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Abstract. Deep attestation is a particular case of remote attestation,
i.e., verifying the integrity of a platform with a remote verification server.
We focus on the remote attestation of hypervisors and their hosted vir-
tual machines (VM), for which two solutions are currently supported by
ETSI. The first is single-channel attestation, requiring for each VM an
attestation of that VM and the underlying hypervisor through the phys-
ical TPM. The second, multi-channel attestation, allows to attest VMs
via virtual TPMs and separately from the hypervisor – this is faster
and requires less overall attestations, but the server cannot verify the
link between VM and hypervisor attestations, which comes for free for
single-channel attestation.

We design a new approach to provide linked remote attestation which
achieves the best of both worlds: we benefit from the efficiency of multi-
channel attestation while simultaneously allowing attestations to be linked.
Moreover, we formalize a security model for deep attestation and prove
the security of our approach. Our contribution is agnostic of the precise
underlying secure component (which could be instantiated as a TPM or
something equivalent) and can be of independent interest. Finally, we
implement our proposal using TPM 2.0 and vTPM (KVM/QEMU), and
show that it is practical and efficient.
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1 Introduction

Network Function Virtualization (NFV) is a technology that promises to provide
better versatility and efficiency in large-scale networks. The core idea is to move
from architectures in which physical machines are set up to perform various
roles in a network, to a design in virtual configuration. As such, a machine could
be configured and re-configured at distance, and, by judicious use of virtual
machines, it could perform a variety of roles within the network infrastructure.

Virtualized platforms are set up in layers, including the following basic com-
ponents: physical resources, the virtualization layer and infrastructures, virtu-
alized network functions (VNFs), and the NFV management and orchestration
module. At the bottom of the infrastructure are real, physical components, meant
for computations, storage, and physical network functions. The virtualization
layer (also called hypervisor) manages the mapping between those physical com-
ponents and virtual equivalents. As such, the NFVs – hosted by virtual machines
running inside the NFV infrastructure– never have direct access to the physical
resources. Instead, the VNFs access the virtual resources. The NFV manage-
ment and orchestration module runs the combined infrastructure, including: the
lifecycle of the instantiated VNFs, resource allocation for VNFs, or overall man-
agement in view of particular, given network services.

Deep Attestation (DA). Virtualization enables efficient, versatile remote net-
work configuration and administration; however, the fact that multiple virtual
processes share resources can introduce hazards to security. One way to ensure
that a component runs correctly is by using attestation. Attestation is a pro-
cess complementary to authentication: whereas the latter allows a platform to
prove that it is the entity it claims to be, the former ensures that the platform
runs a trustworthy code, i.e., it has not been breached. As described in [13],
“Attestation is the process through which a remote challenger can retrieve veri-
fiable information regarding a platform’s integrity state.” A property can be for
instance software integrity, geolocalisation, access control, etc.

Attestation relies on a root of trust (RoT), usually instantiated through a
trusted platform module (TPM) – or an equivalent mechanism. The root of trust
is responsible, amongst other things, for protecting sensitive cryptographic ma-
terials (such as private keys) and for running cryptographic operations in an
isolated way. The virtualization layer (hypervisor) has direct access to the RoT,
but the virtual machines it manages do not; instead they will have access to
the RoT by means of virtual Roots of Trust (vRoTs). Virtual Roots of Trust
are a combination of resources, some provided by the physical RoT, and other
managed by the hypervisor, which directs and mediates access to the RoT.

In a nutshell, attestation is a process which allows an independent, remote
verifier to check that a target platform still behaves in the desired way. This is
done by first authenticating the RoT, then by comparing a measurement of the
current state of the component to a presumably-correct state, as indicated in a
Root of Trust for Storage (RTS). In addition, a guarantee must be given of the
correctness of the RTS, which is done by means of a Root of Trust for Reporting
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(RTR). Functionalities of RTS and RTR can be provided by a TPM. A TPM is an
example of implementation that could provide RTR and RTS by leveraging the
specific tampering detection properties of its Platform Configuration Registers
(PCR) and issuing signed reports, or quotes, of their content.

We consider the attestation of two types of components: virtual machines
(VMs), such as VNFs, and the hypervisor managing them, whose underlying
physical component includes a RoT providing an RTR and an RTS. This archi-
tecture is depicted in Figure 1.

Fig. 1: The setup for DA.

To verify that the VMs and the hypervisor are
running correctly, both these types of components
must undergo remote attestation. First, each com-
ponent must attest in isolation; then we must at-
test the layer-binding between VMs running on
the same hypervisor. This is known as deep attes-
tation (DA). There are two typical ways of achiev-
ing deep attestation (as described by ETSI stan-
dardization documents [13]): single- and multi-
channel VM-Based Deep Attestation.

Single/Multi-channel Deep Attestation. In single-channel deep attestation
the attestation is run only between the remote verifier and the virtual machines.
At each attestation, the VM (by querying its associated virtual TPM, or vTPM)
provides not only an attestation for itself, but also the hypervisor it runs on.

Fig. 2: Single vs multi-channel DA

Specifically the response forwarded
by the VM to the remote verifier
includes the (independent) attesta-
tion of the hypervisor, and the layer-
binding attestation between the VM
and its hypervisor. This is depicted
in Figure 2, on the left-hand-side.
Note that the quotes in this case are
both obtained from the (slow) physi-

cal TPM. From the point of view of security, this solution is optimal; however,
it scales poorly. Given as few as 1000 VMs running on top of the hypervisor, we
would require that the hypervisor be attested 1000 times, once for each VM.

