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Abstract A quasiconvex function f being given, does there exist an increasing

and continuous function k which makes k ◦ f convex? How to build such a

k? Some words on least convex (concave) functions. The ratio of two positive

numbers is neither locally convexifiable nor locally concavifiable. Finally, some

considerations on the approximation of a preorder from a finite number of

observations and on the revealed preference problem.
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1 Introduction.

A function f : Rn → R is said to be quasiconvex when its (lower) level sets

St(f) = {x : f(x) ≤ t} are convex. A convex function f is necessarily quasi-

convex, the composition g = k ◦ f of a quasiconvex function f with a scaling

(increasing and continuous) function k is quasiconvex. A maximum of quasi-

convex functions is quasiconvex but their sum is not, the ratio of a positive

convex function over a positive concave function is quasiconvex but not convex.

A basic ingredient of the theory of the consumer behavior is the concept of

a preference relation. When faced with prices of goods and services, the con-

sumer makes his choice according to his preferences and his budget constraint.
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Gérard Debreu [10] has shown that, under rational assumptions, the choice

is determined in maximizing a continuous increasing quasiconcave function,

called utility, under the budget constraint (a function u is said to be quasi-

concave if −u is quasiconvex). This utility function u is unique up to a scaling

function k: if u is a utility function describing the behavior of the consumer,

so is k ◦ u. One question: given a quasiconcave utility function, does there

exist some scaling function k which makes k ◦u concave? If yes u is said to be

concavifiable. But, in general, there are no reasons for a quasiconcave utility

function to be concavifiable.

G. Debreu [11] has shown that, when the preference relation admits a repre-

sentation by a concave utility function, there exists a representation ū concave

such that for each other concave representation u there exists a concave scaling

function k with u = k ◦ ū. This utility function ū is said to be a least concave

representation of the preference relation, it is unique up to a scaling function

k of type k(t) = αt + β, α > 0. Let us show the interest of a least concave

utility representation.

Let us consider an investment c (for instance in a portfolio selection). The

value of this investment after the fixed period is given by u(Zc) where Zc is a

random value and u is a utility function. Let v = k ◦ u with k increasing and

concave. It is convenient to compare the expected value E(v(Zc)) of v(Zc) with

k(E(u(Zc))) in order to work on comparable quantities. The Jensen inequality

[17] says that

E(u(Zc)) ≥ k−1[E(v(Zc))].
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The expected value is greater with a least concave utility function.

Let us now discuss insurances against risks. Let x ∈ Rn (estate, goods,

services, money, ...) faced with the risk expressed by the random vector Z of

Rn, the value of x is expressed by u(x) where u is a utility function associated to

the personal preferences. Two possibilities: to accept the risk and the value of

x becomes u(x−Z) or to insure x against the risk and then to pay the amount

of insurance λa, the value of x becomes then u(x − λa). A fair way to fix λa

is through the equation E(u(x − Z)) = u(x − λa). Another representation

of the preferences v = k ◦ u would get another value µa for the amount of

insurance. If k is concave, the Jensen inequality gives λ ≤ µ. Using v instead

of u corresponds to a greater aversion against risks. This example shows again

the reasons for interest of least concave utilities.

In this paper, we give characterizations for a quasiconvex function to be

convex. Given a quasiconvex function f , we study what conditions on k are

necessary to get k ◦ f convex, least convex. Finally, we show that, for a func-

tion as smooth as the function f defined on the positive orthant of R2 by

f(x1, x2) = x2/x1, there is no scaling function k, no x̄ > 0 and no neigh-

borhood V of x̄ on which k ◦ f is convex. Hence, quasiconvex fractional pro-

grams cannot be transformed in convex programs because they involve ratios

of functions. We close the paper with approximations of a preorder from a fi-

nite number of observations and we give a few words on the very hard revealed

preference problem.
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2 Notation.

A subset C of Rn is said to be convex if x+ t(x− y) ∈ C when x, y ∈ C and

t ∈ [ 0, 1 ]. The relative interior of C, denoted by ri (C), is the interior of C

when considered as a subset of its affine subspace.

Assume that C is a nonempty closed convex set and x ∈ C is fixed, the set

NC(x) := {x∗ ∈ Rn : 〈x∗, y − x〉 ≤ 0 ∀ y ∈ C},

called the normal cone at x is a closed convex cone. 0 ∈ NC(x), NC(x) = {0}

if and only if x ∈ int(C).

