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Abstract. The Internet of Things (IoT) is a broad concept comprising a wide
ecosystem of interconnected services and devices connected to the Internet. The
IoT concept holds fabulous promises, but security aspects tend to be significant
barriers for the adoption of large-scale IoT deployments. This paper proposes an
approach to assist companies or organisations in the security audit of IoT sys-
tems. This approach called Model Learning and Checking Approach (MLCA)
combines model learning for automatically extracting models from event logs,
and model checking for verifying whether security properties, given under the
form of generic LTL formulas hold on models. The originality of MLCA lies
in the fact that auditors do not have to craft models or to be expert LTL users.
The LTL formula instantiation, which makes security properties concrete, is in-
deed semi-automatically performed by means of an expert system composed of
inference rules. The latter encode some expert knowledge, which can be applied
again to the same kind of systems with less efforts. We evaluated MLCA on 5
IoT systems with security measures provided by the European ENISA institute.
We show that MLCA is very effective in detecting security issues and provides
results within reasonable time.

Keywords: Model Learning · Model Checking · Expert System · IoT software
systems.

1 Introduction

Using the Internet of Things (IoT) to stimulate transformational efficiencies in several
application domains among which manufacturing, automotive, health and smart cities,
is an idea that holds fabulous promises. Indeed, exploiting smart and connected devices
to produce real-time data and to quicker take decisions provides new ways to make
businesses more efficient, and to forge links between the digital world and the real. On
the other hand, after the myriad of cyberattacks on IoT systems revealed during the few
past years, experts have warned that IoT could harm people if IoT is left unsecured.
As many technological concepts are involved under the IoT umbrella, it is indeed not
surprising to observe that IoT systems are vulnerable to a wide range of security attacks.
And it is likely that this security problem will grow more complex in the future, as long
as new technologies and platforms will be proposed.

Many companies or organisations have started to be aware about the importance of
including cyber-security in their IoT solutions. Many of them assess the risks of their
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IoT-based services and platforms by means of security audits. There are many ways to
carry out an audit depending on the scope and objectives of the audit itself and on the
resources allocated by the company. But an audit process usually follows many manual
steps such as Define the audit objective, Collect software usage data, or Test the sys-
tems and applications methodically. Most of these activities are time-consuming and
sometimes challenging. Fortunately, some templates or documents can be used to guide
auditors in these steps. For instance, the National Institute of Standards and Technol-
ogy (NIST) has proposed a framework made up of several stages, which can define
the audit plan [26]. The European Telecommunications Standards Institute (ETSI) has
proposed a general method and activities dedicated to undertake testing and risk as-
sessment activities for large scale, networked systems [12]. Others documents related
to security measures, good practices, and threats taxonomy e.g., the reports provided
by the ENISA, Cloud Security Alliance, or OWASP organisations [11, 9, 27] are pro-
posed to help derive objectives. The standard ISO/IEC 27030 [17], due to be published
in 2022, will provide guidelines for security and privacy in IoT systems. Finally, testing
guides, e.g., [27, 19], along with testing tools e.g., [8, 25] may be used to conduct the
review.

Despite the strong benefits brought by these approaches, the efforts required for
understanding how an IoT system under audit (SUA) is structured and behaves or for
generating security tests is yet tremendous. These observations motivated us to present
in [29] an approach called MLCA combining model learning and model checking to
assist auditors in the understanding of SUA by means of models, and in the verification
of security properties on these models:

– Model learning: our approach starts by recovering formal models from an event
log. We use the Labelled Transition System (LTS) to express the behaviours of
every component (devices, servers, etc.) of SUA. These models can be used as
documentation or to comprehend the functioning of the components and their in-
teractions;

– Property instantiation and model checking: our approach also takes as inputs generic
security properties, which can be used independently of SUA. Usually, such prop-
erties have to be adapted for every model so that they share the same alphabet. This
activity is known to be difficult and time consuming. To make it easier, MLCA
helps auditors make them concrete by means of an expert system composed of
rules, which encode some expert knwoledge about IoT systems. Then, our approach
checks whether the LTSs satisfy the security properties, and returns counterexam-
ples when issues are detected. The counterexamples may be used to interpret the
results and provide countermeasures.

Contributions: this paper presents an extension of the MLCA algorithms given in
[29], which mainly aims at improving both effectiveness and performance. We indeed
showed that MLCA requires a manual inspection of the generated models to detect in-
consistencies. We propose to enhance MLCA with a new step for assisting auditors in
this model inspection. Besides, we provide a new security property instantiation algo-
rithm, which generates less concrete properties. Consequently, this algorithm allows to
significantly save time during the model checking step. Furthermore, this paper pro-
vides more details about the generation of concrete security properties. This paper also
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provides an empirical evaluation, which investigates the sensitivity (ratio of true pos-
itives) and specificity (ratio of true negatives) of MLCA and its performance in terms
of execution times. We also compare the MLCA of [29] with this new version. This
empirical evaluation was carried out on event logs collected from 5 IoT systems. This
evaluation shows that our approach allows the detection of security issues with few false
positives or negatives within reasonable time delays.
Paper organisation: the paper is organised as follows: Section 2 discusses related work
and presents our motivations. Section 3 offers an overview of the functioning of MLCA
with a real example of IoT system. The MLCA’s algorithms are detailed in Section
4. We recall some basic definitions and describe the five steps of the approach. The
next section examines experimental results and discusses about the threats to validity.
Section 6 summarises our contributions and draws some perspectives for future work.

2 Related Work

2.1 IoT Audit

A plethora of surveys or papers have exposed the opportunities, challenges, require-
ments, threats or vulnerabilities involved in the IoT security. Among them, several ap-
proaches have been proposed to audit IoT systems. The security audit of IoT devices is
carried out with check lists or threat models in [25, 19]. These lists or models have been
devised or extended from the recommendations published by the OWASP organisation
[27]. Other works focused on the IoT device audit by decrypting the traffic sent via
TLS [33] so that the TLS traffic can be verified without compromising future traffic.
This king of technique could be used prior to MLCA to obtain readable event logs.

Many approaches also rely on models to analyse the security of IoT systems, be-
cause models offer the advantage of expressing systems without ambiguity. In [14],
security models are devised with data collected from an IoT system. A manual security
analysis is then performed to find potential attack scenarios, evaluate security metrics
and assess the effectiveness of different defence strategies.

Other works introduced specialised model-based testing (MbT) methods. Some of
them are said to be active, i.e. security test cases are built by hands or automatically
generated from a given (formal) specification, and are later used to experiment IoT
systems [15, 1, 22, 23]. These active testing techniques could complement MLCA to
get larger event logs. Other methods are said to be passive because they are based upon
monitoring tools, which detect the violation of security properties by checking rule
satisfiability in the long run [32, 6, 20].

Several papers addressed the detection of security issues in IoT systems by means
of model checking. The tool IoTSAT [24] is a SMT based framework, which anal-
yses the IoT system security. IoTSAT models the device-level interactions as in our
approach, but also policy-level behaviours and network-level dependencies. SOTERIA
[5] is another model checking tool for IoT software. State-models are extracted from
source code, then SOTERIA checks whether concrete security properties hold on these
models.

