the same bits during the xth step of
epI#J than during the xth step of eI (respectively, eJ).
Now, the only processes that do not have the same predecessor in Rp

I#J than in RI or
RJ are pp+1 and qp+1. By induction hypothesis, their predecessor, respectively qp and
pp, send the same bits during the xth step of respectively epI#J than during the xth step
of respectively eJ and eI . Furthermore, σI,p = σJ,p so they send the exact same bits.
Hence, every process receives the same bits and so send the same bits (since the algo-
rithm is deterministic) during the (x+ 1)th step of epI#J than during the (x+ 1)th step
of eI or eJ .

Hence, the processes cannot distinguish epI#J and eI or eJ . So both the process that
declares itself leader in eI and the one that declares itself leader in eJ also declares itself
leader in epI#J . Now, assume by contradiction that I 6= J . By Claim 1, Rp

I#J ∈ U∗ ∩ Kk.
Since two processes declare themselves leader in epI#J , we have a contradiction with the
correctness of Alg for class U∗ ∩ Kk.

The rest of the proof is based on a counting argument, i.e., there are not enough bit
streams to distinguish the rings of R, unless those streams have length Ω(n2). Let a = m−2.
Recall that a set of cardinality m has 2m subsets including 2m−2 non-empty proper subsets.

10



The number of bit streams of length at most a is:

a∑
l=1

2l = 2a+1 − 1 = 2m−1 − 1 < 2m − 2

Let p ∈ {1, . . . ,m− 1}. Let Lp = {I ∈ L : |σI,p| ≤ a}. By Claim 2, Lp has cardinality less
than 2m−2, so there exists some I ∈ L that is not a member of Lp, for any p ∈ {1, . . . ,m− 1}.
Hence, Ω(m a) = Ω(n2) bits are exchanged during the synchronous execution of Alg on RI .
Now, at least one message must be exchanged at each step, so, by Corollary 1, there exists
executions of Alg where Ω(kn+ n2) bits are exchanged.

Since U∗ ∩ Kk ⊆ A ∩Kk, follows:

Corollary 3. Let k ≥ 2. For any message-terminating leader election algorithm Alg for
A ∩ Kk, there exists executions of Alg during which Ω(kn + n2) bits are exchanged, where
n is the number of processes.

4. Impossibility Results

Class Kk. Below, we extend the impossibility results of Angluin [1] to Kk.

Theorem 2. There is no algorithm that solves message-terminating leader election in a
symmetric ring of at least 2 processes.

Proof. Let R be a symmetric ring of n ≥ 2 processes. Let 0 < d < n such that, for all i ≥ 0,
pi and pi+d have the same label. Assume by contradiction that Alg is a message-terminating
leader election algorithm for R. Let e = (γj)j≥0 be the synchronous execution of Alg on R.
At every step of e, each pi, i ≥ 0, makes exactly the same actions as pi+d, and thus, every
configuration of e is symmetric; i.e., for all 1 ≤ i ≤ n and for all configurations γj, j ≥ 0,
of e, all variables of pi and pi+d have the same value. Eventually, a terminal configuration
γT is reached. Let p` be the elected leader in γT ; thus γT (p`).isLeader = True. But
γT (p`+d).isLeader also, which contradicts the uniqueness of the leader in a solution, since
p`+d 6= p`.

Class Kk, k ≥ 2, contains symmetric rings of at least two processes, e.g., see Figure 4.
Hence, we have:

Theorem 3. For any k ≥ 2, there is no algorithm that solves message-terminating leader
election for Kk.

Classes U∗ and A. Using Lemma 1, we can easily derive the following two impossibility
results.

Theorem 4. There is no algorithm that solves the process-terminating leader election for
U∗.

11



`1

`2`1

`2

`1 `2

(a) Ring in K3.

`1

`3

`1
`2

`1

`3
`1

`2

(b) Ring in K4.

Figure 4: Examples of symmetric ring networks in Kk.

Proof. Suppose Alg is an algorithm for U∗. LetRn be a ring network of K1 with n processes.
Let e be the synchronous execution of Alg on Rn: as K1 ⊆ U∗, Alg is correct for Rn and,
consequently, e is finite. Let T be the number of steps of e. We can fix some k ≥ 2 such
that 1 + (k − 2)n > T .

Since (U∗ ∩ Kk) ⊆ U∗, Alg is correct for U∗ ∩ Kk. By Lemma 1, T ≥ 1 + (k − 2)n, a
contradiction.

Since by definition U∗ ⊆ A, Theorem 4 implies the following corollary.

Corollary 4. There is no algorithm that solves the process-terminating leader election for
A.

5. Algorithm Uk

In this section, we present Algorithm Uk which solves the process-terminating leader
election for the class U∗ ∩ Kk, with fixed k ≥ 1 (see Algorithm 1).

5.1. Variables of Uk

Uk elects the process of minimum unique label to be the leader, namely the process L
such that L.id = min {p.id : p ∈ V ∧mlty(p.id) = 1}. In Uk, each process p has the following
variables.

1. p.id, (constant) input of unspecified label type, the label of p.
2. p.init, Boolean, initially True.
3. p.active, Boolean, which indicates that p is active. If ¬p.active, we say p is passive.

Initially, all processes are active, and when Uk is done, the leader is the only active
process. A passive process never becomes active.

4. p.count, an integer in the range 0 . . . k + 1. Initially, p.count = 0. p.count will give to
p a rough estimate of the frequency of its label in the ring.

5. p.leader, of label type. When Uk is done, p.leader = L.id.
6. p.isLeader, Boolean, initially False, follows the problem specification: eventually,
L.isLeader becomes True and remains True, while, for all p 6= L, p.isLeader remains
False for the entire execution.

12



Algorithm 1: Actions of Process p in Algorithm Uk.
A1 :: p.init → p.init← False

send 〈p.id, 0〉
A2 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id → send 〈x, c〉

∧ (p.count = 0 ∨ c > p.count)
A3 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x > p.id → send 〈x, c〉

∧ c = p.count ∧ c ≥ 1
A4 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x = p.id → p.count← c+ 1

∧ c = p.count ∧ c ≤ k − 1 send 〈x, c+ 1〉
(Deactivation)
A5 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id → p.active← False

∧ c < p.count send 〈x, c〉
A6 :: ¬p.init ∧ p.active ∧ rcv 〈x, c〉 ∧ x < p.id → p.active← False

∧ c = p.count ∧ c ≥ 1 send 〈x, c〉
(Passive Processes)
A7 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, c〉 ∧ x 6= p.id ∧ c ≤ k → send 〈x, c〉
A8 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, c〉 ∧ x = p.id → (nothing)
(Termination)
A9 :: ¬p.init ∧ p.active ∧ rcv 〈x, k〉 ∧ x = p.id → p.isLeader ← True

∧ p.count = k p.leader ← p.id
p.done← True
p.count← k + 1
send 〈x, k + 1〉

A10 :: ¬p.init ∧ ¬p.active ∧ rcv 〈x, k + 1〉 → p.leader ← x
p.done← True
send 〈x, k + 1〉
(halt)

A11 :: ¬p.init ∧ p.active ∧ rcv 〈x, k + 1〉 ∧ x = p.id → (halt)
∧ p.count = k + 1

7. p.done, Boolean, initially False, follows the problem specification: eventually, p.done =
True for all p. p.done means that p knows a leader has been elected; once true, it will
never become false.

5.2. Messages of Uk

Uk uses only one kind of message. Each message is the forwarding of a token which is
generated at the initialization of the algorithm, and is of the form 〈x, c〉, where x is the label
of the originating process, and c is a counter, an integer in the range 0 . . . k+1, initially zero.

5.3. Overview of Uk

The explanation below is illustrated by the example in Figure 5. The fundamental idea of
Uk is that a process becomes passive, i.e., is no more candidate for the election, if it receives
a token that proves its label is not unique or is not the smallest unique label.

