
HAL Id: hal-03444549
https://uca.hal.science/hal-03444549

Submitted on 23 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reverse Engineering Models of Concurrent
Communicating Systems From Event Logs

Sébastien Salva

To cite this version:
Sébastien Salva. Reverse Engineering Models of Concurrent Communicating Systems From Event
Logs. Sixteenth International Conference on Software Engineering Advances ICSEA 2021, Oct 2021,
Barcelona, online, Spain. �hal-03444549�

https://uca.hal.science/hal-03444549
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reverse Engineering Models of Concurrent Communicating Systems From Event
Logs

Sébastien Salva
LIMOS - UMR CNRS 6158

University Clermont Auvergne, France
email: sebastien.salva@uca.fr

Abstract—This paper tackles the problem of recovering
formal models of communicating systems made up of com-
ponents concurrently interacting with each other, e.g., Web
service compositions or IoT systems. We present a passive
model learning approach, which recovers, from event logs, one
Input Output Labelled Transition System (IOLTS) for every
component of the system under learning. From an event log,
our approach is able to automatically recover conversations
(a.k.a. sessions), without having any knowledge about the
used event correlation mechanisms. It uses correlation pattern
definitions and a heuristic based on the quality of the generated
conversations to get the most relevant conversation sets. Then,
our approach extracts the trace sets of every component and
generates IOLTSs. The latter can be used as documentation,
for test case generation, or for formal verification.

Keywords-Reverse engineering; Model learning; Event Log;
Communicating systems; .

I. INTRODUCTION

Software Reverse Engineering gathers numerous tech-
niques specialised in the analysis of software system to ex-
tract design and implementation information. Among them,
model learning has emerged as a highly effective technique
for recovering the models of black-box software systems.
Such models, e.g., temporal rules, or finite state machines
that encode functional behaviours, offer substantial benefits
as they can be employed for security audits [1], [2], real-time
anomaly detection [3], or bug detection [4].

This paper addresses passive model learning, for which
it is assumed that event logs have been previously collected
from a system under learning SUL and can be mined to
learn models. Although numerous passive model learning
algorithms and tools are available in the literature, few of
them [5], [4], [6], [7] are directly applicable to distributed
systems made up of communicating components. These
systems indeed raise specific difficulties. Most of them come
from the fact that SUL is made up of components that
run in parallel and concurrently interact with each other.
To recover the behaviours of the components, it is required
to extract accurate conversations (a.k.a. sessions), i.e. event
sequences of correlated events interchanged among different
components that achieve a certain goal. Additionally, tradi-
tional model learning algorithms return ”flat” models, i.e.
one model for a given composition encoding all the event

details (parameters) listed in the event logs. With large event
logs, it often results in complex and unreadable models.

Contribution: the paper presents another passive model
learning approach, which recovers Input Output Labelled
Transition Systems (IOLTSs) from event logs. As SUL is
a distributed and concurrent communicating system, we as-
sume that correlation mechanisms, e.g., execution trace iden-
tifiers, are employed to propagate context ids and keep track
of the process contexts. But, we do not assume knowing how
events are correlated in advance. The major contribution of
this approach is its capability to automatically retrieve con-
versations from event logs, without having any knowledge
about the used correlation mechanisms. Instead of using a
brute-force search over the space of parameter assignments
found in events, our algorithm is based upon a formali-
sation of the notion of correlation patterns and is guided
towards the most relevant conversation sets by evaluating
conversation quality. As there is no consensus about what a
relevant conversation should be, the conversation quality can
be adapted to meet user needs and viewpoints. Next, from
the retrieved conversations, our approach extracts the trace
sets of every component participating in the generation of
the event log. And, finally, it generates one IOLTS for every
of these components, which captures the behaviours encoded
in event logs with inputs and outputs showing the messages
received and sent among the components.

The paper is organized as follows: Section II provides
some definitions and notations on events, correlations and
sessions. Our approach is presented in Section III. Sec-
tion IV discusses related work. Section V summarises our
contributions and draws some perspectives for future work.

