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Abstract In this paper, the static and dynamic performances of a cable-driven parallel 

robot (CDPR) are analyzed over all its entire workspace. The considered robot has 6 

degrees of freedom and it is completely constrained with 8 cables. This paper aims at 

highlighting the effects of cable preloads on the robot’s behavior. To this end, the stiff-

ness matrix of the robot is computed from a second order approximation of the defor-

mation energy of preloaded cables. Lagrange formulation is used to obtain dynamic 

equations of the robot for vibration mode calculation and trajectory tracking simula-

tions. Static and modal analyses show that, for a given preload, the increase in the ro-

bot’s stiffness and modal frequencies is relatively more significant using soft cables, 

made of nylon, rather than stiff cables made of steel. These results are confirmed by 

dynamic simulations illustrating the effects of preloaded cables on the accuracy of tra-

jectory tracking performance. 

Keywords: Stiffness, Vibration, Cable preload. 

1 Introduction 

CDPRs [1] are robots for which the fixed base and the mobile platform are connected 

by cables. There are no guiding elements except those of the pulleys used to wind and 

unwrap the cables. The main advantages of this technology are: 

 reduction of the moving masses resulting in a large acceleration capacity of the mov-

ing platform; 

 reconfigurability and modularity: the robot can be reconfigured easily by changing 

the anchor points of the actuators and adapting its geometric control model; 

 reduction of the production costs. 

The static and dynamic rigidity of cable robots is generally lower than that of conven-

tional parallel robots due to the flexibility of the cables. The accuracy and vibration 

stability of existing cable robots is not high enough to consider them for dynamic load-

ing applications such as the machining process. 

CDPRs can be divided into 3 main families: 

 Suspended cable driven parallel robots[2] where all the points of attachment are 

above the mobile platform. Gravity plays the role of a force cable that pulls down.  

 Completely constrained cable driven parallel robots[3] that have cables above and 

below the mobile platform.  
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 Hybrid parallel cable robots[4] that have cables which guide a rigid arm. 

Some research has been done on the stiffness and vibration analysis of cable robots. 

In [5], it has been shown that the transverse vibrations of cables can be negligible in 

relation to the total vibrations of the effector in comparison to their axial vibrations. For 

a fully constrained robot, 98.6% of the mobile platform vibrations are caused by axial 

vibrations of the cables. These results have also been used to approve the modeling of 

the cables by axial springs for totally constrained CDPRs. In [6], the longitudinal and 

lateral vibration on a planar and a cable suspended robot is studied by using a finite 

element method. In [7, 8], the dynamic stiffness matrix is proposed to analyze the vi-

bration of a cable suspended robot with a sagging cable model. In [9], the control of 

reaction wheels mounted on the mobile platform has been used to compensate its vi-

brations. In [10], a controller has been proposed to attenuate the transverse vibrations 

of a planar CDPR, which has a lower stiffness in the axis perpendicular to the plane 

motion.  

The paper cited above did not however study precisely the influence of cable preload 

on the performance of cable robots. In this paper we consider a totally constrained cable 

robot, with 6 DOFs, driven by 8 preloaded cables. The proposed research is carried out 

within the CABFAB project, which addresses the design of a CDPR for additive man-

ufacturing processes. The presented work is part of a preliminary design phase, aimed 

at guaranteeing a minimal level of rigidity over the entire robot workspace, to be opti-

mized in terms of accessibility in position and orientation. For additive manufacturing, 

a high level of accuracy for tool path tracking is required. A completely constrained 

cable robot should have reach a higher level of accuracy than a suspended one [1]. 

Moreover, since the stiffness depends directly on the cable lengths, a medium-scale 

robot of 1m3 size, as that considered in this paper, can have a relatively higher accuracy 

compared to the large-scale cable robots. 

This paper investigates the influence of cable preloads on the stiffness and vibration 

modes of a CDPR. First, the kinematic and dynamic models are presented. The static 

stiffness and modal frequencies are then determined for various cable preloads. Next 

the static and dynamic simulation of a completely constrained CPDR are analyzed. The 

stiffness and natural mode inside the feasible workspace are studied. The static stiffness 

and natural frequency are compared for different preloads and cables. The robot’s dy-

namic accuracy is evaluated as a function of the cable preload. 

2 Robot modeling 

For the considered application, the robot can incorporate thin cables with the aim of 

printing medium-sized parts at high speeds. Therefore, the mass of the cable can be 

considered as negligible and the effect of sagging is less significant than with large 

CDPRs[2]. Thus, the kinematic model does not take into account the sagging effect. In 

addition, cable deformations rely on linear elasticity assumptions. The inverse kine-

matic model will be presented in this section. 