Counter Increments. Initially, every process initiates a token with its own label and counter
zero (see (a)). No tokens are initiated afterwards. Each token moves around the ring
clockwise – every time it is forwarded, its counter and the local counter of the processes are

13



A1

C

B

BA

B

p0

p1

p2p3

p4 0
0

00

0

〈C, 0〉

〈B, 0〉

〈B, 0〉

〈A, 0〉

〈B, 0〉

(a)

A2 A4

C

B

BA

B

p0

p1

p2p3

p4 0
0

10

0

〈B, 0〉

〈C, 0〉

〈B, 1〉

〈B, 0〉

〈A, 0〉

(b)

A2 A5 A4

C

B

BA

B

p0

p1

p2p3

p4 0
1

10

1

〈A, 0〉

〈B, 1〉

〈C, 0〉

〈B, 1〉

〈B, 1〉

(c)

A7 A4

C

B

BA

B

p0

p1

p2p3

p4 1
1

11

2

〈C, 1〉

〈A, 1〉

(d)

A7

C

B

BA

B

p0

p1

p2p3

p4 1
1

11

2

〈A, 1〉

〈C, 1〉(e)

A7

C

B

BA

B

p0

p1

p2p3

p4 1
1

13

2

〈A, 3〉(f)

A9

C

B

BA
F

B

p0

p1

p2p3

p4 1
1

14

2

〈A, 4〉

(g)

A10

C

B

BA
F

BA

p0

p1

p2p3

p4 1
1

14

2

〈A, 4〉

(h)

A10 A11

C
A

B
A

B AA
F

BA

p0

p1

p2p3

p4 1
1

14

2

〈A, 4〉(i)

Figure 5: Example of execution of Uk where k = 3. The counter of a process is in the white bubble next
to the corresponding node. Gray nodes are passive. p.isLeader = True if there is a star next to the node.
The black bubble contains the elected label, p.leader.

incremented if the forwarding process has the same label as the token (e.g., Step (a)7→(b)).
Thus, if the message 〈x, c〉 is in a channel, that token was initiated by a process whose label
is x, and has been forwarded c times by processes whose labels are also x. The token could
also have been forwarded any number of times by processes with labels which are not x.
Thus, the counter in a token is a rough estimate of the frequency of its label in the ring.

Non-unique Label Elimination. If an active process p receives a message tagged with a label
different from p.id whose counter is (strictly) less than p.count, this proves the label of p
is not unique since the counter p.count grows faster than the one of another label. In this
case, p executes A5-action and becomes passive (e.g., Step (b)7→(c)). Since the counter in
the token initiated by L is never incremented, except by L itself, L cannot become passive
using this rule. Moreover, every process whose label is not unique becomes passive during
the first two ring traversals of the token initiated by L.

Non-lowest Unique Label Elimination. Similarly, if an active process p has a unique label
but not the smallest one, it will become passive executing A6-action when p receives a

14



message with the same non-zero counter but a label lower than p.id (e.g., Step (d)7→(e)).
This happens at the latest when the process receives the message 〈L.id, 1〉, i.e., before the
second time L receives its own token. So, after the token of L has made two traversals of the
ring, every process but L is passive. Moreover, the token initiated by L is the only surviving
token because all other tokens have vanished using A8-action.

Termination Detection. The execution continues until the leader L has seen its own label
return to it k + 1 times (i.e., until L receives 〈L.id, k〉 since the counter inside its token
is initialized to zero), otherwise L cannot be sure that what it has seen is not part of a
larger ring instead of several rounds of a small ring. Then, L designates itself as leader by
A9-action (see Step (f)7→(g)) and its token does a last traversal of the ring to inform the
other processes of its election (e.g., Step (g)7→(h)). The execution ends when L receives its
token after k + 2 traversals (see (i)).

5.4. Correctness and Complexity Analysis
To prove the correctness of Uk (Theorem 5), we first prove some results on the counters

inside the tokens (Lemma 2). Then, Lemmas 3-7 prove properties on the different phases of
Uk. Finally, Theorem 6 gives a complexity analysis of Uk.

In the following proofs, we write #hop(m) for the number of hops, made so far by the
token associated to the message m. Notice that #hop(m) is always of the form an+ b where
a ≥ 0 is the number of complete traversals realized by the token and 0 ≤ b < n is the
(clockwise) hop-distance from the initiator of the token to its last tokenholder.

Lemma 2. Let γ 7→ γ′ be a step. Suppose a message 〈x, c〉 such that #hop(〈x, c〉) = an+ b
in γ with a ≥ 0 and 0 ≤ b < n is sent in γ 7→ γ′. Then:

1. c ≥ a,
2. if x is a unique label, then c = a, and
3. if x is a not a unique label and a ≥ 1, then c > a.

Proof. Let p be the process which originated the token currently carried by the message m.
The token has made a complete traversals of the ring, and has visited p a times, hence its
counter has been incremented at least a times. This proves 1. If p is the only process with
label x, then the counter has not otherwise been incremented, and we have 2. Suppose x
is not a unique label, and a ≥ 1. There are at least two processes with label x. The token
has made at least a full traversals, and thus has been sent by processes of label x at least 2a
times. Starting at zero, c has been incremented at least 2a times, hence c ≥ 2a > a, and we
have 3.

For the next lemma, we recall that a process can become passive only by executing A5
or A6-action.

Lemma 3. L never becomes passive.

15



Proof. By contradiction, assume L becomes passive during some step γ 7→ γ′. Then L
executes A5 or A6-action, receiving the message 〈x, c〉 for some x 6= L.id. Since the label of
L is unique, the token it initiated is still circulating in the ring in γ (it cannot be discarded
except by L if it is passive). Moreover, since x 6= L.id, #hop(〈x, c〉) is not a multiple of n
in γ. Let #hop(〈x, c〉) = an+ b in γ, where a ≥ 0 and 1 ≤ b < n. Since the links are FIFO,
the token initiated by L has made a full circuits during the prefix of execution leading to γ,
and γ(L).count = a. We now consider two cases.

• Case 1: x is a unique label. By Lemma 2.2, c = a = L.count. Thus, L cannot execute
A5-action, and since L.id < x, L cannot execute A6-action either, a contradiction.

• Case 2: x is not unique. (Recall that L.count = a in γ.) If a = 0, then L is not
enabled to execute either action. If a ≥ 1, then c > a by Lemma 2.3, contradiction.

We define an L-tour as follows. Let e = (γi)i≥0 be an execution of Uk. The first L-tour
of e is the minimum prefix γ0 . . . γj of e such that L receives (and treats) a message tagged
with its own label (for the first time) in step γj−1 7→ γj. If γj is not a terminal configuration,
then the second L-tour is the first L-tour of the execution suffix e′ = (γi)i≥j starting in γj,
and so forth. From Lemma 3, the code of the algorithm, and the fact that the label of L is
unique, we have:

Corollary 5. Any execution contains exactly k + 2 complete L-tours.

Lemma 4. For any process p, if p 6= L and p.id is a unique label, then p becomes passive
within the first two L-tours.

Proof. Let x = L.id. By definition of L, x < p.id. Let d = ‖L, p‖. Suppose by contradiction
that p does not become passive during the first two L-tours (which are defined, Corollary 5).
The token t initiated by L is received by p during the first (resp. second) L-tour while
#hop(t) = d (resp. #hop(t) = n + d). p receives the token it initiates exactly once before
receiving the token t = 〈x, c〉 (initiated by L) during the second L-tour, say in step γ 7→ γ′.
So, as p.id is unique, we have p.count = 1 in γ. Now, c = 1 in γ (Lemma 2.1). Thus, p
becomes passive by executing A6-action in γ 7→ γ′, contradiction.

Lemma 5. If z is a non-unique label, then all processes of label z become passive within the
first two L-tours.

Proof. Let m ≥ 2 be the multiplicity of z, and let P [z] = {x1, x2, . . . xm} be the sequence of
processes of label z in clockwise order from L.
Claim 1: Any process xi with i 6= 1 receives the token initiated by xi−1 of the form 〈z, 0〉
during the first L-tour before receiving 〈L.id, 0〉.
Proof of Claim 1: L is not between xi−1 and xi, and no process between xi−1 and xi can
stop the message 〈z, 0〉 initiated by xi−1. So, xi will receive 〈z, 0〉 before receiving 〈L.id, 0〉
during the first L-tour.

Claim 2: x1 receives 〈z, 0〉 and then 〈z, 1〉 during the first two L-tours, both of them before
receiving 〈L.id, 1〉.

16



Proof of Claim 2: No process between xm and x1 can stop the message 〈z, 0〉 initiated by
xm. Then, by Claim 1, xm receives a message 〈z, 0〉, while satisfying xm.count = 0. So, xm
sends 〈z, 1〉 after 〈z, 0〉, but before receiving 〈L.id, 0〉. Again, no process between xm and x1
can stop that message. So, x1 receives 〈z, 0〉 and 〈z, 1〉 before receiving 〈L.id, 1〉, i.e., during
the first two L-tours.

Claim 3: Every process xi with i 6= 1 receives 〈z, 1〉 during the first two L-tours before
receiving 〈L.id, 1〉.
Proof of Claim 3: The first time xi−1 receives 〈z, 0〉 is before xi−1 receives 〈L.id, 1〉 in the
first two L-tours, by Claims 1 and 2. In that step, xi−1 sends 〈z, 1〉. No process between
xi−1 and xi can stop that message. So, xi receives 〈z, 1〉 during the first two L-tours before
receiving 〈L.id, 1〉.

