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Abstract

The exact distributed controllability of the semilinear heat equation ∂ty −∆y + f(y) = v 1ω

posed over multi-dimensional and bounded domains, assuming that f is locally Lipschitz con-

tinuous and satisfies the growth condition lim sup|r|→∞ |f(r)|/(|r| ln3/2 |r|) 6 β for some β small

enough has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non

constructive fixed point arguments makes use of precise estimates of the observability constant

for a linearized heat equation. Under the same assumption, by introducing a different fixed point

application, we present a simpler proof of the exact controllability, which is not based on the

cost of observability of the heat equation with respect to potentials. Then, assuming that f is

locally Lipschitz continuous and satisfies the growth condition lim sup|r|→∞ |f ′(r)|/ ln3/2 |r| 6 β

for some β small enough, we show that the above fixed point application is contracting yielding a

constructive method to compute the controls for the semilinear equation. Numerical experiments

illustrate the results.

AMS Classifications: 35K58, 93B05.
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1 Introduction and main results

Let Ω be a bounded connected open set of Rd (d ∈ N?) with C2 boundary, ω ⊂⊂ Ω be any non-empty

open set and let T > 0. We set QT = Ω × (0, T ), qT = ω × (0, T ) and ΣT = ∂Ω × (0, T ). We are

concerned with the null controllability problem for the following semilinear heat equation{
∂ty −∆y + f(y) = v1ω in QT ,

y = 0 on ΣT , y(·, 0) = u0 in Ω,
(1)

where u0 ∈ L2(Ω) is the initial state of y, v ∈ L2(qT ) is a control function and f : R 7→ R is a

nonlinear function. Recall that if f is locally Lipschitz-continuous and satisfies the condition |f ′(r)| 6
C(1 + |r|4+d) for all r ∈ R, then (1) possesses exactly one local in time solution

Moreover, in accordance with the results in [8, Section 5], under the growth condition |f(r)| 6
C(1 + |r| ln(1 + |r|)) for all r ∈ R and some C > 0, the solutions to (1) are globally defined in [0, T ]

and one has

y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (2)
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Without the above growth condition, the solutions to (1) can blow up before t = T ; in general, the

blow-up time depends on f and the size of ‖u0‖L2(Ω). We refer to [25] and to [20, Section 2 and

Section 5] for a survey on this issue.

The system (1) is said to be exactly controllable to trajectories at time T if, for any globally

defined trajectory y? ∈ C0([0, T ];L2(Ω)) (corresponding to data u?0 ∈ L2(Ω) and v? ∈ L2(qT )), for any

u0 ∈ L2(Ω), there exist controls v such that v1ω ∈ L2(qT ) and associated states y satisfying (2) and

y(x, T ) = y?(x, T ), x ∈ Ω. (3)

When such property is true for a specific trajectory y? and for any choice of initial datum u0, we say

that system (1) is globally exactly controllable to y? at time T . The uniform controllability strongly

depends on the nonlinearity f . Assuming a growth condition on f at infinity, Fernández-Cara and

Zuazua in [18] showed the following result.

Theorem 1. [18] Let T > 0 be given. Assume that (1) admits at least one solution y?, globally defined

in [0, T ] and bounded in QT associated with v? ∈ L∞(qT ). Assume that f : R 7→ R is locally Lipschitz

continuous and satisfies

(H0) |f ′(r)| 6 C(1 + |r|4+d) a.e. inR.

There exists a β? = β(y?) > 0 such that if

(H1) lim sup
|r|→∞

|f(r)|
|r| ln3/2

+ |r|
6 β?

then system (1) is globally exactly controllable to y? at time T with controls in L∞(qT ).

Here and in the sequel, we note

ln+ |r| =

{
0 if |r| 6 1

ln |r| else.

Therefore, if |f(r)| does not grow at infinity faster than |r| lnp+(|r|) for any p < 3/2, then (1) is exactly

controllable to trajectories. We also mention [2] which gives a similar result assuming the additional

sign condition f(r)r > −C(1 + r2) for all r ∈ R and some C > 0. On the contrary, if f is too “super-

linear” at infinity, precisely, if p > 2, then for some initial data, the control cannot compensate the

blow-up phenomenon occurring in Ω\ω (see [18, Theorem 1.1]). The problem remains open when f

behaves at infinity like |r| lnp |r| with 3/2 6 p 6 2. We mention however the recent work of Le Balc’h

[26] where uniform controllability results in large time are obtained for p 6 2 assuming additional sign

conditions on f , notably that f(r) > 0 for r > 0 or f(r) < 0 for r < 0, a condition not satisfied for

f(r) = −r lnp+ |r|. Eventually, we also mention [11] where a positive boundary controllability result

is proved for a specific class of initial and final data and T large enough.

Theorem 1 is deduced in [18] from a null controllability result corresponding to the null trajectory,

i.e. y? ≡ 0 corresponding to v? ≡ 0, u?0 ≡ 0 and assuming f(0) = 0. The proof of the null controllability

given in [18] is based on a fixed point method, initially introduced in [33] for a one dimensional

semilinear wave equation. Precisely, it is shown that the operator Λ : L∞(QT ) → L∞(QT ), where

y := Λ(z) is a null controlled solution corresponding to the control of minimal L∞ norm of the linear

boundary value problem{
∂ty −∆y + y f̃(z) = v1ω in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, f̃(r) :=

{
f(r)/r r 6= 0

f ′(0) r = 0
(4)

maps a closed ball B(0,M) ⊂ L∞(QT ) into itself, for some M > 0. The Kakutani’s theorem then

provides the existence of a fixed point for the operator Λ, which is also a controlled solution for (1).
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This allows to obtain controlled solutions in L∞(QT ) but requires refined L1 Carleman type estimates

(see [18, Proposition 3.2]).

The general goal considered in this work is the approximation of the controllability problem asso-

ciated with (1), that is to construct an explicit sequence (vk)k∈N converging strongly toward a control

for (1). The controllability of nonlinear partial differential equations has attracted a large number of

works in the last decades (see the monography [10] and references therein). However, as far as we

know, few are concerned with the approximation of exact controls for nonlinear partial differential

equations, and the construction of convergent control approximations for nonlinear equations remains

a challenge. A natural strategy is to take advantage of the method used in [18, 26] and consider,

for any element y0 ∈ L∞(QT ), the Picard iterations defined by yk+1 = Λ(yk), k > 0 associated with

the operator Λ. Numerical experiments reported in [14] exhibit the non convergence of the sequences

(yk)k∈N and (vk)k∈N for some initial conditions large enough. This phenomenon is related to the fact

that the operator Λ is in general not contracting, including the cases for which f̃ is globally Lipschitz.

We also refer to [4, 5] where this strategy is implemented.

In the one-dimensional case, a least-squares type approach, based on the minimization over Z :=

L2((T − t)−1, QT ) of the functional R : Z → R+ defined by R(z) := ‖z−Λ(z)‖2Z has been introduced

and analyzed in [14]. Assuming u0 ∈ L∞(Ω), f̃ ∈ C1(R) and (f̃)′ ∈ L∞(R), it is proved that

R ∈ C1(Z;R+) and that, for some constant C > 0

(1− C‖(f̃)′‖L∞(R)‖u0‖∞)
√

2R(z) 6 ‖R′(z)‖L2(QT ) ∀z ∈ L2(QT )

implying that if ‖(f̃)′‖∞‖u0‖∞ is small enough, then any critical point for R is a fixed point for Λ (see

[14, Proposition 3.2]). Under such smallness assumption on the data, numerical experiments reported

in [14] display the convergence of gradient based minimizing sequences for R and a better behavior

than the ones associated with the Picard iterates for Λ. The analysis of convergence is however not

performed.

More recently, a constructive method has been developed for the one-dimensional case in [28] by

introducing the following (non convex) least-squares problem

inf
(y,v)∈A

Es(y, v), Es(y, v) := ‖∂ty −∆y + f(y)− v 1ω‖2L2(ρ0(s),QT )

where A is a convex space which incorporates the initial and controllability requirement and where

ρ0 denotes a Carleman type weight parametrized by s and blowing up as t→ T−. Assuming slightly

stronger assumption on f than in Theorem 1, a strong convergent approximation of a controlled pair

is obtained:

Theorem 2. [28] Let T > 0 be given. Let d = 1. Assume that (1) admits at least one solution y?,

globally defined in [0, T ] and bounded in QT associated with v? ∈ L2(qT ) and u?0 ∈ L2(Ω). Assume

that f ∈ C1(R) satisfies the growth condition

(H′1) ∃α > 0, s.t. |f ′(r)| 6 (α+ β? ln+ |r|)3/2, ∀r ∈ R

for some β? = β?(y?) > 0 small enough and

(Hp) ∃p ∈ [0, 1] such that sup
a,b∈R
a6=b

|f ′(a)− f ′(b)|
|a− b|p

< +∞.

Then, for any u0 ∈ L2(Ω), one can construct a sequence (yk, vk)k∈N converging strongly to a controlled

pair for (1) satisfying (3). Moreover, after a finite number of iterations, the convergence is of order

at least 1 + p.

The hypothesis on f are stronger here than in Theorem 1: it should be noted however that the

function f(r) = a + br + βr ln(1 + |r|)3/2, a, b ∈ R which is somehow the limit case in (H1) satisfies
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(H′1) and (H1). On the other hand, Theorem 2 devoted to the one dimensional case is constructive,

contrary to Theorem 1. A similar construction is performed in a multi-dimensional case with d 6 3

in [27] assuming that f is globally Lipschitz. The extension of Theorem 2 to the case d 6 3 can be

obtained as well. The minimizing sequence for Es constructed in [27, 28] are related to the operator

ΛN : A → A defined by y = ΛN (z) controlled solution of{
∂ty −∆y + f ′(z)y = v1ω + f ′(z)z − f(z) in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (5)

through the control v of minimal L2(ρ0(s), qT ) norm. The analysis in [28] makes use of global L2

Carleman estimates as initially introduced in this context in [19].

In this paper, we prove the following result.

Theorem 3. Let T > 0 be given. Let d 6 5. Assume that (1) admits at least one solution y?, globally

defined in [0, T ] and bounded in QT associated with a control function v? ∈ L2(qT ) and u?0 ∈ L∞(Ω).

Assume that f : R 7→ R is locally Lipschitz continuous.

• Assume that there exists β? > 0 small enough such that f satisfies (H1). Then system (1) is

globally exactly controllable from any initial datum in L∞(Ω) to y? at time T with controls in

{v∗}+ Lpd(qT ), where pd is defined in (19).

