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Abstract. In this work, we focus on a complex variant of the so-called Routing and Spec-
trum Assignment problem (RSA), namely the Constrained-Routing and Spectrum Assign-
ment (C-RSA). The C-RSA problem is a key issue when dimensioning and managing a new
generation of optical networks, called spectrally flexible optical networks. It is well known to
be NP-hard and can be stated as follows. Consider a spectrally flexible optical network as an
undirected, loopless, and connected graph G, and an optical spectrum S of available contigu-
ous frequency slots, and a multiset of traffic demands K. The C-RSA consists of assigning
for each traffic demand k ∈ K a path in G and an interval of contiguous frequency slots in S
subject to technological constraints while optimizing some linear objective function(s). The
main aim of our work is to introduce a new extended integer linear programming based on
the so-called path formulation for the C-RSA. This formulation has an exponential number
of variables. A column generation algorithm is then used to solve its linear relaxation. To
do so, we investigate the structure and properties of the associated pricing problem. We
further identify several classes of valid inequalities for the associated polytope and devise
their separation procedures. Based on this, we devise Branch-and-Price (B&P) and Branch-
and-Cut-and-Price (B&C&P) algorithms to solve the problem. We give at the end a detailed
behavior study of these algorithms.

Keywords: Spectrally flexible optical network, network design, constrained-routing, spec-
trum assignment, complexity, ILP, pre-processing, valid inequality, separation, column gener-
ation, branch-and-price algorithm, branch-and-cut-and-price algorithm, conflict-graph, thresh-
old graph, interval graph, perfect graph, intersection graph, primal heuristic, metaheuristics,
heuristic, greedy-algorithm, dynamic programming algorithm, branching rules.

1 Introduction

The second decade of a new millennium saw a profound change in optical transport networks
with continuous growth in bandwidth capacity due to the growth of global communication services
and networking: mobile internet network (e.g., 5th generation mobile network), cloud computing
(e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social networks)
[6], etc... Therefore, a new generation of optical transport network architecture called Spectrally
Flexible Optical Networks (SFONs) has been introduced as promising technology because of their
flexibility and efficiency compared with the traditional Optical Wavelength Division Multiplexing
(WDM)[55][56]. In SFONs the optical spectrum is divided into slots having the same frequency of
12.5 GHz where WDM uses 50 GHz as recommended by ITU-T [1]. We refer the reader to [42] for
more information about the architectures, technologies, and control of SFONs.
The Routing and Spectrum Assignment (RSA) problem plays an important role when dimensioning
and designing SFONs. It consists of assigning for each traffic demand k, a physical optical path,
and an interval of contiguous slots (called also channels) while optimizing some linear objective(s)
and satisfying the following constraints [24]:

? This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project
FLEXOPTIM.
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1. spectrum contiguity : an interval of contiguous slots should be allocated to each traffic demand
k with a width equals to the number of slots requested by demand k;

2. spectrum continuity : the interval of contiguous slots allocated to each traffic demand stills the
same along the chosen path;

3. non-overlapping spectrum: the intervals of contiguous slots of traffic demands whose paths are
not edge-disjoints in the network cannot share any slot over the shared edges.

In general, the routing and resources allocation in communication networks receives increasing
attention. In particular, numerous research studies have been conducted on the RSA problem
since its first appearance. From a complexity point of view, the RSA is known to be an NP-hard
problem [64] [67]. Various integer linear programming formulations based on the so-called path
formulation and edge-node formulation and algorithms have been proposed to solve it. A detailed
survey of spectrum management techniques for SFONs is presented in [67] where authors classified
variants of the RSA problem into two variants: offline and online RSA. The edge-path formulation
is majorly used in the literature where variables are associated with all possible physical optical
paths inducing a huge number of variables and constraints which grow exponentially and in parallel
with the growth of the instance size: number of demands, number of slots, spectrum-width and
topology size [24]. To the best of our knowledge, we observe that several papers which use the
edge-path formulation to solve RSA problem, use a set of precomputed-paths without guaranty of
optimality e.g. in [9], [35], [36], [68], [70]. On the other hand, column generation has been applied
by Klinkowski et al. in [60] and Jaumard et al. in [28] to solve the relaxed problem of RSA taking
into account all the possible paths for each traffic demand. To improve the lower bound of the RSA
relaxation, Klinkowsky et al. proposed in [37] a valid inequality based on clique inequality separated
by a branch-and-bound algorithm. On the other hand, branch-and-cut-and-price method has been
applied to guarantee the optimality using the edge-path formulation for the RSA problem by
Klinkowski et al. in [38] introducing one valid inequality based on the so-called clique inequalities.
On the other hand, a compact formulation based on the so-called edge-node formulation has been
introduced as an alternative for the edge-path formulation to solve routing issues in general with
the guarantee of optimality. The edge-node formulation overcomes the drawbacks of the edge-path
formulation usage, which holds a polynomial number of variables and constraints that grow only
polynomially with the size of the instance. We found just a few works in the literature that use the
edge-node formulation to solve the RSA problem e.g. [3], [68], [70]. Several edge-node formulations
have been compared by Bertero et al. in [2].
However, all these proposals’ formulations and exact algorithms were not able to solve large-scale
instances of this problem to optimality. Therefore, several heuristics have been proposed to solve
the RSA problem by Ding et al. in [15], Mesquita et al. in [48], Santos et al. in [63], and recently by
He et al. in [27]. Mahala et al. proposed in [47] a greedy algorithm to solve the problem. Moreover,
metaheuristics have applied also to solve the RSA problem, we found for example tabu search
algorithm proposed by Goscien et al. in [21], simulated annealing algorithm by Klinkowski et al. in
[38], genetic algorithms by Gong et al. in [20], Hai et al. in [25][26], and ant colony algorithms by
Lezama et al. in [39]. Based on this, a hybrid meta-heuristic approach has been applied by Ruiz in
[59] to solve large-sized instances of the RSA problem. Furthermore, we noticed also that artificial
intelligence algorithms can be used to boost the performance of the proposals’ algorithms used to
solve the RSA problem, see for example the work of Liu et al. in [40] and Lohani et al. in [41].
Moreover, some techniques related to the learning aspect are also used to improve the efficiency of
the algorithms proposed using deep-learning algorithms [5], and also machine-learning algorithms
in [62], and recently in [69] and [23].
In this paper, we are interested in the Constrained-Routing and Spectrum Assignment (C-RSA)
problem. Here we suppose that the network should also satisfy the transmission-reach constraint
that is the route for each traffic demand should not exceed a certain length. Recently, Hadhbi et
al. in [24] introduced a cut formulation to solve the C-RSA problem based on the so-called cut
inequalities that are separable in polynomial time using network flow algorithms. It has been used
by Chouman et al. in [7] and [8] to show the impact of several objective functions on the optical
network state. Computational results show that their formulation solves larger instances compared
with those of Velasco et al. in [68] and Cai et al. [3]. Note that the transmission-reach constraint
has not been taken into account by Velasco et al. in [68], Cai et al. [3], and Bertero et al. in [2].
On the other hand, Colares et al. in [11] propose a compact formulation for the C-RSA problem
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based on the edge-node formulation. It can be seen as a reformulation of the cut formulation
proposed by Hadhbi et al. in [24] using an oriented graph.

2 Our Contributions

Since that the exact algorithms developed were not able to solve large instances of RSA and C-RSA
to optimality, it has been found appropriate to propose new tractable integer linear programming
formulations for the C-RSA problem, design and develop efficient exact algorithms that may offer
promise improvements over the existing methods. To the best of our knowledge, a cutting-plane-
based approach has not yet been the subject of a substantial body of recent research concerning the
issue of the C-RSA problem. For that, the main aim of our work is to investigate the thoroughly
theoretical properties of the C-RSA problem. To this end, we aim to introduce a new integer linear
programming based on the so-called path formulation for the C-RSA problem. This formulation
is characterized by an exponential number of variables. We, therefore, use the column generation
algorithm to solve its linear relaxation. To do so, we investigate the properties of the associated
pricing problem and prove that it is equivalent to the so-called resource constrained shortest path
problem, which is well known to be NP-hard. For this, we propose a pseudo-polynomial time
algorithm using dynamic programming adapted to our problem. We further identify several classes
of valid inequalities using some conflict graphs related to the problem: clique inequalities, odd-hole
inequalities, and some cover inequalities related to the capacity constraints. We then devise their
separation procedures based on exact algorithms, greedy algorithms, and heuristics [22]. Using
the path formulation and the separation procedures, we develop Branch-and-Price (B&P) and
Branch-and-Cut-and-Price (B&C&P) algorithms to solve the problem. Furthermore, we boost its
effectiveness through some enhancements to obtain tighter primal bounds based on a warm-start
algorithm based on some metaheuristics: simulated annealing and tabu search algorithms which
push a feasible integral solution (if possible) in the root of our B&C&P algorithm before the
start of the resolution of C-RSA, and also a primal-heuristic based on a hybrid method between a
greedy algorithm and a local search algorithm to construct a feasible integral solution from a given
fractionally solution in each node of the B&P and B&C&P trees.