By contrast, in multi-channel deep attestation, the VMs are attested sepa-
rately and independently from the hypervisor. In this scenario, the VMs attest
to the remote verifier, thus proving they were not tampered with. Separately, the
hypervisor also attests to the remote verifier. This can be seen on the right hand
side of Figure 2. In this case, the efficiency is optimal: for 1000 VMs, we have
1000 VM-attestations and 1 hypervisor attestation. However, there is virtually
no layer-binding between the VMs and their hypervisor: there is no guarantee
that the VMs are really managed by the hypervisor. An attacker could therefore
“convince” a party (such as the owner of the infrastructure) that a VM still
exists on a given physical machine when it has, in fact, been removed.
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Our solution. We take the middle path between single- and multi-channel deep
attestation to obtain layer-binding between VMs and hypervisors with reason-
able efficiency. Our solution is simple, yet elegant, using standard cryptography
to ensure that a hypervisor’s single attestation is linkable to any number of
attestations of VMs managed by it. We give three contributions:

A cryptographic scheme. Our scheme ensures secure and efficient linked DA.
The hypervisor and VMs each attest only once. However, we also embed a list
of public keys (associated with the VMs managed by the hypervisor) within the
hypervisor attestation, which is established by the root of trust. In order to au-
thenticate the list of forwarded keys, we embed them into the attestation nonce,
forwarded by the attestation server. If the hypervisor’s attestation verifies, then
the attestation server can link that hypervisor with the (subsequently attesting
VMs) which use keys in the forwarded list. If the hypervisor’s attestation fails,
then the public keys cannot be trusted.

Provably secure authorized linked attestation. An important advantage
of our approach is that we have a fully-formalized provable-security guarantee.
We use a composition-based approach, constructing primitives that are increas-
ingly stronger out of weaker ones. Our goal is to ultimately obtain authorized
linked attestation (ALA): a primitive which allows components to individually
attest (to an authorized entity), and to have their attestations linked. This prim-
itive solves the problem outlined in the introduction, since VMs sharing the same
hypervisor will attest in isolation and together with their hypervisor.

ALA schemes will have three properties: authorization (only an authorized
server can query an attestation quote); indistinguishability (no Person-in-the-
Middle adversary can know even a bit of a quote exchanged during a legitimate
protocol with probability significantly better than 1

2 ); and linkability (an attes-
tation server can detect if two components are not linked)

We choose to formalize AKA security as the last of a sequence of primitives,
each potentially of independent interest and providing gradually stronger prop-
erties. This approach has two virtues: first, we are able to use weaker primitives
as black-box components in stronger primitives; and second, the individual proof
steps are shorter and smoother.

At the basis of our construction is a yea-or-nay basic attestation scheme,
which is “secure” by assumption. Its functionality is simple: the basic attesta-
tion scheme outputs a faulty attestation whenever a component is compromised,
and a correct one for honest components. In other words, this basic attestation
scheme is a compromise-oracle: when queried it (indirectly) produces a proof of
whether a component has been tampered with or not.

Based on this assumption, we build a sequence of cryptographic mechanisms
that add security against stronger adversaries. A first step is to build authen-
ticated attestation: a scheme which allows us to authenticate the component
that provides the attestation, and additionally ensures that this component’s
attestations always verifies prior to corruption, but fails to verify as soon as
a compromise occurs. We can think of authorized attestation as the minimum
provided (and required) by multi-channel attestation. Then, we consider linked
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attestation: a scheme that introduces the hypervisor-VM relationship described
above, and permits not only the verification of individual attestations, but also
(publicly) linking attestations.

Implementation. We used a regular laptop equipped with TPM 2.0 (as a root
of trust). We set up an architecture with one hypervisor and multiple VMs.
The VMs used full virtual TPM as a virtual root of trust. We made over 100
experiments. This showed that our solution is more efficient that single chan-
nel approach and adds only insignificant charge (a hash function computation)
compared to traditional multi-channel DA.

Our work is, to our best knowledge, the first that attempts to provide a sound
cryptographic treatment of deep attestation. In many ways, this is much harder
than designing the scheme that we present, because attestation is a generic term
comprising an entire class of algorithms that have different goals. As such, we
are only scratching the surface here, and believe that –aside from the real, and
practical advantages of our presented construction– our cryptographic treatment,
primitives, and proofs, may be of independent interest to this line of research.

Limitations. A first fundamental limitation is the fact that we assume, in our
constructions, the existence of a basic attestation primitive that works infallibly
like an oracle, telling us if a component is compromised or not. In reality, this
primitive is based on the Platform Configuration Registers (PCRs) of a TPM.
A PCR can store hash digests into a register of the length of the hash function
output. Typically a TPM will have multiple banks corresponding to various
hash functions (e.g., a sha1 bank and a sha256 bank) with 24 registers for
each bank. PCR are reset at each boot and are only updateable through an
extension operation PCR1 ← H(PCR1 | H(measurement)). We assume the
attacker has no physical access to the component and thus cannot tamper with
TPM measurements by using hardware attacks. In practice, this is somewhat
limiting since we do not account for runtime corruption; thus, the primitive is
vulnerable to Time of Check Time of Use (TOCTOU) attacks. Several proposed
mechanisms were introduced to monitor runtime integrity, e.g., LKIM [19] or
DynIMA [12]; moreover, in recent years several advancements were made towards
verifying runtime integrity for IoT devices [15, 17]. Yet, these solutions are not
as widely spread at the present day as TPM-based attestation at startup.

We treat the existence of basic attestation as an assumption because we do
not see a way of constructing it with cryptographic tools. The cryptography
we put on top adds a lot of new properties: authenticity, confidentiality, au-
thorization, linkability, but not the simple fact of distinguishing a compromised
component from an honest one. Our result should therefore be interpreted as a
need for such a scheme to exist, as in fact required by ETSI [13].

Another limitation of our scheme lies in our model of linked-attestation com-
ponent. We consider classes of components which can be linked. At registration
of each piece of hardware, a number of subcomponents of each type is indicated –
and (unique) keys are given to those components. As a result, we cannot account
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for having two hypervisors that manage the same VM on a given infrastructure.
A future work could be to consider multi-hypervisor VM as introduced in [14].