By Claims 2 and 3, each xi receives the message 〈z, 1〉 during the first two L-tours before
receiving 〈L.id, 1〉. Consider the first time xi receives such a message. Then, xi.count = 1.
Either xi is already passive and we are done, or xi.count is set to 2. Hence, when receiving
〈L.id, 1〉 during the first two L-tours, xi executes A5-action and we are done.

Lemma 6. For any process p, if p 6= L, then p never executes A9-action.

Proof. Assume, by the contradiction, that some process p 6= L eventually executes A9-
action. Let x = p.id. Then, p successively receives 〈x, 0〉, . . . , 〈x, k〉 so that p.active ∧
p.count = k holds when p receives 〈x, k〉. Notice also that p also receives 〈L.id, 0〉 and
〈L.id, 1〉, by Lemma 3.

First, p does not receive 〈L.id, 0〉 after 〈x, k〉, because otherwise p received at least k+ 1
messages tagged with label x during the first L-tour, which is impossible since the multiplicity
of x is at most k and the links are FIFO.

Assume now that p receives 〈L.id, 0〉 before 〈x, k〉 but after 〈x, 0〉. Then, p is deactivated
by A5-action when it receives 〈L.id, 0〉 because p.count > 0 and so before receiving 〈x, k〉, a
contradiction.

So, p receives 〈L.id, 0〉 before 〈x, 0〉. Similarly, p does not receive 〈L.id, 1〉 after 〈x, k〉,
because otherwise p received at least k + 1 messages tagged with label x during the first
L-tour. Then, p does not receive 〈L.id, 1〉 before 〈x, 0〉 because otherwise p does not receive
any message tagged with x during the first L-tour, now it receives at least 〈x, 0〉 during the
first L-tour from either its first predecessor with same label, or itself (if x is unique in the
ring).

If p receives 〈L.id, 1〉 before 〈x, 1〉, then x is unique in the ring and when p receives
〈L.id, 1〉, p is deactivated by A6-action, and so before receiving 〈x, k〉, a contradiction.

Finally, if k > 1 and if p receives 〈L.id, 1〉 after 〈x, 1〉 but before 〈x, k〉, then p is deacti-
vated by A5-action when it receives 〈L.id, 1〉, because 1 < p.count ≤ k. Hence, again, p is
deactivated before receiving 〈x, k〉, a contradiction.

Lemma 7. In any execution of Uk:
1. For every process p 6= L, p.active becomes False within the first two L-tours.
2. For every process p 6= L, p never executes A9-action.

17



3. L executes A9-action after exactly k + 1 L-tours. In this action L.leader ← L,
L.isLeader ← True, and L.done← True.

4. For every process p 6= L is a process, p executes A10-action during the (k+2)nd L-tour.
In this action p.leader ← L and p.done← True.

5. L executes A11-action after exactly k + 2 L-tours, and that is the last action of the
execution.

Proof. Part 1 follows from Lemmas 4 and 5. Part 2 is Lemma 6. Parts 3–5 follow from
Corollary 5: The token initialized by L circles the ring k + 2 times, each time incrementing
L.count once. At the end of the (k + 1)st traversal, L executes A9-action, electing itself to
be the leader. The message 〈L.id, k + 1〉 then circles the ring, informing all other processes
that L has been elected. Those latter processes halt after forwarding this message. When
that final message reaches L, the execution is over.

Theorem 5 below follows immediately from Lemma 7.
Theorem 5. Uk solves the process-terminating leader election for U∗ ∩ Kk, for every given
k ≥ 1.
Theorem 6. Uk has time complexity at most (k + 2)n, message complexity at most 3n2 +
(k − 1)n, and requires dlog(k + 1)e+ 2b+ 4 bits in each process.
Proof. Time complexity follows from Lemma 7.5. Space complexity follows from the defini-
tion of Uk. Consider now the message complexity of Uk. All tokens, except the one initiated
by L, vanish during the three first L-tours, by Lemma 7.1. Consequently, only the token
initiated by L circulates during the k−1 last L-tours. Hence, we have a message complexity
of 3n2+(k−1)n (at most 3n2 for messages transmitted during the 3 first L-tours, and exactly
(k − 1)n, with k ≤ n, for the unique token circulating during the k − 1 last L-tours).

6. Algorithm Ak

We now give a solution, Algorithm Ak, to the process-terminating leader election for the
class A∩Kk, with fixed k ≥ 1. Ak is based on the following observation. Consider a ring R
of A∩Kk with n processes. As R is asymmetric, any two processes in R can be distinguished
by examining all labels. So, using the lexicographical order, a process can be elected as the
leader by examining all labels. Initially, any process p of R does not know the labels of R,
except its own. But, if each process broadcasts its own label clockwise, then any process can
learn the labels of all other processes from messages it receives from its left neighbor. In the
following, we show that, after examining finitely many labels, a process can decide that it
learned (at least) all labels of R and so can determine whether it is the leader.

6.1. Variables of Ak

Each process p has six variables.
1. As defined in the specification, p has the constant p.id, the variables p.leader (of label

type), as well as p.done and p.isLeader (Booleans, initially False).
2. Process p also has a Boolean variable p.init, initially True.
3. Finally, p uses the variable p.string, a sequence of labels initially empty.

18



6.2. Messages of Ak

There are two kinds of messages: 〈x〉, where x is of label type, and 〈Finish〉.

6.3. Overview of Ak

Sequences of Labels. Given any process p of R, we define LSeq(p), to be the infinite sequence
of labels of processes, starting at p and continuing counterclockwise forever:

LSeq(pi) = pi.id, pi−1.id, pi−2.id . . . , where subscripts are modulo n.

For example, if the ring has three processes where p0.id = p1.id = A and p2.id = B, then
LSeq(p0) = ABAABA . . .

For any sequence of labels σ, we define σ|t as the prefix of σ of length t, and σ[i], for all
i ≥ 1, as the ith element (starting from the left) of σ.

If σ is an infinite sequence (resp. a finite sequence of length λ), we say that π = σ|m is
a repeating prefix of σ if σ[i] = π[1 + (i − 1) mod m] for all i ≥ 1 (resp. for all 1 ≤ i ≤ λ).
Informally, if σ is infinite, then σ is the concatenation πππ . . . of infinitely many copies of π,
otherwise σ is the truncation at length λ of the infinite sequence πππ . . .

Let srp(σ) be the repeating prefix of σ of minimum length. As R is asymmetric, we have:

Lemma 8. Let p be a process and let m ∈ {2n, . . . ,∞}. The length of srp(LSeq(p)|m) is n.

Proof. Let s be the smallest length of any repeating prefix of σ. LSeq(p)|n is a repeating
prefix of σ and thus s is defined, and s ≤ n.

If s < n, then the rotation by s is a non-trivial rotational symmetry of R, contradicting
the hypothesis that R is asymmetric.

The next lemma shows that any process p can fully determine R, i.e., p can determine
n, as well as the labeling of R, from any prefix of LSeq(p), provided that prefix contains at
least 2k + 1 copies of any label.

Lemma 9. Let p be a process, m > 0 and ` be a label. If LSeq(p)|m contains at least 2k+ 1
copies of `, then R is fully determined by LSeq(p)|m.

Proof. We note π = LSeq(p)|m and assume that it contains at least 2k+ 1 copies of `. First,
m > 2n. Indeed, there are at most k copies of ` in any subsequence of LSeq(p) of length no
more than n, by definition of Kk. So, at most 2k copies of ` in any subsequence of length
no more than 2n. Then, by Lemma 8, srp(π) = LSeq(p)|n. Hence, one can compute srp(π):
its length provides n and its contents is exactly the counterclockwise sequence of labels in
R, starting from p.

True Leader. We define the true leader of R as the process L such that LSeq(L)|n is a
Lyndon word [26], i.e., a non-empty string that is strictly smaller in lexicographic order than
all of its rotations. In the following, we note LW (σ) the rotation of the sequence σ which is
a Lyndon word.

19



Algorithm 2: Actions of Process p in Algorithm Ak.
A1 :: p.init → p.string ← p.id

p.init← False
send 〈p.id〉

A2 :: ¬p.init ∧ rcv 〈x〉 ∧ ¬Leader(p.string • x) → p.string ← p.string • x
send 〈x〉

A3 :: ¬p.init ∧ rcv 〈x〉 ∧ Leader(p.string • x) → p.string ← p.string • x
∧ ¬p.isLeader p.isLeader ← True

p.leader ← p.id
p.done← True
send 〈Finish〉

A4 :: ¬p.init ∧ rcv 〈Finish〉 ∧ ¬p.isLeader → p.leader ← LW (srp(p.string))[1]
p.done← True
send 〈Finish〉
(halt)

A5 :: ¬p.init ∧ rcv 〈x〉 ∧ p.isLeader → (nothing)
A6 :: ¬p.init ∧ rcv 〈Finish〉 ∧ p.isLeader → (halt)

In Algorithm Ak (see Algorithm 2), the true leader will be elected. Precisely, in Ak,
a process p uses the variable p.string to save a prefix of LSeq(p) at any step: p.string
is initially empty and consists of all the labels that p has learnt during the execution of
Ak so far. Lemma 9 shows how p can determine the label of the true leader. Indeed,
if p.string contains at least 2k + 1 copies of some label, srp(p.string) = LSeq(p)|n. If
srp(p.string) = LW (srp(p.string)), then p is the true leader. Otherwise, the label of the
true leader is the first label of LW (srp(p.string)), i.e., LW (srp(p.string))[1].