3 

2.1 Inverse Kinematics 

The geometric model uses 𝑚 cables of length 𝑙𝑖 with one anchor point on the mounting 

frame in 𝐴𝑖, and another anchor point on the end-effector in 𝐵𝑖  (fig.1). 

ℛ𝑂(𝑂, 𝐞𝑥𝑂 , 𝐞𝑦𝑂 , 𝐞𝑧𝑂) is the fixed frame of reference and ℛ𝐸(𝐶, 𝐞𝑥𝐸 , 𝐞𝑦𝐸, 𝐞𝑧𝐸) is the 

frame attached to the mobile platform at its characteristic point 𝐶. The kinematic con-

straints of the system can be given by the vector loop-closure equation for each cable: 

 𝐨𝐛𝑖
0 = 𝐨𝐜0 + 𝐜𝐛𝑖

0 = 𝐨𝐚𝑖
0 + 𝐚𝐛𝑖

0 (1) 

  
Fig. 1. Schematic representation of one cable (left) and robot with 8 cables view (right) 

If the sagging effect is ignored, each cable is similar to a rigid rod when in static equi-

librium and its length can be calculated by: 

 𝑙𝑖 = ‖𝐚𝐛𝑖
0‖
2
= ‖−𝐨𝐚𝑖

0 + 𝐨𝐜0 + 𝐑𝑂𝐸𝐜𝐛𝑖
𝐸‖

2
 (2) 

with 𝐑𝑂𝐸  as the rotation matrix between the effector frame ℛ𝐸 and the fixed frame of 

reference ℛ𝑂. This equation gives the inverse kinematics of the robot.  

Tab. 1. Anchor points position (mm) 

𝒊 1 2 3 4 5 6 7 8 

𝐨𝐚𝒊
𝟎 [

500
500
−500

] [
500
500
500

] [
−500
500
500

] [
−500
500
−500

] [
−500
−500
500

] [
−500
−500
−500

] [
500
−500
−500

] [
500
−500
500

] 

𝐜𝐛𝒊
𝑬 [

47.6
40.2
25.0

] [
47.6
40.2
−25.0

] [
−47.6
40.2
−25.0

] [
−47.6
40.2
25.0

] [
−47.6
−40.2
−25.0

] [
−47.6
−40.2
25.0

] [
47.6
−40.2
25.0

] [
47.6
−40.2
−25.0

] 

Table 1 indicates the anchor point parameters used in this study of a fully constrained 

8-cable CDPR. This configuration is similar to that presented in [3]. 

At the preliminary design stage, it is crucial to have an estimation of the robot stiff-

ness. The following paragraph outlines the computation of the stiffness matrix when 

cable preloads are considered. 

 

2.2 Stiffness matrix formulation with preload cables 

The 6x8 static Jacobian matrix, mapping the cable tensions to the wrench that cables 

apply on the mobile platform, has a rank of 6 and its kernel is 2-dimensional. Therefore, 
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the static equilibrium of the robot can be achieved with infinite combinations of cable 

tensions.  In order to formulate the stiffness matrix of the robot, potential energy is used 

to compute the stiffness matrix associated with one cable. 

 
Fig. 2. Schematic representation of small variations 

For a small variation of the configuration of the end-effector, there is a variation of the 

positions of points 𝐵𝑖  (figure 2): 

 ∆𝐨𝐛𝑖
0 = ∆𝐨𝐜0 + ∆𝛉𝐸

0 × 𝐑𝑂𝐸  𝐜𝐛𝑖
𝐸 = ∆𝐨𝐜0 + ∆𝛉𝐸

0̃  𝐜𝐛𝑖
0 = ∆𝐨𝐜0 − 𝐜𝐛𝑖

0̃ ∆𝛉𝐸
0  (3) 

With : 

∆𝐨𝐛𝑖
0 = [

𝛿𝑥𝑖
𝛿𝑦𝑖
𝛿𝑧𝑖

]  ; ∆𝐨𝐜0 = [

𝛿𝑥𝐶
𝛿𝑦𝐶
𝛿𝑧𝐶

]  ; ∆𝛉𝐶
0 = [

𝛿𝜓
𝛿𝜃
𝛿𝜑
] ; ∆𝛉𝐶

0̃ = [

0 −𝛿𝜑 𝛿𝜃
𝛿𝜑 0 −𝛿𝜓
−𝛿𝜃 𝛿𝜓 0

]  ; 

