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Abstract

In this paper, we prove that a graph G with no Ks,s-subgraph and twin-width d has r-admissibility
and r-coloring numbers bounded from above by an exponential function of r and that we can
construct graphs achieving such a dependency in r.
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1. Introduction

In this paper we consider the twin-width graph parameter, defined by Bonnet, Kim, Thomassé
and Watrigant [5] as a generalization of a width invariant for classes of permutations defined by
Guillemot and Marx [10]. This parameter was intensively studied recently in the context of many
structural and algorithmic questions such as FPT model checking [5], graph enumeration [1],
graph coloring [3], matrices and ordered graphs [4], and transductions of permutations [2]. (We
postpone the formal definition of twin-width to Section 2.1.)

It is known that a graph class with bounded twin-width excludes some biclique as a subgraph
if and only if it has bounded expansion [1]. Recall that a class C has bounded expansion if, for
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each integer r the class of all the minors of graphs of C obtained by contracting vertex disjoint
connected subgraphs with radius at most r and deleting some edges and vertices have bounded
average degree, which may depend on r. (We refer the interested reader to [12] for an in-depth
study of classes with bounded expansion.) Among the numerous characterizations of classes with
bounded expansion, three relate to the generalized colouring numbers wcolr and scolr introduced
by Kierstead and Yang [11] and to the r-admissibility admr introduced by Dvořák [7]. Indeed, as
proved by Zhu [13], the following are equivalent for a class C :

1. C has bounded expansion;
2. sup{wcolr(G) : G ∈ C } < ∞ for every integer r;
3. sup{scolr(G) : G ∈ C } < ∞ for every integer r.

Moreover, using the inequality admr(G) ≤ scolr(G) ≤ wcolr(G) ≤ admr(G)r+1−1
admr(G)−1 (see [7]), we get

yet another equivalent property.

4. sup{admr(G) : G ∈ C } < ∞ for every integer r.

One can show [1] that for every integer r there exists a function fr : N × N → N such
that if G is a graph with twin-width t and no Ks,s-subgraph, then we have wcolr(G) ≤ fr(t, s).
Similar bounds also exist for scolr and admr. However, the proof given in [1] that biclique-free
graphs with bounded twin-width have bounded expansion does not indicate how to compute such
binding functions.

In this paper, we prove that a graph G with no Ks,s-subgraph and twin-width d has admr,
scolr and wcolr bounded from above by an exponential function of r, and that we can construct
graphs achieving such a dependency in r. In particular, scolr(G) ≤ (dr +3)s (Theorem 1). On the
other hand, one can choose G such that scolr(G) ≥ ( d−4

8 )r s (Corollary 4).

2. Definitions and Notations

2.1. Twin-width

We define twin-width with the help of trigraphs. The notion of trigraphs used in this work
is slightly different from the notion used in [5]. Both notions are nevertheless equivalent up
to isomorphism. A trigraph G on a graph G = (V, E) is a binary structure with two binary
relations, the black adjacency E and the red adjacency R, whose domain is a partition of V , and
whose black and red adjacencies are exclusive (that is: no two elements of G can be adjacent
in both relations). Thus, the elements of G are subsets of the vertices of G. To distinguish the
elements of G from the vertices of G, we will call them nodes and denote them by capital letters,
like X,Y,Z. The set of nodes of G is denoted by V(G). The elements of E(G) and R(G) are
respectively called black edges and red edges. The set of neighbours NG(X) of a node X in a
trigraph G consists of all the nodes adjacent to X by a black or red edge; the set of E-neighbours
NE

G(X) consists of all nodes adjacent to X by a black edge and the set of R-neighbours NR
G(X)

consists of all nodes adjacent to X by a red edge. A d-trigraph is a trigraph G with maximum
red degree at most d, i.e., |NR

G(X)| ≤ d for all X ∈ V(G).
Let G be a trigraph on a graph G and let X and Y be (non-necessarily adjacent) nodes of