II. EVENTS, CORRELATIONS AND CONVERSATIONS

A. Preliminary Definitions

We denote E the set of events of the form e(α) with
e a label and α an assignment of parameters in P . The
concatenation of two event sequences σ1, σ2 ∈ E∗ is denoted
σ1.σ2. ε denotes the empty sequence. For sake of readability,
we also write σ1 ∈ σ2 when σ1 is a (ordered) subsequence
of the sequence σ2. Events are partially ordered in event
logs. This is expressed with these partial order relations:

• <t⊆ E×E, which orders two actions according to their
timestamps,

• <c⊆ E×E, which orders two actions if the occurrence
of the first action implies the occurrence of the second
one,

• <:=<t ∪ <c is the transitive closure of <c and <t.
We also use the following notations on events to make

our algorithms more readable:
• from(e(α)) = c denotes the source of the event when

available; to(e(α)) = c denotes the destination;
• isReq(e(α)), isResp(e(α)) are boolean expressions

expressing the nature of the event;
• A(σ) =

⋃
e(α)∈σ

α is the set of parameter assignments

of σ.
In the paper, we use the IOLTS model to express the

behaviours of components. This model is defined in terms
of states and transitions labelled by input or output events
in E.

Definition 1 (IOLTS) An Input Output Labelled Transition
System (IOLTS) is a 4-tuple 〈Q, q0,Σ,→〉 where:
• Q is a finite set of states; q0 is the initial state;
• Σ ⊆ E is the finite set of events. ΣI ⊆ Σ is the

countable set of input events, ΣO ⊆ Σ is the countable
set of output events, with ΣO ∩ ΣI = ∅;

• →⊆ Q×Σ×Q is a finite set of transitions. A transition
(q, a, q′) is also denoted q a−→ q′.

B. Event Correlation and Conversations

The correlation mechanisms used from one system to
another are seldom the same, but they are often compliant
with some patterns. Most of these are introduced in [8].
Given an event sequence σ = e1(α1) . . . ek(αk) ∈ E∗, we
formulate that an event e(α) correlates with σ w.r.t. one of
these patterns as follows:
• Key based correlation: e(α) correlates with σ if all

the events share share the same parameter assignment
set: α ∩ α1 ∩ · · · ∩ αk 6= ∅;

• Chained correlation: e(α) is correlated with σ if e(α)
shares some references with ek(αk): α ∩ αk 6= ∅;

• Function based correlation: a function f : E →
L firstly assigns to each event a label of the form
”l:=label” in L according to the event parameter assign-
ments. Then, the event correlation is performed w.r.t.
one of the previous patterns;

• Time-based correlation: this pattern is somehow a
special case of the previous one, in the sense that a label
can be injected into an event w.r.t. a condition on time.
A function f : E → L assigns labels to events returns
a label of the form ”t:=l” according to timestamps.

The above patterns can also be combined with conjunc-
tions or disjunctions to formulate correlation expressions. To

/login(from:="cl", to:="ShopS", id:="tocken",
account:="l")

ok(from:="ShopS", to:="cl", id:="tocken"
trans:="t1")

/order(from:="cl", to:="ShopS",
trans:="t1",item:="a")

/stock(from:="ShopS", to:="StockS", trans:="t1",
item:="a")

ok(from:="StockS", to:="ShopS", trans:="t1",
item:="a")

ok(from:="ShopS", to:="cl",
trans:="t1",content:="stock")

/supply(from:="ShopS", to:="WS", trans:="t1",
key:="k1",item:="a")

ok(from:="WS", to:="ShopS", trans:="t1",
key:="k1")

/supplyWS(from:="WS", to:="WS1", key:="k1",
key2:="k2",item:="a")

/supplyWS(from:="WS", to:="WS2", key:="k1",
key2:="k3",item:="a")