3 Organization

The rest of this paper is organized as follows. In Section (4), we present the C-RSA problem (input
and output). In Section (5), we provide some notations that are useful throughout this paper. After
that, we introduce our path formulation based on the so-called path variables. It can be seen as a
reformulation for our cut formulation proposed in [12],[13] and [14]. In Section (6), we thoroughly
investigate the theoretical properties of the C-RSA problem by providing several valid inequalities
for the associated polyhedron. Based on the results of sections (5)-(6), we give an outline of our
Branch-and-Price and Branch-and-Cut-and-Price algorithms in the section (8). We close with a
brief summary of results and future outlook.

4 The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider
a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V,E),
which is specified by a set of nodes V , and a multiset 4 E of links (optical-fibers). Each link
e = ij ∈ E is associated with a length `e ∈ R+ (in kms), a cost ce ∈ R+ such that each fiber-link
e ∈ E is divided into s̄ ∈ N+ slots. Let S = {1, . . . , s̄} be an optical spectrum of available frequency
slots with s̄ ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz
[29], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node

4 We take into account the presence of parallel fibers such that two edges e, e′ which have the same
extremities i and j are independents.

5 We take into account that we can have several demands between the same origin-node and destination-
node.
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ok ∈ V , a destination node dk ∈ V \{ok}, a slot-width wk ∈ Z+, and a transmission-reach ¯̀
k ∈ R+

(in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (ok,dk)-path pk
in G such that

∑
e∈E(pk) le ≤ l̄k, where E(pk) denotes the set of edges belong the path pk, and a

subset of contiguous frequency slots Sk ⊂ S of width equal to wk such that Sk ∩ Sk′ = ∅ for each
pair of demands k, k′ ∈ K (k 6= k′) with E(pk) ∩ E(pk′) 6= ∅ so the total length of the paths used
for routing the demands (i.e.,

∑
k∈K

∑
e∈E(pk) le) is minimized.

Figure 2 shows the set of established paths and spectrums for the set of demands {k1, k2, k3, k4}
(Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) such that
each edge e is characterized by a triplet [le, ce, s̄], and optical spectrum S = {1, 2, 3, ..., 8, 9} with
s̄ = 9.

Fig. 1. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4}
defined in Table 2(b).

Before introducing our ILP, we proceeded to some pre-processing techniques to identify some
properties due to the transmission-reach and capacity constraints as follows.
For each demand k and each node v, one can compute a shortest path between each of the pair of
nodes (ok, v), (v, dk). If the lengths of the (ok, dk)−paths formed by the shortest paths (ok, v) and
(v, dk) are both greater that l̄k then node v cannot be in a path routing demand k, and we then say
that v is a forbidden node for demand k due to the transmission-reach constraint. Let V k0 denote the
set of forbidden nodes for demand k ∈ K. Note that using Dijkstra’s algorithm, one can identify in
polynomial time the forbidden nodes V k0 for each demand k ∈ K. On the other hand and regarding
the edges, for each demand k and each edge e = ij, one can compute a shortest path between each
of the pair of nodes (ok, i), (j, dk), (ok, j) and (i, dk). If the lengths of the (ok, dk)−paths formed by
e together with the shortest (ok, i) and (j, dk) (resp. (ok, j) and (i, dk)) paths are both greater that
l̄k then edge ij cannot be in a path routing demand k, and we then say that ij is a forbidden edge
for demand k due to the transmission-reach constraint. Let Ekt denote the set of forbidden edges
due to the transmission-reach constraint for demand k ∈ K. Note that using Dijkstra’s algorithm,
one can identify in polynomial time the forbidden edges Ekt for each demand k ∈ K. This allows
us to create in polynomial time a proper topology Gk for each demand k by deleting the forbidden
nodes V k0 and forbidden edges Ekt from the original graph G (i.e., Gk = G(V \ V k0 , E \Ekt )). As a
result, there may exist some forbidden-nodes due to the elementary-path constraint which means
that all the (ok, dk)−paths passed through a node v are not elementary-paths. This can be done in
polynomial time using Breadth First Search (BFS) algorithm of complexity O(|E \Ek0 |+ |V \V k0 |)
for each demand k. Note that we did not take into account this case in our study.
Let δGk

(v) denote the set of edges incident with a node v for the demand k in Gk. Let δk(W )
denote a cut for demand k ∈ K in Gk such that ok ∈ W and dk ∈ V \W where W is a subset of
nodes in V of Gk. Let f be an edge in δ(W ) such that all the edges e ∈ δ(W ) \ {f} are forbidden
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for demand k. As a consequence, edge f is an essential edge for demand k. As the forbidden edges,
the essential edges can be determined in polynomial time using network flows as follows.

1. we create a proper topology Gk = G(V \ V k0 , E \ Ekt ) for the demand k
2. we fix a weight equals to 1 for all the edges e in E \ Ekt for the demand k in Gk
3. we calculate ok − dk min-cut which separates ok from dk.
4. if δGk

(W ) = {e} then the edge e is an essential edge for the demand k such that ok ∈ W and
dk ∈ V \W . We increase the weight of the edge e by 1. Go to (3).

5. if |δGk
(W )| > 1 then end of algorithm.

Let Ek1 denote the set of essential edges of demand k, and Ke denote a subset of demands in K
such that edge e is an essential edge for each demand k ∈ Ke. Figure 4 shows the proper-topology
Gk for a demand k between the two nodes ok = a and dk = g with l̄k = 4 by deleting V k0 nodes
and Ek0 edges from G.

Fig. 2. Proper-topology Gk for a given demand k between ok = a and dk = g with l̄k = 4.

In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there
may exist some edges that may be forbidden because of lack of resources for demand k. This is the
case when, for instance, the residual capacity of the edge in question does not allow a demand to
use this edge for its routing, i.e., wk > s̄−

∑
k′∈Ke

wk′ . Let Ekc denote the set of forbidden edges for

demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges Ekc and forbidden
nodes v in V with δ(v) ⊆ Ekt ∪ Ekc , should also be deleted from the proper graph Gk of demand
k, which means that Gk contains |E| \ |Ekt ∪Ekc | edges and |V | \ |{v ∈ V, δ(v) ⊆ Ekt ∪Ekc }| nodes.
Let Ek0 = Ekt ∪Ekc denote the set of all forbidden edges for demand k that can be determined due
to the transmission reach and resources constraints. As a result of the pre-processing stage, some
non-compatibility between demands may appear due to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k′ with e /∈ Ek0 ∪ Ek1 ∪ Ek
′

0 ∪ Ek
′

1 , are said
non-compatible demands because of lack of resources over the edge e if and only if the the residual
capacity of the edge e does not allow to route the two demands k, k′ together through e, i.e.,
wk + wk′ > s̄ −

∑
k”∈Ke

wk”. Let Ke
c denote the set of pair of demands (k, k′) in K that are

non-compatibles for the edge e.

In the next section, we introduce our path formulation.

5 The C-RSA Integer Linear Programming Formulation

Let P k denote the set of all feasible (ok,dk) paths in G such that for each demand k ∈ K, we have∑
e∈E(pk)

le ≤ l̄k, for all pk ∈ P k.