𝐜𝐛𝑖
0 = [

𝑋𝐵𝑖
𝑌𝐵𝑖
𝑍𝐵𝑖

] ; 𝐜𝐛𝑖
0̃ = [

0 𝑍𝐵𝑖 −𝑌𝐵𝑖
−𝑍𝐵𝑖 0 𝑋𝐵𝑖
𝑌𝐵𝑖 −𝑋𝐵𝑖 0

] 

We have : 

 [

𝛿𝑥𝑖
𝛿𝑦𝑖
𝛿𝑧𝑖

] = [
1 0 0 0 𝑍𝐵𝑖 −𝑌𝐵𝑖
0 1 0 −𝑍𝐵𝑖 0 𝑋𝐵𝑖
0 0 1 𝑌𝐵𝑖 −𝑋𝐵𝑖 0

]

⏟                  
𝐇𝑖 [

 
 
 
 
 
𝛿𝑥𝐶
𝛿𝑦𝐶
𝛿𝑧𝐶
𝛿𝜓
𝛿𝜃
𝛿𝜑 ]
 
 
 
 
 

↔ ∆𝐨𝐛𝑖
0 = 𝐇𝑖  [

∆𝐨𝐜0

∆𝛉𝐶
0 ] (4) 

[(∆𝐨𝐜0)𝑇 (∆𝛉𝐶
0)𝑇]𝑇 is the infinitesimal displacement screw of the end-effector. 

A displacement of 𝐵𝑖  from the cable with respect to its static equilibrium configuration 

in the reference ℛ𝑖(𝐴𝑖 , 𝑢⃗ 𝑖, 𝑣 𝑖 , 𝑤⃗⃗ 𝑖) is given by ∆𝐨𝐛𝑖
𝑖 = [𝛿𝑢𝑖 𝛿𝑣𝑖 𝛿𝑤𝑖]

𝑇. 

We have the relationship:  

 ∆𝐨𝐛𝑖
0 = 𝐑𝑂𝑖∆𝐨𝐛𝑖

𝑖  (5) 

where 𝐑𝑂𝑖  is the rotation matrix between the reference ℛ𝑖 and the fixed reference ℛ𝑂: 

𝐑𝑂𝑖 = [𝐮𝑖
0 𝐯𝑖

0 𝐰𝑖
0]. We denote by 𝑙0,𝑖 the free length of the non-preloaded cable 

𝑖 (𝑖 = 1,… ,8) and 𝑙𝑇𝑖 its length stretched to the static equilibrium configuration. During 

small displacements, the current length of the cable is given by: 
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 𝑙𝑖 = √(𝐿𝑇𝑖 + 𝛿𝑢𝑖)
2 + 𝛿𝑣𝑖

2 + 𝛿𝑤𝑖
2
 (6) 

The deformation energy of a cable is then: 

 𝑉𝑖 =
1

2
𝑘𝑖(𝑙𝑖 − 𝑙0,𝑖)

2 (7) 

for a linear behavior of the cable: 𝑘𝑖 =
𝐸0𝑆

𝑙0,𝑖
, with the elastic modulus 𝐸0 and the cross 

section 𝑆. At the second order, the strain energy variation of the cable can be expressed 

as: 

 𝑉𝑖 =
1

2
(∆𝐨𝐛𝑖

𝑖)
𝑇
𝐊𝑖  ∆𝐨𝐛𝑖

𝑖  (8) 

where 𝐊𝑖 is the Hessian matrix at the equilibrium (∆𝐨𝐛𝑖
𝑖 = 𝟎) of 𝑉𝑖 with respect to the 

variables 𝛿𝑢𝑖 , 𝛿𝑣𝑖  and 𝛿𝑤𝑖 . 

 𝐊𝑖 = 𝛁𝛁
𝑇(𝑉𝑖) =

[
 
 
 
𝑘𝑖 0 0

0
𝑇𝑖

𝑙𝑇𝑖
0

0 0
𝑇𝑖

𝑙𝑇𝑖]
 
 
 

  (9) 

∇ is the gradient operator 𝛁𝑇 = [
𝜕

𝜕(𝛿𝑢𝑖)
𝜕

𝜕(𝛿𝑣𝑖)
𝜕

𝜕(𝛿𝑤𝑖)
] and 𝑇𝑖  is the cable preload. 