Let f : Rn → [−∞,+∞] be a given function. The epigraph of f is the

set epi(f) = {(x, t) ∈ Rn × R : f(x) ≤ t}, its lower level subsets are the sets

St(f) = {x ∈ Rn : f(x) ≤ t} and the upper level sets are the sets S+
t (f) =

{x ∈ Rn : f(x) ≥ t}. The domain of f is the set dom(f) = {x : f(x) < +∞}.

One has

f(x) = min
t

[ t : (x, t) ∈ epi(f) ] = min
t

[ t : x ∈ St(f) ].

It is common to omit the qualification lower when working on lower level

subsets.

A function f is said to be lower semi-continuous (lsc) at x if for each

λ < f(x) a neighborhood V of x exists such that f(y) > λ for all y ∈ V . It is

known that f is lsc on Rn if and only if its epigraph is closed, or equivalently

if and only if all its level sets are closed.

A function f is said to be positively homogeneous if f(0) = 0 and

f(λx) = λf(x) for all x ∈ Rn and all λ > 0.
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A function f is said to be convex if its epigraph is convex, quasiconvex if

its lower level sets are convex, quasiconcave if its upper level sets are convex.

It is clear that a convex function is quasiconvex and that f is quasiconcave if

and only if −f is quasiconvex.

The indicator function of C ⊆ Rn is the function δC defined by δC(x) = 0

if x ∈ C and δC(x) = +∞ if not. A set C is closed and convex if and only if

its indicator function is convex and lower semi-continuous.

A direct study of the epigraph shows that if a convex function f takes the

value −∞ at some point then f(x) = −∞ if x ∈ ri (dom(f)) and f(x) = +∞

if x /∈ dom(f). If, in addition f is lsc, then it takes only the values −∞ and

+∞. With regard to these observations, a function is said to be proper if it

does not take the value −∞, its domain is not empty.

3 Geometry and Duality.

Next, we present a brief, very geometric and unconventional, overview on the

duality on closed convex sets, proper lsc convex functions functions and lsc

quasiconvex functions.

a) With C ⊆ Rn closed nonempty convex, we associate its support func-

tion δ∗C defined by

δ∗C(x∗) := sup
y∈C
〈x∗, y〉 = sup

y
[ 〈x∗, y〉 − δC(y) ]. (1)

This function is convex and lsc as a supremum of lsc convex functions, it is

also positively homogeneous.
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If x /∈ C, there exist x∗ and α such that 〈x∗, x〉 > α > 〈x∗, y〉 for all y ∈ C.

If x ∈ C, 〈x∗, x〉 ≤ δ∗C(x∗) and when the equality holds 〈x∗, y − x〉 ≤ 0 for all

y ∈ C and therefore x∗ ∈ NC(x). In conclusion,

δC(x) = 0⇐⇒ x ∈ C ⇐⇒ 〈x∗, x〉 − δ∗C(x∗) ≤ 0 ∀x∗.

And finally,

δC(x) = sup
y∗

[ 〈y∗, x〉 − δ∗C(y∗) ], (2)

to be compared with (1).

The domain of δ∗C , called the barrier cone of C, is denoted by barr(C).

By definition,

barr(C) = {x∗ : δ∗C(x∗) < +∞}.

It is easily seen that a closed convex set is compact if and only if its barrier

cone is the whole space.

b) Let f be a proper lsc convex function on Rn. Set C = epi(f).

δ∗C(x∗, λ∗) = sup
x,λ

[ 〈x∗, x〉+ λ∗λ : f(x) ≤ λ ].

Clearly

δ∗C(x∗, λ∗) =


+∞ if λ∗ > 0,

δ∗dom(f)(x
∗) if λ∗ = 0,

|λ∗| δ∗C( x∗

|λ∗| ,−1) if λ∗ < 0.

In view of (2)

(x, λ) ∈ epi(f)⇐⇒ sup
x∗,λ∗

[ 〈x∗, x〉+ λ∗λ− δ∗C(x∗, λ∗) ] ≤ 0.
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The inequality holds for λ∗ > 0. For λ∗ = 0, one obtains x ∈ dom(f) and for

λ∗ < 0 one obtains

|λ∗| [ 〈 x
∗

|λ∗|
, x〉 − λ− δ∗C(

x∗

|λ∗|
,−1) ] ≤ 0 ∀x∗, ∀λ∗ < 0.

Thus, (x, λ) ∈ epi(f) if and only if supy∗ [ 〈y∗, x〉 − δ∗C(y∗,−1) ] ≤ λ.