G. We say a trigraph G′ on G is obtained from G by contracting X and Y if V(G′) = V(G) \
{X,Y} ∪ {X∪Y}, NG′ (X∪Y) = NG(X)∪NG(Y), NE

G′ (X∪Y) = NE
G(X)∩NE

G(Y) (and NR
G′ (X∪Y) =

NG′ (X ∪ Y) \ NE
G′ (X ∪ Y)), and the red and black adjacencies between all other nodes of G′ are

as in G.
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A d-contraction sequence of a graph G = (V, E) with n vertices is a sequence Gn, . . . ,G1 of
d-trigraphs on G, where Gn is the trigraph isomorphic to G defined by V(Gn) = {{v} : v ∈ V},
E(Gn) = {({u}, {v}) : (u, v) ∈ E(G)}, and R(Gn) = ∅, G1 is the trigraph with single node V , and
Gi is obtained from Gi+1 by performing a single contraction. The minimum d such that there
exists a d-contraction sequence of a graph G is the twin-width of G, denoted by tww(G). For a
contraction sequence Gn, . . . ,G1, we define the universe U =

⋃n
i=1 V(Gi) to be the union of all

node sets.
A given contraction sequence Gn, . . . ,G1 on a graph G = (V, E) (with universe U) can also

be reversed to G1, . . . ,Gn and seen as an uncontraction sequence where we start with a single
node (the trigraph G1) and a node Z of Gi is split into two nodes X and Y with no edge, black
edge or red edge between them in Gi+1. With this picture in mind, we define for every X ∈ U, the
birth time bt(X) as the minimum integer i with X ∈ V(Gi) and the split time st(X) as the maximum
integer i with X ∈ V(Gi). Observe that for every i ∈ {1, . . . , n − 1}, there is a unique X ∈ U with
st(X) = i; the subsets X ∈ U with st(X) = n are the nodes of Gn, that is the singletons {v} with
v ∈ V(G). If X ∈ U \ {V}, the parent of X is the minimal set Y ∈ U with Y ⊋ X. Conversely, if
|X| > 1, the children of X are the two maximal sets Y and Z inU with Y ⊊ X and Z ⊊ X. Note
that {Y,Z} is a partition of X and that bt(Y) = bt(Z) = st(X) + 1.

2.2. Generalized Colouring Numbers and Admissibility

Let Π(G) be the set of all linear orders of the vertices of the graph G, and let L ∈ Π(G). (We
denote by ≤L the corresponding binary relation for better readability.) Let u, v ∈ V(G), and let r
be a positive integer.

We say that u is weakly r-reachable from v with respect to L, if there exists a path P of length
at most r between u and v such that u ≤L w for all vertices w of P. Let WReachr[L, v] be the set
of vertices that are weakly r-reachable from v with respect to L. Note that v ∈WReachr[L, v].

We say that u is strongly r-reachable from v with respect to L, if there is a path P of length
at most r connecting u and v such that u ≤L v and all inner vertices w of P satisfy v <L w. Let
Sreachr[L, v] be the set of vertices that are strongly r-reachable from v with respect to L. Note
that again we have v ∈ Sreachr[L, v].

The r-backconnectivity br(L, v) of a vertex v is the maximum number of paths of length at
most r in G that start in v, share no other vertices except v, and end at vertices that lie before v in
the ordering L.

The weak r-colouring number wcolr(G) of G is defined as

wcolr(G) := min
L∈Π(G)

max
v∈V(G)

∣∣∣WReachr[L, v]
∣∣∣,

and the strong r-colouring number scolr(G) of G is defined as

scolr(G) := min
L∈Π(G)

max
v∈V(G)

∣∣∣Sreachr[L, v]
∣∣∣,

The r-admissibility of G is defined as

admr(G) = min
L∈Π(G)

max
v∈V(G)

br(L, v).
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3. From Strong Colouring to Weak Colouring

It is known that the weak and strong colouring numbers are related by scolr(G) ≤ wcolr(G) ≤
scolr(G)r [11]. However it is possible to improve the upper bound in the case where the strong
coloring numbers increase at least at an exponential rate.