The deformation energy of a cable can then be expressed as a function of the small 

displacements of the mobile platform: 

 𝑉𝑖 =
1

2
[(∆𝐨𝐜0)𝑇 (∆𝛉𝐶

0)𝑇] 𝐇𝑖
𝑇 𝐑𝑂𝑖  𝐊𝑖  𝐑𝑂𝑖

𝑇 𝐇𝑖⏟          
𝐊0𝑖

 [
∆𝐨𝐜0

∆𝛉𝐶
0 ] (10) 

Hence the stiffness matrix of the cable robot: 

 𝐊𝑟𝑜𝑏𝑜𝑡 = ∑ 𝐊0𝑖
𝑚
𝑖=1  (11) 

The matrix 𝐑𝑂𝑖
𝑇 𝐇𝑖 can be detailed as follows: 

 𝐑𝑂𝑖
𝑇 𝐇𝑖 = [

𝐮𝑖
0𝑇

𝐯𝑖
0𝑇

𝐰𝑖
0𝑇

] [𝐈3 −𝐜𝐛𝑖
0̃] = [

𝐮𝑖
0𝑇 𝐮𝑖

0𝑇 ∙ 𝐜𝐛𝑖
0̃

𝐯𝑖
0𝑇 𝐯𝑖

0𝑇 ∙ 𝐜𝐛𝑖
0̃

𝐰𝑖
0𝑇 𝐰𝑖

0𝑇 ∙ 𝐜𝐛𝑖
0̃

] = [

𝐮𝑖
0𝑇 (𝐜𝐛𝑖

0 × 𝐮𝑖
0)𝑇

𝐯𝑖
0𝑇 (𝐜𝐛𝑖

0 × 𝐯𝑖
0)𝑇

𝐰𝑖
0𝑇 (𝐜𝐛𝑖

0 × 𝐰𝑖
0)𝑇

] (12) 

With the Jacobian matrix: 

𝐉𝑢 = [
𝐮1
0 ⋯ 𝐮𝑚

0

𝐜𝐛1
0 × 𝐮1

0 ⋯ 𝐜𝐛𝑚
0 × 𝐮𝑚

0
], 𝐉𝑣 = [

𝐯1
0 ⋯ 𝐯𝑚

0

𝐜𝐛1
0 × 𝐯1

0 ⋯ 𝐜𝐛𝑚
0 × 𝐯𝑚

0
],  𝐉𝑤 =

[
𝐰1
0 ⋯ 𝐰𝑚

0

𝐜𝐛1
0 × 𝐰1

0 ⋯ 𝐜𝐛𝑚
0 × 𝐰𝑚

0
] 
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We can decompose the stiffness matrix with preloaded cables into a sum of three 

matrices: 

 𝐊𝑟𝑜𝑏𝑜𝑡 = 𝐉𝑢 [
𝑘1 0 0
0 ⋱ 0
0 0 𝑘8

] 𝐉𝑢
𝑇 + 𝐉𝑣 [

𝑇1
𝑙𝑇1

0 0

0 ⋱ 0
0 0 𝑇8

𝑙𝑇8

] 𝐉𝑣
𝑇 + 𝐉𝑤 [

𝑇1
𝑙𝑇1

0 0

0 ⋱ 0
0 0 𝑇8

𝑙𝑇8

] 𝐉𝑤
𝑇  (13) 

If the preload is zero, we obtained the same matrix express in [5]. 

2.3 Mass matrix formulation and vibration modes 

Mass matrix formulation can be obtained from the kinetic energy of the mobile plat-

form. The generalized coordinates of the system are denoted by 𝐪 = (𝑥, 𝑦, 𝑧, 𝜓, 𝜃, 𝜑) 
with the angles defines by Tait-Bryan XYZ convention. The Kinetic energy is ex-

pressed by: 

 𝑇 =
1

2
𝑚𝑒𝐯𝐶

0𝑇𝐯𝐶
0 +

1

2
𝛀𝐸

𝑇
∙ (𝐈𝐶

𝐸𝛀𝐸) (14) 

where 𝐯𝐶
0 is the translational velocity of the center of mass 𝐶 of the end-effector, 𝛀𝐸 is 

the end-effector rotational velocity expressed on the end-effector frame, 𝑚𝑒 and 𝐈𝐶
𝐸 are 

respectively the mass of the end-effector and its inertia matrix expressed in the frame 

ℛ𝐸(𝐶, 𝐞𝑥𝐸 , 𝐞𝑦𝐸 , 𝐞𝑧𝐸). For infinitesimal displacements denoted by 𝛿𝐪 around a static 

equilibrium configuration, the kinetic energy can be expressed as follows:  

