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ABSTRACT
We report molecular simulations of different graphene-water interfaces. Our aim is to
calculate the interfacial tension as accurately as possible for a reasonable computa-
tional time by tuning on the value of the cut-off radius and the way of calculating the
electrostatic interactions. We focus on the structure of water close to the graphene
surface and on the profile of the interfacial tension along the direction normal to the
surface. We then compare the Ewald summation method with two versions of the
Reaction Field technique in different graphene interfaces.
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1. Introduction

The calculation of the surface tension (γ) of liquid-vapour and liquid-liquid inter-
faces by molecular simulations [1–6] is under control in terms of dependencies of γ
on methodological parameters [7] such as the interfacial area [8–10], the cutoff ra-
dius [11], the long-range corrections of the surface tension [12, 13] and the way of
handling the electrostatic interactions [14]. Since most of the molecular simulations
use a pair potential with a spherical cutoff at a distance rc, long-range corrections
must be added to the surface tension [7] to make up the missing part. It has been
shown that this long-range contribution adequately compensates for the part coming
from the truncated potential and that relatively small cutoff radii can be applied [11].
Actually, Figure 1 illustrates these dependencies by showing the different contribu-
tions of the surface tension with increasing cutoff values. From rc = 12 Å, the total
surface tension becomes nearly independent of the cutoff radius indicating that the
long-range contributions to the surface tension effectively compensate for the effects
of the Lennard-Jones potential truncation. Nevertheless, the intrinsic part due to the
truncated potential shows a strong dependence on the cutoff by increasing from 8 to
12 mN m−1 as rc is changing from 10 to 24 Å. We should point out that the long-
range correction to the surface tension contributes much less in the surface tension
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when strong electrostatic interactions are involved in the system. For instance, at 298
K, this long-range correction represents only 10% of the surface tension of water [3]
compared to 30% of the surface tension of Lennard-Jones (LJ) fluids.

14

12

10

8

6

4

2

0

γ
 (

m
N 

m
-1

)

24222018161412108

rc (Å)

  γ
 γlrc
 γtotal

Figure 1. Liquid-vapour surface tensions of methane calculated at 125 K for different cutoff values. The
long-range corrections (γlrc) to the surface are calculated using the local Janeček approach[13, 15] and the

short range part γ using the Irving-Kirkwood definition [16, 17]. The total surface tension γtotal sums then

γlrc and γ.

The methodological progress is far from being the same for solid-fluid interfaces
[18, 19]. For the calculation of the solid-liquid interfacial tension, the impact of some of
the factors mentioned above is still unknown. Concerning the long-range corrections to
the interfacial tension of the graphene-methane interface modeled only with Lennard-
Jones interactions, we have established that these tail corrections were negligible with
respect to the intrinsic contribution even with a small cutoff value (rc = 12 Å) [20, 21].
Does it mean that the choice of the cutoff radius will have no impact on the calculation
of the intrinsic part of the interfacial tension of solid-liquid interfaces for truncated
potentials ? What happens when electrostatic interactions coexist with LJ interactions
? We propose to answer these questions in this paper. In addition, depending of the
geometry and nature of the solid surface, the calculation can become much more
difficult because the internal stresses in the solid [22] has to be calculated. In the case
of the graphene sheet immersed immersed in methane [20, 23] and water [21], it is
possible to limit the calculation of the interfacial tension to that of the stress profile
provided that the graphene is considered rigid. This is a reasonable approximation
based on the extremely high values of Young’s modulus and strength [24].

We recently calculated the interfacial tension of the graphene-water system [21].
The main conclusion of this work has been to show that the values of γ obtained from
both the stress profile and the thermodynamic definition led to a contact angle value
in agreement with recent experimental measurements [25]. From a methodological
viewpoint, we have established the surface area dependence of the surface tension
when the electrostatic interactions were calculated using both the Ewald summation
(EW) method [26, 27] and the Reaction Field approaches [28, 29]. We need large
dimension boxes to avoid any impact of the surface area on the interfacial tension
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leading to a dramatic increase in the computational time. One way to counteract this
increase in computational cost due to the calculation in the reciprocal space is to use
less expensive methods for the calculation of the electrostatic interactions such as the
Reaction Field (RF) methods.