In comparison to our approach, the works [14, 23] go further in the risk assessment
by proposing the evaluation of metrics. IoTSAT also goes further in the modelling of the



4 S. Salva et al.

IoT system environment. But all of these approaches require models or formal proper-
ties, which have to be manually devised. SOTERIA offers the advantage of recovering
state-models on condition that the source code of every component is available. But,
the concrete security properties have to be written by hands. In contrast, MLCA gener-
ates behavioural models and dependency graphs from event logs. Besides, our approach
semi-automatically instantiates generic properties with an expert system. These generic
properties can be reused with several IoT systems. We provide a list of generic proper-
ties derived from the security measures proposed by the ENISA institute.

2.2 Model learning

MLCA uses a passive model learning algorithm to recover formal models from event
logs. Some papers also presented model learning approaches specialised to communi-
cating systems in the literature [21, 3, 30]. Mariani et al. proposed in [21] an automatic
detection of failures in log files by means of model learning. The approach segments
an event log with two strategies: per component or per user. The former can be used
with communicating systems to generates one model for each component. CSight [3]
is another tool specialised in the model learning of communicating systems. The main
contribution proposed by CSight lies in the mining of invariants in logs to improve the
model precision. Unfortunately, invariant mining limits the application of this algorithm
to small trace sets only.

We recently proposed the model learning approach CkTail in [30] and presented a
comparison of CkTail with the previous passive techniques. In summary, we showed
that CkTail builds more precise models by means of its trace segmentation algorithm,
which tries to recover user sessions. Besides, compared to CSight, CkTail requires less
constraints. Furthermore, CkTail is the only approach that detects component depen-
dencies and expresses them with dependency graphs. The latter are used in MLCA to
instantiate security properties.

3 MLCA Overview

Fig. 1. Integration of MLCA with some audit stages (in grey) [29]

MLCA aims at assisting auditors to verify whether security properties hold on IoT
systems with the automatic generation of behavioural models from event logs and with
the generation of concrete security properties. Our approach can complement several
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existing security audit processes, e.g., the NIST or ETSI security audit frameworks.
Figure 1 illustrates its integration. Most of the security audit processes include a step
allowing auditors to understand the system context. We call it “Establish the context”
in the figure. This step is often manually done by interpreting diverse documents, event
logs, or by using scanning tools. With MLCA, a model learning algorithm is used in-
stead to recover one behavioural model for every component of the IoT system from
event logs. These models make the system understanding easier. They can also be given
to MbT approaches for assessing the IoT system security with tests. While testing, more
logs may be collected and hence new models can be re-generated to capture more be-
haviours.

In the meantime, these formal models can be analysed in an exhaustive manner
to detect further security issues. This analysis is usually automatically performed by
means of security properties modelled with formulas, which are evaluated with a model-
checker. These formulas may express different security aspects, e.g., vulnerabilities. We
focus in this paper on formulas expressing security measures used to protect an IoT sys-
tem against threats. Several papers, e.g., [34, 18, 27] propose lists of recommendations
dedicated to IoT systems, which can be used as security measures. We chose to consider
the works proposed by the ENISA organisation as they gather the security measures
suggested in several papers and works of other organisations.

3.1 The ENISA Security Measures

The ENISA organisation issued several documents exposing guidelines and security
measures to implement secure IoT software systems with regard to different contexts
(smart plants, hospitals, clouds, etc.). These measures correspond to high-level rec-
ommendations for developers, operators and security experts, which help improve the
security level of IoT devices and communications among them.

The security measures provided by ENISA come from several other documents
written by different organisations or institutes, e.g., ISO, IETF, NIST or Microsoft.
We have chosen to focus on the paper related to security baselines in the context of
critical information infrastructures [11]. This document gathers 57 security technical
measures that should be active in an IoT system. As the models generated by our ap-
proach mostly express exchanges among components, we formulated the 12 security
measures related to communications, which cover the following domains: Authentica-
tion, Privacy, Secure and Trusted Communications, Access Control, Secure Interfaces
and Network Services, Secure Input and Output Handling, Trust and Integrity Man-
agement. These security measures are given in Table 1 (left side). We have formulated
them with LTL formulas composed of predicates. Following the terminology used in
[2], we call these formulas property types. The definitions and explanations of the LTL
operators are given in Section 4. These property types are formulated by means of the
predicates given in Table 2.

3.2 MLCA Requirements

The capability of MLCA in auditing IoT systems depends on several realistic assump-
tions made on a system under audit denoted SUA:
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GP-TM-18: the device software/firmware has the
ability to update Over-The-Air (OTA), the update
server is secure, the update file is transmitted via a
secure connection, it does not contain sensitive data
and is encrypted

FgetU pdate( f ) ∧ (G(getU pdate( f ) → (encrypted( f ) ∧
¬sensitive( f )))) ∧ G((begin ∧ Fend) → (¬(getU pdate( f ) ∧
f rom(c))U(authenticated(c)∨ end)))

GP-TM-19: offer an automatic firmware update
mechanism

FsearchU pdate ∧ (FsearchU pdate → ¬(FsearchU pdate →
(¬searchU pdateU(input ∧ cmdSearchU pdate∧¬searchU pdate))))

GP-TM-22: ensure that weak, null or blank pass-
words are not allowed

G((Request ∧ f rom(c1) ∧ to(c2) ∧Weakpass(x)) → ((¬(Response ∧
to(c1) ∧ f rom(c2)))U((Response ∧ to(c1) ∧ f rom(c2)) ∧
(errorResponse∨ (¬validResponse∧Response)))))

GP-TM-24: credentials are encrypted during au-
thentication

G((loginAttempt(c)∧ credential(x))→ encrypted(x))

GP-TM-25: protect against abusive login attempts G((begin ∧ Fend) → (¬(G((begin ∧ F(end ∨ authenticated(c)) →
P(5,c))) → (¬end U lockout(c)))Uend) with P(n,c) =
((¬(loginFail(c)) ∧ ¬(end ∨ authenticated(c)))U(end ∨
authenticated(c) ∨ ((loginFail(c) ∧ ¬(end ∨
authenticated(c)))U(end ∨ authenticated(c) ∨ P(n − 1,c))))) for
n > 0, and P(0,c) = (¬(loginFail(c))U(end∨authenticated(c)))

GP-TM-26: password recovery system does not
supply an attacker with information indicating a
valid account

G(passwordRecovery→¬blackListedWord(x))

GP-TM-34,38: ensure a proper and effective use of
cryptography

G(sensitive(x)→ encrypted(x))

GP-TM-42: do not trust data received and always
verify any interconnections

G((¬(validResponse∧to(c)∧¬loginAttempt(c))U(authenticated(c)))
∧(¬(Request ∧ to(c)∧¬loginAttempt(c))U(authenticated(c))))

GP-TM-48: if a single device is compromised, it
does not affect the whole set

¬G( f rom(d)∧Unavailable)→¬(¬out put U(out put ∧Unavailable)

GP-TM-52(1): ensure a device is not susceptible to
XSS

G((Request∧ f rom(c1)∧to(c2)∧XSS(x))→¬(¬(Response∧to(c1)∧
f rom(c2))U(Response ∧ to(c1) ∧ f rom(c2)) ∧ (errorResponse ∨
(¬validResponse∧Response))))

GP-TM-52(2): ensure a device is not susceptible to
SQL injection

G((Request ∧ f rom(c1) ∧ to(c2) ∧ SQLin jection(x)) →
¬(¬(Response ∧ to(c1) ∧ f rom(c2))U(Response ∧ to(c1) ∧
f rom(c2))∧ (errorResponse∨ (¬validResponse∧Response))))

GP-TM-53: avoid security issues when designing
error messages

G((errorResponse∨¬validResponse)→¬blackListedWord(x))

Table 1. Some ENISA security measures and LTL formulas expressing them

– A1 Event Log: we consider the components of SUA as black-boxes. We assume
that each device, server, or gateway is physically secured and that we only have
access to the network or user interfaces through the network. Event logs include
timestamps given by a global clock. We consider having one event log;

– A2 Message content: components produce events that include parameter assign-
ments allowing to identify the source and the destination. Other parameter assign-
ments may be used to encode data. Besides, an event is either identified as a request
or a response. Many protocols, e.g. HTTP, allow to easily distinguish both of them;

– A3 Device collaboration: to learn precise models, we want to recognise sessions
of the system in event logs. We consider two exclusive cases:
• A31: the components of SUA cannot run multiple instances; requests are pro-

cessed by a component on a first-come, first served basis. Besides, the compo-
nents follow the request–response exchange pattern (a response is associated
with one request, a request is associated with responses), or

• A32: the events that belong to the same session are identified by a unique
parameter assignment.