• If f ∈ C1(R) satisfies (H′1) for β∗ > 0 small enough, then for any u0 ∈ L∞(Ω), one may

construct a sequence (yk, vk)k∈N converging strongly in L2(QT ) × L2(qT ) to a controlled pair

(y∞, v∞) for (1). Besides, the convergence of (yk − y∞, vk − v∞)k∈N holds at least with a linear

rate for the norm L2(ρ0(s), QT ) × L2(ρ0(s), qT ), where ρ0 is defined in (15) and s is chosen

suitably large depending on ‖u0‖L∞(Ω).

The first part of Theorem 3 differs from Theorem 1 on the functional spaces as it is obtained from

a null controllability result based on a different fixed point application leading to a simpler proof.

In particular, it is not based on the analysis of the cost of observability of the heat equation with

potential. We believe that this different approach could possibly help analyzing non-linearities f which

behave like |r| log+(|r|)p for p ∈ [3/2, 2].

On the other hand, the second part relaxed the Hölder type assumption (Hp) on f ′ but still leads

in multi-dimensional cases to a constructive method. As we shall see, this is related to an appropriate

choice of the parameter s related to the norm of the initial condition.

The null controllability result we shall prove and leading to Theorem 3 (by simply considering

y − y∗ instead of y and v − v∗ instead of v, see [18, p.603]; the proof of Theorem 3 is then left to the

reader) reads as follows.

Theorem 4. Let T > 0 be given. Let d 6 5 and s > 0 large enough.

• There exists β? > 0 such that if f ∈ C0(R) satisfies

(H2) ∃α > 0, s.t. |f(r)| 6 |r|
(
α+ β? ln+ |r|

)3/2
, ∀r ∈ R

then system (1) is globally null-controllable at time T for initial data in L∞(Ω) with controls in

L2(qT )∩Lpd(qT ), where pd is defined in (19) and corresponding controlled solution in L∞(QT ).

• If f ∈ C1(R) satisfies (H′1) for β? > 0 small enough and f(0) = 0 then for any u0 ∈ L∞(Ω), one

can construct a sequence (yk, vk)k∈N converging strongly in L2(QT ) × L2(QT ) to a controlled

pair for (1). Besides, the convergence of (yk, vk)k∈N holds at least with a linear rate for the

norm L2(ρ0(s), QT ) × L2(ρ0(s), qT ), where ρ0 is defined in (15) and s is chosen suitably large

depending on ‖u0‖L∞(Ω).
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Remark that the first part of Theorem 4 relaxes the regularity assumption to f ∈ C0(R) instead of

f locally Lipschitz continuous. Therefore, with such non-linearities, we do not know the local existence

in time for the uncontrolled system. It should be noted that (H2) implies, in addition to f(0) = 0

that |f(r)|/|r| is bounded in any neighborhood of 0.

Theorem 4 is obtained by introducing the following linearized controllability problem: for ŷ in a

suitable class C(s) depending on a free parameter s > 1, find the control v such that the solution y of{
∂ty −∆y = v1ω − f(ŷ) in QT

y = 0 on ΣT , y(·, 0) = u0 in Ω
, (6)

satisfies y(·, T ) = 0 in Ω, and (y, v) corresponds to the minimizer of a functional Js depending on s

and involving Carleman weight functions (see Remark 1), which can also be computed as the solution

of an affine problem involving Carleman weight functions (see (20)).

This will define an operator Λs : ŷ 7→ y from some suitable class C(s) into itself, on which we

can use fixed point theorems for s sufficiently large depending on ‖u0‖L∞(Ω), namely Schauder fixed

point theorem for the first item of Theorem 4, and Banach-Picard fixed point theorem for the second

item, allowing to exhibit a simple sequence of convergent approximations of the control and controlled

trajectory.

The main trick here is thus to keep the parameter s free in the whole construction of the fixed

point operator and to get suitable estimates on the control and controlled trajectories.

In order to do that, we will use the Carleman estimate introduced in [1], which presents the

advantage of not degenerating as t → 0, allowing to handle initial conditions in a somewhat more

natural way than with the classical parabolic Carleman estimate of [19].

Let us also point out that this idea of introducing Carleman estimates within the control process

and choose the Carleman parameter large to limit the influence of lower order terms is also very

natural in the context of inverse problems, and in some extent, it should be compared to the techniques

developed in [3] or in [23] for instance, where Carleman estimates have been used to design numerical

methods to recover the unknown coefficient.

The paper is organized as follows. In Section 2, we derive a controllability result for the linear heat

equation with precise estimates. Then, in Section 3, we prove, for any time T > 0 and control domain

ω the uniform null controllability of (1) assuming that f is continuous and satisfies the condition

(H2). Then in Section 4, assuming the hypothesis (H′1), we show that the operator Λs is contracting,

yielding the convergence of the Picard iterates yk+1 = Λs(yk). Section 5 illustrates the result with some

numerical experiments in the one dimensional case while Section 6 concludes with some perspectives.

Notations. In this article, C denotes generic constants depending on Ω, ω, and T , which may

change from line to line, but is independent of the Carleman parameter s.

2 Controllability result for the linear heat equation

This section is devoted to a controllability result for a linear heat equation with a right hand side

B = B(x, t) in some class defined in the sequel. More precisely we are interested by the existence of

a control function v such that the solution z of{
∂tz −∆z = v1ω +B in QT ,

z = 0 on ΣT , z(·, 0) = u0 in Ω,
(7)

satisfies

z(·, T ) = 0 in Ω. (8)

This control problem has already been analyzed many times in the literature since the pioneering

work [19], and it is known that null-controllability can be achieved only if the source term B vanishes

exponentially fast close to T .
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In this section, we follow the usual strategy of [19] to construct a solution to the null-controllability

problem (7)–(8), using Carleman estimates as a fundamental tool, and getting suitable estimates on

this linear control problem.

In order to do that, instead of using the classical Carleman estimates of [19], we use the one in [1],

for which it is easier to deal with initial data as the weight function does not blow up as t→ 0.

2.1 Carleman estimates

Before introducing the Carleman estimate, we define the several weight functions which will be involved

in it.

We start by choosing a function ψ̃ ∈ C2(Ω; [0, 1]) satisfying ψ̃ = 0 on ∂Ω and infΩ\ω |∇ψ̃| > 0. We

then set ψ̂ = ψ̃ + 6.

We then introduce two free parameters s > 1 and λ > 1.

Setting µ = sλ2e2λ, we then choose a function θ ∈ C2([0, T )), depending on the free parameters s

and λ through the choice of µ, such that

θ(t) =



1 +

(
1− 4t

T

)µ
∀t ∈ [0, T/4],

1 ∀t ∈ [T/4, T − T/2],

θ is increasing on [T − T/2, T − 3T/4],

1 +
1

T − t
∀t ∈ [T − 3T/4, T ).

(9)

(In [1, Theorem 2.5], the function θ was chosen equal to 1/(T − t) on [T − 3T/4, T ], which is possible

only if T 6 4, but one can easily adapt the proof of [1, Theorem 2.5] to handle a function θ as in (9),

which also allows to consider any time horizon T .)

We then set ϕ, ξ and ρ as follows

ϕ(x, t) = θ(t)
(
λ exp(12λ)− exp(λψ̂(x))

)
, (x, t) ∈ Ω× [0, T ), (10)

ξ(x, t) = θ(t) exp(λψ̂(x)), (x, t) ∈ Ω× [0, T ), (11)

ρ(x, t) = exp
(
sϕ(x, t)

)
, (x, t) ∈ Ω× [0, T ). (12)

Finally, we introduce the weight functions ρ̃0, ρ̃1, and ρ̃2 as follows:

ρ̃0 = ξ−3/2ρ, ρ̃1 = ξ−1ρ, ρ̃2 = ξ−1/2ρ. (13)

We emphasize that these weights ρ, ρ̃0, ρ̃1, and ρ̃2 all blow up at t→ T− and not at t = 0.

Let us also point out that, although it does not explicitly appear in the above notations (as it is

usually done), all the above weight functions depend on the parameters s > 1 and λ > 1. In fact,

to make the dependence in the parameter s explicit, we will write the weights ρ, ρ̃0, ρ̃1, and ρ̃2 as

functions of (x, t) ∈ Ω× [0, T ) and s > 1.

The controllability property for the linear system (7) is based on the following Carleman estimate.

Lemma 1. [1, Theorem 2.5] There exists λ0 > 1 and s0 > 1 such for all λ > λ0 and for all s > s0,

for all p ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),∫

Ω

ρ−2(·, 0, s)|∇p(0)|2 + s2λ3e14λ

∫
Ω

ρ−2(·, 0, s)|p(0)|2 + sλ2

∫
QT

ρ̃−2
2 (s)|∇p|2 + s3λ4

∫
QT

ρ̃−2
0 (s)|p|2

6 C

(∫
QT

ρ−2(s)| − ∂tp−∆p|2 + s3λ4

∫
qT

ρ̃−2
0 (s)|p|2

)
.

(14)
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In the following, we fixed λ = λ0 and we only keep the parameter s free. This allows to replace in

(14) all the weights ρ̃0, ρ̃1, and ρ̃2 in (13) by the following ones:

ρ0 = θ−3/2ρ, ρ1 = θ−1ρ, ρ2 = θ−1/2ρ. (15)

Modifying the constant if needed, it is easy to check that Lemma 1 implies that there exists a constant

C > 0 such that for all s > s0, for all p ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),∫

Ω

ρ−2(·, 0, s)|∇p(0)|2 + s2

∫
Ω

ρ−2(·, 0, s)|p(0)|2 + s

∫
QT

ρ−2
2 (s)|∇p|2 + s3

∫
QT

ρ−2
0 (s)|p|2

6 C

(∫
QT

ρ−2(s)| − ∂tp−∆p|2 + s3

∫
qT

ρ−2
0 (s)|p|2

)
.

(16)

For further purposes, we will also need some additional L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)) estimates

on p from the right hand side. This is the goal of the main Lemma.

In order to state it precisely, we define two additional weight functions ϕ∗ = ϕ∗(t, s) and ρ3 =

ρ3(t, s) depending only on the time variable and on the free parameter s > s0:

∀t ∈ [0, T ), ϕ∗(t) = sup
x∈Ω

ϕ(x, t),

∀t ∈ [0, T ), ρ3(t, s) = e
3
2 sϕ∗(t).

We then get the following result.