Lemma 1. For every graph G and every positive integer r we have

wcolr(G) ≤ 2r−1 max
1≤k≤r

scolk(G)r/k.

Proof. Let r be a positive integer and let L be a linear order on V(G) that minimizes

max
v∈V(G)

∣∣∣WReachr[L, v]
∣∣∣.

Let u be a vertex of G, v ∈ WReachr[L, u], and consider a path P certifying that v is weakly
r-reachable from u; in particular P has length at most r. Let C(r) be the set of all compositions
of r, that is of all tuples (r1, . . . , rk) with ri > 0 (for 1 ≤ i ≤ k) and

∑
1≤i≤k ri = r. A milestone of P

is a vertex v of P such that all the vertices of P from u (included) to v (excluded) are greater than
v. Let v1, . . . , vk = v be the milestones of P other than u, and let r1, . . . , rk−1 be the lengths of the
paths from v0 = u to v1,. . . , vk−2 to vk−1, and let rk = r −

∑k−1
i=1 ri, so that (r1, . . . , rk) ∈ C(r). The

subpath of P from vi−1 to vi witnesses that vi is strongly ri-reachable from vi−1. Note that strong
rk-reachability requires the existence of a witness path of length at most rk, hence it is safe to
consider rk instead of the length of the subpath of P linking vk−1 and vk. We deduce that

WReachr[L, u] ⊆
⋃

(r1,...,rk)∈C(r)

⋃
v1∈Sreachr1 [L,u]

· · ·
⋃

vk−1∈Sreachrk−1 [L,vk−2]

Sreachrk [L, vk−1].

(Note that we actually have equality, the reverse inclusion following from the concatenation of
paths witnessing v1 ∈ Sreachr1 [L, v], . . . , u ∈ Sreachrk [L, vk−1].) Thus we have

wcolr(G) ≤
∑

(r1,...,rk)∈C(r)

k∏
i=1

scolri (G).

Let z = max1≤k≤r scolk(G)1/k. Then scolri (G) ≤ zri . Thus

wcolr(G) ≤
∑

(r1,...,rk)∈C(r)

k∏
i=1

zri = |C(r)| zr = 2r−1zr.

4. Upper bounds

Let bω(G) denote the maximum integer s such that Ks,s is a subgraph of G.

Theorem 1. For every graph G and every positive integer r we have

scolr(G) ≤
(
3 + tww(G)

r−1∑
i=0

(tww(G) − 1)i
)

bω(G) ≤ (tww(G)r + 3) bω(G). (1)
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Proof. Let d = tww(G) and s = bω(G). Without loss of generality, we can assume that G is
connected and contains more than s vertices. We consider a d-uncontraction sequence G1, . . . ,Gn

of G with universeU. For every i ∈ {1, . . . , n} we say a node of Gi is small if it contains at most s
vertices and it is big, otherwise. A set X ∈ U is nice at step i with bt(X) ≤ i ≤ st(X) if X is small
and some black edge is incident to it in Gi. Note that if X is nice at step i, it is nice at step j for
all i ≤ j ≤ st(X). The set X is nice if it is nice at some step (equivalently, at step st(X)). For every
nice set X we define ρ(X) as the minimum i such that X is nice at step i. (Note that ρ(X) > 1 as
G1 is edgeless.) As G is connected, it is clear that every X ∈ U has a subset Y ∈ U that is nice.
Also, if X,Y ∈ U, X ⊆ Y and Y is nice, then X is also nice. It follows that the familyN of all the
maximal nice sets inU form a partition of V . We order the elements of N as N1, . . . ,Nk in such
a way that for all i < j, either ρ(Ni) < ρ(N j) holds or ρ(Ni) = ρ(N j) and bt(Ni) ≥ bt(N j). We now
fix any linear ordering L of V such that for all v ∈ Ni, w ∈ N j with i < j holds v <L w. See also
Remark 1 for an equivalent algorithmic way to define the order L. We will use this ordering to
bound the strong coloring numbers of G.