The function f∗ defined by f∗(x∗) = δ∗C(x∗,−1) is lsc, proper and convex.

It called the conjugate function of f . The duality between f and f∗ is quite

symmetric since

f∗(x∗) = sup
x

[ 〈x∗, x〉 − f(x) ] ∀x∗ and f(x) = sup
x∗

[ 〈x∗, x〉 − f∗(x∗) ] ∀x.

c) Next, let f be a lsc quasiconvex function on Rn. By definition, its level

sets St(f) = {x : f(x) ≤ t}, t ∈ R are closed and convex. Let us associate

with f the function F defined on Rn × R by

F (x∗, t) = δ∗St(f)
(x∗) = sup

x
[ 〈x∗, x〉 : f(x) ≤ t ]. (3)

The function F is lsc, convex and positively homogeneous in the first variable,

nondecreasing in the second one. In view of the equivalence (2)

f(x) ≤ t⇐⇒ x ∈ St(f)⇐⇒ F (x∗, t) ≥ 〈x∗, x〉 ∀x∗,

from which,

f(x) = inf
t

[ t : F (x∗, t)− 〈x∗, x〉 ≥ 0 ∀x∗ ]. (4)

With regard to (3) and (4), we consider F as f as dual functions of each other.
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4 When a Quasiconvex Function Dreams To Be Convex.

The following theorem characterizes convex functions among quasiconvex func-

tions.

Theorem 4.1 [3,4] Let f be a lsc quasiconvex function. The function f is

convex if and only for each x∗ the function Fx∗ : t→ F (x∗, t) is concave.

Proof a) Assume f convex. Let x∗ be fixed, the function θx∗ defined by

θx∗(x, t) = 〈x∗, x〉 − δepi(f)(x, t).

is concave in (x, t). Hence, the function t → F (x∗, t) = supx θx∗(x, t) is con-

cave.

b) Conversely, assume the concavity of functions Fx∗ . Let us define the set

A and the function ϕ by

A = {(x, t) : F (x∗, t)− 〈x∗, x〉 ≥ 0 ∀x∗}, ϕ(x, t) = t+ δA(x, t).

The set A is convex and the function ϕ is convex. Next, the function f is

convex since f(x) = inft ϕ(x, t) for all x. ut

Let us place in the case where f is a proper lsc convex function with

m = inf f(x). The following results are direct consequences of the concavity

of the functions F (x∗, .)

1. F (x∗, t) ≤ F (x∗, t′) ∀ t < t′.

2. If F (x∗, t) = +∞ for some t > m then F (x∗, t′) = +∞ for all t′ > m.

3. If F (x∗, t) = F (x∗, t′) for some t′ > t ≥ m, then F (x∗, t) = F (x∗, t′′) for

all t′′ > t.
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4. [t′′ − t′] [F (x∗, t′)− F (x∗, t)] ≥ [t′ − t] [F (x∗, t′′)− F (x∗, t′)]

for all t′′ > t′ > t ≥ m.

An improvement of the second statement, due to Fenchel, says that the nonempty

lower level sets of a proper lsc convex function have the same barrier cones.

5 Convex Interpolation.

C0, C1, · · · , Cp being p + 1 nonempty closed convex subsets of Rn such that

Ci ⊆ int(Ci+1) for i = 0, · · · , p−1, our present challenge consists in finding p+1

numbers t0 < t1 < · · · < tp and a convex function f with Ci = {x : f(x) ≤ ti}

for all i. The following requirements on the sets Ci are needed:

1. The sets Ci share the same barrier cones. Denote by K this cone.

2. If δ∗Ci
(x∗) = δ∗Ci+1

(x∗), then δ∗Ci
(x∗) = δ∗Cj

(x∗) for all j > i+ 1.

3. For i = 0, 1, · · · , p− 2 and x∗ ∈ K,

[ti+2 − ti+1] [δ∗Ci+1
(x∗)− δ∗Ci

(x∗)] ≥ [ti+1 − ti] [δ∗Ci+2
(x∗)− δ∗Ci+1

(x∗)].

We are ready to describe the interpolation process.