Lemma 2. There exists a constant C > 0 such that for all s > s0, for all p ∈ L2(0, T ;H2 ∩H1
0 (Ω))∩

H1(0, T ;L2(Ω)),

‖∂t(ρ−1
3 (s)p)‖2L2(QT )+‖ρ

−1
3 (s)p‖2L2(0,T ;H2(Ω)) 6 C

(∫
QT

ρ−2(s)|−∂tp−∆p|2+s3

∫
qT

ρ−2
0 (s)|p|2

)
. (17)

Proof. Denoting p1 = ρ−1
3 (s)p we have

∂tp1 + ∆p1 = ρ−1
3 (s)(∂tp+ ∆p) +

3

2
s∂tϕ∗(t)ρ

−1
3 (s)p,

and from maximal regularity results for the heat equation

‖∂tp1‖2L2(QT )+‖p1‖2L2(0,T ;H2(Ω))

6 C
(
‖ρ−1

3 (s)(∂tp+ ∆p)‖2L2(QT ) + ‖s∂tϕ∗(t)ρ−1
3 (s)p‖2L2(QT ) + ‖∇p1(0)‖2L2(Ω)).

(18)

Let us estimate each term of the right hand side of this inequality.

Since ρ−1
3 (s) 6 ρ−1(s), the first term of the right hand-side (18) is easily bounded as follows:

‖ρ−1
3 (s)(∂tp+ ∆p)‖2L2(QT ) 6 ‖ρ

−1(s)(∂tp+ ∆p)‖2L2(QT ).

For the second term of the right hand-side (18), from the definition of ϕ∗ we have ∂tϕ∗ = ∂tθ
θ ϕ∗.

Besides, from the definition of θ we have, for some constant C independent of s:

∣∣∣∂tθ
θ

(t)
∣∣∣ 6


Cs ∀t ∈ [0, T/4],

0 ∀t ∈ [T/4, T − T/2],

Cθ ∀t ∈ [T − T/2, T ).

Since θ > 1, we deduce that |∂tθ/θ| 6 Csθ for some C independent of s, and thus we get that

|sϕ′∗| 6 Csθϕ∗ 6 Csθ2.
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Accordingly, for s > s0,

|s∂tϕ∗(t)ρ−1
3 (s)| 6 Csθ2ρ−1

3 (s) 6 Csθ2 exp(−sϕ∗/2)ρ−1(s) 6 Cs3/2θ3/2ρ−1(s) = Cs3/2ρ−1
0 (s),

where we used that sθ2 exp(−sϕ∗/2) 6 Cs3/2θ3/2 for s > s0: this is obvious since ϕ∗ > cθ∗ for some

strictly positive constant c > 0, s1/2θ1/2 exp(−csθ) 6 ‖τ1/2 exp(−cτ)‖L∞(R+) and s > 1.

These estimates entail that

‖s∂tϕ∗(t)ρ−1
3 (s)p‖2L2(QT ) 6 Cs3‖ρ−1

0 (s)p‖2L2(QT ).

Since ρ−1
3 (0, s) 6 ρ−1(x, 0, s) for all x ∈ Ω, the third term of the right hand-side (18) is easily

bounded as follows:

‖∇p1(0)‖2L2(Ω) = ‖ρ−1
3 (0, s)∇p(0)‖2L2(Ω) 6 ‖ρ

−1(0, s)∇p(0)‖2L2(Ω).

The inequality (17) then follows from the definition of p1, the estimate (18) and the Carleman

inequality (16).

2.2 Application to controllability

In the next section, we see how Lemma 1 and 2 imply control results for the controllability problem

(7)–(8).

This part is merely classical, and the results presented below differs only slightly from the ones

in [1, Theorem 2.6] and [13, Theorem 3.3]. Still, we present it below with some details, as it is an

essential part of our argument and requires to be adequately adapted from [1, Theorem 2.6] and [13,

Theorem 3.3]

In particular, we will give a construction which, in dimension d, provides a control v ∈ Lpd(qT ),

where pd is given by

pd =


+∞ if d = 1,

any number ∈ [2,∞) if d = 2,

2(d+ 2)

d− 2
if d > 3.

(19)

Before going further, for s > s0, let us introduce the bilinear form

(p, q)P,s :=

∫
QT

ρ−2(s)L?pL?q + s3

∫
qT

ρ−2
0 (s)p q

where L?q := −∂tq −∆q defined for p, q ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)).

It is easily seen that (·, ·)P,s is a scalar product on P = L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)).

We thus introduce Ps as the completion of L2(0, T ;H2∩H1
0 (Ω))∩H1(0, T ;L2(Ω)) for the norm ‖·‖P,s

associated with this scalar product, which therefore endows Ps with an Hilbert structure.

Besides, by density arguments, (16) remains true for all s > s0 and for all p ∈ Ps.
We can now state the main result of this section.
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Theorem 5. For s > s0, B ∈ L2(ρ0(s), QT ) and u0 ∈ L2(Ω), there exists a unique function ps ∈ Ps,
depending linearly on (B, u0) such that

(ps, q)P,s =

∫
Ω

u0q(0) +

∫
QT

Bq, ∀q ∈ Ps. (20)

Then vs = −s3ρ−2
0 (s)ps1ω is a control function for (7), the corresponding controlled trajectory

is given by zs = ρ−2(s)L?ps, and the operator Λ0
s : (B, u0) 7→ zs is linear and continuous from

L2(ρ0(s), QT )× L2(Ω) to L2(ρ(s), QT ).

Furthermore, we have the following estimates, for some constant C1 = C1(Ω, ω, T ) > 0 which does

not depend on s:

‖ρ(s) zs‖L2(QT ) + s−1‖ρ1(s)∇zs‖L2(QT )d + s−1‖ρ1(s)zs‖L∞(0,T ;L2(Ω)) + s−3/2‖ρ0(s) vs‖L2(qT )

6 C1

(
s−3/2‖ρ0(s)B‖L2(QT ) + s−1ec2s‖u0‖L2(Ω)

)
(21)

with c2 := ‖ϕ(·, 0)‖∞. Eventually, vs ∈ Lpd(qT ), and for some constant

‖vs‖Lpd (qT ) 6 C
(
‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)

)
. (22)

Proof. For simplicity, we divide the proof of Theorem 5 in several lemmas.

We first analyze the solvability of the equation (20).

Lemma 3. Under the assumptions of Theorem 5, there exists a unique ps ∈ Ps solution of (20).

This function ps satisfies the following estimate (with c2 = ‖ϕ(·, 0)‖∞)

‖ps‖Ps 6 C
(
s−3/2‖ρ0(s)B‖L2(QT ) + s−1ec2s‖u0‖L2(Ω)

)
. (23)

for some constant C = C(Ω, ω, T ) > 0.

Finally, ps depends linearly on the couple (B, u0).

Proof of Lemma 3. Since (·, ·)Ps is a scalar product on Ps, Lemma 3 is a consequence of the fact that

the right hand-side of (20) corresponds to a linear continuous form on Ps.

The linear map L1 : Ps → R, q 7→
∫
QT

Bq is continuous since ρ(s)B ∈ L2(QT ). Indeed, for all

q ∈ Ps ∣∣∣ ∫
QT

Bq
∣∣∣ 6 (∫

QT

|ρ0(s)B|2
)1/2(∫

QT

|ρ−1
0 (s)q|2

)1/2

and since from (16)
(∫

QT

|ρ−1
0 (s)q|2

)1/2

6 Cs−3/2‖q‖Ps , it follows that

|L1(q)| =
∣∣∣ ∫
QT

Bq
∣∣∣ 6 Cs−3/2‖ρ0(s)B‖L2(QT )‖q‖Ps .

Thus L1 is continuous on Ps.

From (16) we deduce that the linear map L2 : Ps → R, q 7→
∫

Ω
u0q(0) is continuous. Indeed, using

s > 1, we obtain for all q ∈ Ps that:

|L2(q)| = s−1ec2s‖u0‖L2(Ω)se
−c2s‖q(0)‖L2(Ω)

6 s−1ec2s‖u0‖L2(Ω)s‖q(0)e−sϕ(x,0)‖L2(Ω) = s−1ec2s‖u0‖L2(Ω)s‖ρ−1(s, 0)q(0)‖L2(Ω)

6 Cs−1ec2s‖u0‖L2(Ω)‖q‖Ps .

Accordingly, the right hand-side of (20) corresponds to a linear continuous form on Ps and Riesz

representation theorem gives the existence of a unique ps ∈ Ps solving (20), which additionally satisfies

(23).
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We then establish the link between the equation (20) and the control problem (7)–(8).

Lemma 4. Let s > s0 and ps ∈ Ps be the unique solution of (20) given in Lemma 3 and define (zs, vs)

by

zs = ρ−2(s)L?ps and vs = −s3ρ−2
0 (s)ps1ω. (24)

Then zs solves (7)-(8) with v = vs, ρ(s)zs ∈ L2(QT ), ρ0(s)vs ∈ L2(qT ), and satisfies the following

estimate

‖ρ(s) zs‖L2(QT ) + s−3/2‖ρ0(s) vs‖L2(qT ) 6 C1

(
s−3/2‖ρ0(s)B‖L2(QT ) + s−1ec2s‖u0‖L2(Ω)

)
. (25)

Proof of Lemma 4. From the definition of Ps, ρ(s)zs ∈ L2(QT ) and ρ0(s)vs ∈ L2(qT ), and (25)

immediately follows from (23).

In view of (20), (zs, vs) satisfies, for all q ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),∫

QT

zsL
?q =

∫
QT

vs1ω q +

∫
Ω

u0q(0) +

∫
QT

Bq. (26)

Therefore, zs is a solution of (7)-(8) corresponding to the choice v = vs in the sense of transposition.

Since (zs, vs) ∈ L2(QT )× L2(qT ), by uniqueness of solutions of (7)-(8) in the sense of transpositions,

zs also solves (7)-(8) in the weak sense.

Remark 1. Following [19], it is not difficult to check that the functions zs and vs provided by Lemma

4 can also be characterized as the unique minimizer of the functional Js defined as

Js(z, v) =
s3

2

∫
QT

ρ2(s)|z|2 +
1

2

∫
qT

ρ2
0(s)|v|2 (27)

over the set{
(z, v) : ρ(s)z ∈ L2(QT ), ρ0(s)v ∈ L2(qT ), (z, v1ω) solves (7)-(8) in the transposition sense

}
.