Our path formulation is based on one family of variables. We consider for k ∈ K and p ∈ P k and
s ∈ S, a variable ykp,s which takes 1 if slot s is the last slot allocated along the path p for the
routing of demand k and 0 if not, such that s represents the last slot of the interval of contiguous
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slots of width wk allocated by the demand k ∈ K, with s ∈ S and p ∈ P k. Note that all the slots
s′ ∈ {s − wk + 1, ..., s} should be assigned to demand k along the path p whenever ykp,s = 1. Let

P k(e) denote set of all admissible (ok,dk) paths going through the edge e in G for the demand k.
The C-RSA is then equivalent to the following integer linear programming

min
∑
k∈K

∑
p∈Pk

∑
e∈E(p)

s̄∑
s=wk

ley
k
p,s, (1)

subject to

∑
p∈Pk

wk−1∑
s=1

ykp,s = 0,∀k ∈ K, (2)

∑
p∈Pk

s̄∑
s=wk

ykp,s = 1,∀k ∈ K, (3)

∑
k∈K

∑
p∈Pk(e)

s+wk−1∑
s′=s

ykp,s′ ≤ 1,∀e ∈ E,∀s ∈ S, (4)

ykp,s ≥ 0,∀k ∈ K,∀p ∈ P k,∀s ∈ S, (5)

ykp,s ∈ {0, 1},∀k ∈ K,∀p ∈ P k,∀s ∈ S. (6)

Inequalities (2) express the fact that a demand k ∈ K cannot occupy a slot s as the last slot before
her slot-width wk. Inequalities (3) express the routing and spectrum constraints such that they
ensure that exactly one slot s ∈ {wk, . . . , s̄} is assigned as last slot for the routing of demand k,
and exactly one single path from P k is allocated by each demand k ∈ K. Note that a slot s ∈ S is
said an allocated slot by the demand k if and only if

∑
p∈Pk

∑s+wk−1
s′=s ykp,s′ = 1 which means that

s is covered by the interval of contiguous slots allocated by demand k. Inequalities (4) ensure that
a slot s over the edge e cannot be allocated to at most by one demand k ∈ K. Inequalities (5) are
trivial inequalities, and constraints (6) are the integrality constraints.
Let P (G,K,S, PK) be the polytope, convex hull of the solutions for our path formulation (2)-(6).
In the remainder of this paper, we focus on the introduction of valid inequalities used to obtain
tighter LP bounds and some symmetry-breaking inequalities that allow avoiding the equivalents
sub-problems in the different enumeration trees.

6 Valid Inequalities

In what follows, we present several valid inequalities for P (G,K,S, PK) such that throughout each
proof, we take into account that 0 ≤ ykp,s ≤ 1 for each demand k ∈ K and path p ∈ P k and

s ∈ S, and
∑
p∈Pk

∑s̄
s=1 y

k
p,s ≤ 1 for each k ∈ K, and 0 ≤

∑
p∈Pk ykp,s ≤ 1 for each demand

k ∈ K and slot s ∈ S. Note that a slot s ∈ S is assigned to a demand k ∈ K if and only if∑
p∈Pk

∑min(s̄,s+wk−1)
s′=s ykp,s′ = 1. Let

(
n
k

)
denote the total number of possibilities to choose a k

element in a set of n elements. Let us denote by the symbole a � b iff b dominates a.

6.1 Edge-Interval-Cover Inequalities

Let’s first introduce some valid inequalities which can be seen as cover inequalities using some
notions of cover related to our problem.

Definition 2. An interval I = [si, sj ] represents a set of contiguous slots situated between the two
slots si and sj with j ≥ i+ 1 and sj ≤ s̄.

Definition 3. For an interval of contiguous slots I = [si, sj ], a subset of demands K ′ ⊆ K is said

a cover for the interval I = [si, sj ] if and only if
∑
k∈K̃ wk > |I| and wk < |I| for each k ∈ K̃.
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Definition 4. For an interval of contiguous slots I = [si, sj ], a cover K̃ is said a minimal cover

if K̃ \ {k} is not a cover for interval I = [si, sj ] for each demand k ∈ K̃, i.e.,
∑
k′∈K̃\{k} wk′ ≤ |I|

for each demand k ∈ K̃.

Based on these definitions, we introduce the following inequalities.

Proposition 1. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]

with j ≥ i+ 1. Let K̃ be a minimal cover for the interval I s.t.

–
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′ ,

– e /∈ Ek0 for each demand k ∈ K̃,
– K̃ ≥ 3,
– (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃.

Then, the inequality

∑
k∈K̃

∑
p∈Pk(e)

sj∑
s=si+wk−1

ykp,s ≤ |K̃| − 1, (7)

is valid for P (G,K,S, PK).

Proof. The interval I = [si, sj ] can cover at most |K̃|−1 demands given that K̃ is a minimal cover

for interval I = [si, sj ] over edge. It follows that if the demands K̃ pass together through the edge

e, there is at most |K̃| − 1 demands that can share the interval I over edge e.
We start our proof by assuming that the inequality (7) is not valid for P (G,K,S, PK). It follows
that there exists a C-RSA solution S in which {si + wk − 1, ..., sj} ∩ Sk = ∅ for a demand k ∈ K ′
s.t.

∑
k′∈K′\{k}

∑
p∈Pk′ (e)

sj∑
s=si+wk′−1

yk
′

p,s(S) ≥ |K ′|.

Since {si+wk−1, ..., sj}∩Sk = ∅ for a demand k ∈ K ′ this means that
∑
p∈Pk(e)

∑sj
s=si+wk−1 y

k
p,s(S) =

0, and taking into account that K ′ is minimal cover for the interval I = [si, sj ] over edge e, and∑
p∈Pk(e)

∑sj
s=si+wk−1 y

k
p,s(S) ≤ 1 for each demand k ∈ K ′, it follows that

∑
k′∈K′\{k}

∑
p∈Pk′ (e)

sj∑
s=si+wk′−1

yk
′

p,s(S) ≤ |K ′| − 1,

which contradicts what we supposed before. We conclude at the end that the inequality (7) is valid
for P (G,K,S, PK).

The inequality (7) can be strengthened by introducing its extended format of the minimal cover
K ′ for the interval I over edge e as follows.

Proposition 2. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]

with j ≥ i + 1. Let K̃ be a minimal cover for the interval I, and K̃e be a subset of demands in
Ke \ K̃ s.t.

–
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′ ,

– e /∈ Ek0 for each demand k ∈ K̃,
– K̃ ≥ 3,
– (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃,
– wk′ ≥ wk for each k ∈ K̃ and each k′ ∈ K̃e.
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Then, the inequality

∑
k∈K̃

∑
p∈Pk(e)

sj∑
s=si+wk−1

ykp,s +
∑
k′∈K̃e

∑
p∈Pk′ (e)

sj∑
s′=si+wk′−1

yk
′

p,s′ ≤ |K̃| − 1, (8)

is valid for P (G,K,S, PK).

Proof. Similar with what we did in the proof of the theorem 6.1.

More general, a strengthened inequality based on the inequality (7) can be defined using lifting
procedures proposed by Nemhauser and Wolsey in [49] without modifying its right-hand side.
By inspiration of the inequality (7), and based on the set of minimal cover with cardinality equal
to 2, we introduce valid inequalities defined as follows using some notions of graph theory related
to conflict graphs.

6.2 Edge-Interval-Clique Inequalities

Definition 5. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]

with si ≤ sj − 1. Consider the conflict graph G̃eI defined as follows. For each demand k ∈ K with

wk ≤ |I| and e /∈ Ek0 , consider a node vk in G̃eI . Two nodes vk and vk′ are linked by an edge in
G̃eI if wk + wk′ > |I| and (k, k′) /∈ Ke

c . This is equivalent to say that two linked nodes vk and vk′

means that the two demands k, k′ define a minimal cover for the interval I over edge e.

For an edge e ∈ E, the conflict graph G̃e is a threshold graph with threshold value equals to
t = s̄−

∑
k”∈Ke

wk” s.t. for eachnode vk with e /∈ Ek0 ∪Ek1 , we associate a positive weight w̃vk = wk
s.t. all two nodes vk and vk′ are linked by an edge if and only if w̃vk + w̃vk′ > t which is equivalent

to the conflict graph G̃e.

Proposition 3. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots. Let C

be a clique in the conflict graph G̃eI with |C| ≥ 3, and
∑
vk∈C wk ≤ s̄ −

∑
k′∈Ke\C wk′ . Then, the

inequality

∑
vk∈C

∑
p∈Pk(e)

sj∑
s=si+wk−1

ykp,s ≤ 1, (9)

is valid for P (G,K,S, PK).

Proof. It’s trivial given the definition of a clique set in the conflict graph G̃eI .

6.3 Interval-Clique Inequalities

Note that there may exist some cases that are not covered by the inequality (9). For this, we
provide the following inequality and its generalization.

Proposition 4. Consider an interval of contiguous slots I = [si, sj ] in S with si ≤ sj−1. Let k, k′

be a pair of demands in K with Ek1 ∩ Ek
′

1 6= ∅, and wk ≤ |I|, and wk′ ≤ |I|, and wk + wk′ > |I|.
Then, the inequality

∑
p∈Pk

sj∑
s=si+wk−1

ykp,s +
∑

p′∈Pk′

sj∑
s′=si+wk′−1

yk
′

p′,s′ ≤ 1, (10)

is valid for P (G,K,S, PK).