1. Initialisation: Take t0, t1 be such that t0 < t1. For i = 0, 1, · · · , p− 2

2. Building ti, t2, · · · , tp: In succession for i = 0, 1, · · · , p− 2 and in concor-

dance with requirements 2 and 3 we compute

λi = sup
x∗

[
δ∗Ci+2

(x∗)− δ∗Ci+1
(x∗)

δ∗Ci+1
(x∗)− δ∗Ci

(x∗)
: 0 6= x∗ ∈ K, δ∗Ci

(x∗) 6= δ∗Ci+1
(x∗) ]. (5)

If λi = +∞, STOP: There is no solution to the problem.

If λi < +∞, take ti+2 = ti+1 + λi(ti+1 − ti).

By construction, 0 < λi < +∞ for all i and t0 < t1 < · · · < tp.
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3. Construction of F (x∗, .):

(a) If t < t0: F (x∗, t) = −∞

(b) If x∗ /∈ K and t ≥ t0 : F (x∗, t) = +∞.

(c) If x∗ ∈ K and ti ≤ t ≤ ti+1, i = 0, · · · , p− 1:

F (x∗, t) =
ti+1 − t
ti+1 − ti

δ∗Ci
(x∗) +

t− ti
ti+1 − ti

δ∗Ci+1
(x∗).

(d) If tp < t: F (x∗, t) = F (x∗, tp).

For each t ∈ [t0, tp], F (., t) is the support function of a closed convex set,

this set is Ci when t = ti. For each vector x∗ ∈ K, the function F (x∗, .) is

piecewise linear and continuous on [t0, tp], besides F (x∗, ti) = δ∗Ci
(x∗) for each

i = 0, · · · , p.

By construction, for any i = 0, · · · , p− 2 and for any x∗ ∈ K,

ti+2 − ti+1

ti+1 − ti
= λi ≥

δ∗Ci+2
(x∗)− δ∗Ci+1

(x∗)

δ∗Ci+1
(x∗)− δ∗Ci

(x∗)
=
F (x∗, ti+2)− F (x∗, ti+1)

F (x∗, ti+1)− F (x∗, ti)
,

and therefore

F (x∗, ti+2)− F (x∗, ti+1)

ti+2 − ti+1
≤ F (x∗, ti+1)− F (x∗, ti)

ti+1 − ti
.

The concavity of the functions F (x∗, .) is a consequence of the piecewise lin-

earity of these functions and the inequalities on the left and right derivatives

at points ti+1. The function f obtained from F through relation (4) is convex

and responds to the question.

Let us consider the special case where the sets Ci are bounded.

Corollary 5.1 [20,21] Let C0, C1, · · · , Cp be p+ 1 nonempty closed bounded

convex sets such that Ci ⊆ int(Ci+1) for i = 0, · · · , p− 1. Then, there exists f

convex and lsc and t0 < t1 < · · · < tp such that Ci = {x : f(x) ≤ ti} for all i.
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Proof : Under the assumptions the barrier cone K is the whole space, the

quantities δ∗Ci+1
(x∗) − δ∗Ci

(x∗) are continuous and positive, the quantities λi

are finite, the function F therefore is well defined. ut

Let us point out a recent and very interesting paper of Bolte and Pauwels

[2] dealing with related questions.

6 To Be Convexifiable?

6.1 The General Case

Assume that g = k ◦ f is convex. The three following conditions are direct

translations from g to f of the analogous conditions due to the convexity of

g, they are necessary for the convexifiability of f :

1) If inf f(x) < λ < µ, the level sets Sλ(f) and Sµ(f) have the same

dimension.

2) The barrier cones of the nonempty level sets of f are the same.

3) If inf f(x) < λ < µ and Fx∗(λ) = Fx∗(µ), then Fx∗(λ) = Fx∗(t) for all

t > λ.

The last property is due to the fact that the function Gx∗ is concave and

nondecreasing. The quasiconvex functions f and g defined on the positive

orthant of R2 by f(x1, x2) = −g(x1, x2) = x2/x1 are not convexifiable because

of the second condition.

Finding k for which k ◦ f is convex or least convex is a very hard problem.

Indeed, for each t, the convexity of all functions gx,d : s → k(f(x + sd)) in a
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same neighborhood of 0 is required for all d ∈ Rn and all x such that f(x) = t.

One way is to concentrate in one function the whole information corresponding

at all points x such that f(x) = t, this is precisely what the dual function

F does to be associated with f .

If g = k ◦ f with k increasing and continuous, the relationships between

the dual functions F and G associated with f and g and f are as follows

G(x∗, s) = sup
x

[ 〈x∗, x〉 : k(f(x)) ≤ s, ] = F (x∗, k−1(s)) = Fx∗ ◦ k−1(s)

F (x∗, t) = sup
x

[ 〈x∗, x〉 : k−1(g(x)) ≤ t ] = G(x∗, k(t)).