The next lemma gives additional estimates on the trajectory zs given by (4), based on the fact

that it solves a parabolic equation with a source term in L2(QT ) and an initial datum in L2(Ω), thus

belonging to the space L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)), and strongly inspired by [1, Theorem 2.6]

in which the initial datum was zero (see also [13, Theorem 3.3], where similar results are obtained):

Lemma 5. With the notations and assumptions of Lemma 4, we further have that ρ1(s)zs ∈
L∞(0, T ;L2(Ω)), ∇zs ∈ L2(ρ1(s), QT )d, and there exists a constant C? independent of s > s0 such

that

‖ρ1(s)zs‖L∞(0,T ;L2(Ω)) + ‖ρ1(s)∇zs‖L2(QT )d 6 C?
(
s−1/2‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)

)
. (28)

Proof of Lemma 5. Since zs ∈ L2(0, T ;H1
0 (Ω)), ∂tzs ∈ L2(0, T ;H−1(Ω)) and ρ1(s) ∈ C∞([0, T [; C∞(Ω)),

multiplying (7) by ρ2
1(s)zs and integrating by part we obtain in D′(0, T )

1

2
∂t

∫
Ω

|zs|2ρ2
1(s) +

∫
Ω

ρ2
1(s)|∇zs|2

=

∫
ω

vsρ
2
1(s)zs +

∫
Ω

Bρ2
1(s)zs +

∫
Ω

|zs|2ρ1(s)∂tρ1(s)− 2

∫
Ω

ρ1(s)zs∇ρ1(s) · ∇zs. (29)

Let us estimate each term of the right side of this inequality. We have ∂tρ1(s) = −∂tθθ ρ1(s) +

s∂tθθ ϕρ1(s) and thus, since from the definition of ϕ, ϕ 6 Cθ and
∣∣∣∂tθθ ϕ∣∣∣ 6 Csθ2 and since s > 1, θ > 1
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and ρ(s) = θρ1(s) we deduce that, on [0, T ) :∣∣∣ ∫
Ω

|zs|2ρ1(s)∂tρ1(s)
∣∣∣ 6 ∫

Ω

∣∣∣∂tθ
θ

∣∣∣|ρ1(s)zs|2 + s

∫
Ω

∣∣∣∂tθ
θ
ϕ
∣∣∣|ρ1(s)zs|2 6 Cs2

∫
Ω

ρ2(s)|zs|2.

On the other hand

∇ρ1(s) = θ−1∇ρ(s) 6 Csρ(s),

and thus, ∣∣∣ ∫
Ω

ρ1(s)zs∇ρ1(s) · ∇zs
∣∣∣ 6 C

∫
Ω

s|ρ(s)zs| |ρ1(s)∇zs|

6 Cs2

∫
Ω

|ρ(s)zs|2 +
1

2

∫
Ω

|ρ1(s)∇zs|2.

Finally, since ρ2
1(s) = θ−1/2ρ0(s)ρ(s) and θ−1/2 6 1, we infer that∣∣∣ ∫
ω

vsρ
2
1(s)zs

∣∣∣ 6 ∣∣∣ ∫
ω

ρ0(s)vsθ
−1/2ρ(s)zs

∣∣∣ 6 ‖ρ0(s)vs‖L2(ω)‖ρ(s)zs‖L2(Ω)

and |
∫

Ω
Bρ2

1(s)zs| 6 ‖ρ0(s)B‖L2(Ω)‖ρ(s)zs‖L2(Ω). Thus (29) implies that

∂t

∫
Ω

ρ2
1(s)|zs|2 +

∫
Ω

ρ2
1(s)|∇zs|2 6 Cs2‖ρ(s)zs‖2L2(Ω) +

(
‖ρ0(s)vs‖L2(ω) +‖ρ0(s)B‖L2(Ω)

)
‖ρ(s)zs‖L2(Ω)

and therefore, since ‖ρ1(0, s)u0‖2L2(Ω) 6 e2c2s‖u0‖2L2(Ω), we get, for all t ∈ [0, T ),(∫
Ω

ρ2
1(s)|zs|2

)
(t) +

∫
Qt

ρ2
1(s)|∇zs|2 6 Cs2‖ρ(s)zs‖2L2(QT )

+
(
‖ρ0(s)vs‖L2(qT ) + ‖ρ0(s)B‖L2(QT )

)
‖ρ(s)zs‖L2(QT ) + e2c2s‖u0‖2L2(Ω).

Since s > 1, using (25) we obtain, for all t ∈ [0, T ),(∫
Ω

ρ2
1(s)|zs|2

)
(t) +

∫
Qt

ρ2
1(s)|∇zs|2 6 C

(
s−1‖ρ0(s)B‖2L2(QT ) + e2c2s‖u0‖2L2(Ω)

)
which gives (28).

The next result is slightly less classical and proves that the control vs produced by Lemma 4 enjoys

some nice integrability property.

Lemma 6. Let s > s0. Let vs be given by Lemma 4. Then vs ∈ Lpd(qT ) (recall the definition of pd
in (19)) and satisfies, for some C > 0,

‖vs‖Lpd (qT ) 6 C(‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)).

Proof of Lemma 6. From estimates (16)–(17), for all p ∈ L2(0, T ;H2 ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)),

‖ρ−1
3 (s)p‖H1(0,T ;L2(Ω)) + ‖ρ−1

3 (s)p‖L2(0,T ;H2(Ω)) 6 C‖p‖P,s.

Therefore, by density, this estimate is still true for all p ∈ Ps. Thus, by interpolation, for all p ∈ Ps,
ρ−1

3 p ∈ Hτ (0, T ;H2(1−τ)(Ω)) for all τ ∈ [0, 1]. In particular, with the choice τ = 2/(d+2), in dimension

d > 3, using Sobolev’s embedding theorem, we get that Hτ (0, T ) and H2(1−τ)(Ω) respectively embeds

in Lpd(0, T ) and Lpd(Ω). Accordingly, we get, for all p ∈ Ps,

‖ρ−1
3 p‖Lpd (QT ) 6 C‖p‖Ps .

In dimension 1 and 2, this estimate also holds with pd as in (19): indeed, one can simply use that

L2(0, T ;H2 ∩ H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)) embeds into L∞(0, T ;H1

0 (Ω)) and that H1
0 (Ω) embeds into

L∞(Ω) in dimension 1, and in any Lp(Ω) with p <∞ when d = 2.
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Let ps ∈ Ps be the unique solution of (20) given in Lemma 3, zs = ρ−2(s)L?ps and vs =

−s3ρ−2
0 (s)ps1ω. Then ρ−1

3 (s)ps1ω = −s−3θ−3ρ2(s)ρ−1
3 (s)vs. We then have, using s > 1 and (23):

‖s−3θ−3ρ2ρ−1
3 vs‖Lpd (qT ) 6 C‖ps‖P 6 C(‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)). (30)

Now, to conclude the proof of Lemma 6, we simply check that there exists C3 > 0 such that

s−3θ−3ρ2ρ−1
3 > C3. From the definition of ρ and ρ3 we have

ρ2(s)ρ−1
3 (s) = e2sϕe−

3
2 sϕ∗ > esθ(

1
2λe

12λ−2eλψ̂) > ecsθ

for some positive constant c > 0, thus making obvious the existence of a positive C3 such that for all

s > 1, s−3θ−3ρ2ρ−1
3 > C3.

We can now conclude easily Theorem 5 by putting together Lemma 3, Lemma 4, Lemma 5 and

Lemma 6.

2.3 Additional properties of the controlled trajectories given by Theorem 5

In this section, we provide two properties of the controlled trajectory given by Theorem 5, which will

be useful in our fixed point argument.

The first one concerns the integrability of the controlled trajectory. To better understand the

origin of this property, we first state two classical results on the heat equation:

Lemma 7 (Maximal regularity in Lq class). [31, Theorem 9.1 p.341] Let q ∈ (1,∞). For all

F ∈ Lq(QT ), the unique weak solution zF of{
∂tzF −∆zF = F in QT ,

zF = 0 on ΣT , zF (·, 0) = 0 in Ω
(31)

satisfies zF ∈ Lq(0, T ;W 2,q(Ω)) ∩W 1,q(0, T ;Lq(Ω)) and

‖zF ‖Lq(0,T ;W 2,q(Ω))∩W 1,q(0,T ;Lq(Ω)) 6 C‖F‖Lq(QT ). (32)

As an immediate corollary of Lemma 7, from [31, Lemma 3.4 p.83], z ∈ C0([0, T ];W 2− 2
q ,q(Ω))

and therefore from the Sobolev-Gagliardo-Nirenberg Theorem (see [12, Theorems 6.7 and 8.2] and [6,

Corollary 9.14 p. 284]) and since, for q > d+2
2 , Lq(0, T ;W 2,q(Ω)) ∩W 1,q(0, T ;Lq(Ω)) ↪→ C0(QT ) is

compact (see [32, Corollary 8 p. 90 and Lemma 12 p. 91], we easily get the following result:

Corollary 1. With the notations of Lemma 7, if q > qd, where qd is defined by

qd =
d+ 2

2
, (33)

there exists a constant C > 0 such that for all F ∈ Lq(QT ), the solution zF of (31) satisfies

‖zF ‖L∞(QT ) 6 C‖F‖Lq(QT ). (34)

Furthermore, if (Fn)n∈N is a bounded sequence of Lq(QT ), (zFn)n∈N is compact in C0(QT ).

Accordingly, using (22), an interesting L∞(QT ) estimate on the controlled trajectory given by

Theorem 5 can be proved when u0 ∈ L∞(Ω) and B ∈ Lq(QT ) for q > qd when pd > qd, i.e. d 6 5:

Theorem 6. Within the setting of Theorem 5, when d 6 5, if we further assume that B ∈ Lq(QT )

for some q > qd, and u0 ∈ L∞(Ω), we have the following additional estimate: there exists a constant

Cq > 0 such that the controlled trajectory provided by Theorem 5 belongs to L∞(QT ) and satisfies:

‖zs‖L∞(QT ) 6 Cq(‖B‖Lq(QT ) + ‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L∞(Ω)). (35)
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Proof. According to Theorem 5, the control vs provided by Theorem 5 belongs to Lpd(QT ) and its

Lpd(QT ) norm is bounded by C
(
‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)

)
. Since d 6 5, pd > qd, and we can

then use Corollary 1 to estimate the solution zF of (31) corresponding to the choice F = B + vs1ω:

‖zF ‖L∞(QT ) 6 C(‖B‖Lq(QT ) + ‖ρ0(s)B‖L2(QT ) + ec2s‖u0‖L2(Ω)). (36)

We then write that the controlled trajectory zs given by Theorem 5 as zF + zu0
, where zu0

is the

solution of {
∂tzu0 −∆zu0 = 0 in QT ,

zu0
= 0 on ΣT , zu0

(·, 0) = u0 in Ω,
(37)

for which the maximum principle immediately yields zu0
∈ L∞(QT ) and

‖zu0‖L∞(QT ) 6 ‖u0‖L∞(Ω). (38)

Combining the estimates (36) and (38) easily gives the estimate (35).