For 1 ≤ i ≤ n, we define Bi to be the set of all nodes of Gi that are not nice at step i. We first
establish some easy properties of Bi.
▷ Claim 1. No small node in Bi is incident to a black edge in Gi.

Proof of the claim. Assume X ∈ Bi is small. Then it is not adjacent to a black edge as it is not
nice at step i. ◁

▷ Claim 2. No two nodes in Bi are adjacent in Gi by a black edge.

Proof of the claim. Assume for contradiction that X and Y are nodes in Bi that are adjacent by a
black edge in Gi. Hence, G[X ∪ Y] includes K|X|,|Y | as a subgraph. According to Claim 1, both X
and Y are big, contradicting the assumption bω(G) = s. ◁

▷ Claim 3. Every node X ∈ Bi is such that |
⋃

NE
Gi

(X)| ≤ s.

Proof of the claim. Let X ∈ Bi and let Y =
⋃

NE
Gi

(X). Then X and Y induce a biclique in G thus
min(|X|, |Y |) ≤ s. As only big nodes in Bi are adjacent to black edges (by Claim 1), we deduce
|X| > s and therefore |Y | ≤ s. ◁

Let us consider a vertex v ∈ V . In the remainder of the proof, we will bound the number of
vertices in G that are strongly r-reachable from v with respect to L. Let a ∈ {1, . . . , k} be such
that v ∈ Na and let t = ρ(Na) − 1. Let S be the unique node of Gt with st(S ) = t, and let Y,Z be
the two children of S .

Let L = {X ∈ V(Gt) : (∃i < a),Ni ⊇ X}. By definition of L, all the vertices of G that belong
to the nodes in L appear before v in L. If we set R = V(Gt) \ L, then R ⊆ Bt.

Case 1: v ∈ S .. Note that if a vertex u ∈ V(G) is strongly r-reachable from v, then u belongs
either to S or to a set in L. We consider a BFS-tree T in Gt, starting at S , following only red
edges, with depth r, and stopping each time it reaches a node in L. Note that, by construction,
T has no internal node in L, but it may have leaves that are not in L (e.g. nodes at depth r).
We further remove from T any node with no descendant (in T ) belonging to L. This way we
get a tree T rooted at S , with internal nodes in R, with depth at most r, and with leaves in L.
Let I denote the sets of all internal nodes of T and let E be the sets of all leaves of T . Then
|I| ≤ 1 +

∑r−2
ℓ=0 d(d − 1)ℓ and |E| ≤ d(d − 1)r−1. Consider any vertex u that is strongly r-reachable
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from v, and let P be a path from v to u in G witnessing this. We can project P onto Gt by
mapping every vertex to the node of Gt containing it. The projection is a walk from S to a node
Xu containing u. From this walk we extract a path Q of length at most r from S to Xu. All the
internal nodes of Q as well as S belong to R, hence all the edges of Q (but maybe the last one)
are red (according to Claim 2). Moreover, Xu is either S or it belongs to L. So, either u ∈ S ,
or Xu has been reached by a black edge from some internal node of T , or Xu is a leaf of T . It is
easily checked that at most |I|s vertices of G can be of the second type (according to Claim 3),
and at most |E|s are of the last type (as leaves belong to L, so they are small). Regarding the first
type, we assume without loss of generality that v ∈ Z and observe that either u ∈ Z, so there are
at most s choices for u (as Z = Na is nice hence small at time t + 1), or u ∈ Y but then, as u ≤L v,
Y is nice as well at time t + 1 so |Y | ≤ s. Thus at most 2s vertices of G can be of the first type.
Altogether, we get

|Sreach[G, L, v]| ≤
(
2 + 1 + d + · · · + d(d − 1)r−2 + d(d − 1)r−1

)
s

≤

3 + d
r−1∑
ℓ=0

(d − 1)ℓ
 s.