Proof. It is trivial given that the interval I = [si, sj ] cannot cover the two demands k, k′ shared
an essential edge with total sum of number of slots exceeds |I|. Furthermore, the inequality (10)
is a particular case of the inequality (9) for K̃ = {k, k′} over each edge e ∈ Ek1 ∩ Ek

′

1 . However, it
will be used for a generalized inequality as follows.
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Proposition 5. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with si ≤ sj − 1, and C

be a clique in the conflict graph G̃EI with |C| ≥ 3. Then, the inequality

∑
vk∈C

∑
p∈Pk

sj∑
s=si+wk−1

ykp,s ≤ 1, (11)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of clique set in the conflict graph G̃EI s.t. for all two linked
node vk and vk′ in G̃EI , we know from the inequality (10)

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s +

sj∑
s′=si+wk′−1

∑
p′∈Pk′

yk
′

p′,s′ ≤ 1.

By adding the previous inequalities for all two linked node vk and vk′ in the clique set C, we get

∑
vk

(|C| − 1)

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤ |C| − 1

=⇒
∑
vk

,

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤
|C| − 1

|C| − 1
=⇒

∑
vk∈C

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤ 1.

We conclude at the end that the inequality (11) is valid for P (G,K,S, PK).

6.4 Interval-Odd-Hole Inequalities

Given that the conflict graph G̃EI is not a perfect graph, one can use the so-called odd-hole to
strengthen the valid inequalities introduced previously as follows.

Proposition 6. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with si ≤ sj − 1, and H

be an odd-hole H in the conflict graph G̃EI with |H| ≥ 5. Then, the inequality

∑
vk∈H

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤
|H| − 1

2
, (12)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of odd-hole set in the conflict graph G̃EI . We strengthen
our proof as belows. For each pair of nodes (vk, vk′) linked in H by an edge, we know that∑sj
s=si+wk−1

∑
p∈Pk ykp,s +

∑sj
s′=si+wk′−1

∑
p′∈Pk′ yk

′

p′,s′ ≤ 1. Given that H is an odd-hole which

means that we have |H| − 1 pair of nodes (vk, vk′) linked in H, and by doing a sum for all pairs of
nodes (vk, vk′) linked in H, it follows that

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s +

sj∑
s′=si+wk′−1

∑
p′∈Pk′

yk
′

p′,s′ ≤ |H| − 1.

where E(H) denotes the set of edges in the sub-graph of the conflict graph G̃EI induced byH. Taking
into account that each node vk in H has two neighbors inH, this implies that

∑sj
s=si+wk−1

∑
p∈Pk ykp,s

appears twice in the previous inequality. As a result,

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s +

sj∑
s′=si+wk′−1

∑
p′∈Pk′

yk
′

p′,s′ =
∑
vk∈H

2

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s

=⇒
∑
vk∈H

2

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤ |H| − 1.
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By dividing the two sides of the previous sum by 2, it follows that

∑
vk∈H

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (12) is valid for P (G,K,S, PK).

The inequality (12) can be strengthened without modifying its right hand side by combining the
inequality (11) and (12) as follows.

Proposition 7. Consider an interval of contiguous slots I = [si, sj ] ⊆ S with si ≤ sj − 1. Let H

be an odd-hole H in the conflict graph G̃EI , and C be a clique in the conflict graph G̃EI with

– |H| ≥ 5,
– and |C| ≥ 3,
– and H ∩ C = ∅,
– and the nodes (vk, vk′) are linked in G̃EI for all vk ∈ H and vk′ ∈ C.

Then, the inequality

∑
vk∈H

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

∑
p′∈Pk′

yk
′

p′,s′ ≤
|H| − 1

2
, (13)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of odd-hole set and clique set in the conflict graph G̃EI s.t. if∑sj
s′=si+wk′−1

∑
p′∈Pk′ yk

′

p′,s′ = 1 for vk′ ∈ C, it forces the quantity
∑
vk∈H

∑sj
s=si+wk−1

∑
p∈Pk ykp,s

to be equal to 0. Otherwise, we know from the inequality (12) that the sum
∑
vk∈H

∑sj
s=si+wk−1

∑
p∈Pk ykp,s

is always smaller than |H|−1
2 . We strengthen our proof by assuming that the inequality (13) is not

valid for P (G,K,S, PK). It follows that there exists a C-RSA solution S in which {si + wk′ −
1, ..., sj} /∈ Sk′ for each demand k′ with node vk′ in the clique C s.t.

∑
vk∈H

sj∑
s=si+wk−1

∑
p∈Pk

ykp,s(S) +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

∑
p′∈Pk′

yk
′

p′,s′(S) >
|H| − 1

2
.

Since {si + wk′ − 1, ..., sj} /∈ Sk′ for each node vk′ in the clique C, this means that∑
vk′∈C

∑sj
s′=si+wk′−1

∑
p′∈Pk′ yk

′

p′,s′(S) = 0, and taking into account the inequality (12), and that∑sj
s=si+wk−1

∑
p∈Pk ykp,s(S) ≤ 1 for each vk ∈ H and

∑sj
s′=si+wk′−1

∑
p′∈Pk′ yk

′

p′,s′(S) ≤ 1 for

each vk′ ∈ C, it follows that
∑
vk∈H

∑sj
s=si+wk−1

∑
p∈Pk ykp,s(S) ≤ |H|−1

2 , which contradicts that∑
vk∈H

∑sj
s=si+wk−1

∑
p∈Pk ykp,s(S) + |H|−1

2

∑
vk′∈C

∑sj
s′=si+wk′−1

∑
p′∈Pk′ yk

′

p′,s′(S) > |H|−1
2 .

Hence
∑
vk∈H |Sk ∩ Ik|+

∑
vk′∈C

|Sk′ ∩ {si + wk′ − 1, ..., sj}| ≤ |H|−1
2 .

6.5 Edge-Slot-Assignment-Clique Inequalities

On the other hand, and based on the equations (3) and non-overlapping inequalities (4), we define
a new conflict graph which contains the conflict graphs G̃ES introduced previously as a sub-graph.

Definition 6. Let G̃eS be a conflict graph defined as follows. For each slot s ∈ {wk, ..., s̄} and
demand k ∈ K with e /∈ Ek0 , consider a node vk,s in G̃eS. Two nodes vk,s and vk′,s′ are linked by

an edge in G̃eS if and only if

– k = k′,
– or {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} 6= ∅ if k 6= k′ and (k, k′) /∈ Ke

c .

The conflict graph G̃eS is not a perfect graph given that some nodes vk,s and vk′,s′ are linked even
if the {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅, i.e., when k = k′.
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Proposition 8. Consider an edge e ∈ E. Let C be a clique in the conflict graph G̃eS with |C| ≥ 3,
and

∑
k∈C wk ≤ s̄−

∑
k′∈Ke\C wk′ . Then, the inequality∑

vk,s∈C

∑
p∈Pk(e)

ykp,s ≤ 1, (14)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of a clique set in the conflict graph G̃eS s.t. for each two
linked nodes vk,s and vk′,s′ in G̃eS , we know that the inequality∑

p∈Pk(e)

ykp,s +
∑

p′∈Pk′ (e)

yk
′

p′,s′ ≤ 1,

is valid for P (G,K,S, PK). By adding the previous inequalities for all two linked nodes vk,s and

vk′,s′ in G̃ES , we get

∑
vk,s

(|C| − 1)ykp,s ≤ |C| − 1 =⇒
∑
vk,s

ykp,s ≤
|C| − 1

|C| − 1
=⇒

∑
vk,s

ykp,s ≤ 1,

which ends our proof.

Remark 1. The inequality (14) associated with a clique C over edge e, it is dominated by the
inequality (4) associated with the slot s̃ and a subset of demands K̃ over edge e if and only if
s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C.

Proof. Consider an edge e ∈ E. Let s̃ be a slot in S, and C be a clique in the conflict graph G̃eS ,
and K̃ = {k ∈ K s.t. vk,s ∈ C} be a subset of demands in K with e /∈ Ek0 for each k ∈ K̃.
Neccessity.
First, assume that s̃ ∈ {s−wk + 1, ..., s}∩{s′−wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C.
Taking into account that |{s−wk+1, ..., s}| = wk for each node vk,s in C, and s̃ ≥ s−wk+1 and s̃ ≤
s for each k ∈ K̃, it follows that s ∈ {s̃, ...s̃+ wk − 1} for each node vk,s in C. It follows that

∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃

∑
p∈Pk(e)

ykp,s′ =
∑
k∈K̃

∑
p∈Pk(e)

ykp,s +
∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃
s′ 6=s
vk,s∈C

∑
p∈Pk(e)

ykp,s′ . (15)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, this means that∑
k∈K̃

∑
p∈Pk(e)

ykp,s =
∑

vk,s∈C

∑
p∈Pk(e)

ykp,s.