The session recognition mentioned in A3 helps extract execution traces expressing
complete behaviours of SUA, i.e. disjoint action sequences starting from one of its
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Predicate Short Description
Begin beginning of a new session
End end of a session
From(c) event coming from c
To(c) event sent to c
Request event is a request
Response event is a response
Input event is an input
Out put event is an output
GetUpdate(x) response including an update file
CmdSearch-Update the component received the order to search for an update
Sensitive(x) data x is sensitive
Credential(x) data x is acredential
Encrypted(x) data x is encrypted
SearchU pdate component requests for an update
LoginAttempt(c) authentication attempt with c
Authenticated(c) successful authentication with c
LoginFail(c) failed authentication with c
Lockout(c) c is locked due to repetitive authentication failures
PasswordRecovery component uses a password recovery mechanism
BlackListedWord(x) message x includes black listed words
ValidResponse correct response with correct status
ErrorResponse response containing an error message
Unavailable component that received the request is unavailable
XSS(x) data x includes an XSS attack
SQLin jection(x) data x includes an SQL injection attack
Weakpass(x) password x is weak or blanck

Table 2. Predicates defined from 12 ENISA measures related to communications

initial states and ending in one of its final states. A32 expresses that messages include
an identifier allowing to observe whole collaborations among components. Usually, the
session identification strongly facilitates the trace extraction. Unfortunately, we have
observed that this technique is seldom adopted with IoT systems. Hence, when there is
no session identifier, we restrict the functioning of SUA with A31. We have observed
that this assumption can be applied with many wireless or IoT systems.

3.3 A Motivating Example

Fig. 2. The MLCA’s steps

We now present our Model-Learning-Checking approach MLCA, which aims at
helping audit the security of SUA. It takes as inputs an event log, regular expressions
allowing to format the event log, and generic security properties given under the form
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of property types. These property types have a pattern-level form, and have to be in-
stantiated to make them concrete before being evaluated.

Jun 08, 2019 14:16:21.521 CET;from:=c4;to:=c1 Req?cmd:=auth
Jun 08, 2019 14:16:21.758 CET;from:=c1;to:=c2 Req?login:=toto&password:=1234
Jun 08, 2019 14:16:22.136 CET;from:=c2;to:=c1 Resp response:=OK
Jun 08, 2019 14:16:22.385 CET;from:=c1;to:=c4 Resp response:=OK
Jun 08, 2019 14:16:23.287 CET;from:=c1;to:=c2 Req?presence:=1&switch:=On

Example of regular expression:
ˆ(?<date>\w{3} \d{2}, \d{4} \d{2}:\d{2}:\d{2}.\d{3})\s(?<param1>[ˆ;]+);
(?<param2>[\s]+)\s(?<label>[ˆ?]+)?(?<param3>[ˆ&]+)$

Fig. 3. Example of 5 HTTP messages collected from an IoT system. The regular expression re-
trieves a label and 3 parameters here. The label expression will be the label of the action in the
action sequence S

Req(from:=c4,to:=c1,cmd:=auth)
Req(from:=c1,to:=c2,login:=toto,password:=1234)
Resp(from:=c2,to:=c1,response:=OK)
Resp(from:=c1,to:=c4,response:=OK)
Req(from:=c1,to:=c2,presence:=1,switch:=On)
Req(from:=c4,to:=c1,cmd:=Light3min)
Resp(from:=c2,to:=c1,response:=OK)
Req(from:=c1,to:=c3,switch:=On)
Resp(from:=c3,to:=c1,response:=OK)
Req(from:=c2,to:=c3,switch:=On)
Resp(from:=c1,to:=c4,response:=OK)
Resp(from:=c3,to:=c2,response:=OK)
Req(from:=c1,to:=c3,switch:=Off)
Resp(from:=c3,to:=c1,response:=OK)

Fig. 4. Action sequence S

Figure 2 illustrates the 5 successive steps of MLCA. It starts by learning models
from the event log. In short, the event log is firstly formatted by means of the regular
expressions into a sequence of actions of the form a(α) with a a label and α some
parameter assignments. In reference to A1, A2, an action a(α) indicates the sources
and destinations of the messages with two parameters f rom and to. The other parameter
assignments capture data, e.g., acknowledgements or sensor data. Figure 3 illustrates a
simple example of event log along with a regular expression allowing to format the
events into actions. This expression retrieves a label (Req or Resp) and parameters in
the messages (from, to and the remaining data, e.g., cmd:=auth). Figure 4 shows an
example of action sequence where the first five actions are derived from the events of
Figure 3.

Then, we call the model learning algorithm CkTail to build one LTS L(c1) for ev-
ery component c1 of SUA detected in the action sequence. L(c1) shows the behaviours
of c1 in terms of messages exchanged with the other components. Besides, CkTail gen-
erates one dependency graph Dg(c1) expressing how c1 interacts with the other compo-
nents of SUA. The detailed functioning of our model learning algorithm is given in [30],
but the auditor does not need to be aware of the details. Figures 5 and 6 illustrate the
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LTSs and dependency graphs obtained from our action sequence example. From these
models, it becomes easier to understand that the system consists of four components:
c4 is an application sending commands (from users), c1 and c2 are gateways and c3 is
an actuator (a smart light bulb). We can deduce from L(c1) and L(c2) that the first
gateway authenticates to the second one after the receipt of commands from c4. Then,
c1 sends to c2 the state of a motion sensor, which seems to be integrated to the gateway
c1. According to the motion sensor state, c2 finally sends the command ”switch:=on”
to the smart light bulb c3.

Fig. 5. LTSs generated from the action sequence of Figure 4

Fig. 6. Dependency graphs generated from the action sequence of Figure 4

With these models, it becomes easier to interpret the behaviours of SUA. Further-
more, as we now have formal models, different kinds of activities may be automatically
or semi-automatically conducted to discover defects. In particular, the remaining steps
of MLCA aims at checking whether property types hold on those LTSs. But, the LTSs
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and property types do not yet share the same alphabet, as the property types are generic.
The auditor should re-formulate them for every LTS with the actions labelled on tran-
sitions. Instead, our approach automatically instantiates property types with the three
next steps. More, precisely, given an LTS L(c1), the step “LTS Completion” automat-
ically extends the LTS semantics; it analyses the LTS paths and injects new labels on
transitions. These labels correspond to some predicates of the property types whose
variables are assigned to concrete values. The step automates the label injection by us-
ing an expert system made up of inference rules, which encode some expert knowledge
about SUA. The step produces a new LTS L′(c1). If we take back our example, this
step completes the LTS L(c2) of Figure 5 and gives the new LTS L′(c2) illustrated in
Figure 7. The transitions of L′(c2) are still labelled by the actions of the original LTS,
but several new labels appeared. For instance, the expert system has detected a login
attempt to c1 with the credentials {login := toto, password := 1234}, which are also
recognised as sensitive data.