/supplyWS(from:="WS", to:="WS3", key:="k1",
key2:="k4",item:="a")

ok(from:=WS1,to:="WS", key:="k1", key2:="k2")
ok(from:=WS2,to:="WS", key:="k1", key2:="k3")
Unavailable(from:="WS3",to:="WS", key:="k1",

key2:="k4")
/login(from:="cl", to:="ShopS", id:="tocken2",

account:="l2")
ok(from:="ShopS", to:=cl, id:="tocken2",

trans:="t2")
/order(from:="cl", to:="ShopS",

trans:="t2",item:="b")
ok(from:="ShopS", to:="cl", trans:="t2"

content:="no stock")

Figure 1. Formatted part of an event log

make our algorithm readable, we write e(α) correlates σ
if the event e(α) correlates with a sequence σ by such a
correlation pattern-based expression.

In reference to [9], a set of parameter assignments used
for an event correlation is called correlation set. A conversa-
tion corresponds to an event sequence interchanged among
components, whose events correlate by means of correlation
sets:

Definition 2 Let σ = e1(α1) . . . ek(αk) ∈ Ek.

• σ is a conversation iff ∀1 < i ≤ k : ei(αi)
correlates e1(α1) . . . ei−1(αi−1)

• corr(σ) = {cs1, . . . , csk−1} denotes the set of corre-
lation sets of σ, with csi ⊆ (αi ∪ αi+1)

III. MODEL LEARNING

Given an event log produced by a concurrent and dis-
tributed system SUL, our approach aims at analysing an
event log collected from SUL and at recovering one IOLTS
for every component of SUL, which captures its behaviours.

We assume that the events in the event log are ordered
with the < relation. When several log files are given, we

Figure 2. Conversation set and IOLTSs modelling a composition of 6 Web services

assume that they can be assembled with <t or <c. In par-
ticular, the causal order relation <c may help assemble two
log files given by two systems whose internal clock values
slightly differ. <c indeed helps order the actions a1(α1) in
a first log that imply the occurrence of other actions a2(α2)
in a second one. The analysis of the pairs (a1(α1), a2(α2))
helps compute the difference of time between these two
systems.

Our approach is mainly divided into three main steps:
Conversation extraction, Component trace extraction from
conversations, and IOLTS Generation and Generalisation.
Beforehand, we assume that the event log is formatted into
a sequence S of events of the form e(α) by means of
regular expressions. The techniques proposed in [4], [10],
[11], [12], [13], [14] can assist users in the mining of patterns
or expressions from log files, which can be used to quickly
derive the appropriate regular expressions.

A. Step 1: Conversation Extraction

The first step of our approach extracts conversations
from a sequence S. Our conversation extraction algorithm
is devised to explore the possible correlations among the
successive events of S, thus in a depth-wise way, while being
efficiently guided by the conversation consistencies. This
notion of consistency is expressed by means of conversation
invariants and conversation quality. Invariants and quality
metrics also formulate a heuristic that guides our algorithm
towards the most relevant conversation sets.

1) Conversation Invariant and Quality: The correlation
patterns implicitly restrict the structure of a conversation
according to some properties that are always true, i.e. invari-
ants, over correlation sets. Indeed, an event must correlate
with only one conversation σ of a conversation set C with
a unique correlation set; a correlation set cs of corr(σ)
cannot be empty, cs cannot be found in another conversation
σ2 of C. Besides, σ must have parameter assignments for

building potential correlation sets, it must include parameter
assignments that cannot be found in any other conversation
σ2. These three invariants are formulated in the following
proposition. Other invariants can also be added to meet
user preferences. For instance, the last invariant imposes
conversations to start with a request.

Proposition 3 (Conversation Set Invariants) Let C be a
conversation set and σ ∈ C. Inv stands for the set of
conversation set invariants:
• ∀cs ∈ corr(σ) : cs 6= ∅
• ∀cs ∈ corr(σ),∀σ2 ∈ C \ {σ} : cs ∩A(σ2) = ∅
• A(σ) \

⋃
σ2∈C\{σ}A(σ2) 6= ∅

• ∀e1(α1) . . . ek(αk) ∈ C : isReq(e1(α1))

For readability, we denote that the conversations of
a conversation set C meet conversation invariants with
C satisfies Inv.