This implies that

∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃

∑
p∈Pk(e)

ykp,s′ =
∑

vk,s∈C

∑
p∈Pk(e)

ykp,s +
∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃
s′ 6=s
vk,s∈C

∑
p∈Pk(e)

ykp,s′

=⇒
∑

vk,s∈C

∑
p∈Pk(e)

ykp,s �
∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃

∑
p∈Pk(e)

ykp,s′ .

As a result, the inequality (14) is dominated by the inequality (4).
Sufficiency.
Assume that the inequality (14) associated with the clique C over edge e, it is dominated by the
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inequality (4) associated with the slot s̃ and subset of demands K̃ over edge e, and taking into
account that K̃ = {k ∈ K s.t. vk,s ∈ C}. We have

∑
vk,s∈C

∑
p∈Pk(e)

ykp,s �
∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃

∑
p∈Pk(e)

ykp,s′ =⇒
∑
k∈K̃

∑
p∈Pk(e)

ykp,s �
∑
k∈K̃

min(s̃+wk−1,s̄)∑
s′=s̃

∑
p∈Pk(e)

ykp,s′

=⇒
∑

p∈Pk(e)

ykp,s �
min(s̃+wk−1,s̄)∑

s′=s̃

∑
p∈Pk(e)

ykp,s′ for each k ∈ K̃

=⇒ s ∈ {s̃, ...,min(s̃+ wk − 1, s̄)} for each k ∈ K̃
=⇒ s ∈ {s̃, ...,min(s̃+ wk − 1, s̄)} for each node vk,s ∈ C,

=⇒ s ≥ s̃ and s ≤ s̃+ wk − 1 =⇒ s− wk + 1 ≤ s̃ ≤ s for each node vk,s ∈ C,
=⇒ s̃ ∈ {s− wk + 1, ..., s} for each node vk,s ∈ C.

It follows that s̃ ∈ {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
that which was to be demonstrated, and which ends our proof.

Remark 2. The inequality (14) associated with a clique C over edge e, it is dominated by the
inequality (9) associated with an interval I = [si, sj ] and the subset of demands K̃ over edge e iff

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Proof. Consider an edge e ∈ E, and an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let C be a

clique in the conflict graph G̃eS , and K̃ = {k ∈ K s.t. vk,s ∈ C} be a subset of demands in K with

– wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃,

– and
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′ ,

– and e /∈ Ek0 , and wk ≤ |I| for each demand k ∈ K̃.

Necessity
First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈C

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈C

s′ for each vk,s ∈ C, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ C, it follows that s ∈ Ik for each vk,s ∈ C of demand

k ∈ K̃. As a result, we get that∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′ =
∑
k∈K̃

∑
p∈Pk(e)

ykp,s +
∑
k∈K̃

∑
s′∈Ik\{s}

∑
p∈Pk(e)

ykp,s′ . (16)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, this means that∑
k∈K̃

∑
p∈Pk(e)

ykp,s =
∑

vk,s∈C

∑
p∈Pk(e)

ykp,s.

This implies that∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′ =
∑

vk,s∈C

∑
p∈Pk(e)

ykp,s +
∑
k∈K̃

∑
s′∈Ik\{s}

∑
p∈Pk(e)

ykp,s′

=⇒
∑

p∈Pk(e)

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′ .
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Hence, the inequality (14) is dominated by the inequality (9).
Sufficiency.
Assume that the inequality (14) associated with the clique C over edge e, it is dominated by the
inequality (9) associated with the interval I = [si, sj ] and the subset of demands K̃ over edge e.

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, it follows that∑
vk,s∈C

∑
p∈Pk(e)

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′ =⇒
∑
k∈K̃

∑
p∈Pk(e)

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′

=⇒
∑

p∈Pk(e)

ykp,s �
∑
s′∈Ik

∑
p∈Pk(e)

ykp,s′ for each k ∈ K̃ =⇒ s ∈ Ik for each k ∈ K̃

=⇒ s ∈ Ik for each node vk,s ∈ C =⇒ s− wk + 1 ∈ I for each node vk,s ∈ C
=⇒ min

vk,s∈C
(s− wk + 1) ∈ I and max

vk,s∈C
s ∈ I for each node vk,s ∈ C

=⇒ [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ Ik′ of each pair of demands
k, k′ ∈ K̃. It follows that {s−wk + 1, ..., s}∩ {s′−wk′ + 1, ..., s} 6= ∅ for each pair (vk,s, vk′,s′) ∈ C
since s ∈ Ik and s′ ∈ Ik′ . We conclude at the end that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I,

which ends our proof.

6.6 Edge-Slot-Assignment-Odd-Hole Inequalities

The conflict graph G̃eS is not a perfect graph given that some nodes vk,s and vk′,s′ are linked even if
the {s−wk+1, ..., s}∩{s′−wk′+1, ..., s′} = ∅, i.e., when k = k′. As a result, we define the following
inequalities based on the so-called odd-hole inequalities that may allow us to obtain tighter LP
bounds.

Proposition 9. Let H be an odd-hole in the conflict graph G̃eS with |H| ≥ 5. Then, the inequality∑
vk,s∈H

∑
p∈Pk(e)

ykp,s ≤
|H| − 1

2
, (17)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of the odd-hole in the conflict graph G̃eS . We strengthen
our proof as belows. For each pair of nodes (vk,s, vk′,s′) linked in H by an edge, we know that∑
p∈Pk(e) y

k
p,s +

∑
p′∈Pk′ (e) y

k′

p′,s′ ≤ 1. Given that H is an odd-hole which means that we have

|H|−1 pair of nodes (vk,s, vk′,s′) linked in H, and by doing a sum for all pairs of nodes (vk,s, vk′,s′)
linked in H, it follows that ∑

(vk,s,vk′,s′ )∈E(H)

∑
p∈Pk(e)

ykp,s +
∑

p′∈Pk′ (e)

yk
′

p′,s′ ≤ |H| − 1.

Taking into account that each node vk in H has two neighbors in H, this implies that
∑
p∈Pk ykp,s

appears twice in the previous inequality. As a result,∑
(vk,s,vk′,s′ )∈E(H)

∑
p∈Pk(e)

ykp,s +
∑

p′∈Pk′ (e)

yk
′

p′,s′ =
∑

vk,s∈H
2
∑

p∈Pk(e)

ykp,s =⇒
∑

vk,s∈H
2
∑

p∈Pk(e)

ykp,s ≤ |H| − 1

=⇒
∑

vk,s∈H

∑
p∈Pk(e)

ykp,s ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (17) is valid for P (G,K,S, PK).
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Note that the inequality (17) can be strengthened without modifying its right hand side by com-
bining the inequality (17) and (14).

Proposition 10. Let H be an odd-hole, and C be a clique in the conflict graph G̃eS with

– |H| ≥ 5,
– and |C| ≥ 3,
– and H ∩ C = ∅,
– and the nodes (vk,s, vk′,s′) are linked in G̃eS for all vk,s ∈ H and vk′,s′ ∈ C.

Then, the inequality∑
vk,s∈H

∑
p∈Pk(e)

ykp,s +
|H| − 1

2

∑
vk′,s′∈C

∑
p′∈Pk′ (e)

yk
′

p′,s′ ≤
|H| − 1

2
, (18)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of the odd-hole and clique in G̃eS s.t. if
∑
vk′,s′∈C

∑
p′∈Pk′ (e) y

k′

p′,s′ =

1 for a vk′,s′ ∈ C ∈ C which implies that the quantity
∑
vk,s∈H

∑
p∈Pk(e) y

k
p,s is forced to be equal

to 0. Otherwise, we know from the inequality (17) that the sum
∑
vk,s∈H

∑
p∈Pk(e) y

k
p,s is always

smaller than |H|−1
2 . We strengthen our proof by assuming that the inequality (18) is not valid for

P (G,K,S, PK). It follows that there exists a C-RSA solution S in which s′ /∈ Sk′ for each node
vk′,s′ in the clique C s.t.∑

vk,s∈H
ykp,s(S) +

|H| − 1

2

∑
vk′,s′∈C

yk
′

p′,s′(S) >
|H| − 1

2
.