Actually, the calculation of electrostatic interactions has led to numerous studies on
the accuracy and reliability of the simulated properties as a function of the schemes
used : Ewald summation [26, 30, 31],truncation of the Coulomb interaction at a cutoff
distance rc with or without reaction-field correction [28, 29, 31, 32]. Extending the
calculation of the electrostatic interactions to heterogenous systems led to additional
difficulties such as taking into account the periodic conditions in a two-dimensional
geometry [27, 30] and developing the normal and tangential pressure component pro-
files in the direction normal to the interface for the different electrostatic contributions
[27] within the Ewald scheme.

Our previous works aimed to establish the system-size at which we no longer observe
size-effects [21, 23]. In this paper, we aim to investigate the effects of changing the cutoff
radius on the graphene-water interfacial tensions as the calculation of the electrostatic
interactions is performed with the Ewald method, Reaction Field (RF) [28] and a
damped version of The Reaction Field (RFD) [29] methods. At the end, we should able
to recommend a value of cutoff radius to be used with truncated potentials (Lennard-
Jones and Coulomb interactions) in solid-liquid interfaces to approach the interfacial
tension of the Ewald summation method. Our recommendations will apply to different
graphene interfaces : a graphene monolayer, a double layer of graphene and a carbon
nanotube. We also take the route of using a nonpolorizable model for the graphene
because this model [33] has been successfully applied to investigate the structure of
water at the interface [33, 34] and the interfacial tension [21]. Polarizable models
[35, 36] have also been used to model the graphene but these models have shown
some significant deviations [37] from experiments for the reproduction of the surface
tension of water. Section 2 presents the potential models and describes the calculation
of the solid-liquid interfacial tension by using a free energy perturbation technique.
The calculation of the long-range correction to the solid-liquid interfacial tension is
also discussed. Section 3 discusses the impact of the cutoff radius of the structure and
the shape of the profiles of the local tension of a graphene monolayer. We develop this
section by the study of a bilayer of graphene and a carbon nanotube. In the conclusion,
we give a recommandation of the use of the RFD method in the solid-liquid interfacial
systems.

2. Potential models and methods

2.1. Potential

The total configurational energy U is the sum of intramolecular (UINTRA) and inter-
molecular (UINTER) energy contributions. The intermolecular contributions sum the
repulsion-dispersion and electrostatic energies.

The graphene sheet was kept rigid with no intramolecular and intermolecular in-
teractions between the atoms of graphene. The distance C − C was fixed to 1.418 Å.
Water is modeled using the four-point (TIP4P/2005) model [38] with no intramolec-
ular interactions. The graphene sheet is formed by 2508 carbon atoms leading to a
surface area A = LxLy where Lx = 81.05 Å and Ly = 80.83 Å. The Lz dimension is
then equal to 101.5 Å with 21400 water molecules in the simulation cell (see Figure
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Figure 2. Typical configurations of a) a graphene monolayer layer, b) a graphene bilayer and c) a carbon

nanotube (CNT) in interaction with water molecules at 300K where the z−direction is normal to the graphene

surface for planar interfaces.

1). These box dimensions were selected from a previous study [21] in order to avoid
any dependence of the interfacial tension on the surface area and to investigate only
the dependence of the cutoff radius on truncated LJ and electrostatic interactions.

Since UINTRA = 0 for water and graphene, the total energy of the system becomes

U = UINTER = ULJ + UELEC (1)

It results from the definition of the system and the models used that only inter-
molecular interactions take place on the one hand between the water molecules and on
the other hand between water molecules and carbon atoms of the graphene sheet. The
intermolecular interactions due to the repulsion-dispersion interactions are computed
using the truncated Lennard-Jones (LJ) potential

ULJ =

N−1∑
i=1

N∑
j>i

Ni∑
a=1

Nj∑
b=1

4ϵab

[(
σab
riajb

)12

−
(

σab
riajb

)6
]

(2)

where riajb is the distance between atom a in molecule i and atom b in molecule j, ϵab
is the energy parameter of the interaction and σab is the Lennard-Jones core diameter.
Ni is the number of atoms in the molecule i. The LJ parameters for the graphene
atom [39] are σ = 3.3997 Å and ϵ = 0.3594 kJ mol−1. The potential parameters
including values of σ , ϵ for the water model can be found in the original paper [38].
The LJ parameters for the interactions between unlike sites are calculated by using
the Lorentz-Berthelot combining rules.