The step “LTS Verification” helps auditors check the correctness of the previous
step. Indeed, the expert system used to enrich the LTS transitions may suffer from the
classical data acquisition problem. In other words, it may have inaccurate rules or miss-
ing ones. To help auditors check the LTS completion correctness, this step returns the
list of predicates that have not been added on LTS transitions. Besides, it check the sat-
isfiability of invariants on LTSs. These invariants allow the detection of some incorrect
LTS transition completions (e.g., a transition whose action is neither a request nor a re-
sponse) or missing labels (e.g., every transition must carry either an input or an output).
These transitions are also retuned to auditors.

Fig. 7. Example of LTS completion. New propositions (Begin, End, Credential, Sensitive,
ValidResponse, etc.) are injected on transitions

The next step “Property type instantiation” covers every new LTS and automatically
instantiates the property types. This step returns a set of LTL formulas P(L′(c1)) ex-
clusively written with atomic propositions. We call them property instances. These cor-
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respond to concrete security properties. Let ’s illustrate this step with the LTS L′(c2) of
Figure 7 and the property type G((loginAttempt(c)∧ credential(x))→ encrypted(x))
derived from the ENISA measure GP-TM-24. By covering the labels of L′(c2), we ob-
tain Dom(c) = {c1} and Dom(x) = {login := toto, password := 1234}. Two property
instances are then derived.

Fig. 8. Example of results obtained with the verification of five ENISA measures on the LTS
L(c2). The counterexamples shows the LTS paths that do not satisfy the property instances.

The final step is more classic as it calls a model-checker to verify whether an LTS
L′(c1) satisfies the LTL formula of P(L′(c1)). The model-checker either returns true
if a property instance holds or a counterexample path that violates it. This counterex-
ample is particularly useful to understand why a component c1 does not meet a security
property and should help localise a problem in the LTS L′(c1). Figure 8 shows a exam-
ple of results returned by the model-checker NuSMV [7] after having evaluated if the
LTS L′(c2) satisfies some property instances derived from five security measures. A
property instance related to GP-TM-24 does not hold because both the login and pass-
word are not encrypted. The interpretation of the counterexample helps deduce that the
credentials are not encrypted (Encrypted(login:=toto), Encrypted(password:=1234) not
found). Such counterexamples may be used to develop an audit report, which should
include recommendations or treatments to security issues.

After this overview of MLCA, we now develop its theoretical background along
with its algorithms in the next section. It is worth noting that a user does not need
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to be aware of these details. He/she only needs to have an event log, a list of regular
expressions and our list of property types.

4 The Model Learning Checking Approach

This section details the MLCA’s steps 2 to 5. More details of the model learning step
are available in [30, 29]. Before describing these steps, we provide some definitions and
notations to be used throughout the remainder of the paper.

4.1 Preliminary definitions

As in many works dealing with the modelling of atomic components, e.g., [13, 4], we
express the behaviours of components with the well established Labelled Transition
System (LTS) model. An LTS is defined in terms of states and transitions labelled by
actions, themselves taken from a general action set L.

Definition 1 (LTS). A Labelled Transition System (LTS) is a 4-tuple 〈Q,q0,Σ,→〉where:

– Q is a finite set of states;
– q0 is the initial state;
– Σ⊆ L is a finite set of labels,
– →⊆ Q× (P(Σ) \ { /0})×Q is a finite set of transitions (where P(Σ) denotes the

powerset of Σ). A transition (q,L,q′) is also denoted q L−→ q′.

An execution trace is a finite sequence of labels in L∗. ε denotes the empty sequence.
The concatenation of two traces σ1, σ2 is denoted σ1.σ2.

Furthermore, we express security properties with LTL formulas, which concisely
formalise them with the help of a small number of special logical operators and temporal
operators [16]. Given a set of atomic propositions AP and p ∈ AP, LTL formulas are
constructed by using the following grammar φ ::= p | (φ) | ¬φ | φ1 ∨ φ2 | Xφ | φ1Uφ2.
Additionally, a LTL formula can be constructed with the following operators, each of
which is defined in terms of the previous ones:

> de f
= p∨¬p, ⊥ de f

= ¬>, φ1∧φ2
de f
= ¬(¬φ1∨¬φ2), φ1→ φ2

de f
= ¬φ1∨φ2, Fφ

de f
= >Uφ,

Gφ
de f
= ¬F(¬φ).
SF(φ) denotes the set of sub-formulas of φ. This set is is defined inductively as fol-

lows: SF(p)
de f
= {p}; SF(¬φ)

de f
= {¬φ}∪SF(φ); SF(φ1∨φ2)

de f
= {φ1∨φ2}∪SF(φ1)∪

SF(φ2); SF(Xφ)
de f
= {Xφ}∪SF(φ); SF(Uφ)

de f
= {Uφ}∪SF(φ). When the other opera-

tors are used, their definitions allow to inductively recover the set of sub-formulas as
well.

4.2 Property Type

We use property types to express general features, which are independent of the type
of system under audit. A property type is a specialised LTL formula whose atomic
propositions are predicates, a predicate being either an expression of one or more vari-
ables defined on some specific domains, or a nullary predicate, which corresponds to an
atomic proposition.
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Definition 2 (Property type).

– Pred denotes a set of predicates of the form P (nullary predicate) or P(x1, . . . ,xk)
with x1, . . . ,xk some variables that belong to the set denoted X;

– The domain of a predicate variable x ∈ X is written Dom(x);
– A property type Φ is a LTL formula built up from predicates in Pred. P denotes the

set of property types.

Property types cannot be evaluated by model-checkers as they are composed of
predicates. They require to be instantiated before, i.e. predicate variables have to as-
signed to values. The instantiation of a property type is called a property instance. It has
the same LTL structure as its property type, but the instantiated predicates now form
propositions.

Definition 3 (Property instance). A property instance φ of the property type Φ is a
LTL formula resulting from the instantiation of the predicates of Φ.

The function that instantiates a property type to one property instance, i.e. which
associates each variable of the predicates to a value, is called a binding:

Definition 4 (Property binding). Let X ′ be a finite set of variables {x1, . . . , xk} ⊆ X.
A binding is a function b : X ′→ Dom(X ′), with Dom(X ′) = Dom(x1)×·· ·×Dom(xk).

Applying a binding to the variables of a property type gives a property instance
related to this binding. For instance, applying {x→ pass := ”1234”} to Sensitive(x)→
Encrypted(x) returns the property instance Sensitive(pass := ”1234”)→ Encrypted(
pass := ”1234”).

The writing of property types is not a straightforward activity in the sense that it
requires a good expert knowledge on LTL. This is why we provide a set of property
types in Section 3.1. We recommend writing property types by firstly formulating gen-
eral security concepts with predicates, and by applying or composing the LTL patterns
given in [10] on those predicates. These patterns help structure LTL formulas with pre-
cise and correct statements that model common situations, e.g., the absence of events,
or cause-effect relationships.