In Ak, we use the function Leader(σ) which returns True if the sequence σ contains at
least 2k + 1 copies of some label and srp(σ) = LW (srp(σ)), False otherwise.

Phases of Ak. Ak consists of two phases, which we call the string growth phase and the
finishing phase.

During the string growth phase, each process p builds a prefix of LSeq(p) in p.string.
First, p initiates a token containing its label, and also initializes p.string to p.id (A1-action).
The token moves around the ring repeatedly until the end of the string growth phase. When
p receives a label, p executes A2-action to append it to its string, and sends it to its right
neighbor. Thus, each process keeps growing p.string.

Eventually, L receives a label x such that L.string • x is long enough for L to determine
that it is the leader, see Lemma 9 and the definition of function Leader. In this case, L
executes A3-action: L appends L.string with x, ends the string growth phase, initiates
the finishing phase by electing itself as leader, and sends the message 〈Finish〉 to its right
neighbor. The message 〈Finish〉 traverses the ring, informing all processes that the election
is over. As each process p receives the message (A4-action), it knows that a leader has
been elected, can determine its label, LW (srp(p.string))[1], and then halts. Meanwhile, L
consumes every token (A5-action). When 〈Finish〉 returns to L, it executes A6-action to
halt, concluding the execution of Ak.

20



6.4. Correctness and Complexity Analysis
Theorem 7. Ak solves the process-terminating leader election for A ∩ Kk, for every given
k ≥ 1.

Proof. Let M = max {mlty(`) : ` is a label in R} and m = d(2k + 1)/Men. After receiving
at most m messages containing labels (the messages cannot be discarded before the election
of a leader, A5-action), by Lemma 9, every process will know R completely. Hence, by
definition, L can determine that it is the true leader. As soon as L realizes that it is the
leader, it will execute A3-action, sending the message 〈Finish〉 around the ring.

Every process but L will receive the message 〈Finish〉 and execute A4-action, which will
be its final action. Finally L executes A6-action, ending the execution. So Ak solves the
process-terminating leader election for A ∩Kk.

Theorem 8. Ak has time complexity at most (2k + 2)n, has message complexity at most
(2k + 1)n2 + n, and requires at most (2k + 1)nb+ 2b+ 3 bits in each process.

Proof. Let M = max {mlty(`) : ` is a label in R} and m = d(2k + 1)/Men. After at most
m time units, L can determine that it is the true leader and send a message 〈Finish〉. In
n additional time units, 〈Finish〉 traverses the whole ring and comes back to L to conclude
the execution. In the worst case, there are no duplicate labels, i.e., M = 1. Hence, the time
complexity of Ak is at most (2k + 2)n time units.

When the execution halts, all sent messages have been received. So, the number of
message sendings is equal to the number of message receptions. Each token initiated at the
beginning of the growing phase circulates in the ring until being consumed by L after it
realizes that it is the true leader. Similarly, 〈Finish〉 traverses the ring once and stopped
at L. Hence, each process receives at most as many messages as L. L receives 2k + 1
messages with the same label x to detect that it is the true leader (A3-action). When L
becomes leader, the received token 〈x〉 is consumed and L has received messages containing
other labels (at most n − 1 different labels) at most 2k times each. Then, L receives and
consumes all other tokens (at most n− 1) before receiving 〈Finish〉. Overall, L receives at
most (2k + 1)n+ 1 messages and so, the message complexity is at most (2k + 1)n2 + n.

From the previous discussion, the length of L.string is bounded by 2kn + 1. If p 6= L,
then p.string continues to grow after L executes A3-action until p executes A4-action by
receiving the message 〈Finish〉. Now, the FIFO property ensures that p.string is appended
at most n − 1 times more than L.string due to the remaining tokens. Thus the length of
p.string is always less than (2k+1)n. So, the space complexity is at most (2k+1)nb+2b+3
bits per process.

7. Algorithm Bk

We now give another solution, Algorithm Bk, to the process-terminating leader election
for the class A∩Kk, with fixed k ≥ 1. The space complexity of Bk is smaller than that of Ak,
but its time complexity is greater. The state diagram and the actions of Bk are respectively
given in Figure 6 and Algorithm 3.

21



Algorithm 3: Actions of Process p in Algorithm Bk.
A1 :: p.state = Init → p.state← Compute

p.guest← p.id
send 〈p.guest〉

(Computation During a Phase)
A2 :: p.state = Compute ∧ rcv 〈x〉 ∧ x > p.guest → (nothing)
A3 :: p.state = Compute ∧ rcv 〈x〉 ∧ x = p.guest → p.inner ++

∧ p.inner < k send 〈x〉
A4 :: p.state = Compute ∧ rcv 〈x〉 ∧ x < p.guest → p.state← Passive

send 〈x〉
(Phase Switching)
A5 :: p.state = Compute ∧ rcv 〈x〉 ∧ x = p.guest → p.state← Shift

∧ p.inner = k send 〈Phase_Shift, p.guest〉
A6 :: p.state = Shift ∧ rcv 〈Phase_Shift, x〉 → p.state← Compute

∧ (x 6= p.id ∨ p.outer < k) if p.id = x then p.outer ++
p.guest← x
p.inner ← 1
send 〈p.guest〉

(Passive Processes)
A7 :: p.state = Passive ∧ rcv 〈x〉 → send 〈x〉
A8 :: p.state = Passive ∧ rcv 〈Phase_Shift, x〉 → send 〈Phase_Shift, p.guest〉

p.guest← x
(Ending Phase)
A9 :: p.state = Shift ∧ rcv 〈Phase_Shift, x〉 → p.state←Win

∧ x = p.id ∧ p.outer = k p.isLeader ← True
p.leader ← p.id
p.guest← p.id
send 〈Finish, p.id〉

A10 :: p.state = Passive ∧ rcv 〈Finish, x〉 → p.state← Halt
p.leader ← x
p.done← True
send 〈Finish, x〉
(halt)

A11 :: p.state = Win ∧ rcv 〈Finish, x〉 → p.state← Halt
p.done← True
(halt)

7.1. Variables of Bk

Each process p has seven variables.
1. As defined in the specification, p has the constant p.id, the variables p.leader (of label

type), as well as p.done and p.isLeader (Booleans, initially False).
2. Process p also maintains a variable p.state ∈ {Init, Compute, Shift, Passive, Win,

Halt}, initially equals to Init. If p.state = Passive, then p is said to be passive,
otherwise p is said to be active. Notice also that Halt is the terminal state for every
process.

3. Finally, p has two counters p.inner and p.outer of range 1 . . . k, both initially equal to
1.

22



Init Shift

Compute
Win

p.isLeader

Passive
Halt
p.done

A1

A2, A3

A4

A5

A6

A7, A8

A9

A10

A11

Figure 6: State diagram of Bk.

7.2. Messages of Bk

Bk executes by phases. Three kinds of message are exchanged to manage these phases:
the token 〈x〉 is used during the computation of a phase, 〈Phase_Shift, x〉 is used to notify
that a phase is over, and 〈Finish, x〉 is used during the ending phase, where x is of label
type. Intuitively, we say that a process is in its ith phase, with i ≥ 1, if it received i − 1
messages 〈Phase_Shift,_〉.

7.3. Overview of Bk

Let k ≥ 1 and R ∈ A∩Kk. Like Ak, Bk elects the true leader of R, namely, the process
L ∈ R such that LSeq(L)|n is a Lyndon word, i.e., LSeq(L)|n is minimum among the se-
quences LSeq(q)|n of all processes q ∈ R, where sequences are compared using lexicographical
ordering.

During the execution, the processes that are (still) competing to be the leader are the
active ones. Initially, the set of active processes contains all processes: Act0 = {p0, ..., pn−1}.
An execution consists of phases where processes are deactivated, i.e., become passive. At the
end of a given phase i ≥ 1, the set of active processes is given by:

Acti =
{
p ∈ R : LSeq(p)|i = LSeq(L)|i

}
see Figure 7. During phase i ≥ 1, a process q is removed from Acti, when LSeq(q)[i] >
LSeq(L)[i]; more precisely, when q realizes that some process p ∈ Acti−1 satisfies LSeq(p)[i] <
LSeq(q)[i]. When i ≥ n, Acti is reduced to {L}, since R is asymmetric. Using k, Bk is able
to detect that at least n phases have been done, and so to terminate.