The total electrostatic potential was calculated using both the Ewald sum method
[26, 40] and the Reaction Field method [28]. For a box with orthogonal axes, the
electrostatic energy calculated with the Ewald method is written as
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UEW =
1

2ϵoV

∑
h̸=0

Q(h)S(h)S(−h)

+
1

8πϵo

∑
i

∑
a

∑
j ̸=i

qia
∑
b

qjb
riajb

erfc (αriajb)

− α

4π3/2ϵo

∑
i

∑
a

q2ia

− 1

8πϵo

∑
i

∑
a

∑
b ̸=a

qiaqib
riaib

erf (αriaib) (3)

where erfc(x) is the complementary error function and erf(x) is the error function.
α is chosen so that only pair interactions in the central cell need to be considered in
evaluating the second term in Eq.3. The functions S(h) and Q(h) are defined using
Eqs.(4) and (5), respectively

S(h) =
∑
i

∑
a

qia exp(ih.ria) (4)

Q(h) =
1

h2
exp(− h2

4α2
) (5)

where the reciprocal lattice vector h is defined as h = 2π(l/Lx,m/Ly, n/Lz) where
l,m, n take values of 0,±1,±2,· · · ±∞. The final term in Eq.3 is a compensation term
that consists of removing terms corresponding to the potential energy of an ion a due
to the gaussian charge on a neighbouring charge b (or vice versa).

With the Reaction Field (RF) method proposed by Neumann [28], the electrostatic
energy is calculated as follows

URF =
1

8πϵo

∑
i

∑
a

∑
j ̸=i

∑
b̸=a

qiaqjb ×
[

1

riajb
+

B0r
2
iajb

2r3c
− 1

rc
− B0

2rc

]
(6)

In the Damped Reaction Field (RFD) version [29], the reaction term is modified by
using a distance depending function that is identical to that used in the real-space
term of the Ewald sum. The electrostatic energy in the RFD approach becomes then

URFD =
1

8πϵo

∑
i

∑
a

∑
j ̸=i

∑
b ̸=a

qiaqjb

[ (
erfc(αriajb)

riajb
+

(
erfc(αrc)

r2c
+

2α√
π

exp(−α2r2c )

rc

)
riajb

)

−

(
erfc(αrc)

rc
+

(
erfc(αrc)

r2c
+

2α√
π

exp(−α2r2c )

rc

)
rc

)
(7)

+
B0(r

2
iajb − r2c )

2r3c

]
(8)
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where B0 is defined as

B0 =
2(ϵ1 − 1)

2(2ϵ1 + 1)
(9)

ϵ1 is the dielectric constant outside the cavity. For water [41], we take ϵ1 = 78.5.

2.2. Methods

The molecular dynamics (MD) simulations were carried out with the DL POLY pack-
age [42] by using the Velocity-Verlet scheme [26] to integrate the equations of motion.
The simulations were carried out in the NpNAT statistical ensemble where the normal
component of the pressure pN = pzz was fixed to 1 bar. The area of the graphene
surface is represented by A. The temperature T was fixed to 300 K. We applied the
Hoover [43] thermostat and barostat with relaxation times of τt = 0.5 ps and τp = 0.1
ps. The simulations of the carbon nanotube were performed in the canonical NVT
ensemble.

The MD simulations were performed with a time step of 1 fs over an equilibration
period of 10 ns. The thermodynamic and structural properties were averaged over an
acquisition phase of 10 ns. The Lennard-Jones potential and the electrostatic inter-
actions were truncated at rc ranging from 12 to 16 Å. The long-range electrostatic
interactions, handled using the Ewald summation technique, were calculated within a
relative error of 10−6. α was taken to 0.2365 Å−1. Statistical fluctuations of interfacial
tensions were estimated using the variation in the block averages. The statistical fluc-
tuations are shown in Figure A1 of Appendix A for the calculation of the local surface
tension.

2.3. Solid-liquid interfacial tension

The interfacial tension, calculated in the constant NVT-ensemble, is expressed through
the thermodynamic definition of γ =

(
∂F
∂A

)
N,V,T

where F is the free energy, A the

surface area, N the number of molecules and V the volume. we take the route of using
the non-exponential method [5] based on the test-area methodology [44] where γ is
expressed as γ =

(
∂F
∂A

)
N,V,T

with F the free energy, A the surface area, N the number

of molecules and V the volume. This non-exponential method was recently developed
from a rigorous theoretical background [5]. The surface tension becomes

γTA =

(
∂F

∂A

)
N,V,T

= lim
ξ→0

〈(
(U (1)(r′N )− U (0)(rN ))

∆A

)〉
0

= lim
ξ→0

〈(
(U (1)(r′N , ξ)− U (0)(rN ))