3 A controllability result for (1) with f ∈ C0(R): proof of the

first item of Theorem 4

The goal of this section is to prove the first item of Theorem 4, in a slightly more precise form, namely:

Theorem 7. Let T > 0 and Ω ⊂ Rd, 1 6 d 6 5. There exists β? > 0 (given in (50) afterwards) such

that if the function f ∈ C0(R) satisfies (H2), for all u0 ∈ L∞(Ω), there exists a control v ∈ Lpd(qT ) and

a solution y ∈ L2(0, T ;H1
0 (Ω))∩L∞(QT ) of (1) associated with v1ω such that y(·, T ) = 0. Moreover,

there exists s > 1 such that (y, v) ∈ L2(ρ(s), QT ) × L2(ρ0(s), qT ), where ρ and ρ0 are respectively

defined in (12) and (15).

Remark 2. We emphasize that, contrary to Theorem 1, we do not assume that f is locally Lipschitz

continuous. In particular, we do not assume a priori the existence of local solutions in time for (1).

Remark 3. We also emphasize that the controllability time is arbitrary. However, the specific struc-

ture of the control vs together with lower bound on s forces the control to act from the beginning so as

to prevent the solution to blow up.

For s > s0 a parameter to be fixed later, for all ŷ ∈ L2(ρ0(s), QT )∩L∞(QT ), we solve the linearized

null controllability problem 
∂ty −∆y = v1ω − f(ŷ) in QT ,

y = 0 on ΣT , y(., 0) = u0 in Ω,

y(·, T ) = 0 in Ω

(39)

and we will prove the existence of a fixed point of

Λs : ŷ 7→ y, (equivalently, with the notation of Theorem 5, Λs(ŷ) = Λ0
s(−f(ŷ), u0)) (40)

where y is the solution of the null controllability problem (39) associated with v1ω given in Theorem

5 for B = −f(ŷ).

In order to that, we will employ the Schauder fixed point theorem.

To be more precise, for s > s0, we first introduce the Banach space L∞(QT ) ∩ L2(ρ0(s), QT ),

endowed with the norm

|||y|||s := ‖y‖L∞(QT ) + ‖y‖L2(ρ0(s),QT ).
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For R > 0 and s > s0, we then introduce the class CR(s), defined as the non empty closed convex set

of L2(ρ0(s), QT ) ∩ L∞(QT ) given by

CR(s) =

{
y ∈ L∞(QT ), ‖y‖L∞(QT ) 6 R, ‖ρ0(s)y‖L2(QT ) 6 R1/2

}
. (41)

Our goal will then be to prove that:

• the map Λs is well-defined on L2(ρ0(s), QT ) ∩ L∞(QT ); see Section 3.1;

• If β? > 0 is small enough in (H2), there exists s and R large enough so that Λs(CR(s)) ⊂ CR(s);

see Section 3.2;

• Λs(CR(s)) is compact in CR(s) for the topology induced by |||·|||s; see Section 3.3;

• Λs is continuous on CR(s) for the topology induced by |||·|||s; see Section 3.4.

Accordingly, by Schauder fixed point theorem, Λs will have a fixed point on CR(s), and this fixed

point will provide the controlled trajectory y of Theorem 7, see Section 3.5.

3.1 The map Λs is well-defined on L2(ρ0(s), QT ) ∩ L∞(QT )

To properly define the map Λs, we need to check the following lemma:

Lemma 8. Let d 6 5 and 2 6 q 6 +∞. Under the assumptions of Theorem 7. For all s > s0,

ŷ ∈ L2(ρ0(s), QT ) ∩ L∞(QT ), f(ŷ) ∈ L2(ρ0(s), QT ) ∩ Lq(QT ) and

‖ρ0(s)f(ŷ)‖L2(QT ) 6
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖L2(QT ), (42)

‖f(ŷ)‖Lq(QT ) 6
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖2/qL2(QT )‖ŷ‖
1−2/q
L∞(QT ). (43)

Proof. Assumption (H2) immediately implies (42).

To estimate f(ŷ) in Lq(QT ), we write that ‖f(ŷ)‖Lq(QT ) 6 ‖f(ŷ)‖θL2(QT )‖f(ŷ)‖1−θL∞(QT ) where

1

q
=
θ

2
+

1− θ
∞

, that is θ =
2

q
. Since ρ0 > 1, we obviously have from (42) that

‖f(ŷ)‖L2(QT ) 6 ‖ρ0f(ŷ)‖L2(QT ) 6
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖L2(QT ),

while we easily have

‖f(ŷ)‖L∞(QT ) 6
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ŷ‖L∞(QT ).

These last estimates easily give (43).

An immediate consequence of Lemma 8, Theorem 5 and Theorem 6 is the following one:
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Proposition 1. Under the assumptions of Theorem 7, the map Λs defined in (40) as the solution of the

null-controllability problem (39) using Theorem 5 is well-defined for s > s0 on L2(ρ0(s), QT )∩L∞(QT ),

and for ŷ ∈ L2(ρ0(s), QT ) ∩ L∞(QT ), y = Λs(ŷ) satisfies the following estimates:

‖ρ(s) y‖L2(QT ) + s−1‖ρ1(s)∇y‖L2(QT )d + s−1‖ρ1(s)y‖L∞(0,T ;L2(Ω))

6 C1s
−3/2

(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖L2(QT ) + C1s
−1ec2s‖u0‖L2(Ω), (44)

and for q > max{qd, 2}, we have

‖y‖L∞(QT ) 6 Cq
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖2/qL2(QT )‖ŷ‖
1−2/q
L∞(QT )

+ Cq
(
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖L2(QT ) + Cqe
c2s‖u0‖L∞(Ω). (45)

In particular, Λs maps L2(ρ0(s), QT ) ∩ L∞(QT ) into itself.

Furthermore, the control v provided by Theorem 5 satisfies

‖v‖Lpd (qT ) 6 C

((
α+ β? ln+

(
‖ŷ‖L∞(QT )

))3/2‖ρ0(s)ŷ‖L2(QT ) + ec2s‖u0‖L2(Ω)

)
. (46)

3.2 A stable class for suitable choices of parameters

Our next goal is to show the following result:

Lemma 9. Under the assumptions of Theorem 7, if β? in (H1) is small enough, there exist s and

R > 0 such that

Λs(CR(s)) ⊂ CR(s), (47)

where the class CR(s) is given in (41).

Proof. Of course, the proof relies on the estimates given by Proposition 1.

We fix q > max{qd, 2} with q finite. Then, for s > s0 and ŷ ∈ CR(s), we have from (44) (recalling

s > s0 > 1 and the inequality ρ0 6 ρ) that y = Λs(ŷ) satisfies

‖ρ0(s) y‖L2(QT ) 6 ‖ρ(s) y‖L2(QT ) 6 C1s
−3/2

(
α+ β? ln+

(
R
))3/2

R1/2 + C1e
c2s‖u0‖L2(Ω).

On the other hand, for s > s0 and ŷ ∈ CR(s), from (45), y = Λs(ŷ) satisfies

‖y‖L∞(QT ) 6 Cq
(
α+ β? ln+

(
R
))3/2

(R1−1/q +R1/2) + Cqe
c2s‖u0‖L∞(Ω).

In view of these two estimates, it is natural to impose the relation

s =
1

4c2
ln+

(
R
)
, (48)

taking R large enough so that s > s0.

Indeed, with this relation, the two above estimates yield that for ŷ ∈ CR(s), y = Λs(y) satisfies:

‖ρ0(s) y‖L2(QT ) 6 C1(4c2)3/2

(
α

ln+(R)
+ β?

)3/2

R1/2 + C1R
1/4‖u0‖L2(Ω),

‖y‖L∞(QT ) 6 Cq
(
α+ β? ln+

(
R
))3/2

(R1−1/q +R1/2) + CqR
1/4‖u0‖L∞(Ω).
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Therefore, if (2C1)2/34c2β
? < 1, that is if β? is small enough, for R large enough, we have

C1(4c2)3/2

(
α

ln+(R)
+ β?

)3/2

6
1

2
,

C1R
1/4‖u0‖L2(Ω) 6

1

2
R1/2.

Cq
(
α+ β? ln+

(
R
))3/2

(R1−1/q +R1/2) 6
1

2
R,

CqR
1/4‖u0‖L∞(Ω) 6

1

2
R.

(49)

According to the previous estimates, we have thus proved that if (2C1)2/34c2β
? < 1, imposing the

relation (48), and taking R large enough so that s > s0 and R satisfies (49), for all ŷ ∈ CR(s),

y = Λs(ŷ) belongs to CR(s).

Remark 4. The smallness condition on β? is explicit:

β? <
1

4c2(2C1)2/3
, (50)

where the constants C1 and c2 are the constants appearing in Theorem 5.

Remark 5. In fact, the above proof shows that, provided we impose the relation (48), CR(s) is stable

for Λs for any R > R0 (equivalently s > s0) for a suitably large R0 (equivalently s0). Furthermore,

with the above choices, in view of (49), the lower bound R0 depends on ‖u0‖L∞(Ω) as a power of

‖u0‖L∞(Ω), so that the lower bound s0 can be chosen as depending logarithmically on ‖u0‖L∞(Ω).

3.3 Λs(CR(s)) is a relatively compact subset of CR for the norm |||·|||s.

Proposition 2. Under the assumptions of Lemma 9, Λs(CR(s)) is a relatively compact subset of CR(s)

for the norm |||·|||s.

Proof. Let (yn)n∈N be a sequence of Λs(CR) bounded for the norm |||·|||s. We have to prove that there

exists a subsequence (ynk)k∈N of (yn)n∈N and y ∈ CR such that ynk → y in L2(ρ0(s), QT ) and ynk → y

in L∞(QT ).

First, since Λs(CR(s)) ⊂ CR(s), (yn)n∈N is a bounded sequence of the Hilbert space L2(ρ0(s), QT ),

there exists a subsequence (ynk)k∈N and ỹ ∈ L2(ρ0(s), QT ) such that (ynk)k∈N weakly converge to ỹ

in L2(ρ0(s), QT ), and therefore ‖ỹ‖L2(ρ0(s),QT ) 6 R1/2.

Furthermore, since (ynk)k∈N is bounded in L∞(QT ), extracting another subsequence if necessary,

which we still denote the same for simplicity, the sequence (ynk)k∈N ?-weakly converges to ỹ in L∞(QT )

and we also have ‖ỹ‖L∞(QT ) 6 R.

On the other hand, there exists (ŷnk)k∈N a sequence of CR(s) such that ynk = Λs(ŷnk) for all k ∈ N,

meaning that there exists vnk ∈ Lpd(qT ) (recall (46)) such that{
∂tynk −∆ynk = vnk1ω − f(ŷnk) in QT ,

ynk = 0 on ΣT , ynk(., 0) = u0 in Ω.