Phase Computation. The goal of the ith phase is to compute Acti, given Acti−1, namely
to deactivate each active process p such that LSeq(p)[i] > LSeq(L)[i]. To that purpose,
p assigns p.guest in such way that p.guest = LSeq(p)[i] during phase i. (How p.guest is
maintained in each phase will be explained later.)

During phase i ≥ 1, the value p.guest of every active process p circulates among active
processes: at the beginning of the phase, every active process sends its current guest to its

23



1

3
1

2

1

2
2

3

1

3
1

2

1

2
2

3

p2

p1

p0

p7

p6

p5

p4

p3

(a) 1st phase.

1

3
1

2

1

2
2

3

3

1
2

1

2

2
3

1

p2

p1

p0

p7

p6

p5

p4

p3

(b) 2nd phase.

1

3
1

2

1

2
2

3

1

2
1

2

2

3
1

3

p2

p1

p0

p7

p6

p5

p4

p3

(c) 3rd phase.

1

3
1

2

1

2
2

3

p2

p1

p0

p7

p6

p5

p4

p3

(d) 4th phase.

Figure 7: Extracts from an example of execution of Bk where k = 3, showing the active (in white) and
passive (in gray) processes at the beginning of each phase. The guest of a process is in the white bubble
next to the corresponding node.

right neighbor (A1-action for the first phase, A6-action for other phases). Since passive
processes are no more candidate, they simply forward the token (A7-action). When an
active process p receives a label x greater than p.guest, it discards this value (A2-action),
since x > p.guest ≥ LSeq(L)[i]. Conversely, when p is active and receives a label x lower
than p.guest, it turns to be passive, executing A4-action; nevertheless, it forwards x.

A process p, which is (still) active, can end the computation of its phase i once it has
considered the guest value of every other process that are active all along phase i (i.e.,
processes in Acti−1 that did not become passive during phase i). Such a process p detects
the end of the current phase when it has seen its current guest value (i.e., p.guest) k+1 times.
To that goal, we use the counter variable p.inner, which is initialized to 1 at the beginning
of each phase (p.inner is initialized to 1 and reset at each A6-action) and incremented each
time p receives the value p.guest while being active (A3-action) (once a process is passive
the variable inner is meaningless). So, the current phase ends for an active process p when
it receives p.guest while p.inner was already equal to k (A5-action).

Phase Switching. We now explain how p.guest is maintained at each phase. Initially, p.guest
is set to p.id and phase 1 starts for p (A1-action). Next, the value of p.guest for every p is
updated when switching to the next phase.

First, note that it is mandatory that every (active and passive) process updates its guest
variable when entering a new phase, i.e., after detecting the end of the previous phase, so that
the labels that circulate during the computation of the phase actually represent LSeq(p)[i]
for process p ∈ Acti−1. Now, FIFO links allow to enforce a barrier synchronization as follows.

At the end of phase i ≥ 1, Acti is computed, and every still active process p has the same
label prefix of length i, LSeq(p)|i, hence the same value for p.guest = LSeq(p)[i]. They are
all able to detect the end of phase i. So, they switch their state from Compute to Shift
and signal the end of the phase by sending a token 〈Phase_Shift, p.guest〉 (A5-action).

Tokens 〈Phase_Shift,_〉 circulate in the ring, through passive processes (A8-action)
until reaching another (or possibly the same) active process: when a process p (being passive
or active) receives 〈Phase_Shift, x〉:

1. it switches from phase i to i+ 1 by adopting x as new guest value, and

24



2. if p is passive, it sends 〈Phase_Shift, y〉 where y was its previous guest value; oth-
erwise, the shifting process is done and so p switches p.state from Shift to Compute
or Win and starts a new phase (A6-action or A9-action).

As a result, all guest values have eventually shifted by one process on the right for the next
phase.

Due to FIFO links and the fact that active processes switch to state Shift between two
successive phases, phases cannot overlap, i.e., when a label x is considered in phase i by any
active process in state Compute, x is the guest of some process q which is active in phase
i, such that LSeq(q)[i] = x.

Number of Phases. Phase switching stops for an active process p once p.guest has shifted
k + 1 times to its own label p.id. Indeed, when p.guest is shifted to p.id for the (k + 1)th

times, it is guaranteed that the number of phases executed by the algorithm is greater or
equal to n, because p.guest = LSeq(p)[i] in phase i and there is no more than k processes
with the label p.id. In this case, p is the true leader and every other process q is passive.

To detect this, we use at each process p the counter p.outer. It is initialized to 1 and
incremented by each active process p at each phase switching when the new guest value is
equal to p.id (A6-action). When p.outer reaches the value k+ 1 (or equivalently when p re-
ceives 〈Phase_Shift, p.id〉 while p.outer = k, see A9-action), p declares itself as the leader
and initiates the final phase: it sends a token 〈Finish, p.id〉; each other process successively
receives the token (A10-action), saves the label in the token in its leader variable, forwards
the token, and then halts. Once the token reaches p again (A11-action), it also halts.

7.4. Correctness and Complexity Analysis
Throughout this section, we consider an arbitrary ring R of A∩Kk, with fixed k ≥ 1. To

prove the correctness of Bk (Theorem 9), we first establish that its phases are well-defined
(see Lemma 10), e.g., they do not overlap. Then, Lemmas 11-16 prove the invariant of
the algorithm, by induction on the phase number. Finally, Theorem 10 gives a complexity
analysis of Bk. (All the proofs below are easier to follow using the state diagram of Figure 6.)

A process p is in Phase i ≥ 0 if it shifts i times the value of its variable p.guest: the
shift precisely occurs when p executes the assignment of p.guest. Such shifts occur in A1-
action, A6-action, A9-action, or A8-action. Notice that the three later actions are executed
upon the reception of some token 〈Phase_Shift,_〉. As we will see below, a barrier
synchronization is achieved between each phase using these tokens.

Lemma 10. Let i ≥ 1. A message received in Phase i has been sent in Phase i. Conversely,
if a message has been sent in Phase i, it can only be received in Phase i.

Proof. First, we prove some preliminary results.
Claim 1: Between two shifts at p.guest, each process p has sent and received at least one
message.
Proof of Claim 1: A process p can only update p.guest by executing A1, A6, A8, or A9-
action. Furthermore, A1-action is always executed first and only once. Assume p updates

25



p.guest in γi 7→ γi+1 and later in γj 7→ γj+1. So, p executes A6, A8, or A9-action in
γj 7→ γj+1. Now, if p executes A8-action, it receives a message 〈Phase_Shift,_〉 and
sends 〈Phase_Shift, p.guest〉 before updating p.guest during γj 7→ γj+1. If p executes A6
or A9-action, it receives a message 〈Phase_Shift,_〉 in step γj 7→ γj+1 before updating
p.guest. Moreover, in that case, the previous action p has executed is necessarily A5-action,
so p sent a message 〈Phase_Shift, p.guest〉 between γi+1 and γj.

Assume now, by the contradiction, that some process q receives in Phase j ≥ 0 a message
m sent by its predecessor p in Phase i ≥ 0 such that i 6= j. Without loss of generality, assume
m is the first message subject to that condition.
Claim 2: i ≥ 1 and j ≥ 1

Proof of Claim 2: p cannot send messages before executing A1-action, i.e., before setting
p.guest to p.id and starting its first phase. So, i ≥ 1. Similarly, q cannot receive any message
before executing A1-action, so j ≥ 1.

Now, since m is the first problematic message, by Claim 1 and owing the fact that the
links are FIFO, we can deduce that j = i− 1 or j = i+ 1. Let consider the two cases.

• If j = i + 1, then q updates its guest once more than p. Let consider the last time
q updates its guest before receiving m, i.e., the last time q executes A1, A6, A8, or
A9-action to switch from its (j − 1)th to its jth phase (i.e., to switch from its ith to its
jth phase). By Claim 2, i ≥ 1, so j ≥ 2, and so, it does no execute A1-action to switch
from its (j − 1)th to its jth phase, since A1 is always executed first and only once.
Now, if q executes A6, A8, or A9-action, it receives a message m′ of the form
〈Phase_Shift,_〉 in Phase j − 1. Since m is the first problematic message, m′
was sent by p in Phase j − 1. Either p executes A8-action and switches to Phase j,
or p executes A5-action to send m′. Now, in this latter case, p necessarily executes
A6-action to send the next message after m′, and p switches to Phase j before sending
that message. In both cases, p switches to Phase j before sending m, a contradiction.