A
[
(1± ξ)−1/2 − 1

] )〉
0

(10)

where rN is the set of Cartesian coordinates ri of each molecular centre of mass in
the system and r′N the set of modified Cartesian coordinates which are scaled as in
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Eq.11 in the perturbed state: xi −→ x′i = xi
√
1± ξ

yi −→ y′i = yi
√
1± ξ

zi −→ z′i = zi(1± ξ)−1
(11)

U (0)(rN ) and U (1)(r′N ) are the configurational energies of the reference and per-
turbed states. The difference in the surface area ∆A is A1−A0 where 0 stands for the
reference state and 1 stands for the perturbed state. The anisotropic transformations

were used L
(1)
x,y = L

(0)
x,y

√
1± ξ, and L

(1)
z = L

(0)
z /(1± ξ) where ξ is the perturbation

length as ξ → 0 and L the box length. The area of a planar interface is A = 2LxLy

and ∆A = A
[
(1± ξ)−1/2 − 1

]
.

A local version of Eq.C1 was obtained by assuming the decorrelation of slabs [45]

γTA(z) = lim
ξ→0

〈
N∑
i=1

N∑
j=i+1

H(zi − z,∆z)

(
(u

(1)
z (r′ij , ξ)− u

(0)
z (rij))

∆A

)〉
0

(12)

where uz is the energy of the slab located at z, rij is the distance between i and j
molecules, r′ij is calculated in the perturbed state by using the scaling of Eq.11. H(zi)
is the top-hat function defined by

H(zi − z,∆z) =

{
1 for z − ∆z

2 < zi < z + ∆z
2

0 otherwise
(13)

Interfacial tension is thus be evaluated by

γTA =
1

2

Ns∑
k

γTA(zk) (14)

where Ns is the number of slabs of volume Vs = LxLy∆z and ∆z the slab thickness.
In the case of the monolayer of graphene, the simulation box is divided into Ns = 500
slabs of thickness ∆z = 0.24 Å. The factor 1/2 is introduced in order to take into
account that the system considers two interfaces.

When the interface tension is calculated in NpNAT statistical ensemble, its opera-
tional expression is then established in Appendix B. The additional term < pNLz >
contributes by about 1 mN m−1 to the total interface tension. For the calculation
in cylindrical geometries, the operational expression of γ and the methodology are
described in Appendix C.

The long-range correction to the surface tension in the TA approach is calculated by
considering the Lennard-Jones contribution. The tail correction of the surface tension
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within the test-area formalism is then approximated by

γTA,LRC =

Ns∑
k

lim
ξ→0

〈(
(u

(A+∆A)
LRC (z′k))− (u

(A)
LRC(zk))

∆A

)〉
0

=

Ns∑
k

γLRC(zk) (15)

where

uLRC(zk) = πρ(zk)Vs

NC∑
i=1

NC∑
j=1

xi(zk)

∫ ∞

rc

dr

∫ r

−r
d∆z [ρj(z)− ρj(zk)] r Uij,LJ(r) (16)

where ρj(zk) is the density number of the species j in the slab k, respectively.
xi(zk) and xj(zk) are the mole fractions of molecular species i and j in the slab k.
NC is the number of molecular types in the system, here NC = 2. ∆z is defined as
the difference z − zk and varies between −r and r. When a molecule located at zk is
selected as the central molecule, zk will be constant. rc is the cutoff radius, Uij,LJ(r) is
the intermolecular Lennard-Jones energy with r being the distance between the two
centers of mass of molecules of species i and j.

Uij,LJ(r) =

Ni∑
a

Nj∑
b

4ϵab

[(σab
r

)12
−
(σab

r

)6]
(17)

The corresponding tail corrections calculated in cylindrical geometries are given in
Appendix C. We report in Figure 3 the local long-range corrections to the interfacial
tension of the graphene-water interface at different cutoff radii. The total contribution,
obtained by summing the local values, is read as the asymptotic value on the right axis.
This tail contribution increases from (-2.1 to 0.11) ±0.1 mN m−1 as rc is changing from
12 to 16 Å. The sign of this long-range contribution is negative in contrast to the same
contributions calculated for liquid-vapour and liquid-liquid interfaces [7]. However, the
absolute value of this long-range correction decreases with increasing cutoff values as
expected for a correction of the truncated LJ potential. We conclude that this tail
correction is negligible within the statistical fluctuations with respect to the intrinsic
part for the geometries and types of interactions investigated in this paper.