Since s′ /∈ Sk′ for each node vk′,s′ in the clique C this means that
∑
vk′,s′∈C

∑
p′∈Pk′ (e) y

k′

p′,s′(S) = 0,

and taking into account the inequality (17),
∑
p∈Pk(e) y

k
p,s(S) ≤ 1 for each vk,s ∈ H, and that∑

p′∈Pk′ (e) y
k′

p′,s′(S) ≤ 1 for each vk′,s′ ∈ C, it follows that

∑
vk,s∈H

∑
p∈Pk(e)

ykp,s(S) ≤ |H| − 1

2
,

which contradicts that
∑
vk,s∈H

∑
p∈Pk(e) y

k
p,s(S) + |H|−1

2

∑
vk′,s′∈C

∑
p′∈Pk′ (e) y

k′

p′,s′(S) > |H|−1
2 .

Hence
∑
vk,s∈H |Sk ∩ {s}|+

∑
vk′,s′∈C

|Sk′ ∩ {s′}| ≤ |H|−1
2 .

6.7 Slot-Assignment-Clique Inequalities

Note that there may exist some cases that are not covered by the inequalities (14)-(17). For this,
we provide the following definition of a conflict graph and its associated inequality.

Definition 7. Let G̃ES be a conflict graph defined as follows. For all slot s ∈ {wk, ..., s̄} and demand
k ∈ K, consider a node vk,s in G̃ES . Two nodes vk,s and vk′,s′ are linked by an edge in G̃ES if k = k′

or Ek1 ∩ Ek
′

1 6= ∅ and {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} 6= ∅ when k 6= k′.

The conflict graph G̃ES is not a interval graph given that some nodes vk,s and vk′,s′ are linked even
if the {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅, i.e., when k = k′.
Based on the conflict graph G̃ES , we provide the following inequality.

Proposition 11. Let C be a clique in conflict graph G̃ES with |C| ≥ 3. Then, the inequality∑
vk,s∈C

∑
p∈Pk

ykp,s ≤ 1, (19)

is valid for P (G,K,S, PK).
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Proof. It is trivial given the definition of a clique set in the conflict graph G̃ES s.t. for each two
linked nodes vk,s and vk′,s′ in G̃ES , we know that the inequality∑

p∈Pk

ykp,s +
∑

p′∈Pk′

yk
′

p′,s′ ≤ 1,

is valid for P (G,K,S, PK). By adding the previous inequalities for all two linked nodes vk,s and

vk′,s′ in G̃ES , we get∑
vk,s

(|C| − 1)ykp,s ≤ |C| − 1 =⇒
∑
vk,s

ykp,s ≤
|C| − 1

|C| − 1
=⇒

∑
vk,s

ykp,s ≤ 1,

which ends our proof.

Remark 3. The inequality (19) associated with a clique C, it is dominated by the inequality (11)
associated with an interval I = [si, sj ] and a subset of demands K̃ if and only if [ min

vk,s∈C
(s− wk +

1), max
vk,s∈C

s] ⊂ I and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C, and 2wk ≥ |I|+ 1 and wk ≤ |I| for

each vk ∈ C.

Proof. Consider an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let C be a clique in the conflict

graph G̃ES , and K̃ = {k ∈ K s.t. vk,s ∈ C} be a subset of demands in K with K̃ is a clique in the

conflict graph G̃EI for the interval I = [si, sj ].
Neccessity.
First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈C

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈C

s′ for each vk,s ∈ C, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ C, it follows that s ∈ Ik = [si + wk − 1, sj ] for each

vk,s ∈ C of demand k ∈ K̃. As a result, we get that∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =
∑
k∈K̃

∑
p∈Pk

ykp,s +
∑
k∈K̃

∑
s′∈Ik\{s}

∑
p∈Pk

ykp,s′ . (20)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, this means that∑
k∈K̃

∑
p∈Pk

ykp,s =
∑

vk,s∈C

∑
p∈Pk

ykp,s.

It follows that ∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =
∑

vk,s∈C

∑
p∈Pk

ykp,s +
∑
k∈K̃

∑
s′∈Ik\{s}

∑
p∈Pk

ykp,s′ .

Given that all the variable ykp,s is positive for each k ∈ K and s ∈ S, this implies that∑
vk,s∈C

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ .

Hence, the inequality (19) is dominated by the inequality (11).
Sufficiency.
Assume that the inequality (19) is dominated by the inequality (11). It follows that∑

vk,s∈C

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =⇒
∑
k∈K̃

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′
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Given that the demands in K̃ are independants, this allows us to take that∑
p∈Pk

ykp,s �
∑
p∈Pk

∑
s′∈Ik

ykp,s′ for each k ∈ K̃.

Given that the variable
∑
p∈Pk ykp,s is positive for each k ∈ K and s ∈ S, this means that

s ∈ Ik for each k ∈ K̃,

which is equivalent to say that

s ∈ Ik for each node vk,s ∈ C =⇒ s ∈ {si + wk − 1, ..., sj}.

It follows that

s− wk + 1 ∈ I for each node vk,s ∈ C.

As a result,

min
vk,s∈C

(s− wk + 1) ∈ I and max
vk,s∈C

s ∈ I for each node vk,s ∈ C

=⇒ [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj} of

each pair of demands k, k′ ∈ K̃. Hence, {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each pair
(vk,s, vk′,s′) ∈ C since s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj}. We conclude at the end that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,

– and [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

which ends our proof.

6.8 Slot-Assignment-Odd-Hole Inequalities

We have observed that the conflict graph G̃ES cannot define a interval graph graph given that it
contains some nodes vk,s and vk′,s′ that are linked even if the {s−wk+1, ..., s}∩{s′−wk′+1, ..., s′} =
∅, i.e., when k = k′. As a result, one can strengthen the inequality (19) by introducing the following
inequalities based on the so-called odd-hole inequalities.

Proposition 12. Let H be an odd-hole in the conflict graph G̃ES with |H| ≥ 5. Then, the inequality

∑
vk,s∈H

∑
p∈Pk

ykp,s ≤
|H| − 1

2
, (21)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of the odd-hole in the conflict graph G̃ES . We strengthen
our proof as belows. For each pair of nodes (vk,s, vk′,s′) linked in H by an edge, we know that∑
p∈Pk ykp,s +

∑
p′∈Pk′ yk

′

p′,s′ ≤ 1. Given that H is an odd-hole which means that we have |H| − 1
pair of nodes (vk,s, vk′,s′) linked in H, and by doing a sum for all pairs of nodes (vk,s, vk′,s′) linked
in H, it follows that ∑

(vk,s,vk′,s′ )∈E(H)

∑
p∈Pk

ykp,s +
∑

p′∈Pk′

yk
′

p′,s′ ≤ |H| − 1.
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Taking into account that each node vk in H has two neighbors in H, this implies that
∑
p∈Pk ykp,s

appears twice in the previous inequality. As a result,∑
(vk,s,vk′,s′ )∈E(H)

∑
p∈Pk

ykp,s +
∑

p′∈Pk′

yk
′

p′,s′ =
∑

vk,s∈H
2
∑
p∈Pk

ykp,s =⇒
∑

vk,s∈H
2
∑
p∈Pk

ykp,s ≤ |H| − 1

=⇒
∑

vk,s∈H

∑
p∈Pk

ykp,s ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (21) is valid for P (G,K,S, PK).

Remark 4. The inequality (21) is dominated by the inequality (12) if and only if there exists an
interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

– [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

] ⊂ I,

– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,
– and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H.

Proof. Consider an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let H be an odd-hole in the

conflict graph G̃ES , and K̃ = {k ∈ K s.t. vk,s ∈ H} be a subset of demands in K with K̃ is an

odd-hole in the conflict graph G̃EI for the interval I = [si, sj ].
Neccessity.
First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in H,
– and [ min

vk,s∈H
(s− wk + 1), max

vk,s∈H
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈H

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈H

s′ for each vk,s ∈ H, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ H, it follows that s ∈ Ik = [si + wk − 1, sj ] for each

vk,s ∈ H of demand k ∈ K̃. As a result, we get that∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =
∑
k∈K̃

∑
p∈Pk

ykp,s +
∑
k∈K̃

∑
s′∈Ik\{s}

∑
p∈Pk

ykp,s′ . (22)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ H}, this means that∑
k∈K̃

∑
p∈Pk

ykp,s =
∑

vk,s∈H

∑
p∈Pk

ykp,s.

This implies that ∑
k∈K̃

∑
p∈Pk

∑
s′∈Ik

ykp,s′ =
∑

vk,s∈H

∑
p∈Pk

ykp,s +
∑
k∈K̃

∑
p∈Pk

∑
s′∈Ik\{s}

ykp,s′

=⇒
∑

vk,s∈H

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =⇒
∑
p∈Pk

ykp,s �
∑
s′∈Ik

∑
p∈Pk

ykp,s′ for each vk,s ∈ H.