Hence, the problem consists in finding k increasing and continuous which

make all functions Fx∗ ◦ k−1 concave. Because F is positively homogeneous in

x∗, it is enough to consider the vectors x∗ having norm 1.

Set I = f(Rn), Fx∗ ◦ k−1 is concave if and only if, for all s−, s, s+ ∈ f(I)

such that s− < s < s+

Fx∗ ◦ k−1(s)− Fx∗ ◦ k−1(s−)

s− s−
≥ Fx∗ ◦ k−1(s+)− Fx∗ ◦ k−1(s)

s+ − s

or, equivalently, if and only if, for all t−, t, t+ ∈ I such that t− < t < t+

Fx∗(t)− Fx∗(t−)

k(t)− k(t−)
≥ Fx∗(t+)− Fx∗(t)

k(t+)− k(t)
.

Recall that Fx∗(t+) − Fx∗(t) = 0 as soon as Fx∗(t) − Fx∗(t−) = 0. The

function g = k ◦ f is convex if and only if for any t−, t, t+ ∈ I such that

t− < t < t+

sup
x∗ 6=0

[
Fx∗(t+)− Fx∗(t)

Fx∗(t)− Fx∗(t−)
: Fx∗(t) > Fx∗(t−)

]
≤ k(t+)− k(t)

k(t)− k(t−)
. (6)
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It follows that a convex function f is least convex if and only if the only

concave functions k for which condition (6) holds are of the type k(t) = αt+β

with α > 0.

Let us prove that the function f built in section 5 is least convex. For all

t−, t, t+ ∈ [ti, ti+1] such that t− < t < t+ condition (6) becomes

t+ − t
t− t−

≤ k(t+)− k(t)

k(t)− k(t−)
.

Hence, there exist αi, βi such that k(t) = αit + βi for all t ∈ [ti, ti+1]. Next,

from condition (6) again and the construction of the sequence {ti}

Fx∗(ti+2)− Fx∗(ti+1)

Fx∗(ti+1)− Fx∗(t−i)
≤
k′+(ti+1)(ti+2 − ti+1)

k′−(ti+1)(ti+1 − ti)
= λi

αi+1

αi
.

Then, relation (5) implies αi+1 ≥ αi and, because the function k is concave,

αi+1 = αi. Finally, the continuity of the function k implies βi+1 = βi. We have

proved that k concave with k ◦ f convex is possible only if k is of the type

k(t) = αt+ β.

7 Quasiconvex Positively Homogeneous Functions.

Let f : Rn → (−∞,+∞ ] be a lsc quasiconvex positively homogeneous function

with n

1. Fx∗(t) = −tFx∗(−1) if t < 0,

2. Fx∗(t) = tFx∗(1) if t > 0,

3. Fx∗(−1) ≤ Fx∗(0) ≤ Fx∗(1).

We consider the three following cases
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a) K = ∅. Then Fx∗ is concave for all x∗ and therefore f is convex. It is

also least convex. Being positively homogeneous, f is the support function of a

closed convex set A. Assume, for contradiction, 0 /∈ A, let p be the projection

of 0 on A. Then

0 < ‖p‖2 ≤ inf
x∗

[ 〈p, x∗〉 : x∗ ∈ A ] = −f(−p),

in contradiction with f(x) ≥ 0 for all x. Thus 0 ∈ A and λA ⊆ A whenever

0 < λ < 1.

b) dom(f) = K. Then, Fx∗(t) = Fx∗(0) for all t > 0. Next, Fx∗ is concave

for all x∗ and therefore f is convex. Moreover, f is least convex and it is the

support function of a closed convex set B. One has 0 /∈ B because K 6= ∅.

Since f ≤ δK one has δB = f∗ ≥ δ∗
K

= δK◦ and therefore B ⊆ K◦. Finally,

one easily shows that λB ⊆ B when λ > 1.

3) It remains to treat the case where f takes both positive and negative

values. Let us introduce the functions f− and f+ as follows

f−(x) =


f(x) if x ∈ K,

+∞ otherwise.

f+(x) =


0 if x ∈ K,

f(x) otherwise,

By construction, f = min [f−, f+]. The two functions f− and f+ are lsc, convex

and positively homogeneous, they are the support functions of two closed

convex sets C− and C+.