Case 2: v < S .. Note that if u is strongly r-reachable from v, then u belongs either to S or to
Na, or to a set in L. We consider a BFS-tree T in Gt, starting at Na, following only red edges,
with depth r, and stopping each time it reaches a node in L. We further remove from T any
node with no descendant (in T ) belonging to L ∪ {S }. This way we get a tree T rooted at Na,
with internal nodes in R, with depth at most r, and with leaves in L. Let I denote the sets of all
internal nodes of T and let E be the sets of all leaves of T . Then |I| ≤ 1+d+ · · ·+d(d−1)r−2 and
|E| ≤ d(d − 1)r−1. Consider any vertex u that is strongly r-reachable from v, and let P be a path
from v to u witnessing this. The path P projects on Gt as a walk with length at most r from Na to
the vertex Xu containing u. From this walk we extract a path Q with length at most r from Na to
Xu. All the internal nodes of Q belong to R hence all the edges of Q (but maybe the last one) are
red (according to Claim 2). Moreover, Xu is either Na, or S , or it belongs to L. So, either u ∈ Na,
or u ∈ S , or Xu has been reached by a black edge from some internal node of T , or Xu is a leaf
of T . The first type correspond to at most s vertices. The second type correspond to at most 2s
vertices because in this case, Y , Z, or both, have been ordered by L before Na which mean they
are nice at step t + 1, hence small. The third type correspond to at most (|I| − 1)s, as the root
Na is small hence adjacent to no black edge. The last type correspond to at most |E|s vertices.
Altogether, we get

|Sreach[G, L, v]| ≤
(
1 + 2 + (1 + d + · · · + d(d − 1)r−2 − 1) + d(d − 1)r−1

)
s

≤

3 + d
r−1∑
ℓ=0

(d − 1)ℓ
 s.

Thus in both cases we have that every graph G with tww(G) = d and bω(G) = s satisfies (1).

Remark 1. We describe an algorithmic procedure that also yields the order L defined in Theo-
rem 1. We are given an uncontraction sequence Gn, . . . ,G1. For each i ∈ {1, . . . , n− 1} we define
a function origini : V(Gi+1)→ V(Gi) that, informally, assigns each node in Gi+1 to the node in Gi

that it originates from. Let us be more precise: assume Gi+1 is constructed from Gi by splitting a
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node Z into two nodes X and Y , then origini(X) = origini(Y) = Z and origini(W) = W for every
other node W of Gi+1.

Remember that a node of Gi is small if it contains at most s vertices and is big, otherwise.
A node X ∈ V(Gi) is a nice node of Gi if X is small and some black edge is incident to X in
Gi. We incrementally construct for all i an ordering <i on the nice nodes of Gi. Since all nodes
of Gn are nice and correspond to singletons, the ordering <n then corresponds to an ordering of
the vertices of G. This order will be equivalent to the ordering L defined in Theorem 1 (up to
non-determinism).

Since G1 has no nice nodes, <1 is the ordering on the empty set. Assuming that <i is already
constructed, we construct <i+1 such that it satisfies for all nice X,Y ∈ V(Gi+1) the following
conditions.

1. If origini(X) and origini(Y) are nice in Gi and origini(X) <i origini(Y) then X <i+1 Y .
2. If origini(X) is nice in Gi and origini(Y) is not nice in Gi then X <i+1 Y .
3. If both origini(X) and origini(Y) are not nice in Gi and bt(X) > bt(Y) then X ≤i+1 Y .