• If j = i − 1, then p updates its guest once more than q. Let consider the last time
p updates its guest before sending m, i.e., the last time p executes A1, A6, A8, or
A9-action to switch from its (i− 1)th to its ith phase. Let consider each cases:
– If p executes A1-action, then i = 1 since A1 is always executed first and only

once. Now, by Claim 2, j ≥ 1, a contradiction.
– If p executes A6 or A9-action, it necessarily executes A5-action beforehand and

so sends a message m′ = 〈Phase_Shift,_〉 to q in Phase i − 1. Since m is
the first problematic message, q receives m′ in Phase i− 1 executing A6, A8, or
A9-action. Either action makes q switching from Phase i − 1 to Phase i before
receiving m, a contradiction.

– If p executes A8-action, it sends a message m′ = 〈Phase_Shift,_〉 before
switching to phase i. Again, since m is the first problematic message, q receives
m′ in Phase i−1 executingA6,A8, orA9-action. Either action makes q switching
from Phase i− 1 to Phase i before receiving m, a contradiction.

26



In the following, we say that a process pi is deadlocked if pi is disabled although a message
m is ready to be received by pi, i.e., pi is disabled while m is the head message of S(pi−1,pi).

Definition 3 (HIi). Let X = min
{
x : LSeq(L)|x contains k + 1 occurrences of L.id

}
. For

any i ∈ {1, . . . , X}, we define HIi as the following predicate: ∀p ∈ R,∀j, 1 ≤ j < i,
1. p.guest is equal to LSeq(p)[j] in Phase j,
2. p is not deadlocked during Phase j, and
3. p eventually exits Phase j and, p ∈ Actj if and only if p exits its phase j using A6 or

A9-action.

Lemma 11. For all i ∈ {1, . . . , X}, HIi holds.

Lemma 11 is proven by induction on i. The base case (i = 1) is trivial. The induction
step (assume HIi and show HIi+1, for i ∈ {1, . . . , X − 1}) consists in proving the correct
behavior of Phase i. To that goal, we prove Lemmas 12, 15, and 16 which respectively show
Conditions 1, 2, and 3 for HIi+1.

Lemma 12. For i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R,∀j < i+ 1, p.guest is equal
to LSeq(p)[j] in Phase j.

Proof. Let i ∈ {1, . . . , X − 1} such that HIi holds. First note that for every process p, we
have LSeq(p)[1] = p.id = p.guest in Phase 1. Hence the lemma holds for i = 1. Now assume
that i > 1. By HIi, we have that for every 1 ≤ j < i, LSeq(p)[j] = p.guest at Phase j.

We consider now the case of Phase i. Since i > 1, a process can only update its variable
guest using A6, A8 or A9-action, namely during phase switching (A1-action is always
executed first and only once). Let p be a process at Phase i (by 3, any process eventually
enters Phase i) and consider, in the execution, the step where p switches from Phase i− 1 to
Phase i: p receives from its left neighbor, q, a message 〈Phase_Shift, x〉, where x was the
value of q.guest when q sent the message (see A5 and A8-actions). From Lemma 10, and
since p receives it at Phase i−1, q sends this message at Phase i−1 also. Hence, x = q.guest
at Phase i− 1. Now, when p receives the message, it assigns its variable p.guest to x (A6,
A8, or A9-action): hence, at Phase i, p.guest = LSeq(q)[i− 1] = LSeq(p)[i].

By Lemma 10, if p receives 〈Phase_Shift,_〉 at Phase i ≥ 1, it was sent by its left
neighbor in Phase i. So, by Lemma 12, we have:

Corollary 6. For i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, if p exits Phase j ≤ i by
A9-action, then LSeq(p)[j] equals p.id.

Lemma 13. For i ∈ {1, . . . , X − 1}, if HIi holds, then no A9-action is executed before
Phase i+ 1.

Proof. Assume by the contradiction that HIi holds and some A9-action is executed before
Phase i+ 1. Consider the first time it occurs: assume some process p executes A9-action in
some Phase j ≤ i. By Corollary 6, using A9-action, p receives a message 〈Phase_Shift, x〉

27



with x = p.id = LSeq(p)[j]. Furthermore, we have that p.outer = k at Phase j. Hence p.id
was observed k+ 1 times since the beginning of the execution: p.guest shifted k times to the
value p.id and the value x in the received message is also p.id. By Lemma 12, the sequence of
values of p.guest is equal to LSeq(p)|j−1. Adding x = LSeq(p)[j] at the end of the sequence,
we obtain LSeq(p)|j. Hence, j = min{x : LSeq(p)|x contains p.id (k + 1) times} and n < j
(this implies that j ≥ 2, hence j − 1 ≥ 1). As p executes A9-action in Phase j, it is active
during its whole jth phase and hence exits its phase j − 1 using A6-action. By Condition 3
in HIi and since j − 1 < i, p ∈ Actj−1. By definition of Actj−1, since j > n, Actj−1 = {L},
hence p = L. As a consequence, j = X, a contradiction.

In the following, we show that processes cannot deadlock (Lemma 15).

Lemma 14. While a process is in state Compute (resp. Shift), the next message it has
to consider cannot be of the form 〈Phase_Shift,_〉 (resp. 〈x〉).

Proof. Assume by the contradiction that some process p is in state Compute (resp. Shift),
but receives an unexpected message 〈Phase_Shift,_〉 (resp. 〈x〉) meanwhile. We only
examine the first case, the other case being similar. The unexpected corresponding token may
have been transmitted through passive processes to p, but was first initiated by some active
process q (A5-action). Since A5-action was enabled at process q, q received k messages
〈q.guest〉 during one and the same phase. By the multiplicity, for at least one of those
messages, the corresponding token m was initiated by q using A1 or A6-action. So, m has
traversed the entire ring usingA3-A5, andA7-actions. Lemma 10 ensures that this traversal
occurs during one and the same phase. As a consequence, q.guest ≤ r.guest for every process
r that were active when receiving m (none of the aforementioned actions provoke a phase
shifting). In particular, q.guest ≤ p.guest.

As q executed A5-action, k messages 〈q.guest〉 were sent by q (one action, either A1
or A6-action, and k − 1 A3-actions) during the traversal of m, and so during the same
phase again. Hence, p has also received 〈q.guest〉 k times during the same phase. Thus,
p.guest ≤ q.guest since p is still active, and so p.guest = q.guest. Now, counters inner
of p and q counted accordingly during this phase: p.inner should be greater than or equal
to k. Hence p should have executed A5-action before receiving the unexpected message, a
contradiction.

Lemma 15. For every i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, p is not deadlocked
before Phase i+ 1.

Proof. Let i ∈ {1, . . . , X − 1} such that HIi holds. Let p be any process. If p is in state
Init or Passive in Phase i, then it cannot deadlock since the states Init and Passive are
not blocking by definition of the algorithm. From Lemma 13 since HIi holds, p cannot take
state Win before Phase i + 1. Hence, it cannot take state Halt by A11-action. As no
A9-action is executed during Phase i, no message 〈Finish,_〉 circulates in the ring during
this phase (Lemma 10): A10-action cannot be enabled, hence p cannot take state Halt
by A10-action as well. If p is in state Compute (resp. Shift), it cannot receive any
message 〈Phase_Shift,_〉 (resp. 〈x〉) by Lemma 14. Moreover, it cannot have received

28



any message 〈Finish,_〉 since no such message was sent during this phase (see Lemma 13
which applies as HIi holds). As a conclusion, there is no way for p to deadlock during Phase
i.

Lemma 16. For every i ∈ {1, . . . , X − 1}, if HIi holds, then ∀p ∈ R, ∀j < i+1, p eventually
exits Phase j and, p ∈ Actj if and only if p exits its phase j by A6 or A9-action.

Proof. Let i ∈ {1, . . . , X − 1} such that HIi holds.
Claim 1: ∀p, if p ∈ Acti−1 (resp. /∈ Acti−1), p initiates (resp. does not initiate) a token
〈LSeq(p)[i]〉 (resp. any token) at the beginning of Phase i.
Proof of Claim 1: If i = 1, every process p is in Act0 and starts its phase 1, i.e., its execution,
by executing A1-action and sending its label p.id = LSeq(p)[1]. Otherwise (i > 1), by
Lemma 13, no process can execute A9-action before Phase i + 1. So by HIi, every process
p ∈ Acti−1 exits Phase i− 1, and so starts Phase i, by executing A6-action and sending its
label p.guest = LSeq(p)[i] (Lemma 12). By HIi, if p is not in Acti−1, p cannot exit Phase
i − 1 by executing A6-action and so it cannot initiate a token 〈p.id〉 at the beginning of
Phase i.