In order to reduce execution times, our algorithms take advantage of particular for-
mula, which we call conditional property types. These will be useful to enhance the
property type instantiation algorithm given in Section 4.5. Intuitively, a conditional
property type is formed by an implication. It is worth noting that the definition given
below identifies some conditional property types but is not exhaustive.

Definition 5 (Conditional Property Types).

1. Φ is a conditional property type iff Φ is a property type of the form:
P→Q, G(P→Q), F(P→Q), GP→Q, (P→Q)∨Φ2, G((P→Q)∨Φ2), F((P→
Q)∨Φ2) with P a predicate or a conjunction of predicates, Q a predicate or a
disjunction of predicates, and Φ2 an LTL formula;

2. antecedent(Φ) denotes the antecedent of the implication of Φ, which is either equal
to P or FP here;



14 S. Salva et al.

3. consequent(Φ)
de f
= Q.

We provide, in Section 3.1, 12 property types modelling the security measures of
the ENISA organisation related to communications. These property types are made
up of the predicates given in Table 2. For example, the security measure GP-TM-
38 recommends to encrypts sensitive data, which is formulated as G(Sensitive(x)→
Encrypted(x)). GP-TM-24 recommends encrypting authentication credentials. This
measure is formulated as: G((LoginAttempt(c)∧Credential(x)→Encrypted(x)), which
intuitively means that every time a component attempts to log in to another component
c by using credentials x, then x must be encrypted. GP-TM-53 suggests that error mes-
sages must not expose sensitive information. This is formulated with G((ErrorResponse
∨¬ValidResponse)→ (¬(BlackListedWord(x))). This formula intuitively means that
every HTTP response composed of an error message or having a status higher than 299
must not include blacklisted words. If we apply the binding {c→ c1,x→ login := toto}
on the second property type, we obtain the property instance G((LoginAttempt(c1)∧
Credential(login := toto)→ Encrypted(login := toto)).

4.3 MLCA Step 2: LTS Completion

Model-checkers cannot directly check the satisfiability of property types on LTSs as
the properties are made up of predicate variables. This step prepares the property type
instantiation by helping auditors complete the LTS transitions with some predicates of
Pred, i.e. the predicates used to write the property types. Once this step is finished
we obtain new LTSs that share the same alphabet as the property types. As an LTS
encodes concrete behaviours, this step actually adds instantiated predicates of Pred,
i.e. predicates whose variables are assigned to concrete values found in the LTS ac-
tions. Completing the LTS transitions with these instantiated predicates comes down to
analysing/interpreting LTS transitions or paths and to add new labels on transitions to
extend the LTS semantics. To performs this activity in an automatic manner, this step
uses an expert system, made up of inference rules, which encode some expert knowl-
edge about SUA. The expert system offers the benefits to automate the LTS transition
completion and to save time by allowing to reuse it on several IoT systems.

We represent inference rules with this format: When conditions on facts Then ac-
tions on facts (format taken by the Drools inference engine [28]). The facts, which be-
long to the knowledge base of the expert system, are here the transitions of an LTS. To
ensure that the transition completion is performed in a finite time and in a deterministic
way, the inference rules have to meet these hypotheses:

– Finite complexity: a rule can only be applied a limited number of times on the same
knowledge base,

– Soundness: the inference rules are Modus Ponens (simple implications that lead to
sound facts if the original facts are true).

We devised 28 inference rules, which are available in [31]. These can be categorised
as follows:

– Structural information: two rules are used to add the propositions “Begin” and
“End”, which describe the beginning and end of user sessions in LTS paths;
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– Nature of the actions: 9 rules add information about the nature of the actions. Given
a transition q1

{a(α)}−−−−→ q2, some rules analyse the parameter assignments in α and
complete the transition with new propositions expressing that a(α) is a request or
a response, an input or an output, the component that sent a(α), etc. Other rules
analyse α to interpret if the action corresponds to an error response (analysis of
the values in α to detect words like “error” or analysis of HTTP status, etc. ). For
instance, the first rule of Figure 9 adds the proposition ValidResponse if the transi-
tion expresses a response whose HTTP status is between 200 and 299. The status
inspection is performed by the procedure isOk();

– Security information: the other rules add predicates related to security on LTS tran-
sitions. For instance, we devised a rule that checks whether some parameters are
encrypted. Other rules analyse the LTS paths to try recognise specific patterns (tran-
sition sequences containing specific words), e.g., authentication attempts, success-
ful or failed authentications. For instance, the second rule of Figure 9 detects a
correct authentication. It adds the proposition “LoginAttempt(c)” on the transition
labelled by the credentials and “Authenticated(c)” on the transition whose action
encodes a correct authentication with the external component c.

rule "validResponse"
when
$t : Transition(isReq() == false,
isOk())
then
$t.addLabel("validResponse");
end

rule "Authentication"
when
$t1: Transition(isRequest(), contains("
login"), contains("password"))
$t2: Transition(isResponse(),isOK(),
sourceState = $t1.targetState)
then
$t1.addLabel("LoginAttempt("+
compoSender($t1) + ")");
$t2.addLabel("Authenticated("+
compoSender($t1) + ")");
end

Fig. 9. Inference rule examples [29]

Once the expert system has completed the LTS L(c1), we obtain a new LTS denoted
L′(c1).

4.4 MLCA Step 3: LTS Verification

The notion of expert system, used in the previous step, suffers from some limitations as
most of the current AI applications. One of them relates to the difficulty of knowledge
acquisition. In other terms, the expert system rules may be incomplete or not adapted
to SUA. For instance, the rule ”Authentication” of Figure 9 is based on the keywords
”login” and ”password” for recognising a successful authentication, but other keywords
might be used instead. With this example, the expert system can be easily completed
with new rules. But, some rules also depend of external tools, which might provide in-
correct information. We observed this case for the rule dedicated to the recognition of
data encryption. This rule relies on a tool, which often returns false positives or nega-
tives, especially when the data length is short. This is why the auditors have to inspect
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the LTSs to assess the transition completion correctness. We propose two solutions to
help auditors in this verification:

– the expert system notices and returns the names of the rules, which have not been
triggered previously. The returned list of rules warns the auditor that some predi-
cates have not been added on transitions;

– this step also automatically checks whether invariants hold on every LTS transi-
tions. We provide a set of 7 invariants written with property types. The first 4 in-
variants are used to detect missing labels that have to be found on LTS transitions.
The remaining ones are used to detect incorrect label completion on transitions.
The predicate variables c and c2, which are used with some invariants, only refer
to components. To make these invariants concrete, we assign both variables to the
components that belong to the set C. Then, we check whether the invariants hold
on the LTSs by calling a model-checker. When an invariant is not satisfied, the LTS
transition is returned to the auditor, so that he/she can manually review it.

Begin∧FEnd
G(Input ∨Out put)
G(Request ∨ (Response∧ (ValidResponse∨ErrorResponse)))
G((Request ∧From(c)∧To(c2)−> F(Response∧To(c)∧From(c2))
G(From(c)→¬To(c))
G(¬Input ∧Out put)
LoginAttempt(c)→ Request ∧To(c)

Table 3. Invariant used to verify the LTS transition completion correctness

4.5 MLCA Step 4: Property Type Instantiation

Given an LTS L′(c1), this step aims at instantiating the property types of P to obtain
a set of property instances that can be evaluated on the paths of L′(c1). We denote
P(L′(c1)) this set of property instances. Intuitively, a property type Φ is instantiated
with bindings, which assign values to the predicate variables of Φ. This step derives
these bindings from the labels (instantiated predicates) added on the LTS transitions by
the expert system previously.