𝑇 =
1

2
𝛿𝐪̇𝑇𝐌𝛿𝐪̇ 

where M is given by 

𝐌 = [
𝑚𝑒𝐈3 𝟎𝟑
𝟎𝟑 𝐑𝑂𝐸  𝐈𝑪

𝑬𝐑𝑂𝐸
𝑻 ] 

Having established the stiffness and the mass matrices 𝐊 and 𝐌, undamped vibration 

modes can be determined by the resolution of the following eigen problem:  

 (𝐊 − 𝜔0𝑖
2 𝐌)𝐩𝑖 = 𝟎 (15) 

where 𝜔0𝑖(𝑖 = 1, … ,6). are the natural pulsations associated with the modal vectors 

(mode shapes) 𝐩𝑖  . 

2.4 Non-linear dynamic modelling 

In order to study the behavior of the robot in large displacements (large rotations) and 

subject to dynamic loading due to inertia and cable forces, non-linear effects must be 

considered such as gyroscopic coupling and cable sagging. The actual performance of 

the robot in terms of precision and vibration stability in operating conditions cannot be 

predicted precisely by the linear elasto-dynamic model developed in the previous sec-

tion, where infinitesimal displacement assumption have been adopted. A non-linear dy-

namic model is therefore required to simulate the robot’s movements and estimate its 

performance during path tacking.  

For a totally constrained cable robot with all the cables working under tension, we can 

assume that the cable works like a traction spring with a negligible mass. The tension 
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force generated by the cable is expressed in equation 16 as a function of the following 

cable parameters: the elastic modulus 𝐸0, the cross section 𝑆, the free length 𝑙0,𝑖 the 

current length 𝑙𝑖. 

 𝑇𝑒𝑙𝑎𝑠,𝑖 = 𝐸0𝑆 (
𝑙𝑖

𝑙0,𝑖
− 1) (16) 

The relation between the preloaded tension 𝑇𝑖  and its corresponding cable elongation 

𝑙𝑇𝑖 is given by the equation: 

 𝑇𝑖 = 𝐸0𝑆 (
𝑙𝑇𝑖

𝑙0,𝑖
− 1) (17) 

By replacing the cable free length 𝑙0,𝑖 from the equation (17) into equation (16), the 

tension force becomes : 

 𝑇𝑒𝑙𝑎𝑠,𝑖 =
𝑙𝑖

𝑙𝑇𝑖
(𝑇𝑖 + 𝐸0𝑆) − 𝐸0𝑆 (18) 

However, cables work only under tension. Hence, the force in a cable is null or pos-

itive, which means: 

 {
𝐹𝑖 = 𝑇𝑒𝑙𝑎𝑠,𝑖  if  𝑇𝑒𝑙𝑎𝑠,𝑖 ≥ 0

𝐹𝑖 = 0 if 𝑇𝑒𝑙𝑎𝑠,𝑖 < 0
 (19) 

The dynamics of the robot can be formulated with Lagrange equations. We use the 

expression of the kinetic energy given by equation (14). The generalized force, relative 

to each generalized coordinate, is given by: 

 𝑃𝑞𝑗 = 𝐹𝑞𝑗 +∑ 𝐹𝑖𝐮𝑖
0𝑇 ∙𝑚

𝑖=1
𝜕

𝜕𝑞𝑗
(𝐨𝐛𝑖

0) (20) 

Where 𝐹𝑖 is the force created by the cable tension, 𝐮𝑖
0 and the partial derivative of the 

vector 𝐨𝐛𝑖
0 dependent on the generalized coordinate 

𝜕

𝜕𝑞
(𝐨𝐛𝑖

0). 𝐹𝑞𝑗 (𝑗 = 1,… ,8) denotes 

the other external forces projected on the generalized coordinate such as the weight of 

the end-effector. 

The Dynamic equations are obtained as follows: 

 ℒ𝑞𝑗 : 
𝑑

𝑑𝑡

𝜕𝑇

𝜕𝑞𝑗̇
−

𝜕𝑇

𝜕𝑞𝑗
= 𝑃𝑞𝑗 (21) 

This differential equation is solved with ode45 from Matlab software by using 𝐘 =
[𝐪𝑇 𝐪̇𝑇]𝑇 as a state vector and by controlling the cable preload length 𝑙𝑇𝑖. 𝑙𝑖 is calcu-

lated with the direct kinematic model. 