3. Results and discussions

4. Interaction of water with a monolayer of graphene

The system is formed by a graphene sheet surrounded by two reservoirs of water
molecules. We define here the graphene surface as a two dimensional planar material
made up of a monolayer of carbon atoms. The carbon atoms are placed in a hexagonal
honeycomb lattice, located at z = 0. The structure of the graphene-water interface is
investigated through the center of mass density profiles of water molecules calculated
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Figure 3. Profiles of the long-range corrections to the interfacial tension of the graphene-water interface

calculated using Eq.15 at different cutoffs. The total interfacial tension is the last value read on the right-hand

axis.The statistical fluctuations of the long-range corrections are about 0.01 mN m−1 for the graphene-water
interface.

along the z-direction normal to the interface. The profiles, shown in Figure 4(a), were
calculated with the EW, RF and RFD methods with a cutoff radius of 12 Å. The
interaction of the water molecules with the graphene sheet leads to a layered structure
that is characterized by three peaks of decreasing magnitudes. The height of the first
peak is about 3000 kg m−3 whereas the height of the second is about half of the
first peak. The bulk water density is recovered at about 12 Å from the graphene
sheet. On the scale of Figure 1, the different methods used for the calculation of the
electrostatic interactions lead to the same layered organization of water molecules in
terms of heights and locations of the adsorption peaks.

Figure 4(b) shows the profiles of the local interfacial tension γ(z) along the direction
normal to the graphene sheet. The interfacial tension was calculated with the test-area
(TA) method with a local operational expression described in a previous paper [21].
The interfacial tensions, obtained by summing the local values over all the slabs, are
given in Table 1. The analysis of the curves shown that the interfacial tension results
from integration of peaks from 0 to 12 Å. Beyond this distance from the surface,
the local surface tension has converged and we observe no contributions of water
molecules to this property. Some differences appear in the magnitude of the peaks of
γ(z) depending on the method used for the calculation of the electrostatic interactions.
Later, we will investigate later the differences in γ(z) in the water region as a function
of the method and the cutoff used.

The values of interfacial tensions are given in Table 1 for three different cutoff values.
The interfacial tension calculated with the Ewald method with a cutoff radius of 12 Å
will serve as a basis for comparison. First, we can deduce from Table 1 that the cutoff
radius has a very little impact on the interfacial tension calculated with either RF or
RFD. The variations of the interfacial tension with the cutoff are within the standard
deviations. We only observe that the values calculated with RF And RFD are slightly
smaller (< 3%) than that calculated with Ewald. The simulated interfacial tensions
with RF and RFD range from 95.2 to 97.9 mN m−1 and correspond to a contact angle
of about 75o in a very good agreement wit the recent experimental measurement of
this angle (θexp. = 71o) [25].

The decomposition of the interfacial tension into the LJ and electrostatic contribu-
tions is shown in Figure D1 of Appendix D. The electrostatic contribution is about 576
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Figure 4. a) Center of mass density profiles of water molecules calculated along the direction normal to the
graphene surface with a cutoff radius of 12 Å and three different methods (RF, RFD, EW) for the treatment

of the electrostatic interactions. We focus on only one interface; b) Profiles of the local surface tension γ(z)
calculated with the test-area (TA) approach depending on how the electrostatic interactions are calculated (see

Ref. [21] for a description of the operational expression of the interfacial tension γ(z)). The profiles are shown

for the two graphene-water interfaces. The vertical dotted lines show the z-positions of the different peaks.

mN m−1 whereas the LJ part contributes negatively to -479.7 mN m−1. This strong
negative part of the interfacial tension of the LJ contribution is the result of posi-
tive interactions between LJ centers which interact on average at a smaller distance
smaller than the LJ particle diameter. For example, in the case of the liquid-vapour
interface of water, the LJ part to the surface tension is about -245 mN m−1 for a sur-
face tension of 72 mN m−1. The stronger negative value calculated in the solid-liquid
interface indicates that the water molecules are more associated and structured when
they interact with the solid in line with the layering of water molecules (see Figure
4(a)). The water molecules approaching the graphene surface arrange to form a two-
dimensionally hydrogen bond network to compensate for the break in symmetry on
the side of graphene.