Related Work. Many attacks have been recently reported on remote attesta-
tion mechanism [10] or 5G standards [16]. Many tools such as formal methods
or cryptography can be used to model and prove the security of such standards.
However, this lack of formalization must be now addressed otherwise we will
have more and more attacks. Provable cryptography is a nice solution to solve
this problem since it allows to better understand the security model, what is the
adversary goal and its means, which oracle can he query. Some cryptographic
primitives have already be nicely formalized such as Direct Anonymous Attesta-
tion (DAA) which enables remote authentication of a trusted computer (TPM
for instance) while preserving the privacy of the platform’s user in [9] by Brickell
et al. It is a group signature without the feature that a signature can be opened,
i.e., the anonymity is not revocable. Such primitive are well described using
cryptography as a variant of signature scheme. However, provable cryptography
has also been used successfully to formalize security protocols as authenticated
key exchange [7, 11]. This is precisely our goal to model the different security
components independently and to compose them to prove the security of a new
security mechanism. Indeed, the attestation server must authenticate the whole
platform, i.e., the hypervisor and the NFV running on top. This problem has
been addressed by others in the context of secure boot or for instance in [6],
where the authors propose an attestation mechanism for swarms of device soft-
wares in IoT and embedded environment. Software attestation is different from
remote attestation, as said in [5] since it cannot rely on cryptographic secrets to
authenticate the prover device. The first to have taken into account deep attes-
tation are Lauer and Kuntze in [18] but their solution misses a security proof
and a rigorous analysis.

2 Towards authorized linked attestation

Our core contribution provides layer-binding in deep attestation. Cryptographi-
cally, we view this as a new primitive, which we call authorized linked attestation,
built in steps from increasingly-stronger primitives. Each of these intermediate
steps plays a double role: on the one hand, it formalizes security guarantees that
are of independent interest for attestation (if, for instance, layer-linking is not
required); on the other hand, it provides an intuition of the guarantees which
specific cryptographic primitives can help achieve.

The first, and basic-most step in our architecture is basic attestation. This
primitive is an abstraction of the algorithm by which a single party (like a
component of a virtualized platform) generates an attestation of its state, given
a fresh, honestly-generated nonce. Importantly, basic attestation does not employ
cryptography to achieve this feature, but rather, the attestation of registers at
startup, using a RoT5.

5 To ease notation, we assume that all the registers are attested, and that the property
we are attesting is that the entire component has not been compromised.



A Cryptographic View of Deep-Attestation 7

Authenticated attestation builds on basic attestation by associating parties
with identities. The attestation must now no longer indicate whether the party is
compromised: it must also authenticate the component. Here, thus, we enhanced
basic attestation with a cryptographic component, which is in fact sufficient
to guarantee the basic functionality required by multi-channel attestation. One
step further, the linked-attestation primitive built from authenticated attestation
will allow two different components to (a) attest their own states; (b) provide
auxiliary material that will make two separate attestations linkable. While this
primitive has no immediate parallel in real-world attestation, we use it as a
handy way of dividing the security proof of our ultimate result into two: linked-
attestation will focus on proving the fact that two attestations can be securely
linked; whereas authorized linked attestation models attestation as a protocol,
using fresh randomness and a secure channel using an honest attestation server.

We also add a new party into the system: the attestation server that serves as
a verifier. We then compose the linked-attestation primitive with a unilaterally-
authenticated authenticated key-exchange protocol, which will authenticate the
attestation server and permit the attestation itself to remain confidential with
respect to a Person-in-the-Middle (PitM) adversary.

2.1 Basic attestation

During basic attestation a single honest party is generated. This party can be
later compromised. A quote-generation algorithm will output a quote if the party
is still honest at that time, or a special symbol if it is not. Finally a (public)
verification algorithm will yield 1 (the component is honest) or 0 (otherwise).

Note that a party such as the one we describe could correspond in practice to
a combination of two parties: a virtual entity (like a VM or the hypervisor) and
an underlying, uncorruptible, secure part (the TPM), which actually generates
the quote. At this stage, we importantly do not associate these entities with keys
as authentication will only appear in our next step (Section 2.2).

What we want to capture, formalized by the security of basic attestation, is
the minimal assumption that a compromised component will always yield an at-
testation that will fail the verification. This is why, when basic attestation is run
for a compromised component, it will yield the special symbol ℵ. We also demand
correctness: when a non-ℵ quote is generated, the latter will automatically verify.
Our basic attestation component thus becomes the minimal non-cryptographic
assumption that we need to make to prove our scheme secure.

Formalization. We consider an environment parametrized by a security pa-
rameter λ, in which we have a single party P. This party keeps track of a single
attribute, namely a compromise bit γ originally set to 0. Once this bit is flipped
to 1, it can never go back to 0. We define a primitive BasicAtt as a tuple of
algorithms: (aBSetup, aBAttest, aBVerif):

– aBSetup(1λ) → ppar: on input the security 1λ (in unary), this algorithm
outputs some public parameters ppar.
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– aBAttest(ppar) → quote: on input the public parameters ppar, if P.γ = 0,
then this algorithm outputs an attestation quote quote 6= ℵ for P, and if
P.γ = 1, then it outputs ℵ.

– aBVerif(ppar, (quote ∪ ℵ)) → 0 ∪ 1: on input public parameters ppar and a
value that is either a quote denoted quote or a special symbol ℵ, this algorithm
outputs a bit. By convention, an output of 0 means the attestation fails, while
if the output is 1, the attestation succeeds. We require by construction that
for all ppar: aBVerif(·, ·,ℵ) = 0.
This primitive is also depicted in Figure 3. We assume that if P.γ = 0 and

quote→ aBAttest(ppar), then aBVerif(ppar, quote) = 1.

Security. The only security we demand from this primitive is that, if a party is
compromised, then its attestation will always fail. This will happen by construc-
tion (since this is an assumed primitive) and is embedded in the security model.
The adversary A will play a game against a challenger G. Initially, the challenger
sets the system up by running aBSetup to output ppar which is given to A. The
unique party is generated, such that its corrupt bit is set to 1 (P.γ = 0).

Since A now has ppar, it can now run the aBAttest and aBVerif algorithms.
In addition, it has access to the OBAttest oracle: OBAttest()→ (quote∪ℵ). This
oracle calls the aBAttest() algorithm for the (corrupted) party P and returns
the output to the adversary A. The challenger stores the result in a database
DB. The adversary wins if, and only if, there exists a quote in DB (possibly with
quote = ℵ) such that aBVerif(ppar, quote) = 1. Note that by construction our
basic attestation primitive is secure, since once the compromise bit is set, the
output is ℵ, which always yields aBVerif(ppar,ℵ) = 0.