Our algorithm uses quality metrics as another way to limit
the conversation set exploration, but also to prioritize this
exploration among several conversation set candidates. We
formulate a comprehensive quality metric of a conversation
set C by means of a utility function for representing user
preferences. The following definition refers to quality met-
rics Mi(C) over conversation sets, themselves calculated by
means of metrics mi(σ) over conversations:

Definition 4 (Conversation Set Quality) 0 ≤ Q(C) =∑n
i=1Mi(C).wi ≤ 1 with 0 ≤ Mi(C) =

∑
σ∈C mi(σ)

|C| ≤ 1,

wi ∈ R+
0 and

∑k
i=1 wi = 1.

The conversation quality metrics can be general or es-
tablished with regard to a specific system context. Our
approach actually does not limit the metric set. We provide
four metric examples below. m1 and m2 evaluate whether

a conversation σ follows the classical request-response ex-
change pattern (sender sends a request to receiver, ultimately
returning a response). m1 evaluates the ratio of requests in
σ associated with some responses with ReqwResp(σ). m2

evaluates the ratio of responses following a prior request
with RespwReq(σ).

0 < m1(σ) =
|ReqwResp(σ)|+ 1

|Req(σ)|+ 1
≤ 1 (1)

0 < m2(σ) =
|RespwReq(σ)|+ 1

|Resp(σ)|+ 1
≤ 1 (2)

The metric m3 examines whether σ is composed of
correlated events, in other terms, whether σ has more than
one event:

m3(σ) =

{
1 if corr(σ) 6= ∅
0 otherwise (3)

The metric m4 evaluates the ratio of assignments used
to correlate the events of a conversation. The simpler the
correlation mechanism is, the closer to 1 the metric is.

0 ≤ m4(σ) = 1−
|
⋃
cs∈corr(σ) cs|
|A(σ)|

< 1 (4)

Algorithm 1: Conversation and Correlation Set Ex-
traction

input : Event sequence S = e1(α1) . . . ek(αk), boolean first
output: Conversation sets C1, . . . , Cn,

1 C := {e1(α1)};
2 call Find C&CS(C, 2);
3 Procedure Find C&CS(C, i) is
4 if i ≤ k then
5 foreach σ ∈ C : ei(αi) correlates σ do
6 CS := P(αi ∩ last(σ)) \ {∅} ;
7 foreach cs ∈ CS do
8 σ′ := σ.ei(αi);
9 corr(σ′) := corr(σ) ∪ {cs};

10 C2 := C ∪ {σ′} \ {σ};
11 if C2 satisfies Inv and Q(C2) ≥ T then
12 Find C&CS(C2, i+ 1);

13 C3 := C ∪ {ei(αi)};
14 corr(ei(αi)) := ;
15 if C3 satifies Inv and Q(C3) ≥ T then
16 Find C&CS(C3, i+ 1);

17 else
18 return C;
19 if Q(C) ≥ T2 then
20 STOP all Find C&CS instances;

2) Conversation Set Extraction Algorithm: The conver-
sation set extraction is implemented in Algorithm 1. It
takes as input an event sequence S and returns conversation
sets, which are ordered with regard to their respective
conversation set quality. It builds a first set C composed
of one conversation equal to the first event of S. The events
of S are then successively covered by recursively calling a
new instance of Find C&CS(C, i). This procedure takes

an event ei(αi) and tries to find, in the conversation set C, a
conversation σ such that ei(αi) correlates σ. If there exists
such a conversation, the procedure builds for every possible
correlation set (line 7) a new conversation set with the
new conversation σ.ei(αi). Besides (line 13), an additional
conversation set C3 is built to consider that the event ei(αi)
might also be the beginning of a new conversation. For every
new conversation set that meets conversation invariants and
quality, Find C&CS is recursively called (lines 12, 16).