Figures 5(a) and 5(c) show the molecular density profiles of water molecules calcu-
lated with the RF and RFD methods for different cutoff radii. The curves are repre-
sented with a scale adapted to the variations in the liquid phase. The density profile
calculated with the Ewald method at rc = 12 Å is given for comparison. The profile
calculated with Ewald is much less noisy than those obtained with RD and RFD tech-
niques. In addition, we observe that the value of the cutoff radius does not impact on
the shape of the density profiles. The impact of the method used, RF or RFD, does
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Table 1. Values of the graphene-water interfacial tensions calculated in different geometries with the Ewald

(EW), Reaction Field (RD) and Damped Reaction Field (RFD) methods at three different cutoffs (rc). The

subscripts give the accuracy of the last decimal(s), i.e., 99.012 means 99.0±1.2 mN m−1.

rc γEW γRF γRFD

(Å) (mN m−1) (mN m−1) (mN m−1)

graphene monolayer - water interface
12 99.012 96.513 96.313
14 95.218 97.919
16 95.717 96.721

graphene monolayer (flexible) - water interface
12 92.614

graphene bilayer - water interface
12 65.720 64.230 69.415

nanotube-water interface
12 140.126 136.541 138.032

not result in significant changes in local densities. As a conclusion, the way of calcu-
lating the electrostatic interactions does not change the local structure of the water
molecules along the direction normal to the graphene and no influence of the cutoff
radius (from rc > 12 Å) is shown on the structural properties.

Figures 5(b) and 5(d) show the profiles of the interfacial graphene-water interfa-
cial tension calculated at different increasing cutoff radii with both RF and RFD
techniques. First, we observe that changing the method of handling the electrostatic
interactions from RF to RFD is equivalent to decreasing the oscillations of the local
interfacial tension in the bulk phases. Actually, the fluctuations of the interfacial ten-
sion are halved with RFD with γ = 0.003 ± 0.15 mN m−1 in the bulk water phase.
The influence of the cutoff on the profiles of γ is not clearly established on Figures
5(b) and 5(d) regardless of the RF and RFD method. Very interestingly, we conclude
from Figure 5(d) that the RFD method makes it possible to reproduce the profile
calculated with the Ewald method assumed here as the reference method. The oscil-
lations are significantly reduced with RFD compared to RF. Actually, the fact that
these oscillations remain greater for RF originates from the strong correlations due
to the Coulombic interactions at short distances and the use of a damped function
erfc(αr)

r instead of 1
r which ensures faster convergence. When the long-range interac-

tions are explicitly calculated with Ewald or emulated with RFD, these correlations
disappear and the profiles become smoother. Since the RFD method is twice as fast
as the Ewald technique, the simulation of the solid-liquid interface could be done with
the RFD method to obtain accurate local structure and interfacial tension profiles.

We complete the study of the interface of water with a single layer of graphene
by considering a fully flexible graphene interface. The flexibility of the graphene is
considered by the Tersoff potential [23]. We do not observe any differences in the local
ordering with the nature of the interface as shown in Figure 6(a). The profiles of the
interfacial tensions do not show any significant different at this scale. The interfacial
tension calculated with the RFD method is slightly smaller with a flexible sheet (92.6
mN m−1) compared to that of a static layer of graphene (96.3 mN m−1, see Table 1)
but it remains within the range of statistical uncertainty.
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Figure 5. Molecular density profiles of the water molecules in the direction normal to the graphene sheet
calculated at different cutoff values with the a) RF and b) RFD techniques. The vertical dotted lines show

the z-positions of the peaks in the density profiles as shown in Figure 4(a); Local interfacial tension profiles
between the c) RF, d) RFD methods calculated at different cutoff radii. The density and surface tension profiles

calculated with the Ewald (EW) summation technique are shown for comparison. The statistical fluctuations

calculated as a function of z (see Figure A1) are shown at two typical z-positions, z = 7 and 24 Å in b) and d).

5. Interaction of water with a bilayer of graphene

We now turn our attention to the transferability of the method to another geometry.
We investigate then a structure formed by two layers of graphene. The distance be-
tween the graphene sheets was fixed to 3.32 Å. Figure 7(a) shows the molecular density
profiles of water along the z-direction for a single and a double layer of graphene cal-
culated with the RFD approach. First, we show that the presence of a second layer of
graphene does not change the layering of water molecules close to the surface with re-
spect to a monolayer. The description of the local interface tension with the bilayer of
graphene is similar with RDF and Ewald methods. The simulated interfacial tension,
given in Table 1, shows a significant decrease in this property of about 27 mN m−1

when duplicating the number of graphene layers. We obtain a reasonable agreement
between the different methods EW, RF and RFD on the calculation of γ taking into
account the statistical fluctuations. Given the geometry of the system, the negative
contribution provided by the presence of the second layer can be explained by less at-
tractive interactions between the water molecules of the two reservoirs on either side
of the graphene due to the increasing separation distance. The contact angle of water
should then increase with the number of layers [46].
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sheet by using the RFD method and rc = 12 Å. The statistical fluctuations calculated as a function of z (see
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6. Confinement of water in a carbon nanotube