We proposed in [29] a preliminary algorithm implementing the property type in-
stantiation. To illustrate this algorithm, consider the property type G(Sensitive(x)→
Encrypted (x)) modelling the ENISA security measure GP-TM-38 and an LTS L′(c1)
having the labels Sensitive(login:=toto), Encrypted(login:=toto), Encrypted(resp:=”
HTTP/1.1 200 OK...”). The Property Type Instantiation algorithm builds the set Dom(x)
= {login := toto,resp := ”HT T P/1.1200OK...”}. Consequently, two bindings and two
property instances are automatically built. Hence, despite the need for checking the LTS
completion correctness, an auditor does not have to be an expert in LTL for using our
approach.

We showed in [29] that the time complexity of the Property Type Instantiation al-
gorithm is polynomial, but it is manifest that the LTS size and the number of predicate
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values found on the LTS transitions will increase the number of generated property in-
stances and then negatively affect execution times, as verifying whether LTL formulas
hold is usually time consuming.

From this statement, we now propose to focus on an enhancement of the algorithm
given in [29] to lower the time complexity of MLCA. We indeed observed that our algo-
rithm produces a set of pointless property instances in the sense that these formulas are
always true. Consider the previous example of property type, that is G(Sensitive(x)→
Encrypted(x)) along with the LTS L′(c1) having the same labels Sensitive(login:=toto),
Encrypted(login:=toto), Encrypted(resp:=”HTTP/1.1 200 OK...”). The last label gives
the binding {x→ resp := ”HT T P/1.1 200 OK...”} and the property type G(Sensitive(
resp := ”HT T P/1.1 200 OK...”)→Encrypted(resp := ”HT T P/1.1 200 OK...”)). The
latter will always be true, as the antecedent part of the formula Sensitive(resp := ”...”)
will always be false (the predicate Sensitive(resp:=”...”) is not labelled on any transition
of L′(c1)). This statement can be observed with the conditional property types given
in Definition 5. This is formulated by the following proposition:

Proposition 1. Let Φ be a conditional property type such that there exist P1(x1, . . . ,xk)∈
antecedent(Φ) and P2(x1, . . . ,xk)∈ consequent(Φ). X’ is the finite set of predicate vari-
ables of Φ. Let P2(v1, . . . ,vk) := true be an instantiated predicate of P2(x1, . . . ,xk) and
b : X ′→ Dom(X ′) such that b′ : {x1→ v1, . . . ,xk→ vk} is a restriction of b.

The property instance ϕ := b(Φ) resulting from the instantiation of Φ with b is
always true.

Sketch of proof of Proposition 1: let us consider the conditional property type Φ :=
P→ Q with P a predicate or a conjunction of predicates, Q a predicate or a disjunction
of predicates.
The property instance ϕ derived from Φ with b is denoted ϕ := ϕ1→ ϕ2.
ϕ2 := P2(v1, . . . ,vk) or ϕ2 := P2(v1, . . . ,vk)∨ ϕ′2 with ϕ′2 an LTL formula, such that
P2(x1, . . . ,xk)∈ SF(Q) and b′ : {x1→ v1, . . . ,xk→ vk} is the restriction of b over {x1, . . . ,
xk}.
As a consequence, as P2(v1, . . . ,vk) is true, ϕ2 is also true. As ϕ2 is true, ϕ1→ ϕ2 is true
whatever the evaluation of ϕ1. Finally, ϕ := b(Φ) is always true. The same reasoning
can be applied on the other conditional property types of Definition 5. �

In reference to Proposition 1, we now provide a new implementation of the property
type instantiation in Algorithm 1. The main difference between this algorithm and the
previous one lies in lines 4-6. It begins by storing the predicates of the property type
Φ in a set PS, which contains the predicates from which bindings will be computed (in
contrast to the previous algorithm where all the predicates were considered). Now, if Φ

is recognised as a conditional property type, if it includes two predicates P1, P2 having
the same variables and if P1 belongs to the antecedent part of Φ whereas P2 belongs to
the consequent part, then P2 is removed from PS. Removing P2 from PS allows to ig-
nore the predicate values leading to pointless property type instances, as in our example.
In lines 7-10, Algorithm 1 covers the LTS transitions and every label P(v1, . . . ,vk) to
generate domains of values on condition that the related predicate P(x1, . . . ,xk) belong
to PS. Afterwards, the property types are instantiated as before.

The time complexity of Algorithm 1 is proportional to |P|(p2 + | → |p+ |D|). This
complexity is higher than the one of the first algorithm, but it should return less property
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Algorithm 1: Property Type Instantiation 2
input : LTS L′(c1), property type set P
output: Property instance set P(L′(c1))

1 Compute Dom(deps) from Dg(c1);
2 X ′ := /0;
3 foreach Φ ∈P do
4 PS set of of predicates of Φ;
5 if Φ is a conditional property type and ∃P1(x1, . . . ,xk),P2(x1, . . . ,xk) ∈ PS : P1(x1, . . . ,xk) ∈

SF(antecedant(Φ))∧P2(x1, . . . ,xk) ∈ SF(consequent(Φ)) then
6 PS := PS\{P2(x1, . . . ,xk)};

7 foreach l ∈ L with s1
L−→ s2 ∈→L′(c1) do

8 if l = P(v1, . . . ,vk) and P(x1, . . . ,xk) ∈ PS then
9 Dom(xi) = Dom(xi)∪{vi}(1≤ i≤ k);

10 X ′ := X ′ ∪{x1, . . . ,xk};

11 if X ′ is not equal to the set of predicate variables of Φ then
12 return a warning;

13 else
14 D := Dom(x1)×·· ·×Dom(xn) with X ′ = {x1, . . . ,xn};
15 foreach binding b ∈ DX ′ do
16 φ := b(Φ);
17 P(L′(c1)) =P(L′(c1))∪{φ};

instances. As a consequence, MLCA should verify less property instances and hence
consume less time with this algorithm. This is confirmed in our evaluation results (Sec-
tion 5).

4.6 MLCA Step 5: Property Instance Verification

Given an LTS L′(c1), this step comes down to calling a model-checker for verifying
whether L′(c1) satisfies the property instances of P(L′(c1)). If the model-checker
detects a counterexample path that violates a property instance φ ∈P(L′(c1)), our ap-
proach reports the security measure related to φ, which is not (correctly) implemented.
Our approach also returns the counterexample so that auditors may analyse it to com-
prehend the captured failure scenario.

4.7 Limitations

Fig. 10. Some MLCA limitations
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Our approach suffers from some limitations. The first is related to the need for for-
mulating security measures with property types. Even though we propose a substantial
set of property types, auditors might need further formulas for their own use. But, writ-
ing LTL formulas requires some expertise and experience.

The generalisation of our approach is also restricted by the requirements A1-A3.
In particular, the event logs must be formatted by means of regular expressions so that
the action types can be identified. Although we have observed that this task is not too
difficult to carry out on HTTP messages, it is manifest that this is not generalisable to
any kind of protocols, especially those encrypting some parts of the message content.