Basic attestation in reality. One may wonder at this point what our purpose
might be in constructing a security model for a primitive that is by definition
correct and secure. We need that security model in our reductions: we will use
the attestation primitive to build stronger, linked attestation, and then we will
want to make the argument that if an attacker can break the larger primitive,
it will also break the smaller primitive. As the smaller primitive is secure by
design, this is not possible, and hence, the larger primitive is also secure.

2.2 Authenticated Attestation

Basic attestation acts as a foolproof way of telling whether a device is compro-
mised or not. However, the security it provides is very weak. For one thing, it has

Target T Appraiser

Setup phase: aBSetup(1λ)→ ppar

aBAttest(ppar)→ quote
quote−−−−−−−−→ aBVerif(ppar, quote) → 0 if T compromised (T.γ = 1)

→ 1 if T uncompromised (T.γ = 0)

Fig. 3: Basic attestation description with an honestly-generated target. Notice
that there is no authentication involved.
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no authentication guarantees, so potentially one could use a quote that was hon-
estly generated for an honest component to attest a compromised one. Another
problem that is more subtle concerns the way components are compromised.
Because the basic quotes described in the previous section have no timestamp,
nor specific freshness, we cannot take into account adaptive tampering. In the
security notion, the party generating the quote is either honest or compromised
from the beginning. Yet, ideally we would like a primitive that ensures that a
party can start out as honest (and all the quotes generated at that time verify
as correct), and later be compromised (and all the quotes generated after that
moment will fail). We can do this by deploying cryptographic solutions.

A relevant question is why we did not include these security aspects in the
basic attestation primitive considered above. To answer this, recall that we have
constructed the basic attestation tool to be secure by design. As such, it is an
assumption, rather than a solution. If we also assume authentication, it would
go against the principle of using minimal assumptions.

Correctness. The correctness of our construction depends on the detection of
a compromised component. There are three cases to consider. Assume first that
the component is compromised. In that case, the output attestation is ℵ. The
component can try to authenticate this quote, but the verification will fail. In the
second case, the component (VM or hypervisor) is not compromised, and so will
receive a valid attestation quote, authenticated by the TPM. This authenticated
quote will verify. Finally, in the third case, the component is not compromised,
and receives a valid authentication quote. At this point, the adversary might try
to forward the authenticated quote and pass it off as someone else’s attestation,
but this will fail as long as the authentication primitive is EUF-CMA secure.

Formalization. The precise formalization of this primitive is in the full version
of our paper [4]. We consider an environment containing up to N parties. The
parties keep track of the compromise bit γ used also for basic attestation, and a
pair of public and secret keys denoted, for each party P, P.pk (the public key) and
P.sk (the private key). Intuitively, the security we require for this primitive will
be that a valid authenticated quote for a party P and fresh auxiliary information
(used as nonce) is hard to forge by an adversary which knows all the the public
information, can register and compromise users, and query an attestation oracle
that returns a valid quote or ℵ. In particular, in a secure scheme,verification
should fail if either the authentication or the attestation fails.

Construction. We construct an authenticated attestation scheme out of basic
authentication, a large set of nonces N := {0, 1}` (with ` chosen as a function
of the security parameter λ), and an EUF-CMA-secure signature scheme Sig =
(aSigKGen, aSigSign, aSigVerif). We thus instantiate AUX := N , and our
AuthAtt scheme is as follows:

– aAuthSetup(1λ) → ppar: this algorithm runs aBSetup(1λ) a number N of
times, outputting ppar1, ppar2, . . . , pparN . Each time ppari is created, a party
handle Pi is also created (it will be the party associated with the instance of
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Target T Appraiser

Setup phase: aAuthSetup(1λ)→ ppar

aAuthKGen→ (T.pk,T.sk)

aAuthAttest(ppar,T.sk, aux)→ (quote, σ)
authQuote=(quote,σ)−−−−−−−−−−−−−→ aAuthVerif(ppar,T.pk, aux, (quote, σ))

→ 0 if T compromised (authQuote = ℵ or σ invalid)
→ 1 if T uncompromised (authQuote 6= ℵ and σ valid)

Fig. 4: Authenticated attestation built upon basic attestation (Figure 3).

BasicAtt run for those parameters). It sets ppar := (ppar1, ppar2, . . . , pparN ,
N), and outputs this value.

– aAuthKGen(Pi) → (Pi.pk,Pi.sk): it keeps a counter (starting from 0), which
indicates how many times this algorithm has been run. If at the time this
algorithm is queried counter < N , then aAuthKGen runs aSigKGen as a black
box and outputs the resulting (pk, sk) (public and private) keys. It sets Pi.pk :=
pk and Pi.sk := sk. Party Pi is then initialized with these keys.

– aAuthAttest(ppar,P.sk, R)→ authQuote∪ℵ: on input the public parameters
ppar, a private key P.sk of a party P (which has already been registered), and

a value R
$← N , this algorithm first runs quote ← aBAttest(ppar), then the

algorithm signs σ ← aSigSign(P.sk, (quote, R)), that is, it signs a concate-
nation of the nonce and the obtained quote. The output of this algorithm is
authQuote := (quote, σ). If the required party or key does not exist, the value
ℵ is output by default. If quote = ℵ, then we instantiate authQuote = ℵ.

– aAuthVerif(ppar,P.pk, R, (authQuote ∪ ℵ)) → 0 ∪ 1: on input public pa-
rameters ppar, a public key P.pk of a party P, an auxiliary value R ∈ N ,
this algorithm first checks if the last input is ℵ; if so, the algorithm out-
puts 0 by default. Else, the algorithm parses authQuote = (quote, σ) (with
quote 6= ℵ by construction), then runs b ← aSigVerif(P.pk, quote, σ) and
d← aBVerif(ppar, quote). The algorithm outputs b ∧ d. Notably, 1 is output
if, and only if, signature and basic attestation verify concomitantly.