In conclusion, a proper, lsc, quasiconvex and positively homogeneous func-

tions is the minimum of two proper, lsc, convex, positively homogeneous func-

tions.
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From the inequalities

δ∗C−
= f− ≤ δK = δ∗K◦ and δ∗C+

= f+ ≤ δK = δ∗K◦ ,

one obtains

δC− = f∗− ≥ δ∗K = δK◦ and δC+
= f∗+ ≥ δ∗K = δK◦

and finally

λC− ⊆ C− ⊆ K◦ ∀λ ≥ 1 and µC+ ⊆ C+ ⊆ K◦ ∀µ ∈ [ 0, 1 ].

As an application, let us consider the case where g is a quasiconvex function

continuous at a point a with finite directional derivatives g′(a, d) at a along all

directions d. Then, g′(a, .) is quasiconvex [5,6] and therefore is the minimum

of the support functions of two closed convex sets ∂−g(a) and ∂+g(a). The

result holds also for upper Dini-directional derivatives but not for the lower

ones.

8 Back to the Ratio x2/x1.

We have already seen that the function f defined by f(x1, x2) = x2/x1 is not

convexifiable on the whole positive orthant. Is it locally convexifiable?

Assume that there exists k increasing and twice differentiable such that

g = k [ ln(f)] is convex in a neighborhood of a point a in the positive orthant.

Then, in this neighborhood, det(∇2g(x)) = −[k′(ln(f(x))/x1x2]2 < 0, in con-

tradiction with the convexity (and also the concavity) of g. Hence f is not
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convexifiable and not concavifiable via a twice differentiable scaling function.

What about a non differentiable scaling function k?

Let us place at the point e = (1, 1) and let us consider the neighborhoods

of type Br = {x ∈ R2 : (x1 − 1)2 + (x2 − 1)2 ≤ r2} with r ∈ ] 0, 1 [ chosen as

small as wanted.

1) x∗ ∈ R2 being fixed, let us compute the function

Fx∗(t) = sup
x

[ 〈x∗, x〉 : x ∈ Br(t) ] where Br(t) = {x ∈ Br : f(x) ≤ t ].

The function Fx∗ is nondecreasing. The supremum is reached in an extremal

point of Br(t) when this set is non empty. Let x = (x1, x2) be such that

f(x) = t and ‖x− e‖ = r, then x1 and x2 are solutions of the equation

(1 + t2)x21 − 2(1 + t)x1 + (2− r2) = 0, x2 = tx1. (7)

Such x1 exist only when (r2 − 1)t2 + 2t+ r2 − 1 ≥ 0. Set

t− =
1

1− r2
(1− r

√
2− r2 ), t+ =

1

1− r2
(1 + r

√
2− r2 ).

If t < t− then Br(t) = ∅ and Fx∗(t) = −∞.

If t > t+ then Br(t) = Br and 〈x∗, x〉 reaches its maximum on Br at point

a = e+ ‖x∗‖−1 x∗. Then, Fx∗(t) = 〈e, x∗〉+ r ‖x∗‖.

It remains to consider t− ≤ t ≤ t+. Let again a = e+ ‖x∗‖−1 x∗.

In case where a2 ≤ ta1, 〈x∗, x〉 reaches its maximum on Br(t) at a. Hence

Fx∗(t) = 〈e, x∗〉+r ‖x∗‖. Let us note that the inequality a2 ≤ ta1 is equivalent

to the inequality t ≥ (‖x∗‖+ x∗1)−1(‖x∗‖+ x∗2).
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Next, assume t ≤ (‖x∗‖ + x∗1)−1(‖x∗‖ + x∗2). The maximum of 〈x∗, x〉 on

Br(t) is reached at one of the two points b(t) and c(t) where the straight line

x2 − tx1 = 0 intersects the boundary of Br. An easy computation gives

b1(t) =
1

1 + t2
[ 1 + t+

√
(1− r2)(t− t−)(t+ − t) ], b2(t) = tb1(t),

c1(t) =
1

1 + t2
[ 1 + t−

√
(1− r2)(t− t−)(t+ − t) ], c2(t) = tc1(t).

From what one deduces

1. If x∗1 + tx∗2 ≥ 0,

Fx∗(t) =
x∗1 + tx∗2

1 + t2
[ 1 + t+

√
(1− r2)(t− t−)(t+ − t) ],

2. If x∗1 + tx∗2 ≤ 0,

Fx∗(t) =
x∗1 + tx∗2

1 + t2
[ 1 + t−

√
(1− r2)(t− t−)(t+ − t) ].