In particular, each ynk can be decomposed as ynk = zFnk + zu0
where zFnk solves (31) with Fnk =

vnk1ω − f(ŷnk) and zu0 as in (37).

Since (ŷnk)k∈N belongs to CR(s), from (43), (f(ŷnk))k∈N is bounded in L∞(QT ), and from (46),

(vnk1ω)k∈N is bounded in Lpd(QT ). Since d 6 5, pd > qd, and thus, according to Corollary 1, there

exists a subsequence, also denoted by (zFnk )k∈N and z ∈ C0(QT ) such that (zFnk )k∈N converges to z

in C0(QT ) as k →∞.
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Since zu0 is independent of n and belongs to L∞(QT ) by the maximum principle, (ynk)k∈N strongly

converges to y = z + zu0 in L∞(QT ). By uniqueness of the limit in D′(QT ), ỹ = y.

Furthermore, it is easy to check from the above arguments that a.e in t ∈ [0, T ], ynk(t) → y(t)

strongly in L∞(Ω).

To finish the proof, it suffices to prove that ynk → y in L2(ρ0(s), QT ). Since (ynk)k∈N weakly

converge to y in L2(ρ0(s), QT ) it suffices to prove that ‖ynk‖L2(ρ0(s),QT ) → ‖y‖L2(ρ0(s),QT ).

From the previous step, we have the strong convergence ynk(t) → y(t) a.e in t ∈ [0, T ] in L∞(Ω)

and thus, since for all t ∈ [0, T ), ρ0(·, t, s) ∈ C0(Ω), ρ0(·, t, s)ynk(t) → ρ0(·, t, s)y(t) in L2(Ω) a.e in

t ∈ [0, T ).

Moreover we deduce from (44) and the fact that (ŷnk)k∈N is a sequence in CR(s) that there exists

a constant C > 0 such that for every k ∈ N ‖ρ1(s)ynk(t)‖L∞(0,T ;L2(Ω)) 6 C. Since ρ0 6 ρ1, this

obviously implies that supk∈N ‖ρ0(s)ynk(t)‖L∞(0,T ;L2(Ω)) <∞.

We then deduce from the Lebesgue dominated convergence theorem that ‖ρ0(s)ynk‖L2(Ω) →
‖ρ0(s)y‖L2(Ω) in L2(0, T ), which gives the strong convergence ynk → y in L2(ρ0(s), QT ) as k → ∞.

Therefore Λs(CR(s)) is a relatively compact subset of CR(s) for the norm |||·|||s.

3.4 Λs : CR(s)→ CR(s) is a continuous mapping for the norm |||·|||s.
We have the following result:

Proposition 3. Under the asumption of Lemma 9, Λs : CR(s)→ CR(s) is a continuous mapping for

the norm |||·|||s.

Proof. For all n ∈ N?, let (ŷn)n∈N? be a sequence of CR(s) and ŷ0 ∈ CR(s) such that ŷn → ŷ0 for the

norm |||·|||s.
Setting yn = Λs(ŷn) for all n ∈ N, let us prove that yn → y0 for the norm |||·|||s.
First, recall that Λs(ŷn) = Λ0

s(−f(ŷn), u0), where Λ0
s is the operator given in Theorem 5, which is

continuous from L2(ρ0(s), QT )× L2(Ω) to L2(ρ(s), QT ).

Accordingly, if we manage to show that the sequence (f(ŷn))n∈N? weakly converges to f(ŷ0) in

L2(ρ0(s), QT ), the sequence (yn) would weakly converge to y0 in L2(ρ(s), QT ) as n→∞, and thus in

L2(ρ0(s), QT ) since ρ0 6 ρ. Furthermore, from the compactness of Λs(CR(s)) for the topology induced

by |||·|||s (proved in Proposition 2), this would entail the continuity of Λs on CR(s) for the topology

induced by |||·|||s.
Therefore, it is sufficient to prove that the sequence (f(ŷn))n∈N? weakly converges to f(ŷ0) in

L2(ρ0(s), QT ) as n→∞.

First, ŷn → ŷ0 in L∞(QT ) and f being continuous, it is uniformly continuous on [−R,R]. There-

fore, the sequence (f(ŷn))n∈N? converges to f(ŷ0) in L∞(QT ).

Secondly, since (f(ŷn))n∈N? is bounded in L2(ρ0(s), QT ) (recall (42) and that (ŷn)n∈N? is a sequence

of CR(s)), there exists a subsequence (f(ŷnk))k∈N? and Y ∈ L2(ρ0(s), QT ) such that (f(ŷnk))k∈N?

weakly converge to Y in L2(ρ0(s), QT ).

By uniqueness of the limit in D′(QT ), Y = f(ŷ0) and all the sequence (f(ŷn))n∈N? weakly converges

to f(ŷ0) in L2(ρ0(s), QT ). As said above, this suffices to conclude the proof of Proposition 3.

3.5 Conclusion: proof of Theorem 7.

Taking β? small enough so that Lemma 9 applies, with s and R given by Lemma 9, we can apply

Schauder fixed point theorem to Λs on CR(s). Indeed, we have:

• CR(s) is a closed convex set of the Banach space L2(ρ0(s), QT ) ∩ L∞(QT );

• CR(s) is stable by Λs by Lemma 9;
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• Λs is continuous on CR(s) for the topology induced by |||·|||s from Proposition 3;

• Λs(CR(s)) is compact for the topology induced by |||·|||s from Proposition 2.

Therefore, we deduce from the Schauder fixed-point theorem that there exists a fixed point y ∈
CR(s) of Λs. By construction of Λs, there exists vs ∈ L2(ρ0(s), qT )∩Lpd(qT ) such that y is the solution

of the null controllability problem (39) with v = vs and ŷ = y.

4 A contracting property for the fixed point operator Λs:

Proof of the second item of Theorem 4

In this section, under additional regularity assumptions on the nonlinear function f , we prove that

the operator Λs used in the previous section to prove Theorem 7 using Schauder fixed point theorem

is a contracting mapping leading to a constructive method to find its fixed point.

In this section, we assume that the nonlinear function f is locally Lipschitz-continuous and satisfies

the hypothesis (H′1) with β? as in (50).

Since (H′1) obviously implies (H2) with the same β? (recall f(0) = 0), Theorem 7 obviously applies

and we can follow the main steps of its proof. Therefore, we define Λs as in (40), CR(s) as in (41),

and we choose the parameters s and R such that Lemma 9 applies.

Our goal then is to check the following property:

Proposition 4. Assume that f satisfies (H′1) with β? defined in (50) and s and R chosen as in

Lemma 9. Then, for ŷ1, ŷ2 ∈ CR(s), we have

‖Λs(ŷ2)− Λs(ŷ1)‖L2(ρ0(s),QT ) 6
1

2
‖ŷ2 − ŷ1‖L2(ρ0(s),QT ). (51)

In particular, Λs is a contraction mapping from CR(s) into itself for the weighted norm L2(ρ0(s), QT ).

Proof. Let ŷ1, ŷ2 ∈ CR(s), and recall that for i = 1, 2, Λs(ŷi) = Λ0
s(−f(ŷi), u0). Therefore, Λs(ŷ2) −

Λs(ŷ1) = Λ0
s(f(ŷ1)− f(ŷ2), 0). According to Theorem 5, using that ρ0 6 ρ, we thus have:

‖Λs(ŷ2)− Λs(ŷ1)‖L2(ρ0(s),QT ) 6 C1s
−3/2‖f(ŷ2)− f(ŷ1)‖L2(ρ0(s),QT ).

In particular, taking ŷi ∈ CR(s) for i = 2, we can use (H′1) to deduce

‖f(ŷ2)− f(ŷ1)‖L2(ρ0(s),QT ) 6 (α+ β? ln+(R))3/2‖ŷ2 − ŷ1‖L2(ρ0(s),QT ). (52)

Now, with s and R as in Lemma 9, i.e. as in (48), we immediately derive

‖Λs(ŷ2)− Λs(ŷ1)‖L2(ρ0(s),QT ) 6 C1(4c2)3/2

(
α

ln+(R)
+ β?

)3/2

‖ŷ2 − ŷ1‖L2(ρ0(s),QT ). (53)

In view of the constraint (49)(1) satisfied by s and R in Lemma 9, we immediately deduce (51).

Remark 6. Interestingly, estimate (53) underlines that the Lipschitz constant of Λs seems to get

smaller as R → ∞ (which is allowed, recall Remark 5), that is, in view of the relation (48), when

s → ∞, and approach the constant C1(4c2β
∗)3/2 at the limit. In particular, if one considers a

semilinear function f which satisfies

lim
|r|→∞

|f ′(r)|
ln

3/2
+ |r|

= 0,

then, for any ε > 0, we can guarantee that Λs gets ε-contractive by taking s large enough. This

suggests that the speed of convergence of the sequence (yk)k∈N increases with s, a fact which we will

illustrate numerically afterwards.
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As as corollary of the previous result and the classical Banach-Picard’s fixed point theorem, the

contraction property of the operator Λs for β? small enough given in (50) and s and R given by

Lemma 9 allows to define a convergent sequence (yk, vk)k∈N to a controlled pair for (1) and prove the

following precise version of the second item of Theorem 4:

Theorem 8. Let d 6 5 and u0 ∈ L∞(Ω). Assume that f is locally Lipschitz continuous and satisfies

(H′1) with β? given in (50), and let s and R chosen as in Lemma 9. Then, for any y0 ∈ CR(s), the

sequence (yk)k∈N? ∈ CR(s) given by

yk+1 = Λs(yk), k ∈ N, (54)

where Λs is defined as in (40) (relying on Λ0
s defined in Theorem 5) together with the corresponding

sequence of controls (vk)k∈N? strongly converge in L2(ρ0(s), QT ) × L2(ρ0(s), qT ) to a controlled pair

solution for (1). Moreover, the convergence is at least linear.

Proof. The L2(ρ0(s), QT ) convergence of the sequence (yk)k∈N toward y = Λs(y) ∈ CR(s) at a linear

rate follows from the contracting property of Λs. From the definition of Λs in (40), let v ∈ L2(ρ0(s), qT )

associated with y so that y − yk solves for all k ∈ N?
∂t(y − yk)−∆(y − yk) = (v − vk)1ω − (f(y)− f(yk−1)) in QT ,

y − yk = 0 on ΣT , (y − yk)(., 0) = 0 in Ω,

(y − yk)(·, T ) = 0 in Ω.

(55)

Lemma 4 and estimate (52) then give that

‖ρ0(s) (v − vk)‖L2(qT ) 6 C1‖ρ0(s)(f(y)− f(yk−1))‖L2(QT )

6 C1(α+ β? ln+(R))3/2‖ρ0(s)(y − yk−1)‖L2(QT )

and therefore the convergence at a linear rate in L2(ρ0(s), qT ) of the sequence (vk)k∈N? toward the

null control v for system (1).