Theorem 21 (Secure Authenticated Attestation) The AuthAtt scheme is
secure assuming that (1) BasicAtt scheme is secure (2) the size of N is large
and (3) the Sig signature scheme is EUF-CMA secure.

The proof is given in the full version of our paper [4]

2.3 Linked Attestation

Authenticated attestation allows the attestation of one (out of many) compo-
nents, based on that component’s unique secret key. If we define now parties as
being either VMs or hypervisors, the notion of authenticated attestation suffices
to capture the basic guarantees of multi-channel deep-attestation. However, in
this paper our goal is to allow parties to link their attestations (a hypervisor’s
attestation should, e.g., , be linkable to various VMs hosted on that plateform).
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In this section we describe our next primitive: linked attestation. The latter
takes place in an environment where several parties are registered in a linked way
– this corresponds to a single platform. A first step is platform registration, by
which several parties are linked on the same underlying hardware. Each entity
later generates a linkable attestation – verifiable on its own, and linkable with
other linkable attestations.

Although our application scenario is that of linking VM and hypervisor at-
testations, we make our framework more generic than that. Instead of just two
types of components, we consider linkable sets S1,S2, . . . ,SL, which resemble
equivalence classes. These sets are defined such that any party in one set (say
PS1

) can produce an attestation that is linked to attestations produced by par-
ties in sets S2, . . . ,SL. We write P � Q to say that two parties are linked. The
relation is reflexive (P � P), symmetric (if P � Q, then Q � P), and transitive (if
P � Q and Q � R, then P � R).

We formalize a linked-attestation scheme LinkedAtt as a tuple of algorithms
LinkedAtt = (aLSetup, aLReg, aLAttest, aLVerif, aLLink), defined for some
auxiliary set AUX . The detailed formalization is given in the full version [4].

The setup algorithm outputs public parameters ppar, including the maxi-
mal number L of sets considered for linking. One can register platforms includ-
ing subsets of components of each type: this algorithm generates keys for each
party. A linked attestation algorithm produces a linked quote linkedQuote and
an auxiliary linking value lkaux. Finally, the verification algorithm checks the
attestation in each individual linkedQuote and the linking algorithm outputs 1 if
several linked attestations seem to belong to the same registered platform, and
0 otherwise. This syntax is also depicted in Figure 5.

P1,1

P1,2 P1,3

S1

Q1,1 Q1,2

S2
P2,1 P2,2

S1

Q2,1

S2

Verif: (>,P1,2)

linkedQuote lkaux

Verif: (>,Q1,1)

linkedQuote lkaux

Verif: (>,P2,2)

linkedQuote lkaux

Link : > Link : ⊥

Platform 1 Platform 2

Fig. 5: Linked attestation primitive. Dashed lines indicate platform under the
same registration. Here, both platforms are composed of two subsets (S1, S2).
There are a total of three quote verifications (P1,2,Q1,1,P2,2). The link verifica-
tion outputs true for devices registered on the same platform and false otherwise.
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The security of linked attestation informally states that an adversary, which
has Person-in-the-Middle capabilities and can compromise devices at will, cannot
make it appear that two devices are linked when they are not, in fact, so.

A significant limitation on the adversary’s capabilities is that compromising
a device will not leak its private keys (which are assumed to be held by a TPM).
However, the adversary will gain a limited oracle access to those keys upon
compromising the device. The limitations to those queries follow rules of access
to an actual TPM.

More formally, we define the security of linked attestation as a game LinkSecλ,F
parametrized by a security parameter λ and a set of functions F , which we call
the permitted key-access functions. The adversary wins if it is able to make attes-
tations stored in LAtt for parties registered on different platforms (P and Q) link.
However, at this point the adversary is constrained to a change-one-change-all
kind of game: it cannot, for instance, append an lkaux component of its choice
to an honestly-generated linkedQuote, nor vice-versa.

In the security game, the adversary registers platforms and can compromise
some of their components. When a component is compromised, the adversary
gets oracle access to a set of permitted functions of the component’s private key.
As a result, the strength of the security proof depends on the function space
F . The more functions the adversary is able to query once it compromises a
component, the more security our primitive is able to provide. However, note
that we cannot give the adversary access to some functions, such as the identity
function on the component’s private key.

Construction. We provide a construction for platforms that have two types of
components: virtual machines (VMs) and their managing hypervisor. Thus, in
our instantiation, L = 2. We use an authenticated attestation scheme (aAuthSetup,
aAuthKGen, aAuthAttest, aAuthVerif) as a black box. The basic construction
is depicted in Figure 6. During setup, our linked-attestation scheme first runs
aAuthSetup and outputs ppar and L = 2. Note that by construction aAuthSetup

must output a number N , denoting the maximal number of parties that can be
set up. This counter will represent a global maximum to parties of all types that
will exist in our ecosystem. Following setup, one can register a subset of VMs
together with a hypervisor. The algorithm runs the key-generation algorithm
aAuthKGen of the underlying authenticated attestation scheme for each party,
independently (note that this also ensures that the total number of parties re-
mains at most N). Finally, keys are grouped by types of parties: keys of VMs
are output in a set of public keys PK1 and the key of the hypervisor is output
as PK2.