The right and the left derivatives of Fx∗ coincide at any t except when

x∗1 + tx∗2 = 0 where the right one is strictly greater than the left one.

2) Assume, for contradiction, the existence of k increasing and continuous

for which g = k ◦ f is convex on Br. The convexity of g implies the concavity

of Gx∗ . Fx∗ and Gx∗ are connected by the relation

Gx∗(s) = sup
x

[ 〈x∗, x〉 : ‖x− e‖ ≤ r, k(f(x)) ≤ s ] = Fx∗(k−1(s)).

On the other hand, since k(s) = k(f(1, s)) = g(1, s) for all s, the function k

is convex, k−1 is concave and therefore almost everywhere differentiable. Let

us consider a point t where k−1 is differentiable, next choose x∗ such that

x∗1 + tx∗2 = 0 with x∗2 > 0. Then the right derivative of Gx∗ at t is strictly

greater than the left derivative, in contradiction with the concavity of Gx∗ .
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We have just shown that f is not convexifiable on Br. Because r > 0 can

be chosen as small as wanted, f is not locally convexifiable at e. This result

is extended to any point in the positive orthant via a linear transformation.

A similar proof shows that f is also not locally concavifiable on the positive

orthant. In conclusion, “Quand on ne peut pas, on ne peut pas” [23].

9 On the Approximation of Preferences by Utility Functions.

9.1 Statement of the problem

Let us return to the situation where the consumption of a consumer is sub-

mitted to the preorder � of his preferences, his budget w > 0 and the vector

p ∈ Rn
+ of the unit prices of the goods to be chosen inside the convex set of

goods G ⊆ Rn
+. The set of optimal choices is the set X(p, w) ⊆ G defined by

x ∈ X(p, w)⇐⇒ [ 〈p, x〉 ≤ w and y � x ∀ y ∈ G such that 〈p, y〉 ≤ w ].

It is clear that X(λp, λw) = X(p, w) for all λ > 0. In reason of a non satiation

assumption on the preorder one has 〈p, x〉 = w for all x ∈ X(p, w). Hence,

[ 〈p, y − x〉 ≤ 0 =⇒ y � x ] and [ 〈p, y − x〉 < 0 =⇒ y ≺ x ].

X is called the demand map associated to the preorder. In what follows we

assume X(p, w) to be nonempty for all w > 0 and p ∈ Rn
+.

Let us consider any finite family Fk = {(xi, pi, wi)}k+1
i=0 ⊆ gph(X) such

that (x0, p0, w0) = (xk+1, pk+1, wk+1). The transitivity of the preorder implies

max
i=0,··· ,k

〈pi, xi+1 − xi〉 ≥ 0,
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and when the maximum equals 0 all 〈pi, xi+1−xi〉 are null, to be compared with

the analogous property on the subdifferential of convex functions. This prop-

erty says that the map −X(p, 1) is cyclically pseudomonotone [13,8], and it is

known by economists under the names of Generalized Axiom of Revealed Pref-

erences (GARP) and Strong Axiom of Revealed Preferences (GARP), there

are a few minor differences between the different formulations.

In what follows, we discuss on approximations of the preorder which can

be obtained from a finite number of observations (xi, pi, wi) ∈ gph(X), i ∈ I.

For simplicity, we place this discussion in the case where there is t̄ > 0 such

that t̄e ∈ G ⊆ [ 0, t̄ ] n, e = (1, 1, · · · 1) ∈ Rn, and where the preorder can be

represented by one utility ū such that ū(te) = t for all t ∈ [0, t̄ ]. We consider

two different types of approximations.

9.2 Approximations Based on the Afriat’s Construction.

Let (λ, µ) be any optimal solution of the linear program [1,12,16,14]

min
λ,µ

[ 〈a, λ〉+ 〈b, µ〉 : λi ≥ 1, µi ≥ 0, µj − µi ≤ λi〈pi, xj − xi〉 ∀ i, j ∈ I ],

where a, b are two given nonnegative vectors. The cyclic property of −X on

the set of observations turns out to be equivalent to the feasibility of the linear

program. Next, let us construct the function

ũ(x) = min
i

[µi + λi 〈pi, x− xi〉 ] ∀x ∈ G.