Each order <i represents a partial order on V that is refined over time as i increases, until we
reach a total order on V . Rule 1. states that the old order is preserved when possible, rule 2.
states that new nice sets are appended at the end and rule 3. makes sure that we append new nice
sets in order of their birth.

In the proof of Theorem 1, we fix a vertex v ∈ V and pick t maximal such that in Gt the node
N containing v is not nice. We then partition the nodes of Gt into sets L and R. One can show
that L contains precisely those nodes of Gt that are strictly smaller than N with respect to <t.

Corollary 1. For every graph G and every positive integer r we have

scolr(G) ≤


2 bω(G) if tww(G) = 0,
3 bω(G) if tww(G) = 1,
5 bω(G) if tww(G) = 2,
3(tww(G) − 1)r bω(G) if tww(G) ≥ 3.

Proof. If tww(G) ≥ 3 we have

scolr(G) ≤
(
3 + tww(G)

(tww(G) − 1)r − 1
tww(G) − 2

)
bω(G)

≤ (3 + 3((tww(G) − 1)r − 1)) bω(G)
≤ 3(tww(G) − 1)r bω(G).

The cases where tww(G) = 1 or 2 follow from the theorem. If tww(G) = 0 then G is a cograph.
Let us then show that for every cograph G it holds that scolr(G) ≤ 2 bω(G).

The proof is by induction on the number of vertices. The base case |V(G)| = 1 is trivial so
we consider a cograph with at least two vertices and assume that the desired bound holds for all
cographs on less vertices. Being a cograph, G can be obtained from two cographs G1 and G2 by
disjoint union or complete join [6]. Without loss of generality we assume |V(G1)| ≤ |V(G2)|. By
induction, for every i ∈ {1, 2} there is an ordering Li of V(Gi) such that scolr(Gi) ≤ 2 bω(Gi).

Then the order L is obtained by putting first L1, then L2. If G is the disjoint union of G1 and
G2 then scolr(G, L) = max(scolr(G, L1), scolr(G, L2)) and the result follows; if G is the complete
join of G1 and G2 then scolr(G, L) ≤ scolr(G2, L2) + |V(G1)| and bω(G) ≥ bω(G2) + |V(G1)|/2.

7



As scolr(G2, L2) ≤ 2 bω(G2), we get scolr(G2, L2) ≤ 2 bω(G) − |V(G1)| hence scolr(G, L) ≤
2 bω(G).

Combining Lemma 1 with Theorem 1 we get the following.

Corollary 2. For every graph G and every positive integer r we have

wcolr(G) ≤
1
2
(
(2 tww(G) + 6) bω(G)

)r
.

Note that the base of the exponential comes from the degeneracy of G. In order to improve
this upper bound it is thus natural to try to improve the degeneracy bound. Hence the following
problem:

Problem 1. What is the maximum degeneracy of a Ks+1,s+1-free graph with twin-width at most
d?

Recall that a depth r minor of a graph G is a graph H obtained from G by taking a subgraph
and contracting vertex disjoint subgraphs of radius at most r. The greatest reduced average
density (grad) of G with rank r is the maximum ratio |E(H)|/|V(H)| over all (non-empty) depth
r minors of a graph G; it is denoted by ∇r(G). Hence, by definition, a class C has bounded
expansion if, for each positive integer r, we have sup{∇r(G) : G ∈ C } < ∞. It is known that
∇r(G) ≤ wcol2r+1(G) [13]. Hence the next corollary directly follows from Corollary 2.

Corollary 3. For every graph G and every positive integer r we have

∇r(G) ≤
1
2

((2 tww(G) + 6) bω(G))2r+1. (2)

In particular, every class of graphs of bounded clique-width that exclude a biclique as a
subgraph has (at most) exponential expansion.

5. Lower bounds

It is known that high-girth graphs have large strong coloring numbers [9]. On the other hand,
there exist expander graphs with high girth and small twinwidth [1]. We combine both results to
construct graphs with small twinwidth whose strong r-coloring numbers grow exponentially in
r.