Hence, the inequality (21) is dominated by the inequality (12).
Sufficiency.
Assume that the inequality (21) is dominated by the inequality (12) and given that K̃ = {k ∈
K s.t. vk,s ∈ H}, this means that∑

k∈K̃

∑
p∈Pk

ykp,s =
∑

vk,s∈H

∑
p∈Pk

ykp,s.

It follows that∑
vk,s∈H

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ =⇒
∑
k∈K̃

∑
p∈Pk

ykp,s �
∑
k∈K̃

∑
s′∈Ik

∑
p∈Pk

ykp,s′ .
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Given that the demands in K̃ are independants, this implies that∑
p∈Pk

ykp,s �
∑
s′∈Ik

∑
p∈Pk

ykp,s′ for each k ∈ K̃ =⇒ s ∈ Ik for each k ∈ K̃ =⇒ s ∈ Ik for each node vk,s ∈ H.

As a result,

s− wk + 1 ∈ I for each node vk,s ∈ H =⇒ min
vk,s∈H

(s− wk + 1) ∈ I

and max
vk,s∈H

s ∈ I for each node vk,s ∈ H =⇒ [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj} of

each pair of demands k, k′ ∈ K̃. Hence, {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each pair
(vk,s, vk′,s′) ∈ H since s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj}. We conclude at the end that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in H,
– and [ min

vk,s∈H
(s− wk + 1), max

vk,s∈H
s] ⊂ I,

which ends our proof.

Note that the inequality (21) can be strengthened without modifying its right hand side by com-
bining the inequality (21) and (19).

Proposition 13. Let H be an odd-hole, and C be a clique in the conflict graph G̃ES with

– |H| ≥ 5,
– and |C| ≥ 3,
– and H ∩ C = ∅,
– and the nodes (vk,s, vk′,s′) are linked in G̃ES for all vk,s ∈ H and vk′,s′ ∈ C.

Then, the inequality ∑
vk,s∈H

∑
p∈Pk

ykp,s +
|H| − 1

2

∑
vk′,s′∈C

∑
p′∈Pk′

yk
′

p′,s′ ≤
|H| − 1

2
, (23)

is valid for P (G,K,S, PK).

Proof. It is trivial given the definition of the odd-hole and clique in G̃ES s.t. if
∑
vk′,s′∈C

∑
p′∈Pk′ yk

′

p′,s′ =

1 for a vk′,s′ ∈ C ∈ C which implies that the quantity
∑
vk,s∈H

∑
p∈Pk ykp,s is forced to be equal

to 0. Otherwise, we know from the inequality (21) that the sum
∑
vk,s∈H

∑
p∈Pk ykp,s is always

smaller than |H|−1
2 . We strengthen our proof by assuming that the inequality (23) is not valid for

P (G,K,S, PK). It follows that there exists a C-RSA solution S in which s′ /∈ Sk′ for each node
vk′,s′ in the clique C s.t.∑

vk,s∈H
ykp,s(S) +

|H| − 1

2

∑
vk′,s′∈C

yk
′

p′,s′(S) >
|H| − 1

2
.

Since s′ /∈ Sk′ for each node vk′,s′ in the clique C this means that
∑
vk′,s′∈C

∑
p′∈Pk′ yk

′

p′,s′(S) = 0,

and taking into account the inequality (21),
∑
p∈Pk ykp,s(S) ≤ 1 for each vk,s ∈ H, and that∑

p′∈Pk′ yk
′

p′,s′(S) ≤ 1 for each vk′,s′ ∈ C, it follows that∑
vk,s∈H

∑
p∈Pk

ykp,s(S) ≤ |H| − 1

2
,

which contradicts that
∑
vk,s∈H

∑
p∈Pk ykp,s(S) + |H|−1

2

∑
vk′,s′∈C

∑
p′∈Pk′ yk

′

p′,s′(S) > |H|−1
2 .

Hence
∑
vk,s∈H |Sk ∩ {s}|+

∑
vk′,s′∈C

|Sk′ ∩ {s′}| ≤ |H|−1
2 .
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Remark 5. The inequality (23) is dominated by the inequality (13) iff there exists an interval of
contiguous slots I = [si, sj ] ⊂ [1, s̄] with

– [ min
vk,s∈H∪C

(s− wk + 1), max
vk,s∈H∪C

] ⊂ I,

– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,
– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in C,
– and wk + wk′ ≥ |I|+ 1 for each vk ∈ H and vk′ ∈ C,
– and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H,
– and 2wk′ ≥ |I|+ 1 and wk′ ≤ |I| for each vk′ ∈ C.

Proof. Similar with the proof of the remark 4.

6.9 Edge-Capacity-Cover Inequalities

Let’s us now provide some inequalities related to the capacity constraint.

Proposition 14. Consider an edge e in E. Then, the inequality

∑
k∈K\Ke

wk
∑

p∈Pk(e)

s̄∑
s=1

ykp,s ≤ s̄−
∑
k′∈Ke

wk′ , (24)

is valid for P (G,K,S, PK).

Proof. The total number of slots allocated over the edge e ∈ E should be less than the residual

capacity of the edge e which is equal to s̄−
∑
k′∈Ke

wk′ .

Based on this, we introduce the following definitions.

Definition 8. For an edge e ∈ E, a subset of demands C ⊆ K with e /∈ Ek0 ∩Ek1 For each demand

k ∈ C, is said a cover for the edge e if
∑
k∈C

wk > s̄−
∑
k′∈Ke

wk′ .

Definition 9. For an edge e in E, a cover C is said a minimal cover if C \ {k} is not a cover for

all k ∈ C, i.e.,
∑

k′∈C\{k}

wk′ ≤ s̄−
∑
k”∈Ke

wk”.

In what follows, we use these definitions to introduce the so-called cover inequalities related to the
capacity constraints.

Proposition 15. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then,
the inequality

∑
k∈C

∑
p∈Pk(e)

s̄∑
s=1

ykp,s ≤ |C| − 1, (25)

is valid for P (G,K,S, PK).

Proof. If C is minimal cover for edge e ∈ E this means that there is at most |C|− 1 demands from
the set of demands in C that can use the edge e. We strengthen our proof by assuming that the
inequality (25) is not valid for P (G,K,S, PK). It follows that there exists a C-RSA solution S in
which e /∈ Ek′ for a demand k′ ∈ C s.t.

∑
k∈C

∑
p∈Pk(e)

s̄∑
s=1

ykp,s(S) > |C| − 1.
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Since e /∈ Ek′ for a demand k′ ∈ C this means that
∑
p′∈Pk′ (e)

∑s̄
s′=1 y

k′

p′,s′(S) = 0, and taking into

account that C is minimal cover for the edge e, xke(S) ≤ 1 for each k ∈ C \ {k′} and xk
′

e (S) ≤ 1, it
follows that ∑

k∈C\{k′}

∑
p∈Pk(e)

s̄∑
s=1

ykp,s(S) ≤ |C| − 1

which contradicts what we supposed before, i.e.,
∑
k∈C

∑
p∈Pk(e)

∑s̄
s=1 y

k
p,s(S) > |C| − 1.

Hence
∑
k∈C

|Ek ∩ {e}| ≤ |C| − 1.

We conclude at the end that the inequality (25) is valid for P (G,K,S, PK).

Note that the inequality (25) can be easily strengthened by using its extended format which we
call extended minimal cover for an edge e as follows.

Proposition 16. Consider an edge e in E. Let C be a minimal cover in K for the edge e, and Ξ(C)
be a subset of demands in K\C∪Ke where Ξ = {k ∈ K\C∪Ke : e /∈ Ek0 and wk ≥ wk′ ∀k′ ∈ C}.
Then, the inequality

∑
k∈C

∑
p∈Pk(e)

s̄∑
s=1

ykp,s +
∑

k′∈Ξ(C)

∑
p′∈Pk′ (e)

s̄∑
s′=1

yk
′

p′,s′ ≤ |C| − 1, (26)

is valid for P (G,K,S, PK).

Proof. If C is minimal cover for edge e ∈ E this means that there is at most |C|− 1 demands from
the set of demands in C∪Ξ(C) that can use the edge e. We strengthen our proof by assuming that
the inequality (26) is not valid for P (G,K,S, PK). It follows that there exists a C-RSA solution S
in which e /∈ Ek′ for each demand k′ ∈ Ξ(C) s.t.

∑
k∈C

∑
p∈Pk(e)

s̄∑
s=1

ykp,s(S) > |C| − 1.