We now focus on the molecular simulation of water molecules in a carbon nanotube
formed by 3280 carbon atoms with a pore radius of 13.4 Å. The box dimension along
the z-direction is fixed to 100.7 Å. The interfacial tensions profiles are calculated with
operational expressions for cylindric geometries [47] (see Appendix C). The local den-
sity of water inside the carbon nanotube is described in the same way with RDF and
EW methods suggesting that the RDF approach performs very well for confined sys-
tems. Both methods show an excellent agreement on the local values of the interfacial
tension inside the pore. The total interfacial tension, reported in Table 1 is equal to
138, 136.5 and 140.1 mN m−1 for RFD, RF and EW, respectively. This large value of
interfacial tension compared to those calculated in the planar geometries in this work
is the result of strong confined and oriented water molecules [48]. Once again, the
consistency of the interfacial tension calculation with RFD is demonstrated in relation
to the one performed with EW.

7. Summary

We took the route of simulating a system-size at which no size-effects are observed. In
order to reduce the prohibitive computational time with well-developed box dimen-
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sions, alternatives are possible in the choice of the method for calculating electrostatic
interactions. We did a comparison between truncated reaction field methods and the
widely used Ewald summation method. We also aimed to check the impact of the
choice of the cutoff radius on the calculation of the interfacial tension. The main re-
sult is that the intrinsic part of the interfacial tension does not show any dependence
on the cutoff radius contrary to what has been shown in liquid-vapour interfaces. We
conclude that the simulated graphene-water interfacial is in line with the experimental
water contact angle irrespective of the method (RF, RFD, Ewald) used. In addition,
we demonstrate here that the RFD technique leads to a profile of the interfacial tension
with much less oscillations and therefore closer to the one calculated with the Ewald
method. Finally, we recommend the use of the RFD method with a cutoff radius of 12
Å for the calculation of the electrostatic interactions in solid-liquid interfacial systems
with both a good reproduction of the structure and interfacial tension with a compu-
tational cost reduced by half. Our conclusions apply to isotropic planar surfaces (static
and flexible monolayer of graphene, a bilayer of graphene) and cylindric geometries.
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Appendix A. Statistical fluctuations calculated on the surface tension
profiles

Appendix B. Operational expression of γ calculated with TA in the
NpNAT ensemble.

In a classical system constituted by N identical particles of mass m defined by their
coordinates rN and momenta pN , the Gibbs free energy G is related to the partition
function QNpNAT by the following expression

G = −kBT lnQNpNAT (B1)

= −kBT ln

(
1

Λ3NN !Vo

∫ ∫
drNdV exp

(
−U(rN ) + pNV

kBT

))
(B2)

where Vo is an arbitrary unit of volume that makes the partition function dimen-
sionless and rN is the potential energy and pN is the normal pressure of the system.
Λ is the de Broglie thermal wavelength. The surface tension γ is defined as the ther-
modynamic derivative of the Gibbs free energy with respect to the interacial area A
as

γ =

(
∂G

∂A

)
NpNAT

= −kBT
1

Q

(
∂Q

∂A

)
NpNAT

(B3)

γ =

〈(
∂U(rN )

∂A

)
+ pN

(
∂V

∂A

)〉
NpNAT

(B4)

The calculation of the second term of the right-hand side of Eq.(B4) requires to
express the derivative of the volume with respect to A according to

dV = LzdA+AdLz =

(
∂V

∂A

)
Lz

dA+

(
∂V

∂Lz

)
A

dLz (B5)

with (
∂V

∂A

)
Lz

= Lz and

(
∂V

∂Lz

)
A

= A (B6)

The different partial derivatives relating the variables V , A and Lz obey to the
following equation

(
∂V

∂A

)
Lz

.

(
∂Lz

∂V

)
A

.

(
∂A

∂Lz

)
V

= −1 (B7)

From Eq.(B7), it turns out that the derivative
(
∂V
∂A

)
A
does not exist. It then follows
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that
(
∂V
∂A

)
A
= 0. The surface tension of Eq.(B4) becomes

γNpNAT =

〈(
∂U(rN )

∂A

)
A

〉
(B8)

=

〈(
∂U(rN )

∂A

)
Lz

+ pNLz

〉
(B9)

= lim
ξ→0

〈(
(U (1)(r′N , ξ)− U (0)(rN ))

A
[
(1± ξ)−1/2 − 1

] )
+ pNLz

〉
0

(B10)

where the angular brackets denote an average over the NpNAT ensemble.