Proposition 1 ([9, Theorem 5.1]). Let G be a d-regular graph of girth at least 4g + 1, where
d ≥ 7. Then for every r ≤ g,

scolr(G) ≥
d
2

(d − 2
4

)2⌊log2 r⌋−1
.

Lemma 2. For every integer ∆ ≥ 7 and every integers r and g ≥ 4r + 1 there exists a ∆-regular
graph G with girth at least g, 2∆ − 1 ≤ tww(G) ≤ 2∆, and

scolr(G)) ≥
∆

2

(
∆ − 2

4

)2⌊log2 r⌋−1
≥

tww(G)
4

( tww(G) − 4
8

)2⌊log2 r⌋−1
.
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Proof. We will construct a sequence G0,G1, . . . of ∆-regular graphs of twin-width at most 2∆
and increasing girth. Once we reach a graph with girth at least g ≥ 4r+1, the result of this lemma
follows from Proposition 1. Note that the twin-width of a ∆-regular graph with girth at least 5 is
at least 2∆ − 1 (because of the first contraction).

We define G0 to be the complete graph with ∆ + 1 vertices. We fix a graph Gk−1 with
edges e1, . . . , em and describe how to construct Gk. For every edge ei of Gk−1, we define a
mapping θei : {0, 1}m → {0, 1}m that flips the ith coordinate and preserves all other coordinates,
i.e., θei ((x1, . . . , xm)) = (y1, . . . , ym) with

y j =

1 − x j if j = i
x j otherwise.

We define Gk to be the graph with V(Gk) = V(Gk−1) × {0, 1}m and E(Gk) = {{(u, x), (v, θuv(x)} :
uv ∈ E(Gk−1) and x ∈ {0, 1}m}.

A 2-lift of a graph G is a graph obtained by adding for every vertex v of G two vertices v1 and
v2, and adding for every edge uv of G either the edges u1v1 and u2v2 (parallel edges) or the edges
u1v2 and u2v1 (crossing edges). The graph Gk+1 can be obtained by a sequence of 2-lifts from
Gk and therefore also by a sequence of 2-lifts from G0 = K∆+1. We can construct a contraction
sequence that “undoes“ these 2-lifts by repeatedly contracting all pairs of duplicates. Once we
reach K∆+1, we simply contract the remaining vertices one by one. While doing so, the red degree
never exceeds 2∆ (see also [1, Lemma 26]). Hence tww(Gk) ≤ 2∆.

It remains to show that the girth of Gk is higher than the girth of Gk−1. Let γ be a shortest cycle
of Gk. Let pV : V(Gk) → V(Gk−1) be the standard projection, and let pE : E(Gk) → E(Gk−1) be
the associated projection. It is easily checked that applying pE to a cyclic graph yields a cyclic
graph, and thus pE(γ) includes a cycle. If we apply the composition of all the mappings θpE (e) for
e ∈ γ then the starting vertex of γ is fixed. It follows that each θe is applied an even number of
times. Thus the length of γ is at least twice the length of pE(γ). Hence, the girth of Gk is at least
twice the girth of Gk−1.

Corollary 4. For every integer d ≥ 14, every positive integer s, and every integer r of the form
2k, there exists a graph G with tww(G) ≤ d, bω(G) = s, and

scolr(G) ≥
ds
4

(d − 4
8

)r−1
≥ 2

( tww(G) − 4
8

)r
bω(G).

Proof. Take the lexicographic product of a graph obtained by Lemma 2 and Ks. This way we get
a graph with twin-width at most d ≥ 14 and no Ks+1,s+1.

Remark 2. The 2-lift construction used in the proof of Lemma 2 was used in [1] to prove that
there exist cubic expander graphs with twin-width at most 6. It follows from this result and the
characterization of classes with polynomial expansion [8] that for d ≥ 6, the value ∇r(G) is not
bounded on the K2,2-free graphs with twin-width at most d by a polynomial function of r. We
leave as a question wether sup{∇r(G) : tww(G) ≤ d and bω(G) ≤ s} increases exponentially
with r for sufficiently large d.