If we consider the event sequence of Figure 1, Algorithm
1 extracts the conversation set of Figure 2, which holds 2
conversations whose events are correlated with the parame-
ters in {id, trans, key, key2}.

Algorithm 1 may return several conversation sets ordered
by quality if different correlations have been detected among
successive events of S. In this case, the user has to choose
the most appropriate conversation set with regard to its needs
and knowledge.

B. Step2: Component Trace Extraction

The second step of our approach now generates as many
trace sets as components found in the system SUL. This
step, implemented by Algorithm 2, firstly covers the events
of every conversation to identify the components of SUL
(line 5). A the same time, it converts events by integrating
the notions of input and output. In lines 6-8, every request
or response is indeed doubled by separating the component
source and destination. The component that executes the
event is identified by a new assignment on the parameter
idc injected to each event. Non-communicating events (nei-
ther requests or responses) are marked as outputs. Then,
Algorithm 2 segments the resulting sequence σ′ into sub-
sequences, each capturing the behaviours of one component
only of the set Comp (lines 9, 10). The algorithm returns
form every component c ∈ Comp a set Tc that gathers the
traces of the component c only.

Algorithm 2: Component Trace Extraction
input : Conversation set C
output: Trace sets Tc1 . . . Tcn

1 T := {};
2 foreach σ = e1(α1) . . . ek(αk) ∈ C) do
3 σ′ := ε;
4 foreach ei(αi) ∈ σ do
5 Comp := Comp ∪ {from(ei(αi)), to(ei(αi))};
6 σ′ := σ′.!ai({idc := from(ei(αi))} ∪ αi);
7 if isReq(ei(αi)) ∨ isResp(ei(αi))) then
8 σ′ := σ′.?ei({idc := to(ei(αi))} ∪ αi);

9 foreach c ∈ Comp do
10 Tc := Tc ∪ {σ′ \ {e(α) ∈ σ′ | (idc := c) /∈ α}}

C. Step 3: IOLTS Generation

Every trace set Tc = {σ1, . . . , σn} is now lifted to the
level of IOLTS.

A first IOLTS denoted Lc is obtained by transforming
the traces of Tc to IOLTS paths. Lc is the IOLTS Lc =
〈Q, q0,Σ,→〉 derived from Tc such that:
• q0 is the initial state.
• Q,Σ,→ are defined by the following inference rule:

σi=a1(α1)...ak(αk)

q0
e1(α1)−−−−→(q1i,cl(σi))...(qk−1i,Cl(σi))

ak(αk)−−−−→q0

By applying this trace set to IOLTS conversion on every
component, we obtain the IOLTSs Lc1 , . . . , Lcn . Those
IOLTSs are finally generalised by merging their equivalent
states. The state merging is performed by means of the k-Tail
algorithm [15], which is known to be a flexible state merging
algorithm in the sense that it assembles the states sharing
the same k-future, i.e. the same event sequences having the
maximum length k.

Figure 2 depicts the IOLTSs generated from the conversa-
tion set given on top of the figure. Our approach has detected
6 components among the events of the two conversations.
These have been converted to 6 trace sets, which capture the
behaviours of each component. The traces sets have finally
been converted to the IOLTSs depicted in the figure. In this
example, we call k-Tail with k := 2.

With these IOLTSs, it becomes much easier to understand
the general functioning of the whole system. In particular,
it is now easier to understand that three services allow
to interact with wholesalers. Two of them seem to be
behavioural equivalent, but the last one is faulty.

IV. RELATED WORK ON PASSIVE MODEL LEARNING

Passive mode learning includes techniques that passively
recover models from a given set of samples, e.g., a set
of execution traces. These are said passive as there is no
direct interaction with the system under learning. Models are
often generated by encoding sample sets with state diagrams
whose equivalent states are merged. For instance, k-Tail
has been later enhanced with Gk-tail to generate Extended
Finite State Machines encoding data constraints [16]. Other
approaches also enhance k-Tail to build more precise models
[17], [18], [19]. kBehavior [20] is another kind of approach
that generates models from a set of traces by taking every
trace one after the other and by completing a finite-state
automaton in such a way that it now accepts the trace. These
previous passive algorithms usually yield big models, which
may quickly become unreadable.