Claim 2: Any process p receives 〈LSeq(L)[i]〉 k times during its phase i.
Proof of Claim 2: Consider a token m = 〈LSeq(L)[i]〉 that circulates the ring (at least
one is circulating since L ∈ Acti−1 initiates one at the beginning of Phase i, see Claim
1). m is always received in Phase i (see Lemma 10) all along its ring traversal. From HIi
and Lemma 15, no process is deadlocked before its phase i + 1. Hence, when m reaches a
process in state Passive, it is forwarded (A7-action) and when m reaches a process q in
state Compute (with q.guest = LSeq(q)[i] ≥ LSeq(L)[i], by Lemma 12 and definition of
L), it is also forwarded unless A5-action is enabled at q. Eventually, A5-action occurs at
every process q (at least one, e.g., L) such that LSeq(q)[i] = LSeq(L)[i], since q.inner is
initialized to 1 at the beginning of the phase (A1 or A6-action) and incremented if q receives
LSeq(q)[i]. Hence, q has received k messages 〈LSeq(L)[i]〉 during the phase.

As a consequence, between any two processes q and q′ in Acti−1 (in state Compute in
Phase i, see HIi) such that LSeq(q)[i] = LSeq(q′)[i] = LSeq(L)[i], k tokens 〈LSeq(L)[i]〉
circulates during phase i; any process between q and q′ has forwarded them (and so received
them).

By HIi, the lemma holds for all j < i. Let now consider the case j = i. If p ∈ Acti,
then LSeq(p)|i = LSeq(L)|i and in particular, LSeq(p)[i] = LSeq(L)[i]. As Acti ⊆ Acti−1, p
is active at the end of Phase i − 1 and as no A9-action can take place before Phase i + 1
(Lemma 13), p is in state Compute during the computation of Phase i. Since p.guest =
LSeq(L)[i] ≤ LSeq(q)[i] for any q ∈ Acti−1 (Lemma 12, definition of L), and as any token 〈x〉
that circulates during the Phase is initiated by some process q ∈ Acti−1 with x = LSeq(q)[i]
(HIi and Claim 1), p never executes A4-action during Phase i. Furthermore, p receives k
times p.guest during the phase (Claim 2), hence it executes A5-action followed by A6 or
A9-action to exit Phase i.

29



Conversely, if p /∈ Acti, it may be or not in Acti−1. If p /∈ Acti−1, then from HIi, p
exits Phase i− 1 by A8-action; it remains in state Passive all along Phase i and can only
exit Phase i by A8-action. Otherwise, p ∈ Acti−1, i.e., LSeq(p)|i−1 = LSeq(L)|i−1 but
LSeq(p)[i] > LSeq(L)[i]. p executes A4-action at least when receiving the first occurrence
of 〈LSeq(L)[i]〉 (Claim 2) and takes state Passive. Once p is passive, it remains so and can
only exit Phase i using A8-action.

Finally, at least L eventually executes A5-action: the phase switching occurs (started by
L or another process) causing all processes to exit Phase i.

This ends the proof of Lemma 11.

Theorem 9. Bk solves the process-terminating leader election for A ∩Kk.

Proof. By Lemma 11 and definition of X, Phase X eventually starts and L is the only
process that exits Phase X executing A6 or A9-action. Now, by Lemma 11 and Corollary 6,
∀i ∈ {1, . . . , X}, L.guest = LSeq(L)[i] during Phase i. Hence, when L begins its Xth phase,
it is the (k + 1)th time that it sets L.guest to L.id. Since L.outer is initialized to 1 and
incremented when L enters a new phase with L.guest = L.id, L enters its phase X by A9-
action. So, L sends a token 〈Finish, L.id〉. L also sets L.isLeader and L.leader to True
and L.id, resp. Every other process p receives the token in Phase X (Lemma 10) while being
in state Passive, since p exits its (X − 1)th phase executing A8-action (Lemma 11). So, p
saves L.id in its variable leader, then transmits the token to its right neighbor, and finally
halts (A10-action). Eventually L receives the token and halts (A11-action).

Theorem 10. Bk has time complexity at most (k + 1)2n2, message complexity at most
2k2n2 + (3k + 1)n2 + (1− 2k)n, and requires 2 dlog ke+ 3b+ 5 bits per process.

Proof. A phase ends when an active process sees its guest k+1 times. This requires (k+1)n
time units. There is exactly X phases and X ≤ (k + 1)n. Thus, the time complexity of Bk

is at most (k + 1)2n2.
During the first phase, every process starts by sending its id. Since a phase involves

at most (k + 1)n actions per process, each process forwards labels at most (k + 1)n times.
Finally, to end the first phase, every process sends and receives 〈Phase_Shift,_〉. Hence,
at most (k + 1)n2 + n messages are sent during the first phase. Moreover, only processes
that have the same label as L (at most k) are still active after the first phase.

For every phase i > 1, let d = mlty(min{p.guest : p ∈ Acti−1}). When phase i starts,
every active process (at most k) sends its new guest. When the first message ends its first
traversal (kn messages), every process that becomes passive in the phase is already passive.
Then, the variables inner of the remaining active processes increment of d each tour of ring
by a message. So the remaining messages (at most d) do at most k

d
traversals (n hops): at

most kn messages. Overall, the phase requires at most 2kn messages exchanged. As there
is at most (k + 1)n − 1 phases after the first one, overall there are at most 2k2n2 + (3k +
1)n2 + (1− 2k)n messages exchanged.

Finally, for every process p, p.inner and p.outer are initialized to 1 and they are never
incremented over than k. Hence, every process requires 2 dlog ke+ 3b+ 5 bits.

30



Class Impossibility results
Kk Message-terminating leader election impossible
U∗ Process-terminating leader election impossible
A Process-terminating leader election impossible

Class Time (process-terminating) Bits exchanged (message-terminating)
U∗ ∩ Kk Ω(kn) Ω(kn+ n2)
A ∩Kk Ω(kn) Ω(kn+ n2)

Class Algorithm Time Messages Memory
U∗ ∩ Kk Uk ≤ (k + 2)n ≤ 3n2 + (k − 1)n dlog(k + 1)e+ 2b+ 4

A ∩Kk
Ak ≤ (2k + 2)n ≤ (2k + 1)n2 + n 2(k + 1)nb+ 2b+ 3
Bk ≤ (k + 1)2n2 ≤ 2k2n2 + (3k + 1)n2 + (1− 2k)n 2 dlog ke+ 3b+ 5

Table 1: Summary of the results.

8. Conclusion and Perspectives

We have studied the leader election problem in unidirectional ring networks with homonym
processes. Our results are summarized in Table 1. Our process-terminating algorithm for
U∗ ∩ Kk (with k ≥ 1) is asymptotically optimal in both time and memory requirements.
We have also proposed two process-terminating algorithms, Ak and Bk, for the more general
class A ∩ Kk (with k ≥ 1). Ak is asymptotically optimal in time (O(kn)), but requires an
important memory requirement (O(knb) bits per process). In contrast, Bk is asymptotically
optimal in terms of memory requirement (O(log k + b)), but has a higher time complexity
(O(k2n2)).

8.1. Short-term Perspectives
Finding the best trade-off process-terminating algorithm for the class A∩Kk is a direct

extension of our work. Furthermore, the amount of bits exchanged in an execution of Uk

(O((kn + n2)b) bits, where b is the number of bits required to store a label) is very close
to the lower bound we have proven (Ω(kn + n2) bits). (N.b., it is typically assumed that
b = O(log n).) On the contrary, the number of bits exchanged in an execution of Ak or
Bk (respectively O(n2(2k + 1)b) and O(k2n2b)) is greater. Whether or not it is possible to
reduce the amount of exchanged information without degrading the other performances of
the algorithms is worth investigating.

8.2. Long-term Perspectives
An interesting long-term perspective of our work would be to investigate fault-tolerant

leader election in homonymous systems.

Crash Failures. In the context of crash failures, leader election in fully-identified rings have
already been investigated in [27]: after a crash, the topology is re-organized as a ring where
the node with the highest calculated priority is elected. Notice that this paper also considers

31



the join of new nodes. Then, to the best of our knowledge, in homonymous crash-prone
systems, only the consensus problem has been studied in fully-connected networks; see [28].
However, consensus is easier to solve than leader election in message passing since leader
election requires a perfect failure detector, while consensus can be achieved with an unreliable
one [29]. Hence, finding the weakest assumptions under which leader election is solvable in
homonymous crash-prone systems is very challenging.

Byzantine Failures. If we address now Byzantine failures (which model malicious process
behaviors) in the context of homonymous message passing systems, only results about the
consensus problem (also called Byzantine agreement in that context) are available [30, 31].
Again, consensus is easier to solve than leader election in these settings. Indeed, a perfect
Byzantine detector is necessary to solve leader election, while consensus can be performed
using an unreliable one [32]. Again, this makes very attractive the problem achieving leader
election in homonymous Byzantine-prone systems under weak assumptions.