We also have showed that Algorithm 1 may return warnings showing that property
types cannot be instantiated. Figure 10 summarises the main reasons. The two first ones
(left side of the figure) concern SUA: it might not implement some features. Here, the
auditor has to establish and decide if SUA is secure even though a security feature is
missing. Additionally, a property type may not be instantiated on account of the models
(right side of the figure). On the one hand, the LTSs are generated by a model learning
algorithm, which may infer under-approximated (rejection of valid behaviours) or over-
approximated (acceptance of invalid behaviours) models. It is worth noting that the
model learning tools available in the literature tend to generate more and more precise
models, which accept most of legal behaviours and reject most of anomalous ones [30].
On the other hand, the LTSs may be incorrectly completed by the second step of MLCA.
As stated earlier, the resulting LTSs should be manually reviewed.

4.8 Implementation

Our approach is implemented as a tool chain, which gathers three tools: CkTail, which
implements a model learning approach specialised for communicating systems, SMV-
maker, which completes the LTSs produced by CkTail by means of an expert system and
instantiates property types, and the model-checker NuSMV. The tools, source codes, ex-
amples of property types and traces are available in [31]. These tools were employed to
evaluate our approach with several case studies.

5 Empirical Evaluation

The experiments presented in this section aim to assess the capabilities of our algo-
rithms to verify whether security measures are active on models inferred from logs in
terms of precision (exact detection of active and inactive security measures) and per-
formance. This section supplements our preliminary evaluation proposed in [29] as we
study the capabilities of our algorithms through 3 research questions and as we consider
more systems. These research questions are:

– RQ1: is MLCA able to detect active security measures? RQ1 investigates the sen-
sitivity of MLCA, that is its capability to identify the security measures related to
communications that are truly implemented on IoT systems;

– RQ2: is MLCA able to detect inactive security measures? RQ2 investigates the
specificity of MLCA, that is its capability to uncover the security measures that are
not considered or incorrectly implemented;
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– RQ3: how long does MLCA take to verify whether security measures are correctly
implemented? RQ3 studies the performance of our algorithms and how they scale
with the size of the event logs, and with the number of the property types.

5.1 Empirical Setup

This study was conducted on five IoT systems integrating varied devices, gateways and
external cloud servers communicating over HTTP. We assembled and configured these
systems using the available security options. From these systems, we collected event
logs composed of HTTP messages on gateways or servers.

– S1 is composed of 3 motion sensors that turn on a light-bulb when they detect
movements. They communicate through a gateway; all of them have user interfaces,
which may be used for configuration. The main purpose of this system is to focus
on classical attacks (code injection, brute force, availability) and on the related
security measures GP-TM 22, 25, 38, 52, 53;

– S2 includes a motion sensor, a switch and an IP camera. The motion sensor commu-
nicates with the switch in clear-text, and with the camera with encrypted messages.
The camera also communicates with external clouds requiring authentication and
encryption. In this system, we mainly focus on security measures related to encryp-
tion and authentication, GP-TM 22, 24, 25, 26, 38, 42, 53;

– S3 is composed of 3 IP cameras, which communicate with external cloud servers.
Two cameras can update their software remotely. This system aims at focusing on
security measures related to update mechanisms, GP-TM 18, 19, 38, 48, 53;

– S4 is made up of a temperature sensor, which communicates with a gateway. A user
can connect to the gateway for reading temperature curves. We devised this system
so that the gateway is vulnerable to XSS code injections. Here, we mainly focus on
security measures related to encryption, authentication, and code injection, GP-TM
22, 24, 25, 26, 38, 42, 52, 53;

– S5 is composed of an IP camera, which interacts with a NTP, a SMTP, and an FTP
server. The camera authenticates to the FTP server (with encrypted credentials),
and to the SMTP server (with unencrypted credentials). A user can connect to the
camera to get images or videos. With this system, we mainly focus on security
measures related to encryption and authentication, GP-TM 22, 24, 26, 38, 42, 52,
53.

5.2 RQ1: is MLCA able to detect active security measures?

To answer RQ1, we initially experimented the above systems by hands. We gathered a
first set of event logs that capture ”normal behaviours” and generated first models with
CkTail. From these, we identified the testable components, on which we applied a set
of penetration testing tools specialised to Web applications. During this testing stage,
we collected larger event logs. From them, we generated the final models used for the
evaluation.

Besides, we manually analysed the source codes of the software used by the devices
(sensors, gateways) when available and the event logs to list the ENISA security mea-
sures that are active and those that are not (correctly) implemented . This task allowed
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us to compare the results of MLCA with our observations and hence to measure the
sensitivity and specificity of our approach.

For this evaluation, we considered the 12 property types given in Table 1. We ran
MLCA to generate the LTSs and property instances from these property types. To not
perform an unbiased evaluation, we considered two cases: the case where we did not
manually completed the generated LTSs denoted ”w/o modification” and the case where
we manually completed them as required in the third step of the approach, denoted ”w/
modifications”. And finally, we called the model-checker NuSMV to check whether the
property instances hold on the LTSs.

For this research question, we measured the sensitivities of MLCA (rate of correct
property instances that evaluate to true) using Algorithm 1 ”w/o modification” and ”w/
modifications”. The comparison of our previous MLCA algorithms given in [29] can-
not be based on sensitivity measurements as both approaches generate different sets of
property instances (in general terms, the numbers of conditional positives are different).
To compare both algorithms, we measured their number of false positives FP, i.e. the
number of unsatisfied property instances, which should hold.
Results:

IoT syst. #instantiated
property types/total

FP w/o modif.
MLCA of [29]

FP w/o modif.
MLCA

Sensitivity w/o
modif. MLCA

Sensitivity w/
modif. MLCA

S1 44/60 3 3 97.5% 98.33%
S2 14/36 0 0 100% 100%
S3 19/36 0 0 100% 100%
S4 13/24 0 0 100% 100%
S5 26/48 0 0 100% 100%

Table 4. False positives (FP) and Sensitivity of MLCA

Table 4 summarises the results of our experiments. Col. 2 gives the ratio of property
types that have been instantiated over the property types available for all the compo-
nents of a system. For instance, S1 has 5 components, hence 5*12 property types can be
used. 44 property types were instantiated for this system. None of the systems allowed
to instantiate all the property types. This result was expected as none of the systems
implement all the security features considered in the security measures, e.g., password
recovery for S1, or authentication for some components of S2, S3. Then, Col. 3 and 4
give the number of false positives observed with MLCA of [29] and the MLCA algo-
rithms presented in this paper. The two last columns provide the sensitivity of MLCA
without or with manual modifications of the LTSs (after the third step of MLCA).

Firstly, col. 3 and 4 confirm that our new property instance algorithm (Algorithm 1)
does not change the number of false positives. Col. 5 shows that the overall sensitivity of
MLCA ”w/o modification” is 99,5%. When we manually complete the LTSs the overall
sensitivity increases up to 99,66 %. The sensitivity is below 100 % with S1. After
inspection, we observed that the difference of sensitivity ”w/o modification” and ”w/
modifications” with S1 comes from an inference rule of the expert system, which tries to
recognise whether parameters are encrypted. This rule computes the message entropy,
but this technique is sometimes not precise enough to recognise encryption. Hence some
LTS transitions were incorrectly completed with predicates of the form Encrypted(x).
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We did not find any better solution at the moment. Still with S1, the sensitivity ”w/
modifications” remains below 100% on account of a false positive related to the security
measure GP-TM-25. We observed that this measure is detected as active on account of
an over-generalisation of the LTSs. Apart from this issue related to model learning, these
results tend to show that MLCA is very effective to check whether security measures
are correctly implemented since the sensitivity of MLCA is close to 100%.