Appendix C. Operational expression for the calculation of γ in cylindrical
geometries

C.1. Calculation of the intrinsic part of the surface tension

The intrinsic part of the surface tension is calculated by using the non-exponential
form [5] of the test-area (TA) method [44]. In this thermodynamic definition, γI is
expressed as

(
∂F
∂A

)
N,V,T

where F is the free energy, A the surface area N the number

of molecules and V the volume. Calculation [2] of ∂F
∂A is performed from an explicit

derivation γI =
〈
∂U
∂A

〉
N,V,T

where U is the configurational energy. This expression

is approximated through a finite difference such that γ =
〈
∂U
∂A

〉
N,V,T

=
〈
∆U
∆A

〉
N,V,T

where ∆U is the difference of the energy between both states 0 and 1 characterized
by surface areas A0 and A0 ± ∆A, respectively. Keeping the volume constant leads

to the following anisotropic transformations: L
(1)
α = L

(0)
α

√
1± ξ, with α =x or y and

L
(1)
z = L

(0)
z /(1± ξ) where ξ is the perturbation length as ξ → 0 and L the box length.

The area of a cylindrical interface is defined by A = 2πReLz and ∆A =
A
[
(1± ξ)−1/2 − 1

]
, where Re is the radius of the equimolar dividing surface. Re is

calculated from the radial density profile (ρ(r)) from R2
e = 1

ρv−ρl

∫∞
0 r2 dρ(r)dr dr where

ρv and ρl are the vapor and liquid densities, respectively. This choice is arbitrary and
other definitions are possible such as a fit of the density profile by using a hyperbolic
tangent function. Therefore, the surface tension (γI) is given by

γI =

(
∂F

∂A

)
N,V,T

= lim
ξ→0

〈(
(U (1)(r′N )− U (0)(rN ))

∆A

)〉
0

(C1)

where U (0)(rN ) and U (1)(r′N ) are the configurational energies of the reference and

perturbed states, respectively. rN and r′N are the configurational space for both states.
< ... >0 means that the average is performed over the reference state. A local version
of Eq. (C1) can be obtained by assuming a decorrelation of the cylindrical slabs [50]
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γI(Rk) = lim
ξ→0

〈
N∑
i=1

N∑
j>i

H(Rik)

(
(u

(1)
Rk

(rij)− u
(0)
Rk

(rij))

∆A

)〉
0

(C2)

where k is the index of the cylindrical slab, Rk the radius of the cylindrical shell, uRk

is the energy of the kth element, H(Rik) is the Heaviside function with H(Rik) = 1
for Ri = Rk and 0 otherwise and rij is the distance between molecules i and j.

C.2. Calculation of the long-range corrections to the surface tension

Since the operational expression of the TA method uses the configurational energy, the
long-range corrections (LRC) to the energy are then used to build the tail corrections
of the surface tension. Since we use the non-exponential form of the TA method for
the calculation of the intrinsic part, we keep the same formalism for the calculation
of the long-range corrections. Thus, the local LRC contribution of the surface tension
(γLRC) can be expressed by

γLRC(Rk) = lim
ξ→0

〈(
(uLRC(Rk)

(1) − uLRC(Rk)
(0))

∆A

)〉
0

,

γLRC =
∑
k

γLRC(Rk) (C3)

where uLRC(Rk) is the LRC energy of the kth element (Rk). For the configurational
energy the local LRC for each molecule i can be expressed in spherical coordinates as

ui,LRC =
1

2

∫ ∞

rc

dr

∫ π

0
dθ

∫ 2π

0
dϕρ(r)u(r)r2 sin θ (C4)

where the factor 1
2 avoids a double accounting. For a system with a cylindrical inter-

face, density and other properties change only in the radial direction to the interface.
Thus, Eq. (C4) can be expressed as

ui,LRC =

∫ ∞

rc

dr

∫ 2π

0
dϕu(r)r2ρ(Ri + r sinϕ) (C5)

Thus, the LRC energy of the kth element can be written as

uLRC(Rk) =

N∑
i=1

H(Rik)ui,LRC (C6)
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Figure D1. Local interfacial tensions of water molecules interacting with a graphene monolayer calculated

with RFD and a cutoff radius of 12 Å. The profiles of the LJ and electrostatic parts are represented for
comparison. The interfacial tensions are read on the right axis.

Appendix D. Contributions of Lennard-Jones and electrostatic
contributions to the interfacial tension
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