The VMs and hypervisor generate linked attestations differently. The hyper-
visor first fetches the public keys of all the components registered with it on the
same platform. It computes a new nonce as the hash of two concatenated values:
the original auxiliary value aux and the list of the public keys. The component
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aLSetup(1λ):

ppar′ ← aAuthSetup(1λ)
Return ppar← ppar′

// Registers a platform with set s1 of VMs and the hypervisor in s2

aLReg(s1, s2): For each i ∈ {1, 2}:
For each j ∈ si:

(Pj.pk,Pj.sk)← aAuthKGen(Pj)
Group all Pj.pk into PKi and all Pj.sk into SKi

Return{(PK1, SK1), (PK2, SK2)}

// Attesting VM P on platform (s1, s2) for nonce aux

aLAttest(ppar,PK,P.sk, (s1, s2), aux):
Get P.pk matching P.sk from PK
lkaux← P.pk // The linking information is P’s public key

aux∗ ← H(aux||lkaux) // Embed lkaux into attestation nonce

authQuote← aAuthAttest(ppar′,P.sk, aux∗)
linkedQuote ← authQuote
Return (linkedQuote, lkaux)

aLVerif(ppar,P.pk, linkedQuote, aux, lkaux):

// Verify attestation quote of party P

aux∗ ← H(aux||lkaux);
authQuote← linkedQuote
Return aAuthVerif(ppar′,P.pk, authQuote, aux∗)

// Attest hypervisor P on platform (s1, s2) with nonce aux

aLAttest(ppar,PK,P.sk, (s1, s2), aux):
Parse PK as PK[1],PK[2] // PK[1] is the set of all VM pks

Parse PK[1] as PK1,PK2...PK|S1| // PKi contains the keys of all VMs on platform i

Set lkaux← PKk with k the index of s1 in S1
// lkaux is now the list of all VM keys on that platform

aux∗ ← H(aux||lkaux)
// Embed lkaux into a new attestation nonce

authQuote← aAuthAttest(ppar′,P.sk, aux∗)
linkedQuote ← authQuote
Return (linkedQuote, lkaux)

// Link VM quotes from q1 and the hypervisor quote from q2

aLLink(ppar,PK,q1,q2):

Initialize AUXvm ← ∅
For each (Pj.pk, aux, linkedQuote, lkaux) ∈ q1:

Return 0 if aLVerif(ppar′,Pj.pk, linkedQuote, aux, lkaux) returns 0
Return 0 if lkaux 6= Pj.pk
// Linking fails if quotes fail to verify or authenticate each VM

Add lkaux to AUXvm // Each lkaux here is a VM public key.

Parse q2 as (Pj.pk, aux, linkedQuote, lkaux)
If aLVerif(ppar′,Pj.pk, linkedQuote, lkaux) returns 0
AUXhym ← lkaux // This lkaux is a list of VM public keys.

Return 0 if AUXvm is not a subset of AUXhym

// Linking fails if the hypervisor’s list of PKs does not include all VM keys.

Return 1

Fig. 6: Our linked attestation scheme for platforms with 2 types of components:
VMs (stored in S1) and hypervisors (stored in S2). Each type of component
attests via a different aLAttest algorithm, the main difference between them
being that the hypervisor embeds a list of public keys in its nonce.

then runs aAuthAttest on the public parameters, this new nonce, and its pri-
vate key, outputting the authenticated quote. By contrast, when a VM attests,
it computes a new nonce from the original auxiliary value aux and (only) its own
public key. The authenticated quote is provided as the VM’s linked quote.

A VM (or a set of VMs) are considered to be linked to a hypervisor if,
and only if, the following conditions hold simultaneously: (1) the attestations of
all the purportedly-linked parties verify individually (if we run aAuthVerif it
returns 1 for each individual attestation); (2) the public key that was successfully
used to verify each of the VMs’ attestation is part of the auxiliary value lkaux
forwarded by the hypervisor.

Correctness. The LinkedAtt scheme is built upon the AuthAtt scheme. There
are two types of component to consider, VM and hypervisor. When a component
is registered on a plateform, its public key is appended in a list (PK1 for VMs,
and PK2 for the hypervisor). The public key of a VM is appended to the quote
in aLAttest and can be retrieved by the hypervisor. The latter can link the
attestation to a public key via algorithm aLLink. We consider two cases to verify
the correctness (1) a VM (not compromised) is not registered on the plateform,
and (2) a component (VM or hypervisor) is compromised. For (1) the attestation
will be correct since the component is not compromised, but the linking process
will abort since the public key does not belong to PK1. For (2) if a VM (or the
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hypervisor) is compromised then the attestation will fail since the authenticated
attestation is supposed to be correct (the aAuthAttest algorithm is executed to
generate the quote).

Security. We prove (see full version of our paper [4]) the security of our scheme
with respect to a single permitted function, FSign that takes in input a message
M from a message spaceM and outputs, when queried for a compromised party
P, a signature on the message M with the private key P.sk. We demand that the
message space M be disjoint from the range of any basic attestation scheme.

Theorem 22 (Secure Linked Attestation) The LinkedAtt scheme is secure
assuming AuthAtt scheme is secure and hash function H is collision resistant.

2.4 Authorized Linked Attestation

So far, attestation has been viewed as a primitive, run by a single party (which
can be of various types) and outputting an attestation. However, one of the most
important requirements of attestation is that the actual quote only be given to
authorized parties – which we call attestation servers [18].

We will define an authorized linked attestation protocol, which allows an
attestation server to act as a verification party in the attestation procedures.
The same server will also be the one to generate the auxiliary values required
for the attestation (this provides freshness to the protocol). The server will also
be responsible for linking multiple attestations.

Intuition. We provide a full formalization of authorized linked attestation be-
low. However, we also believe it is useful to first give an intuitive understanding
of what this primitive is and the security it wants to achieve.

In authorized linked attestation we consider a (single) attestation server S and
platforms consisting of several types of components (as shown for linked attes-
tation). The server will keep track of an evolving state, which is initially empty.
However, as the server starts to attest various components, at every execution
of the authorized attestation protocol, the server will output a verdict (indicat-
ing whether the component’s individual attestation has failed or succeeded) and
may – or may not – update its internal state. Intuitively, the state is meant to
contain the linking information provided by each of the attesting components.
After a number of attestations, the server might have enough information in its
state to decide if some of the components are linked or not.

The security notion we require for authorized linked attestation is threefold:
(1) we require that parties only provide attestation guarantees to the actual
attestation server; (2) we require that the contents of the attestation be actually
indistinguishable from random for all unauthorized parties; (3) we require a
similar kind of linking security as demanded in linked attestation see Section 2.3.
However, as opposed to linked attestation, the adversary in this case can also
play a Person-in-the-Middle role between honest components and the honest
server, or it may attempt to replay messages or impersonate one or both parties.
Finally, the adversary will be able to have oracle access which returns the secret
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key of any compromised component (this oracle access is parametrized in terms
of a function space F of allowed functions).