3 Simulation results  

The simulations are performed with cable diameter of 1.5 𝑚𝑚 and for two cases of 

cable material: nylon cables with an elastic modulus of 3.9 × 109 𝑁.𝑚−2 and steel ca-

bles with an elastic modulus of 102 × 109 𝑁.𝑚−2. The mobile platform is assimilated 

to a homogenous parallelepiped of size (95.1 mm, 80.5 mm, 50.0 mm) with a mass of 

 1 kg. In these simulations, the orientation of the mobile platform is maintained constant 

at (0°, 0°, 0°). 
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3.1 Static and modal analysis 

The static analysis is performed over all the feasible workspace. The stiffness matrix of 

the robot is that which relates the infinitesimal displacements twist of the mobile plat-

form to the external force wrench applied to it at its characteristic point 𝐶. In our case, 

the cables are assumed to be permanently preloaded so as to avoid a discontinuity of 

the solution. If the cable becomes slack, the analysis is no longer valid. 

The mapping of the rigidity terms is shown in Fig. 3 for the layers 𝑧 = 0𝑚 and 𝑧 =
0.25𝑚 for the steel cable case. It can be seen that the stiffness depends on effector 

position. The translational rigidities in 𝑋 and 𝑌 directions, 𝑘𝑥𝑥 and 𝑘𝑦𝑦, are between 

400 kN/m and 550 kN/m. The translational rigidity in 𝑍 direction, 𝑘𝑧𝑧, is higher and 

varies between 700 kN/m and 900kN/m. The rotational rigidities around 𝑋, 𝑌 and 𝑍 

directions, 𝑘𝜓𝜓, 𝑘𝜃𝜃 and 𝑘𝜑𝜑, vary respectively between 2.1kN/rad and 2.8kN/rad, 

2.7kN/rad and 5kN/rad, and 0.1kN/rad and 0.9kN/rad. The rotational rigidity 𝑘𝜑𝜑 is the 

lowest because a small rotation around the Z axis produces displacements of the anchor 

points almost orthogonal to the cables. In this study, only the diagonal terms of the 

rigidity matrix are analyzed. 

  
Fig. 3. Stiffness on the plane xy for z=0m (left) and for z=0.25m (right) for a steel cable 

  
Fig. 4. Natural mode on the plane xy for z=0m (left) and for z=0.25m (right) for a steel cable 

The vibration cartography is shown in Fig 4 for the layer 𝑧 = 0m and 𝑧 = 0.25m 

for a steel cable. The minimum first mode is closed to 10 Hz when the effector is at the 

workspace extremity. In the center of the workspace, the first natural frequency is above 

30 Hz.  
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Tab. 2. Influence of the preload on the stiffness of the position (0,0,0) for a nylon cable 

𝑇𝑖 𝑘𝑥𝑥(kN/m) 𝑘𝑦𝑦(kN/m) 𝑘𝑧𝑧(kN/m) 𝑘𝜓𝜓(N/°) 𝑘𝜃𝜃(N/°) 𝑘𝜑𝜑(N/°) 

0N 19.618 20.259 26.415 1.7790 2.2012 0.0225 

50N 
19.954 20.590 26.702 1.7849 2.2094 0.0546 

1.68% 1.61% 1.08% 0.33% 0.37% 58.89% 

100N 
20.286 20.917 26.985 1.7907 2.2174 0.0863 

3.29% 3.15% 2.11% 0.65% 0.73% 73.99% 

200N 
20.935  21.557 27.539 1.8020 2.2333 0.1484 

6.29% 6.02% 4.08% 1.28% 1.44% 84.87% 

Tab. 3. Influence of the preload on the stiffness of the position (0,0,0) for a steel cable 

𝑇𝑖 𝑘𝑥𝑥(kN/m) 𝑘𝑦𝑦(kN/m) 𝑘𝑧𝑧(kN/m) 𝑘𝜓𝜓(N/°) 𝑘𝜃𝜃(N/°) 𝑘𝜑𝜑(N/°) 