5.3 RQ2: is MLCA able to detect inactive security measures?

We measured the specificity of our approach, that is the rate of inactive security mea-
sures that are correctly identified by MLCA. We recall that a security measure is de-
tected as inactive for a given system when a property instance derived from this security
measure does not hold on an LTS. We considered the same models generated for RQ1
along with the same property types. In the same way, to not perform an unbiased eval-
uation, we considered the two cases ”w/o modification” and ”w/ modifications”.

IoT syst. #instantiated
property types /total

Specificity w/o
modif. MLCA of

[29]

Specificity w/o
modif. MLCA

Specificity w/
modif. MLCA

S1 44/60 99.07% 99.07% 99.07%
S2 14/36 91.66% 91.66% 91.66%
S3 19/36 92.86% 92.86% 92.86%
S4 13/24 100% 100% 100%
S5 26/48 67.57% 67.57% 89.19%

Table 5. Specificity of MLCA

Results: Table 5 shows the specificity measurements of our algorithms. The number of
instantiated property types and the number of property instances given in Col. 2 remain
the same. Col. 3 and 4 compare the specificity of MLCA of [29] with the algorithms
presented in this paper. Next, Col. 4 and 5 allow to compare the specificity without or
with manual modifications of the LTSs.

The overall specificity without modification of the LTSs is 91.8% with both algo-
rithms. Again, this confirms that the property instance optimisation used in Algorithm
1 does not modify the results of MLCA. We observe that MLCA returns some false
negatives, most of them being observed with S5. After inspection, we observed that
most of these false negatives come again from the expert system rule related to en-
cryption recognition. Here, this rule has detected that many encrypted messages are not
encrypted. After the manual modification of the LTSs, the specificity reaches 96,12%.
The remaining false negatives come from some LTS under-approximations, i.e. rejec-
tions by the LTSs of some correct behaviours.

These results tend to show that MLCA is very effective for detecting inactive secu-
rity measures since the overall specificity of MLCA is higher than 91% without modifi-
cation of the models. We believe that the benefits of automatically learning models and
instantiating LTL formulas exceed the drawback of having a few false negatives.
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5.4 RQ3: how long does MLCA take to verify whether security measures are
correctly implemented?

To answer RQ3, we performed three experiments. We firstly studied how the tool scales
with the size of the event logs. We collected 20 new event logs from S5 by varying
the number of events between 500 to 100000, then we measured execution times. We
also studied how the tool scales with the number of property types. We measured the
execution times of MLCA by using the event log of S5 and by increasing the property
type number from 0 to 100. Finally, we measured the execution times obtained with the
MLCA of [29] and the MLCA algorithms proposed in this paper on the 5 IoT systems.
We also collected the number of generated property instances with both algorithms.
These Experiments were carried out on a computer with 1 Intel® CPU i5-6500 @
3.2GHz and 32GB RAM.

Fig. 11. Execution times vs. number of events

Results: Figure 11 depicts, with the curve Total, execution times in seconds w.r.t. the
event log sizes. We observe that MLCA returns results within reasonable time even
with large event logs. But, the curve follows a quadratic regression and reveals that our
tool does not scale well. To understand this problem, we completed the figure with two
additional curves depicting the times required to learn models and the times consumed
by the other steps of the approach (Steps 2-5). These two curves clearly show that the
scaling problem comes from the model learning algorithm CkTail.

Figure 12 depicts execution times in seconds w.r.t. the number of property types
given as inputs. We observe that the curve follows a linear regression, showing that the
tool scales well according to the number of property types. Even with 100 property
types, execution times remain reasonable.

Table 6 compares the number of generated property instances along with execution
times in seconds for the five IoT systems between the MLCA of [29] and the algorithms
we proposed in this paper. In average, we observe that the new MLCA algorithms help
reduce execution times by 28% thanks to the optimisations performed to reduce the
set of generated property instances. With some systems (S2 and S3), we observe that
both algorithms return the same amount of property instances and around the same
execution times. With these systems, the property types that are instantiated are not
conditional property types. In contrast, we observe that using Algorithm 1 with S1
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Fig. 12. Execution times vs. number of property types
IoT Syst. #property instance

MLCA of [29]
#property instance

MLCA
Execution times
MLCA of [29]

Execution times
Algo. 1

S1 823 334 31708 4533
S2 37 37 509 510
S3 39 39 165 162
S4 80 68 76 60
S5 128 88 372 252

Table 6. Number of property instances and execution times measured on the 5 IoT systems

allows to strongly reduce the set of property instances and to lower the execution time
by 85%.

These results tend to show that MLCA can be used in practice even with large event
logs, but it suffers from insufficient scalability, on account of the model learning step.
These results also confirm that Algorithm 1 allows to save execution time.

5.5 Threat to Validity

Some threats to validity can be identified in our evaluation. The first factor, which may
threaten external validity, applies to the case studies. Most of them are IoT systems
using HTTP. But many communicating systems rely on other kinds of protocols, from
which it may be more difficult to identify senders, receivers, requests or responses.
Hence, we cannot conclude that our results are generalisable to IoT systems. This is
why we deliberately avoid drawing any general conclusion. This threat is somewhat
mitigated by the fact that HTTP is used by numerous communicating systems. However,
the HTTP traffic should also be decipherable so that MLCA can recognise behavioural
patterns and add predicates on LTS transitions. It is manifest that more experimentations
are required on further kinds of systems.

There are also some threats to internal validity. The quality of the models produced
by the first step of the approach strongly depends on the size and the formatting of
the event logs. We showed in the evaluation that we can obtain some false positives
/ negatives on account of the lack of precision of the models. At the moment, none
of the passive model learning tool generates ”exact” models, they usually are slightly
under- or over-approximated. We also mentioned that the outcomes of MLCA depend
on the manual LTS verification carried out in Step 3. It is manifest that the outcomes
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of this step vary in accordance with the auditor knowledge and expertise. To avoid
this potential threat, we considered two cases: no modification of the LTSs and manual
modification. The first case gives the worst sensitivity and specificity of MLCA on the
five IoT systems considered for the evaluation.

6 Conclusion

This paper has proposed the design and evaluation of an approach called MLCA (Model-
Learning-Checking Approach), which combines model learning and model checking to
help audit the security of IoT systems. It requires an event log along with security prop-
erties modelled with property types. The latter are generic LTL formulas, which can
be used independently of the IoT system under audit. We provide 12 property types
expressing some security measures provided by the ENISA organisation. MLCA auto-
matically generates models from the event log, then it assists auditors in the generation
of concrete properties by instantiating property types. This instantiation is carried out
by an expert system made up of inference rules, which encode some expert knowledge
about the kind of system under audit. Our evaluation, performed on 5 IoT systems,
showed that MLCA is effective in detecting security issues, and that it can be used in
practice on large event logs.

Nevertheless, several aspects need to be investigated in the future. The model learn-
ing approach requires some assumptions to generate precise models. We will investigate
if some of them could be relaxed so that more systems under audit could be considered.
Our evaluation showed that the use of an expert system offers a great potential for in-
stantiating property types, especially when auditors are non-expert LTL users. However,
this benefit strongly depends on the successful implementation of the expert system
rules. We indeed observed in the experimentations that a few property types were not
completely instantiated on account of the lack of precision of some rules. This is why
the property type instantiation and LTS completion steps require a review to detect po-
tential issues. Finding a way to get rid of this manual step is hence another direction for
future work.
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