Formalization. The complete formalization of authorized linked attestation
is given in the full version [4]. Components on platforms are either VMs or
hypervisor. In addition, we consider a S, which stores a tuple consisting of a
public and a private key S.pk = pk and S.sk = sk respectively, and a state S.st.
Parties interact with each other in sessions, which are run by an instance of the
server and an instance of a given component. Instances of each party use that
party’s long-term public and private keys, as well as potential local randomness,
such as instance-specific nonces. An instance of a component and an instance
of the server are partnered if they essentially run the same session (formally, if
they share a session identifier, which consists of the concatenation of a number
of session-specific values).

Authorized linking attestation is defined as the tuple ALA = (ASetup,AReg,
AAttest, aALink). The first, second, and last of these are algorithms, while AAttest
is a protocol. The setup algorithm generates parameters (keys and public sys-
tem values) for all the involved parties. The registration algorithm allows the
VMs and hypervisor on a single platform (defined as sets s1 for the VMs on the
platform and s2 for the hypervisor) to be associated with each other. For ad-
ministration purposes, the public keys of all VMs on a platform (i.e., , all VMs
in some s1) and respectively the public key of the platform’s hypervisor (the
hypervisor in the corresponding s2) are stored respectively in subsets PK1,PK2

(i = 1 for VMs and i = 2 for the hypervisor). Together all the subsets PKi for
all the components form a set PK[i] (for i = 1, 2).

The authorized attestation protocol is run by an instance of a component
and an instance of the server, yielding, for the component, an acceptance bit
(corresponding to the authentication of its partner as the authorized server) and
for the server, a tuple verdict,S.st: the verdict verdict is 1 or 0 depending on
whether the component attested successfully or not, and the state is an update
of the server’s current internal state. Finally, the server state can be used on a
subset of components in the aALink algorithm, yielding either 1 (the components
are linked) or 0 otherwise.

Construction. Our construction of the ALA primitive can be seen in the Fig-
ure 7. We consider the existence on an underlying LinkedAtt scheme that we

ASetup(1λ):

ppar← aLSetup(1λ)
Create S
(S.pk, S.sk)← aSigKGen(1λ)
Return (ppar, S.pk, S.sk, S)

AReg(s1, s2):

{(PK1, SK1), (PK2, SK2)} ← aLReg(s1, s2)
Return {(PK1,SK1), (PK2,SK2)}

aALink(ppar,PK,S.st, s1, s2):

Parse S.st as q1,q2

Return aLLink(ppar,PK,q1,q2)

AAttest(ppar,PK, πiP, πjQ):

Component Server

Establish TLS channel

(linkedQuote, lkaux)← aLAttest(ppar,PK,P.sk, (s1, s2), aux)
aux←−−−−−−−−−−−−−−−−

AttestationRequest
aux

$←− AUX

(linkedQuote,lkaux)−−−−−−−−−−−−−−−−→
AttestationResponse

verdict← aLVerif(ppar,P.pkj , linkedQuote, aux, lkaux)

Add (Pj.pk, aux, linkedQuote, lkaux) to qi in S.st

Fig. 7: Our authorized linked attestation scheme for 2 types of components.



16 G. Arfaoui et al.

use for the aLSetup, aLReg and aLLink in a straightforward manner. However,
the aLAttest algorithm is no longer a primitive, but a protocol between two
instances of two parties, P and Q. For simplicity of exposition, we assume that
the instance of Q is the server attesting the component identified by P.

The protocol proceeds as follows. First, P and Q execute the TLS protocol,
with P playing the role of the client and Q playing the role of the server. The
role of the TLS protocol is two-fold: first, P authenticates the server, so that
they can determine whether this party is allowed to obtain attestation data.
Second, it leads to the establishment of a secure channel, such that the following
messages can be passed on in a secure manner. Once the traffic key(s) estab-
lished, the protocol continues as follows. First, the server uniformly randomly
samples a nonce aux, which is embedded in the first message of the protocol,
AttestationRequest. In response, the party P executes the aLAttest algorithm
and the output, consisting of a linkedQuote and the linkage information lkaux, is
then sent to the server. The server will subsequently update his state.

In order for two components to be linked by the server successfully, the fol-
lowing conditions have to be met. First, the two components’ attestation must
be valid (their associated verdicts equals 1). Second, the two lkaux must be sub-
sets of each other; essentially, the key that the VM used as part of its attestation
must be found in the lkaux provided by the hypervisor.

We note that if the server has at some point accepted the attestation of a
component (thus updating its state to add the linking information), and if later a
failed attestation occurs with respect to that component, the server updates state
as follows: it ignores the linking information provided in the second attestation;
and it removes prior linking information provided by that component.

Security. There are three fundamental properties we want ALA schemes to have:
an authenticity guarantee for the attestation server (authorization); a confiden-
tiality guarantee for the contents of the attestation (indistinguishability); and a
linkability guarantee for honestly-behaving components (linking-security). The
first notion, authorization, captures the fact that before reaching an accepting
state, a (non-server) party must be sure that it is speaking to the legitimate
server (game AuthSecλ,F). The second notion, indistinguishability, essentially
covers Person-in-the-Middle confidentiality for the attestation protocol (game
AuthIndλ,FSign

). The last property, linking-security, refers to the fact that no
PitM adversary with the ability to compromise components can convince an
attestation server that a component is linked to another if that is not the case
in reality (game AuthLinkλ,F). Although this last property might seem similar
to the security notion for our linked attestation primitive, there is one impor-
tant difference between the two: in linked attestation the adversary has access
to essentially two ways to generate an attestation (depending on whether the
component is honest or compromised), whereas in authorized linked attestation
the adversary will have more leeway in combining attestation material across
sessions. The stronger adversary in this section will thus make for a stronger
primitive in the end. The three security games are defined in the full version [4].
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Theorem 23 Our construction is AuthSecλ,FSign
secure if the TLS protocol pro-

vides server authentication: Pr[A wins AuthSecλ,F] ≤ εTLS-auth.