0N 513.09 529,85 690.84 46.5278 57.5688 0.5872 

50N 
513.43 530,18 691.13 46.5337 57.5771 0.6196 

0.07% 0.06% 0.04% 0.01% 0.01% 5.23% 

100N 
513.77 530,52 691.42 46.5396 57.5853 0.6520 

0.13% 0.13% 0.08% 0.03% 0.03% 9.93% 

200N 
514,45 531,18 692.00 46.5515 57.6018 0.7166 

0.26% 0.25% 0.17% 0.05% 0.06% 18.06% 

The influence of the preload on the robot stiffness is shown in Table 2 for a nylon 

cable and Table 3 for a steel cable at the position (0 m, 0 m, 0 m). For the same cross 

section, the steel stiffness is higher than the nylon stiffness. On the x axis, the stiffness 

is 513.09 kN/m for steel and 19.618 kN/m for nylon without preload. On the x axis, the 

stiffness increases by 6.29% for the nylon with a 200N preload. For the steel cable, the 

preload has less influence with an increase of 0.26% on the x axis stiffness with a 200N 

preload. This may be explained by the fact that a higher preload is required for steel 

cable to reach the same relative level of lateral stiffness as in nylon cable.The preload 

has a more significant impact on the lesser stiffness direction which is the 𝜑 orientation 

(rotation on z). For the nylon, the stiffness is increased by about 84.87% with a preload 

of 200N. For the steel, the stiffness is increased by about 18.06% with a preload of 

200N. 

Tab. 4. Influence of the preload on the natural frequency of the position (0,0,0) for a nylon cable 

𝑇𝑖 𝑓1(𝐻𝑧) 𝑓2(𝐻𝑧) 𝑓3(𝐻𝑧) 𝑓4(𝐻𝑧) 𝑓5(𝐻𝑧) 𝑓6(𝐻𝑧) 

0N 6.6015 22.2921 22.6531 25.8668 57.6235 58.7635 

50N 
10.2964 22.4823 22.8377 26.0070 57.7307 58.8605 

35.89% 0.85% 0.81% 0.54% 0.19% 0.16% 

100N 
12.9446 22.6682 23.0183 26.1445 57.8362 58.9560 

49% 1.66% 1.59% 1.06% 0.37% 0.33% 

200N 
16.9720 23.0278 23.3677 26.4117 58.0421 59.1425 

61.1% 3.19% 3.06% 2.06% 0.72% 0.64% 

The influence of the preload on the natural frequency is shown in the tables 4 and 5. 

The first natural frequency is lower for the nylon cable with 6.6015 Hz than the steel 

cable with 33.7605 Hz. The preload effect on the frequency is more significant on nylon 

cable by an increase of the first mode by 61.1% when preloaded at 200N preload. The 

preload has a significant impact on the first mode. For steel cable, the first mode is 
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increased by 9.48% with a 200N preload, but the other modes are increased by less than 

0.13%. 

Tab. 5. Influence of the preload on the natural frequency of the position (0,0,0) for a steel cable 

𝑇𝑖 𝑓1(𝐻𝑧) 𝑓2(𝐻𝑧) 𝑓3(𝐻𝑧) 𝑓4(𝐻𝑧) 𝑓5(𝐻𝑧) 𝑓6(𝐻𝑧) 

0N 33.7605 114.0036 115.8499 132.2848 294.6912 300.5215 

50N 
34.6791  114.0412  115.8864  132.3125  294.7123  300.5406  

2.65% 0.033% 0.0315% 0.0209% 0.0072% 0.0064% 

100N 
35.5736 114.0788  115.9229 132.3402 294.7335 300.5597 

5.1% 0.0659% 0.0629% 0.0418% 0.0143% 0.0127% 

200N 
37.2969 114.1538 115.9957 132.3955 294.7756 300.5979 

9.48% 0.13% 0.13% 0.0836% 0.0286% 0.0254% 

3.2 Dynamic simulation for a given position 

A first dynamic analysis is done on a given position at (0 m, 0 m, 0 m). An initial per-

turbation is done by an initial translational velocity of (0.5 m/s, 0.5 m/s, 0.5 m/s) and 

rotational velocity of (0.1 rad/s, 0.1 rad/s, 0.1 rad/s). Two simulations are carried 

out in order to study the induced vibrations. It is not possible to analyze the Fourier 

transform of cable working only under traction stress without preload, which may be 

explained by the elastic force discontinuity. Cable preload is added with a force distri-

bution algorithm. The close-form algorithm[11] is used to compute the force distribu-

tion with 𝑡𝑚𝑖𝑛 = 200𝑁 and 𝑡𝑚𝑎𝑥 = 300𝑁. With the preload, the static natural frequen-

cies from table 5 are found. The first mode is presented on the 𝜑 rotation, which is the 

lesser stiffness. The second and the third modes are closed and they are presented re-

spectively on the x and y translations. The fourth mode is on the z translation. The fifth 

and sixth modes are respectively on the 𝜓 and 𝜃 rotations. These results show that, at 

the position (0 m, 0 m, 0 m), the two highest modal frequencies correspond to rotations 

of the mobile platform around the x and y axes respectively. At this position, move-

ments are clearly decoupled. However, for other positions, the movements are coupled. 