Some passive approaches dedicated to communicating
systems have also been proposed. Mariani et al. proposed
in [20] an automatic detection of failures in log files by
means of model learning. This work extends kBehavior to
support events combined with data. It segments an event log
with two strategies: per component or per user. The former,
which can be used with communicating systems, generates
one model for each component. CSight [6] is another tool
specialised in the model learning of communicating systems,

where components exchange messages through synchronous
channels. It is assumed that both the channels and com-
ponents are known. Besides, CSight requires specific trace
sets, which are segmented with one subset by component.
CSight follows five stages: 1) log parsing and mining of
invariants 2) generation of a concrete Finite State Machine
(FSM) that captures the functioning of the whole system
by recomposing the traces of the components; 3) generation
of a more concise abstract FSM; 4) model refinement with
invariants that must hold in FSMs, and 5) generation of
Communicating FSM.

We have proposed in [21] a passive model learning algo-
rithm for recovering models of component-based systems.
The requirements considered in this approach are different
from those of the above approaches. The main difference lies
in the fact that the communications among components are
assumed hidden (not available in event logs). The algorithm
is hence specific to this assumption. Then, we have proposed
the approach CkTail in [7] to generate models of commu-
nicating systems from event logs. Compared to CSight, we
do not assume that the trace sets are already prepared. The
novelty proposed by CkTail lies in its capability of detecting
sessions in event logs. Compared to this work, we assume
with CkTail that the components follow a strict behaviour:
they cannot run multiple instances; requests are processed
by a component on a first-come, first served basis. Besides,
components follow the request–response exchange pattern

We showed that CkTail builds more precise models than
the other approaches by better recognising sessions, but
we also concluded that its requirements are too restrictive
to be widely used. The approach proposed in the paper
relaxes these assumptions and now supports any kind of
communicating system.

V. CONCLUSION

This paper has proposed the design of an approach spe-
cialised into the recovery of formal models from event logs
generated by communicating systems made up of concurrent
components. The approach firstly explores the conversation
set space that can be derived from an event log and is guided
toward the most relevant conversation sets by means of
invariants and conversation quality metrics. The latter can be
adapted to define user preferences or system contexts. Then,
the approach generates one trace set for every component
along with one IOLTS expressing its behaviours. These
IOLTS can be later used as documentation or for automatics
analyses.

There are several issues which require further investiga-
tion before evaluating our approach. One of them is to be
able to propose a good balance between model size, readabil-
ity and precision. For instance, the generated IOLTSs may
be very large on account of similar event sequences having
different parameter values. We hence intend to add further

steps to raise the IOLTS abstraction level, while preserving
the possibility to analyse of use concrete parameter values.

ACKNOWLEDGEMENT

Research supported by the French Project VASOC
(Auvergne-Rhône-Alpes Region) https://vasoc.limos.fr/

REFERENCES

[1] S. Majumdar, Y. Jarraya, M. Oqaily, A. Alimohammadifar,
M. Pourzandi, L. Wang, and M. Debbabi, “Leaps: Learning-
based proactive security auditing for clouds,” in Computer
Security – ESORICS 2017, S. N. Foley, D. Gollmann, and
E. Snekkenes, Eds. Cham: Springer International Publishing,
2017, pp. 265–285.

[2] S. Salva and E. Blot, “Verifying the application of security
measures in iot software systems with model learning,” in
Proceedings of the 15th International Conference on Software
Technologies, ICSOFT 2020, Lieusaint, Paris, France, July 7-
9, 2020, M. van Sinderen, H. Fill, and L. A. Maciaszek, Eds.
ScitePress, 2020, pp. 350–360.