Admissibility being a lower bound for strong coloring numbers, the above results do not
provide any lower bound for admissibility. We show below how to construct classes of graphs
that have no K2,2-subgraph with low twin-width and high admissibility.
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Lemma 3 ([1, Proposition 28]). For d ≥ 0 and k > 0, if the clique Kn subdivided k times has
twin-width less than d, then k ≥ logd(n − 1) − 1.

Lemma 4 ([1, Proposition 31]). For any c > 0, the class of cliques Kn subdivided at least log n
c

times has twin-width at most f (c) for some triple exponential function f .

Lemma 5. For every integers d and r ≥ 4 there is a graph G such that

• G has no K2,2 subgraph;

• d ≤ tww(G) ≤ f (2 log d);

• admr(G) ≥ d2(r−1),

where f is the function of Lemma 4.

In particular, the above lemma implies that for every d, there is a graph class of bounded
twin-width, whose members contain no K2,2, but which has r-admissibility (and thus r-weak and
strong coloring numbers) at least d2(r−1).

Proof. Let d, r ∈ N and n = d2(r−1). We define Gd
r as the graph obtained by subdividing r − 1

times each edge of Kn. By construction, Gd
r has no K2,2 subgraph. Let c = 2 log d and notice that

r − 1 = log n
c . According to Lemma 4, Gd

r has twin-width at most f (c). On the other hand, as
r > 3 we have

r − 1 < 2(r − 1) − 2

≤ logd

(
d2(r−1)

)
− 2

< logd (n − 1) − 1,

and therefore Lemma 3 implies that d ≤ tww(G).
In order to prove the bound on admissibility, let us now consider an arbitrary ordering σ of

V(Gd
r ). Notice that Gd

r has two types of vertices: n vertices of degree n − 1, which correspond to
the vertices of the n-clique that was used to construct Gd

r , and vertices of degree 2, which have
been introduced by subdivisions. Let x denote the vertex of degree n − 1 that appears the latest
in σ. Notice that there are n − 1 paths of length r that start in x, are otherwise disjoint and end at
the n−1 other vertices of degree n−1 of G. By definition of x, these n−1 vertices appear before
x in the ordering. This implies admr(Gd

r , σ) ≥ n = d2(r−1). As σ was chosen arbitrarily, the same
bound holds for the r-admissibility of Gd

r .

Corollary 5. For all integers d, r ≥ 4, there is a constant ε > 0 such that for all positive integers
r and n there is a Ks+1,s+1-free graph G with |V(G)| ≥ n, bω(G) = s, and

admr(G) ≥ (log log tww(G))ε bω(G).

Proof. We first consider the case where s = 1. Let G0 be the graph given by Lemma 5. If
|V(G0)| ≥ n then G0 is the desired graph. Otherwise, we denote by G the disjoint union of
n copies of G0. Clearly this does not create any K2,2 thus bω(G0) = 1. We have admr(G) ≥
d2(r−1), as otherwise any ordering of G with smaller r-admissibility would give an ordering with
smaller r-admissibility for G0. Finally, as the twin-width of the disjoint union of two graphs is
the maximum of the twin-width of each of them, we have tww(G) = tww(G0), so tww(G) ≤

10



f (2 log d). The existence of the constant ε > 0 then follows from the fact that f is a triple
exponential function.

The case where s > 1 follows by considering the lexicographic product of the graphs obtained
above by Ks.
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[5] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant, Twin-width I: tractable FO model check-
ing, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, IEEE, 2020, pp. 601–612.

[6] Derek G Corneil, Helmut Lerchs, and L Stewart Burlingham, Complement reducible graphs, Discrete Applied
Mathematics 3 (1981), no. 3, 163–174.
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