5 Numerical illustrations

We illustrate in this section our results of convergence, precisely Theorem 8 by computing a sequence

(yk, vk)k∈N? solution of 
∂tyk −∆yk = vk1ω − f(yk−1),

yk = 0 on ΣT , yk(., 0) = u0 in Ω,

yk(., T ) = 0

(56)

obtained through the solution of the variational formulation (20) with B = −f(yk−1). We first provide

some practical details of the algorithm then discuss some experiments in the one dimensional case

performed with the software Freefem++ (see [22]).

Approximations of null controls for the (linear) heat equation is a delicate issue: we mention the

seminal work [7] dealing with the control of minimal L2-norm which is very oscillatory near the final

time t = T and therefore difficult to construct (see also [24, 30] where this is discussed at length). On

the other hand, the introduction of Carleman weights in the cost functional J corresponding to the

minimization of weighted L2-norms (as in Remark 1) leads to robust method and strong convergent

approximations with respect to the discretization parameter. We refer to [15, 16]. For each k ∈ N?,
the construction of the pair (yk, vk) is based on a suitable discretization of (20). Here, we display

numerical evidences of the convergence as k →∞.
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5.1 Construction of the sequence (yk, vk)k∈N

Based on Theorem 5, for k ∈ N, the controlled trajectory yk and the corresponding control function

vk are computed as follows.

For s large enough according to Remark 5, we first find pk ∈ Ps the solution of the variational

formulation:

(pk, p)P,s = −
∫
QT

f(yk−1)p+

∫
Ω

u0p(0) ∀p ∈ Ps. (57)

Then, we simply set

yk = ρ−2(s)L?pk, vk = −s3ρ−2
0 (s)pk 1ω.

The numerical approximation of the variational formulation (57) (of second order in time and

fourth order in space) has been discussed at length in [15]. In particular, a conformal parametrized

approximation, say Ph of Ps, leads to a strong convergent approximation pk,h of pk as the discretization

parameter h goes to 0, i.e. ‖pk,h−pk‖P,s → 0 as h→ 0. From pk,h, an approximation of the controlled

state is given by (yk,h, vk,h) := (ρ−2(s)L?pk,h,−s3ρ−2
0 (s)pk,h 1ω).

As discussed in [15, 16], in order to solve (57), it is very convenient to preliminary perform the

change of variable

mk = ρ−1
0 (s)pk, zk = ρ−1(s)L?pk

so that zk = ρ−1(s)L?(ρ0(s)mk) and yk = ρ−1(s)zk and then replace the formulation (57) by the

equivalent and well-posed following mixed formulation: find (zk,mk, ηk) ∈ L2(QT )× ρ−1
0 Ps×L2(QT )

solution of

∫
QT

zkz + s3

∫
qT

mkm+

∫
QT

(T − t)1/2ηk
(
z − ρ−1(s)L?(ρ0(s)m)

)
= −

∫
QT

ρ0(s)f(ρ−1(s)zk−1)m+

∫
Ω

ρ0(s, 0)u0m(0) ∀(m, z) ∈ ρ−1(s)Ps × L2(QT ),∫
QT

(T − t)1/2η
(
zk − ρ−1(s)L?(ρ0(s)mk)

)
= 0, ∀η ∈ L2(QT ).

(58)

The variable ηk stands as a Lagrange multiplier for the constraint zk−ρ−1(s)L?(ρ0(s)mk) = 0 in QT .

We check the following equality for every m ∈ ρ−1(s)Ps

−ρ−1(s)L?(ρ0(s)m) = (g1(θ, ϕ) + g2(θ, ϕ))m+ θ−3/2(∂tm+ ∆m) + g3(θ, ϕ) · ∇m

with 
g1(θ, ϕ) := ρ−1(s)∂tρ0(s) = ∂t(θ

−3/2) + θ−3/2s(∂tϕ),

g2(θ, ϕ) := θ−3/2(s∆ϕ+ s2(∇ϕ)2),

g3(θ, ϕ) := ρ−1(s)∇ρ0(s) = θ−3/2s∇ϕ

(59)

where ϕ and θ are defined in (10) and (9). We observe that g2 is slightly singular like (T − t)−1/2 for

t > T − T1 and thus justifies the introduction of the weight function (T − t)1/2 in (58). Eventually,

with f(r) = cf (α+ β ln+ |r|)3/2r, we get

−
∫
QT

ρ0(s)f(ρ−1(s)zk−1)m = −cf
∫
QT

θ−3/2(α+ β ln+ |ρ−1(s)zk−1|)3/2zk−1m, ∀m ∈ ρ−1(s)Ps.

In the experiments, we use the equivalent formulation (58) instead of (57) as it allows, first to eliminate

the singularity of the coefficients for t close to T and second to obtain simultaneously the control and

the controlled solution.
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The sequence (yk, vk)k∈N is initialized with y−1 = 0 (so that f(y−1) ≡ 0 and the first iteration

computes the control pair (y0, v0) corresponding to the controlled trajectory of the linear heat equation

with initial datum u0 and zero source term) and is computed until the following criterion is satisfied

‖ρ0(s)(yk+1 − yk)‖L2(QT )

‖ρ0(s)yk‖L2(QT )
6 10−6. (60)

We shall denote by k? the lowest integer k for which (60) holds true.

Concerning the approximation of the formulation (58), we use a conformal space-time finite element

method (as described in [15]). We consider a regular family T = {Th;h > 0} of triangulation of QT
such that QT = ∪K∈ThK. The family T is indexed by h = maxK∈Th diam(K). The variable zk and

ηk are approximated with the space Ph = {ph ∈ C0(QT ); ph|K ∈ P1(K),∀K ∈ Th} ⊂ L2(QT ) where

P1(K) denotes the space of affine functions both in x and t. The variable mk is approximated with

the space Vh = {vh ∈ C1(QT ); vh|K ∈ P(K),∀K ∈ Th} ⊂ M where P(K) denotes the composite

Hsieh-Clough-Tocher C1 element (we refer to [9, page 356]). Figure 1 depicts a typical triangulation

Th of QT corresponding to the value h ≈ 0.0208. Contrarily to (57), theoretical convergence results

with respect to h for the approximated solution of (58) are not known. We refer to [29] for some

numerical evidences of the robustness of the method with respect to the parameter h.

x

t

Figure 1: Regular space-time mesh of QT := (0, 1)×(0, T ) composed of 1744 triangles and 933 vertices;

h ≈ 0.0208.

Eventually, it should be noted that the corresponding finite dimensional linear system associated

with (58) is independent of the iteration index k allowing a notable gain in term of computational

time. An UMFPACK type solver is used.

5.2 Experiments

We present some numerical experiments in the one dimensional setting with Ω = (0, 1). We consider

simply connected interval ω ⊂ Ω. We take T = 1/2 and consider data for which the uncontrolled

solution of (1) blows up before T . Moreover, in order to reduce the decay of the solution of (1) when

f ≡ 0, we replace the term −∆y in (1) by −ν∆y with ν = 10−1. The Carleman parameter λ is taken

equal to one while the function ψ̃ : Ω→ [0, 1] is defined by

ψ̃(x) =
x(1− x)e−(x−c)2

x?(1− x?)e−(x?−c)2
, c := x? −

1− 2x?
2x?(1− x?)

where x? is the mid-point of ω (we refer to [15, Figure 1] for a plot of ψ̃).

We consider the nonlinear even function f as follows
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f(r) = cf
(
α+ β ln(1 + |r|)

)3/2
r

with α = β = 1 and cf < 0. We easily check that f satisfies (H1), (H′1) and also (Hp) for every

p ∈ [0, 1]. In particular, f ′′ ∈ L∞(QT ). As for the initial condition to be controlled, we consider

u0(x) = cu0 sin(πx) parametrized by cu0 > 0.

We use a mesh composed of 29132 and 14807 triangles corresponding to h ≈ 1.17 × 10−2. For

ω = (0.2, 0.8), cu0
= 10 and cf = −5, Figure 2-left depicts the evolution of the relative error

‖ρ0(s)(yk+1−yk)‖L2(QT )

‖ρ0(s)yk‖L2(QT )
with respect to the parameter of iteration k for s ∈ {1, 2, 3, 4}. In agreement

with the theoretical part, the convergence is observed for s large enough, here s > 2. Moreover, the

rate increases with s: the convergence is observed after k? iterations equal to 48, 17, 13 for s = 2, 3 and

4 respectively. Figure 2-right depicts the ratio
‖ρ0(s)(Λs(yk)−Λs(yk−1))‖L2(QT )

‖ρ0(s)(yk−yk−1)‖L2(QT )
(appearing in Proposition

4) highlighting the lack of contracting property of Λs for s = 1. Figure 3 depicts the evolution of the

L2(Ω) norm of the control and corresponding controlled solution with respect to the time variable for

s = 2, 3, 4. As expected in view of the definition of the weights, large values of s concentrate the action

of the control close to the initial time and leads to large L∞(QT ) norm of the control (see Table 1).

Figure 4 and Figure 5 depict the control and corresponding controlled solution in QT for these values

of s. We also observed that the initialization (y0, v0) = (ρ−1(s)u0, 0) (valid since u0 ∈ H2(Ω)) leads

to the same limit of the algorithm.
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Figure 2: Relative error
‖ρ0(s)(yk+1−yk)‖L2(QT )

‖ρ0(s)yk‖L2(QT )
(Left) and

‖ρ0(s)(yk+1−yk)‖L2(QT )

‖ρ0(s)(yk−yk−1)‖L2(QT )
(Right) w.r.t. k for

s ∈ {0, 1, 2, 3}.

s ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

2 2.43 80.50 58.24 208.52 297.56 48

3 1.415 86.53 51.30 463.69 414.93 17

4 1.108 173.17 52.83 1366.08 605.20 13

5 0.9307 429.07 57.04 4328.61 889.05 11

Table 1: cu0
= 10 ; cf = −5; Norms of (yk? , vk?) w.r.t. s.

Table 2 provides some norms of the solution for s = 3 with respect to the fineness h of the triangular

mesh used and highlights the stability of the approximation. Actually, the high degree (equal to 3)

of the approximation induced by the composite finite element HCT makes the convergence of the

approximation quite fast with respect to h. We also observe that the number of iterations to reach

the convergence of the sequence (yk)k>0 is independent of h.
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Figure 3: Evolution of ‖vk?(·, t)‖L2(Ω) and ‖yk?(·, t)‖L2(Ω) w.r.t. t ∈ [0, T ] for cu0 = 10, cf = −5 and

s ∈ {1, 2, 3}.