The first mode presented mainly a rotation around the z axis coupled with a translation 

in the xy plane. 

3.3 Dynamic simulation for a circular trajectory 

In order to simulate the behavior during the movement of the effector, a circular 

trajectory is considered. The angular parameter of the trajectory is calculated with a 

polynomial function: 

 𝛼(𝑡) = [𝑡3 𝑡2 𝑡 1] [

2/𝑇3

−3/𝑇2

0
1

1/𝑇2

−2/𝑇
1
0

−2/𝑇3

3/𝑇2

0
0

1/𝑇2

−1/𝑇
0
0

] [

𝛼𝑖𝑛𝑖𝑡
𝛼̇𝑖𝑛𝑖𝑡
𝛼𝑒𝑛𝑑
𝛼̇𝑒𝑛𝑑

] (22) 

where 𝑇 is the period of the circular trajectory, 𝛼𝑖𝑛𝑖𝑡 is the initial angle position, 𝛼̇𝑖𝑛𝑖𝑡 
is the initial angle velocity, 𝛼𝑒𝑛𝑑 is the final angle position and 𝛼̇𝑒𝑛𝑑 the final velocity. 

The circular trajectory follows the equations: 

 𝑥 = 𝑟 cos(𝛼) , 𝑦 = 𝑟 sin(𝛼) , 𝑧 = 0 (23) 
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The polynomial function 𝛼(𝑡) is used to be sure that the initial acceleration is null 

with an initial velocity 𝛼̇𝑖𝑛𝑖𝑡 also null. The simulated trajectory is a circle of radius 

33mm with a 1-second period that represents a path velocity of 207 mm/s. The move-

ment of the platform is controlled by the variation of cable lengths calculated using the 

inverse geometric model. Disturbances are caused solely by the elastodynamic behavior 

of the robot. 

 
Fig. 5. Circular error with nylon cable for a circular trajectory 

 
Fig. 6. Circular error with steel cable for a circular trajectory 

The position error is shown on figure 5 for a nylon cable and figure 6 for a steel 

cable. Simulation without preload and with a preload determined with a force distribu-

tion algorithm are shown. The close-form algorithm[11] was used to compute the force 

distribution with 𝑡𝑚𝑖𝑛 = 10𝑁 and 𝑡𝑚𝑎𝑥 = 20𝑁. The position error is higher for the ny-

lon cable than steel. The maximum circular error is 52.5 𝜇𝑚 for steel cable and 1.2 𝑚𝑚 

for nylon without preload. The error is lower when using the force distribution algo-

rithm. The maximum circular error is 7.6 𝜇𝑚 for steel cable and 194 𝜇𝑚 for nylon with 

preloads. The dynamic performance is better with a preload on the cable. 

4 Conclusion 

The influence of the preload of the cables on the static and dynamic behavior has been 

studied. This has been done by computing the robot stiffness matrix from a second order 

approximation of the deformation energy of preloaded cables, expressed as a function 

of infinitesimal displacement coordinates. 

In terms of static and modal behavior, the preload has a significant impact mainly 

on the rotational stiffness around the Z axis and the first natural frequency. For a dy-

namic trajectory, the preload plays a significant role. It keeps the cables under tension 

and prevents the discontinuity due to slack cables. Moreover, the preload improves the 

trajectory accuracy. 

The preload influence is more significant with a low elastic module. For instance, 

the preload impact is more significant with the nylon cable than the steel cable. This 

result may seem intuitive, but it remains necessary to quantify the gain in terms of ri-

gidity and natural frequencies in order to optimize the choice of cables. In the literature, 

rigid cables are generally chosen. 
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The developed dynamic model can be used to choose the preload on the cable as 

well as to determine the minimal preload to avoid slack cable. This study has been 

carried out for a constant orientation of the mobile platform, but the developments pre-

sented herein should be exploited to investigate the workspace at different orientations. 

However, the dynamic model chosen considers only the cable elasticity. Future works 

need to integrate the viscoelastic behavior of the cables.  The damping effect can help 

to stabilize and reduce the oscillations amplitude, especially for low stiffness cables. 

Although this study was undertaken on a totally constrained cable robot, it may be ex-

tended to other CDPR applications. 
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