Rational Processes. Finally, the basic aim of Byzantine processes is to make the election fail,
e.g., by electing two processes. Another interesting approach is to consider a coalition of
so-called rational processes that try to influence the result of the election, e.g., to elect one
member of their group. The problem of election that withstands such collusions has been
introduced and investigated as the fair leader election problem in a recent paper [33]. In
particular, authors propose a randomized solution for ring networks which assumes that the
processes know the whole set of identifiers. Weakening such an assumption while additionally
considering homonymous processes is also a very challenging perspective of our work.

References

[1] D. Angluin, Local and global properties in networks of processors, in: Proceedings of
STOC’80, 1980, pp. 82–93 (1980).

[2] Z. Xu, P. K. Srimani, Self-stabilizing anonymous leader election in a tree, Intl. J. of
Foundations of Computer Science 17 (2) (2006) 323–336 (2006).

[3] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc., 1996 (1996).

[4] I. Stoica, R. T. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup protocol
for internet applications, IEEE/ACM Trans. Netw. 11 (1) (2003) 17–32 (2003).
doi:10.1109/TNET.2002.808407.
URL https://doi.org/10.1109/TNET.2002.808407

[5] A. I. T. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: R. Guerraoui (Ed.), Middleware 2001,
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
Germany, November 12-16, 2001, Proceedings, Vol. 2218 of Lecture Notes in Com-
puter Science, Springer, 2001, pp. 329–350 (2001). doi:10.1007/3-540-45518-3_18.
URL https://doi.org/10.1007/3-540-45518-3_18

32



[6] P. Boldi, S. Vigna, An effective characterization of computability in anonymous net-
works, in: J. L. Welch (Ed.), Distributed Computing, 15th International Conference,
DISC 2001, Lisbon, Portugal, October 3-5, 2001, Proceedings, Vol. 2180 of Lecture
Notes in Computer Science, Springer, 2001, pp. 33–47 (2001). doi:10.1007/3-540-45414-
4_3.
URL https://doi.org/10.1007/3-540-45414-4_3

[7] H. Attiya, A. Gorbach, S. Moran, Computing in totally anonymous asyn-
chronous shared memory systems, Inf. Comput. 173 (2) (2002) 162–183 (2002).
doi:10.1006/inco.2001.3119.
URL https://doi.org/10.1006/inco.2001.3119

[8] H. Buhrman, A. Panconesi, R. Silvestri, P. M. B. Vitányi, On the importance of having
an identity or, is consensus really universal?, Distributed Comput. 18 (3) (2006) 167–
176 (2006). doi:10.1007/s00446-005-0121-z.
URL https://doi.org/10.1007/s00446-005-0121-z

[9] D. Chaum, E. van Heyst, Group signatures, in: EUROCRYPT, 1991, pp. 257–265
(1991).

[10] R. L. Rivest, A. Shamir, Y. Tauman, How to leak a secret, in: C. Boyd (Ed.), Advances
in Cryptology — ASIACRYPT 2001, Springer Berlin Heidelberg, Berlin, Heidelberg,
2001, pp. 552–565 (2001).

[11] H. Pan, E. Hou, N. Ansari, Re-note: An e-voting scheme based on ring signature and
clash attack protection, in: 2013 IEEE Global Communications Conference (GLOBE-
COM), 2013, pp. 867–871 (2013).

[12] P. P. Tsang, V. K. Wei, Short linkable ring signatures for e-voting, e-cash and attesta-
tion, in: R. H. Deng, F. Bao, H. Pang, J. Zhou (Eds.), Information Security Practice
and Experience, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 48–60 (2005).

[13] D. Mödinger, H. Kopp, F. Kargl, F. J. Hauck, A flexible network approach to privacy
of blockchain transactions, in: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), 2018, pp. 1486–1491 (2018).

[14] A. Shaker, D. Reeves, Self-stabilizing structured ring topology p2p systems, in: Pro-
ceedings - Fifth IEEE International Conference on Peer-to-Peer Computing, P2P 2005,
Vol. 2005, 2005, pp. 39– 46 (01 2005). doi:10.1109/P2P.2005.34.

[15] A. Forestiero, C. Mastroianni, Description of the self-chord P2P application, in:
G. Fortino, A. Garro, L. Palopoli, W. Russo, G. Spezzano (Eds.), Proceedings of the
12th Workshop on Objects and Agents, Rende (CS), Italy, Jul 4-6, 2011, Vol. 741 of
CEUR Workshop Proceedings, CEUR-WS.org, 2011, pp. 175–177 (2011).
URL http://ceur-ws.org/Vol-741/DEM03_ForestieroMastroianni.pdf

33



[16] M. Yamashita, T. Kameda, Electing a leader when processor identity numbers are not
distinct (extended abstract), in: Proceedings of WDAG’89, 1989, pp. 303–314 (1989).

[17] P. Flocchini, E. Kranakis, D. Krizanc, F. L. Luccio, N. Santoro, Sorting and election in
anonymous asynchronous rings, Journal of Parallel and Distributed Computing 64 (2)
(2004) 254–265 (2004).

[18] S. Dobrev, A. Pelc, Leader election in rings with nonunique labels, Fundamenta Infor-
maticae 59 (4) (2004) 333–347 (2004).

[19] J. Chalopin, E. Godard, Y. Métivier, Election in partially anonymous networks with
arbitrary knowledge in message passing systems, Distributed Computing 25 (4) (2012)
297–311 (2012).

[20] C. Delporte-Gallet, H. Fauconnier, H. Tran-The, Leader election in rings with
homonyms, in: Proceedings of NETYS’14, 2014, pp. 9–24 (2014).

[21] D. Dereniowski, A. Pelc, Topology recognition and leader election in colored networks,
Theoretical Computer Science 621 (2016) 92–102 (2016).

[22] K. Altisen, A. K. Datta, S. Devismes, A. Durand, L. L. Larmore, Leader election in
rings with bounded multiplicity (short paper), in: Proceedings of SSS’16, 2016, pp. 1–6
(2016).

[23] K. Altisen, A. K. Datta, S. Devismes, A. Durand, L. L. Larmore, Leader election in
asymmetric labeled unidirectional rings, in: Proceedings of IPDPS’17, 2017, pp. 182–
191 (2017).

[24] G. Tel, Introduction to Distributed Algorithms, Cambridge Univ. Press, 2000 (2000).

[25] G. L. Peterson, An o(n log n) unidirectional algorithm for the circular extrema prob-
lem, ACM Transactions on Programming Languages and Systems 4 (4) (1982) 758–762
(1982).

[26] R. C. Lyndon, On burnside’s problem, Transactions of the American Mathematical
Society 77 (1954) 202–215 (1954).

[27] T. Biswas, R. Bhardwaj, A. Ray, P. Kuila, A novel leader election algorithm based on
resources for ring networks, International Journal of Communication Systems 31 (2018)
e3583 (04 2018). doi:10.1002/dac.3583.

[28] C. Delporte-Gallet, H. Fauconnier, H. Tran-The, Uniform consensus with homonyms
and omission failures, in: D. Frey, M. Raynal, S. Sarkar, R. K. Shyamasundar, P. Sinha
(Eds.), Distributed Computing and Networking, 14th International Conference, ICDCN
2013, Mumbai, India, January 3-6, 2013. Proceedings, Vol. 7730 of Lecture Notes in
Computer Science, Springer, 2013, pp. 161–175 (2013). doi:10.1007/978-3-642-35668-
1_12.
URL https://doi.org/10.1007/978-3-642-35668-1_12

34



[29] S.-H. Park, About the relationship between election problem and failure detector in
asynchronous distributed systems, in: Proceedings of the 1st International Conference
on Computational Science: PartI, ICCS’03, Springer-Verlag, Berlin, Heidelberg, 2003,
p. 185–193 (2003).

[30] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A. Kermarrec, E. Ruppert, H. Tran-
The, Byzantine agreement with homonyms, Dist. Comp. 26 (5-6) (2013) 321–340 (2013).

[31] C. Delporte-Gallet, H. Fauconnier, H. Tran-The, Byzantine agreement with
homonyms in synchronous systems, Theor. Comput. Sci. 496 (2013) 34–49 (2013).
doi:10.1016/j.tcs.2012.11.012.
URL https://doi.org/10.1016/j.tcs.2012.11.012

[32] K. P. Kihlstrom, L. E. Moser, P. M. Melliar-Smith, Byzantine fault detectors for solving
consensus, The Computer Journal 46 (1) (2003) 16–35 (2003).

[33] A. Yifrach, Y. Mansour, Fair leader election for rational agents in asynchronous rings
and networks, in: C. Newport, I. Keidar (Eds.), Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom,
July 23-27, 2018, ACM, 2018, pp. 217–226 (2018). doi:10.1145/3212734.3212767.
URL https://doi.org/10.1145/3212734.3212767

35