Figure 4: The control vk? in QT for cu0 = 10, cf = −5 and s ∈ {1, 2, 3}.
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Figure 5: The controlled solution yk? in QT for cu0
= 10, cf = −5 and s ∈ {1, 2, 3}.
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h ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

0.156205 1.47841 90.9285 51.4646 469.008 420.345 18

0.0760345 1.46148 87.9869 51.2379 465.822 419.42 17

0.044171 1.45521 87.0578 51.0243 464.527 416.886 17

0.0208981 1.45056 86.2678 51.0448 463.253 414.223 17

0.0117201 1.45203 86.5628 51.1068 463.723 415.114 17

Table 2: cu0
= 10 ; cf = −5 ; s = 3; Norms of (yk? , vk?) w.r.t. h.

For larger data, the algorithm still converges if the parameter s is chosen sufficiently large. Table

3 provides for s = 2 and cu0
= 20 some norms associated with the convergent sequence (yk, fk)k∈N

with respect to the amplitude cf of the nonlinear function. The real C1(y, v) is defined by

C1(y, v) :=
‖ρ(s) y‖L2(QT ) + s−3/2‖ρ0(s) v‖L2(qT )

s−3/2‖ρ0(s)f(y)‖L2(QT ) + s−1ec2s‖u0‖L2(Ω)

, (61)

and is plotted in Table 3. The ratio C1(y, v) notably appears in the estimate (25) with B = −f(y).

The divergence of the sequence is observed for cf 6 −7 suggesting that, for s = 3, the quantity

C1(yk? , vk?) is not uniformly bounded with respect to |cf |. This does not contradict Theorem 8

where an upper bound is assumed on β. On the contrary, Table 4 and 5 suggest that the quantity

C1(yk? , vk?) associated with (cf , s) = (−2, 2) and (cf , s) = (−2, 3) is uniformly bounded with respect

to the parameter cu0
: this is in agreement with the uniform controllability of system (1) with respect

to the initial data stated in Theorem 7.

cf ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) C1(yk? , vk?) k?

6 1.5676 39.0933 18.4173 144.851 188.71 9.71× 10−5 18

5 1.63982 41.5574 21.5396 170.772 212.189 1.04× 10−4 15

4 1.71818 44.4218 25.3636 202.888 240.201 1.13× 10−4 13

3 1.80253 47.8002 30.0497 242.771 273.779 1.24× 10−4 11

2 1.89243 51.8744 35.7756 292.257 314.074 1.37× 10−4 9

1 1.98736 56.9667 42.7222 353.371 362.474 1.52× 10−4 6

0 2.08767 63.7034 51.053 428.191 420.662 1.73× 10−4 1

−1 2.19716 73.375 60.8936 518.678 491.01 2.01× 10−4 7

−2 2.32931 88.719 72.3206 626.54 576.832 2.42× 10−4 9

−3 2.52065 115.606 85.3784 753.626 682.763 3.09× 10−4 12

−4 2.85296 166.848 100.33 907.951 815.128 4.30× 10−4 16

−5 3.47542 272.771 119.009 1140.26 982.953 6.70× 10−4 25

−6 4.64025 523.143 148.453 1674.92 1198.33 1.22× 10−3 61

Table 3: cu0 = 20 ; s = 3; Norms of (yk? , vk?) w.r.t. cf .

Table 6 collects some norms of (yk? , vk?) w.r.t. s for the smaller support of control ω = (0.2, 0.6),

cu0
= 10 and cf = −2 A smaller support yields to a larger constant C1 = C1(Ω, ω, T ) in (21) and

larger norms for the control and corresponding controlled solution. For instance, for s = 3, we obtain

‖vk?‖L∞(qT ) ≈ 1301.97 with ω = (0.2, 0.6) and ‖vk?‖L∞(qT ) ≈ 271.86 with ω = (0.2, 0.8) (see the first

line of Table 5). Accordingly, the number k? of iterations to reach convergence increases when the

size of ω is reduced.

We now consider the nonlinear function, for any η ∈ (0, 1) and α > 0

f(r) = cfr| cos(r−3/2+η)|
(
α+ ln(1 + |r|)

)3/2
, cf < 0. (62)
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cu0
‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) C1(yk? , vk?) k?

10 1.54301 19.4769 30.6487 91.8124 170.047 0.0573655 11

100 17.4912 334.631 422.723 1323.21 2255.98 0.0857455 18

500 107.77 3234.76 2631.81 9152.24 13811.4 0.130185 29

1000 246.968 9077.9 5870.83 22622.8 30051.5 0.159445 38

1500 405.983 16828 9489.64 39571.9 47314.5 0.180076 48

2000 580.37 26235.4 13430 59621.2 65262.9 0.196388 55

3000 965.936 49498.3 22141.2 108020 102663 0.221715 77

4000 1391.49 78171.6 31830.1 166352 141531 0.241246 106

5000 1850.25 111855 42375.6 233684 181553 0.257167 141

Table 4: cf = −2 ; s = 2; Norms of (yk? , vk?) w.r.t. cu0
.

cu0
‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) C1(yk? , vk?) k?

10 1.14031 41.0689 34.0273 292.739 271.86 2.25× 10−4 8

100 12.4721 576.084 420.613 3722.92 3381.68 3.07× 10−4 12

500 69.8357 4170.43 2443.36 22324.9 20055.3 4.28× 10−4 15

1000 149.215 10045.6 5213.5 48679.6 43195 5.05× 10−4 17

2000 322.25 24509.6 11144.3 107260 93000.8 6.05× 10−4 20

3000 507.998 41520.3 17405 171395 145648 6.77× 10−4 22

4000 703.063 60489.4 23901.8 239863 200195 7.34× 10−4 23

5000 905.632 81095 30586.9 311987 256227 7.83× 10−4 24

6000 1114.55 103128 37430.5 387325 313419 8.26× 10−4 25

7000 1329.02 126440 44412 465555 371629 8.65× 10−4 26

8000 1548.43 150917 51516.2 546433 430756 9.01× 10−4 28

9000 1772.31 176471 58731.6 629764 490642 9.34× 10−4 28

10000 2000.29 203029 66048.7 715388 551209 9.65× 10−4 30

20000 4455.89 513872 143566 1.67× 106 1.18× 106 1.20× 10−3 39

Table 5: cf = −2 ; s = 3; Norms of (yk? , vk?) w.r.t. cu0 .

s ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

1 5.00473 55.4739 117.728 144.256 1301.97 20

2 3.34631 94.7894 90.8444 358.58 1483.52 14

3 2.91028 237.695 109.246 1060 2948.23 12

4 2.87397 651.291 146.28 3690 5576.49 11

Table 6: cu0 = 10 ; cf = −2; Norms of (yk? , vk?) w.r.t. s; ω = (0.2, 0.6)

With α = 0, the function f satisfies (H1), (H′1) but only (Hp) for p ∈ (0, η). f ′(r) behaves likes

ln(1 + |r|)3/2 at infinity while in the neighborhood of zero, f ′ is bounded but highly oscillates. For

cf = −5, cu0 = 10 and η = 1/10, Table 7 provides some norms of (yk? , vk?) w.r.t. the parameter

s leading to similar results than in the previous case. On the other hand, with α > 0, the function

f still satisfies (H1) but not (H′1) nor (Hp). In particular, f ′ takes arbitrarily large values in the

neighborhood of zero. The values cf = −5, cu0
= 10 do not lead to the convergence of the algorithm

including for large values of s. In order to enhance oscillations for large values, we now consider the

function

f(r) = cfr| cos(r2)| ln3/2(1 + |r|), cf < 0 (63)

which still satisfies (H1) but not (H′1) nor (Hp). For small values of |cf |, the method still produces

convergent sequences: Table 8 reports some values for cf = −1; observe that the number k? increases
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s ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

1 3.47589 35.7363 62.9227 67.9855 243.604 119

2 1.72679 25.1665 39.8201 120.101 214.439 20

3 1.22787 47.0941 39.477 339.374 308.99 12

4 0.981409 112.296 43.1533 1073.88 460.349 10

Table 7: cu0
= 10 ; cf = −5; Norms of (yk? , vk?) w.r.t. s; f given by (62) with α = 0.

from the case s = 1 and the case s = 2. For cf = −2, we observe the convergence only for s > 6.

s ‖yk?‖L2(QT ) ‖ρ(s)yk?‖L2(QT ) ‖vk?‖L2(qT ) ‖ρ0(s)vk?‖L2(qT ) ‖vk?‖L∞(qT ) k?

1 2.16033 7.85245 15.7601 14.5863 47.9055 25

2 1.39592 14.5911 20.81 60.618 125.071 55

3 1.06386 33.145 27.0012 227.116 220.722 11

4 0.878876 85.2781 33.3402 815.691 354.915 9

Table 8: cu0
= 10 ; cf = −1; Norms of (yk? , vk?) w.r.t. s; f given by (63).

6 Concluding remarks

By introducing a different fixed point application than in the seminal paper of Fernández-Cara and

Zuazua, we have derived under the same assumptions a simpler proof of the exact controllability

for semilinear heat equations. The fixed point application involves a linearized heat equation with a

right hand side but no potential. Within the Carleman functional setting introduced by Fursikov and

Imanuvilov, precise estimates of the cost of observability with respect to the right hand side term allow

to apply the Schauder fixed point theorem as soon as the Carleman parameter s is large enough. This

is to our knowledge the first time that the analysis of the controllability is not based on the analysis

of the cost of observability of the heat equation with potential. Moreover, assuming an additional

asymptotic condition on the derivative of the nonlinear function, the fixed point application turns out

to be contracting yielding to a constructive sequence of linear controls converging strongly and with

a linear rate toward a control for the semilinear equation.

Numerical experiments illustrate this property and also that the contraction property is ampli-

fied as the Carleman parameter s increases. This construction is original in the multi-dimensional

setting: it extends and simplify the one proposed in [28] based on a Newton type linearization and

requiring as well the parameter s to be large enough to ensure a super-linear convergence. The nu-

merical implementation is also much simpler. We also conjecture that the linearization introduced

by Fernández-Cara and Zuazua also leads, for s large enough, to a contracting application but this

remains to be done.

We emphasize that the method is mainly based on global Carleman estimates, which are by now

well-known and employed. Therefore, the approach can very likely be extended to many others PDEs

such as the wave equation, the burgers equation (addressed from a numerical perspective in [21, Part

1, Section 4]), the Navier-Stokes system (addressed in [17, section 4]), etc, for which such estimates

are available, and may lead to constructive algorithms in semi-linear cases for these systems too.
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