Theorem 24 Our construction is AuthLinkλ,FSign
secure if the underlying prim-

itive LinkedAtt is LinkSecλ,FSign
and TLS is at least (s)ACCE secure.

Theorem 25 Our construction is AuthIndλ,FSign
secure if the TLS channel pro-

vides (minimally) (s)ACCE security. Let qsessions be the number of sessions.

Pr[A wins AuthIndλ,FSign
] ≤ 1

qsessions
εTLS-sACCE.

3 Implementation

We provide a proof of concept implementation of our authorized linked at-
testation scheme. The implementation consists of three parts, a client for the
hypervisor, a client for the Virtual Machines, and an attestation server writ-
ten in Python 3. We do not consider the underlying NFV or cloud infrastruc-
ture, since our scheme abstracts those environments and can be used in any
kind deep-attestation scenario. Therefore, any computer equipped with a TPM
2.0 (which can also be emulated) and which has virtualization capacities suf-
fices for the purposes of our implementation. We provide our code as well as
a detailed tutorial on how to install and configure both the infrastructure [3].

Fig. 8: Architecture for tests.

The infrastructure. We summarize our

testing architecture in Figure 8 (note that
some of our tests use more than 2 VMs – up
to 55).

Our hypervisor is a laptop running Ubuntu
20.04.3 (kernel version 5.11.0-40) with an In-
tel i7-10875H CPU, 32GB RAM and a STMi-
croelectronics TPM. We used KVM to turn this laptop into a hypervisor. For
high attestation performance, we used full virtual TPM implementation, using
QEMU [1] with libtpms 0.7 [8] and swtpm 0.5 [20].

All virtual machines are QEMU virtual machines (version 4.2.1) with 1 core
and 512 RAM running Fedora 35 Cloud. The VM as well as the virtual TPM
instances are managed using Vagrant and Vagrant-Libvirt plugin.

The hypervisor, server, and VMs communicate through a private network
created with Vagrant. Thus, connection time is not considered in our tests.

To communicate with the TPM we used tpm2-tss, tpm2-abrmd and tpm2-
tools from the tpm2-software [2]. Note that the tpm2-tss project implements the
TPM software stack (TSS), which is an API specified by the Trusted Computing
Group to interact with a TPM. The tpm2-abrmd implements the access broker
and resources to manage concurrent access to the TPM and manage memory
of the TPM by swapping in and out of the memory as needed (hardware TPM
have limited memory).
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Table 1: Minimum, median, mean and maximum time in second for attestation
of a hypervisor and a virtual machine for 100 trials.

min median mean max

Hypervisor 3.801 11.940 13.896 40.762

VM 0.337 0.416 0.422 0.572

The attestation server is also a virtual machine, with the same characteristics
as those above. This allows us to test our implementation on a single machine.
We establish a secure connection between the client and the server by using
Python’s SSL library.

Tests. We perform three types of experiments. The first is a comparison of
hypervisor attestation time and VM attestation time. Although both those pro-
cesses have some (very small) amount of noise, our values faithfully show the
difference between attesting a component through the physical TPM – hypervi-
sor attestation – and attesting it by using a virtual TPM – VM attestation.

We ran 100 attestations for the hypervisor and 100 attestations for a virtual
machine. The results have high variance so Table 1 presents the minimum, the
maximum, mean, and median value of those 100 trials. As expected, time for an
attestation using a hardware TPM is much higher than using a vTPM.
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Fig. 9: Attestation time.

As our second and third experiments we
wanted to see how the overall runtime of our
scheme evolves with the number of virtual ma-
chines that need to be attested, when the at-
testation is sequential or parallelized for the
VM attestations. In both cases, each experi-
ment first runs the attestation of the hypervi-
sor, and then (sequentially or in parallel) the
attestation of a varying number of VM (up to
a maximum of 55). The results are plotted in
Figure 9. We note that the runtime is not en-
tirely linear. This is because in experiments 2
and 3 the initial attestation of the hypervisor
(which only occurs once) takes larger time than the subsequent VM run-times.

Comparison to single-channel attestation. We did not implement single-
channel attestation. However, since we have implemented hypervisor and VM
attestations, we can theoretically estimate the run-time of single-channel attes-
tation for a varying number of VMs – which we plot in Figure 9. Indeed, a
single-channel attestation process for a single VM includes a VM attestation
and a hypervisor attestation. If we want to run it for 2 VMs, then we need to
perform 2 hypervisor attestations and 2 VM attestations. This cannot be eas-
ily parallelized either, because the same TPM has to run the attestations. This
yields a much higher run-time, as depicted in Figure 9.
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Comparison to multi-channel attestation. Although our method follows
basic multi-channel attestation approaches, we do add an extra computation (a
hash function computation) compared to traditional multi-channel attestation.
In addition, we require a little extra memory overhead for both the attestation
server and for each platform, so that the additional attestation keys are stored
for each VM. There is also a slight transmission overhead, since those keys are
also sent upon attestation. However, the transmission overhead is negligible since
it only appears for the hypervisor attestation (which occurs only once).

4 Conclusions and Future Work

We proposed a layer-binding in deep-attestation without running into the com-
plexity of single-channel attestation. Our construction achieves the best of both
worlds, with a complexity similar to that of multi-channel attestation, but with
the strong linkage properties provided in single-channel attestation.

We accompany our construction by a proof-of-concept implementation that
clearly shows the viability and scalability of our solution, especially if VM at-
testations are run in parallel.

In addition, we are the first to present a full, formal treatment of our new
protocol, which we call authorized linked attestation. Our construction of autho-
rized linked attestation is modular, built on primitives which have increasingly
stronger properties. Our underlying assumption is a primitive called basic attes-
tation. We show that in order to be able to prove security, we need that attes-
tations be able to reflect compromise of the component. In addition, we rely on
a collision-resistant hash function, an EUF-CMA-secure signature scheme, and
the sACCE security of a TLS protocol (having AKE properties would be better).

However, our model (and scheme) does not immediately account for other
features of virtual infrastructures, such as privacy CAs, migrating VMs, multiple
hypervisors managing the same VM, or even replacing TPMs. These aspects are
left as future work.
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