The function ũ is piecewise linear concave by construction. In reason of the

cyclic property ũ(xi) = λi and λip
i is a supgradient of ũ at xi. In addition,
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ũ(xi) ≤ ũ(xj) if and only if xi � xj . The function ũ depends on the family F ,

the vectors a and b and the couple (λ, µ) chosen among the optimal solutions

of the linear program. It is necessary to proceed to a normalisation on the

functions ũ in order to get valuable comparisons.

The function k defined by k(t) = ũ(te) for all t ∈ [0, t̄ ] is concave and

increasing. Let us take u = k−1 ◦ ũ. Then u(te) = t for all t ∈ [ 0, t̄ ]. By

construction, for i, j = 0, 1, · · · , k,

xi ∈ arg max
x

[u(x) : x ∈ G, 〈pi, x〉 ≤ wi ],

u(xi) ≤ u(xj)⇐⇒ xi � xj ,

but u(x) ≤ u(y) is not equivalent to x � y. (8)

It is important to recall that the normalized utility u obtained via this

method depends on the choice of the pair (a, b) of two positive numbers in

the linear program. Another pair provides another u and therefore a different

approximation of the preorder.

9.3 Sandwich Type Approximations.

Here, [8,9], one constructs an increasing quasiconcave function u such that

u(te) = t for all t ∈ [0, t̄ ], u(xj) ≤ u(xi) whenever 〈pi, xj − xi〉 ≤ 0 and

t = u(te) ≤ u(xi) whenever 〈pi, te−xi〉 ≤ 0. The first step consists to determine

the values of u at points xi. Set ui = u(xi), i ∈ I. It is necessary that

xii = min
j
xij ≤

〈pi, xi〉
〈pi, e〉

≤ ui ≤ max
j
xij ,
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and 〈pi, xj − xi〉 ≤ 0⇒ uj ≤ ui.

The existence of such a vector u is equivalent to the cyclic property.

The second step consists to extend u to the whole set G in order to get an

increasing quasiconcave function with u(te) = t for all t ∈ [0, t̄ ] and for i ∈ I

ui = u(xi) and xi ∈ arg max
x

[u(x) : x ∈ G, 〈pi, x〉 ≤ wi ].

Among all the functions u responding to these conditions there are two, u−

and u+, such that u− ≤ u ≤ u+ for all other functions u. This is the case for

the normalized approximations u obtained via the Afriat’s construction and

also for the normalized utility function ū associated with the preorder � when

this preorder exists.

The relations between the functions u− and u+ and the preorder � are

u+(x) ≤ u−(y) =⇒ x � y and u+(x) < u−(y) =⇒ x ≺ y, (9)

to be compared with (8).

9.4 The Revealed Preference Problem.

Let us consider one increasing sequence of families · · · ⊆ Fp ⊆ Fp+1 ⊆ · · · .

It is expected that, under one density condition, the sequence of normalized

utility functions {up} generated with the Afriat’s process converges to the

normalized utility function ū associated with the preorder when it is exists. In

the sandwich process, the sequence {up−} is nondecreasing, the sequence {up+}

is nonincreasing and up− ≤ ū ≤ u
p
+ for all p. It is expected that both sequences
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converge to ū (think of the Riemann integration). The problem is that, given

X enjoying the cyclic property, we are not sure of the existence of a preorder

and consequently of its associated normalized utility function ū.

The long standing problem of Revealed Preferences [19,24] consists in seek-

ing what conditions on a multivalued map X ensure the existence of one utility

function u associated with the preferences. The case where X is differentiable

is treated in [7] and [18]. The general case is very hard. It is shown in [8],

see also [15], that the cyclic monotonicity of the multivalued map −X(., 1)

together with its maximality are not sufficient to ensure the existence and the

unicity of a preorder associated with the preferences. An exemple is provided

in [8] where the limits of the sequences {up−} and {up+} are not the same, giving

two different preorders associated with the same demand map X.

Despite the very disturbing example in [8], the Afriat’s and sandwich ap-

proximations from a finite panel of observations bring valuable informations.

The theory of convexifiability, least convexity and revealed preferences needs

again much work.

10 Conclusion

In this paper we show that a lsc quasiconvex is well defined through the family

of the support functions of its level sets. It is then possible to characterize these

quasiconvex functions which are convex. An interpolation process is used to

build a convex function whose p level sets are given. Then, we show that a

positively homogeneous quasiconvex function can be written as the minimum
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of two convex functions. It is proved that a function as smooth as the ratio of

two positive numbers is not locally convexifiable at any point of the positive

orthant. The paper ends with some considerations on the approximation of

preferences by utility functions.
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