[3] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,
X. Yang, Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G.
Lou, M. Chintalapati, F. Shen, and D. Zhang, “Robust log-
based anomaly detection on unstable log data,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p.
807–817.

[4] L. Mariani and F. Pastore, “Automated identification of failure
causes in system logs,” in Software Reliability Engineering,
2008. ISSRE 2008. 19th International Symposium on, Nov
2008, pp. 117–126.

[5] A. Petrenko and F. Avellaneda, “Learning communicating
state machines,” in Tests and Proofs - 13th International
Conference, TAP 2019, Held as Part of the Third World
Congress on Formal Methods 2019, Porto, Portugal, October
9-11, 2019, Proceedings, 2019, pp. 112–128.

[6] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
“Inferring models of concurrent systems from logs of
their behavior with csight,” in Proceedings of the 36th
International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp.
468–479. [Online]. Available: http://doi.acm.org/10.1145/
2568225.2568246

[7] S. Salva and E. Blot, “Cktail: Model learning of commu-
nicating systems,” in Proceedings of the 15th International
Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE 2020, Prague, Czech Republic, May
5-6, 2020, R. Ali, H. Kaindl, and L. A. Maciaszek, Eds.
SCITEPRESS, 2020, pp. 27–38.

[8] A. Barros, G. Decker, M. Dumas, and F. Weber, “Correlation
patterns in service-oriented architectures,” in Fundamental
Approaches to Software Engineering, M. B. Dwyer and
A. Lopes, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 245–259.

[9] OASIS Consortium, “Ws-bpel version 2.0,” April 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.pdf.

[10] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” 2009 Ninth IEEE International Conference on Data
Mining, pp. 149–158, 2009.

[11] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “A
lightweight algorithm for message type extraction in system
application logs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 11, pp. 1921–1936, Nov 2012.

[12] R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering
and pattern mining algorithm for event logs,” in 2015 11th In-
ternational Conference on Network and Service Management
(CNSM), Nov 2015, pp. 1–7.

[13] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand,
and R. Sasnauskas, “A search-based approach for accurate
identification of log message formats,” in Proceedings of the
26th Conference on Program Comprehension, ser. ICPC ’18.
New York, NY, USA: ACM, 2018, pp. 167–177. [Online].
Available: http://doi.acm.org/10.1145/3196321.3196340

[14] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu, “Tools and benchmarks for automated log parsing,”
CoRR, vol. abs/1811.03509, 2018. [Online]. Available:
http://arxiv.org/abs/1811.03509

[15] A. Biermann and J. Feldman, “On the synthesis of finite-state
machines from samples of their behavior,” Computers, IEEE
Transactions on, vol. C-21, no. 6, pp. 592–597, June 1972.

[16] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic gener-
ation of software behavioral models,” in Proceedings of the
30th International Conference on Software Engineering, ser.
ICSE’08. New York, NY, USA: ACM, 2008, pp. 501–510.

[17] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst, “Leveraging existing instrumentation to automatically
infer invariant-constrained models,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp.
267–277.

[18] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart,
I. Beschastnikh, and Y. Brun, “Behavioral resource-aware
model inference,” in Proceedings of the 29th ACM/IEEE In-
ternational Conference on Automated Software Engineering,
ser. ASE ’14. New York, NY, USA: ACM, 2014, pp. 19–30.

[19] F. Pastore, D. Micucci, and L. Mariani, “Timed k-tail: Au-
tomatic inference of timed automata,” in 2017 IEEE Inter-
national Conference on Software Testing, Verification and
Validation (ICST), March 2017, pp. 401–411.

[20] L. Mariani and M. Pezze, “Dynamic detection of cots com-
ponent incompatibility,” IEEE Software, vol. 24, no. 5, pp.
76–85, 2007.

[21] S. Salva and E. Blot, “Confect: An approach to learn models
of component-based systems,” in Proceedings of the 13th
International Conference on Software Technologies, ICSOFT
2018, Porto, Portugal, July 26-28, 2018., 2018, pp. 298–305.