Since e /∈ Ek′ for for each demand k′ ∈ Ξ(C)this means that
∑
p′∈Pk′ (e)

∑s̄
s′=1 y

k′

p′,s′(S) = 0,

and taking into account that C is minimal cover for the edge e, xke(S) ≤ 1 for each k ∈ C and
xk
′

e (S) ≤ 1, it follows that

∑
k∈C

∑
p∈Pk(e)

s̄∑
s=1

ykp,s(S) ≤ |C| − 1

which contradicts what we supposed before, i.e.,
∑
k∈C

∑
p∈Pk(e)

∑s̄
s=1 y

k
p,s(S) > |C| − 1 and also

the inequality (25).

Hence
∑
k∈C

|Ek ∩ {e}|+
∑

k′∈Ξ(C)

|Ek′ ∩ {e}| ≤ |C| − 1.

We conclude at the end that the inequality (25) is valid for P (G,K,S, PK).

Furthermore, the inequality (25) can have a more generalized strengthening format using lifting
procedures proposed by Nemhauser and Wolsey in [49].

7 Symmetry-Breaking Inequalities

We have noticed that several symmetrical solutions may appear given that there exist several
feasible solutions that have the same value of the solution (called equivalents solutions), and they
can be found by doing some permutations between the slots assigned to some demands without
changing the selected paths (routing) while satisfying the C-RSA constraints. There exists several
methods to break the symmetry. See, for example, perturbation method proposed by Margot in
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[44], isomorphism pruning method by Margot et al. in [45] and [46], orbital branching method by
Ostrowski et al. in [52] and [53], orbital fixing method by Kaibel et al. in [34], and symmetry-
breaking constraints by Kaibel and Pfetsch in [31] which is applied in our study. Our aim is to
introduce breaking-symmetry inequalities to remove the sub-problems in the enumeration tree that
are equivalent due to the equivalency of their associated solutions. To do so, we derive the following
inequalities.

Proposition 17. Consider a demand k in K, a slot s ∈ {1, ..., s̄− 1}. Let s′ be a slot in {s, ..., s̄}

min(s′+wk−1,s̄)∑
s”=s′

∑
p∈Pk

ykp,s” −
∑
k′∈K

min(s+wk′−1,s̄)∑
s”=s

∑
p′∈Pk′

yk
′

p′,s” ≤ 0. (27)

This ensures that the slot s′ can be assigned to the demand k over a path p ∈ P k if and only if
the slot s is already assigned to at least one demand k′ in K over its final path p′ ∈ P k′ .

8 Branch-and-Price and Branch-and-Cut-and-Price Algorithms

Based on the path formulation and several classes of valid inequalities previously introduced, we
derive two exact algorithms: Branch-and-Price and Branch-and-Cut-and-Price to solve the C-RSA
problem. In this section, we describe the framework of these algorithms. First, we give an overview
of our column generation algorithm. Then, we discuss the pricing problem. We further present the
different separation procedures associated with the different classes of valid inequalities useful to
boost the performance of our algorithms. We give at the end some computational results and a
comparative study between Branch-and-Price and Branch-and-Cut-and-Price algorithms.

8.1 Column Generation Algorithm

As it has been mentioned before, our path formulation contains a huge number of variables which
can be exponentiel in the worst case due to the number of all feasible paths for each traffic demand.
To manage that, we use a column generation algorithm to solve its linear relaxation. To do so,
we begin our algorithm with a restricted linear program of our path formulation by considering a
feasible subset of variables (columns). For that, we first generate a subset of feasible paths for each
demand k ∈ K denoted by Bk ⊂ P k such that the variables ykp,s for each k ∈ K, p ∈ Bk and s ∈ S
induce a feasible basis for the restricted linear program. This means that there exists at least one
feasible solution for the restricted linear program. Based on this, we derive the so-called restricted
master problem (RMP) as follows

min
∑
k∈K

∑
p∈Bk

∑
e∈E(p)

s̄∑
s=wk

ley
k
p,s,

subject to

∑
p∈Bk

wk−1∑
s=1

ykp,s = 0, ∀k ∈ K,

∑
p∈Bk

s̄∑
s=wk

ykp,s = 1,∀k ∈ K,

∑
k∈K

∑
p∈Bk(e)

s+wk−1∑
s′=s

ykp,s′ ≤ 1, ∀e ∈ E,∀s ∈ S,

ykp,s ≥ 0,∀k ∈ K, ∀p ∈ Bk, ∀s ∈ S.

At each iteration, our column generation algorithm checks if there exists a variable ykp,s with

p /∈ Bk for a demand k and slot s having a negative reduced cost using the solution of the dual
problem, and add it to Bk. This procedure is based on the so-called ”pricing problem”.
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8.2 Pricing Problem

As noted later, we consider an initial restricted master problem denoted by RMP0 which is based
on an initial subset of variables induced by a subset of feasible path Bk ⊂ P k for each demand
k ∈ K. The pricing problem consists in finding a feasible path p for a demand k and slot s having
a negative reduced cost using the optimal solution of the dual problem. To do so, we consider the
following dual variables

– α associated with the equations (2) such that αk ∈ R for all k ∈ K,
– β associated with the equations (3) such that βk ∈ R for all k ∈ K,
– µ associated with the inequalities (4) such that µes ≤ 0 for all e ∈ E and s ∈ S.

Th dual problem is then equivalent to

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes, (28)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (29)

µes ≤ 0,∀e ∈ E,∀s ∈ S. (30)

As a result, we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk + min
p∈Pk\Bk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ], (31)

which defines the reduced-cost associated with each demand k and slot s. This is equivalent to the
separation problem associated with the dual constraint (29). It consists in identifying a path p for
a demand k and slot s s.t.

βk +
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ < 0.

Based on this, and taking into account the transmission-reach constraint, the pricing problem
consists in solving a Resource Constrained Shortest Path (RCSP) Problem, also called Weight
Constrained Shortest Path (WCSP) Problem. This problem is well known to be an NP-hard prob-
lem [16]. Several algorithms have been proposed in the literature to solve this problem based
on dynamic programming algorithms, heuristics, and some techniques related to the Lagrangian
decomposition. As background references we mention [4, 17, 19, 30, 43]. In our work, we have devel-
oped an efficient algorithm based on the dynamic programming algorithm proposed which allows
us to add a path p with a negative reduced cost for each pair of demand k and slot s if it exists
while respecting that the length of this path p must be less than l̄k. We repeat this procedure in
each iteration of our column generation until no new column is found (i.e., rcks ≥ 0 for all k ∈ K
and s ∈ {wk, ..., s̄=. As a result, the final solution is optimal for the linear relaxation of our path
formulation. Furthermore, if it is integral, then it is optimal for the C-RSA problem. Otherwise,
we create two subproblems called childs by branching on fractional variables ȳ (variable branching
rule) or on some constraints using the Ryan & Foster [61] branching rule (constraint branching
rule).

8.3 Impact of Adding Valid Inequalities on the Structure of the Pricing Problem

Note that adding some valid inequalities can have an impact on the structure of our pricing problem
but our pricing problem stills equivalent to the RCSP problem s.t. adding some valid inequalities
in a certain level of our algorithms can change the calculation of the reduced-cost associated with
certain demands in K and slots in S as follows.
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Impact of Edge-Interval-Cover Inequalities let ρ the dual variable associated with the in-
equalities (7) such that ρe

I,K̃
≤ 0 for all e ∈ E and all I = [si, sj ] in S and all K̃ in K. The

associated dual program is then equivalent to

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
e∈E

∑
I∈Ĩ

∑
K̃∈K(I)

(K̃ − 1)ρe
I,K̃

, (32)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′ −
∑
I∈Ĩ

∑
K̃∈K(I)

s.t. k∈K̃,s∈Ik

ρe
I,K̃

) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (33)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (34)

ρe
I,K̃
≤ 0,∀e ∈ E,∀I ∈ Ĩ , ∀K̃ ∈ K(I). (35)

From (33), we obtain that the reduced-cost for each k ∈ K and s ∈ {wk, ..., s̄}, becomes equal to

rcks = βk + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′

−
∑
I∈Ĩ

∑
K̃∈K(I) s.t. k∈K̃,s∈Ik

ρe
I,K̃

]. (36)

Impact of Edge-Interval-Clique Inequalities let ζ the dual variables associated with the
inequalities (9) such that ζe

I,K̃
≤ 0 for all e ∈ E and all I = [si, sj ] in S and all K̃ in K. We denote

by K(I) the set of all the minimal cover K̃ for the interval I over edge e, and by Ĩ the set of all
intervals I in S. Based on this, we define its assocoiated dual program

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
e∈E

∑
I∈Ĩ

∑
K̃∈K(I)

ζe
I,K̃

, (37)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′ −
∑
I∈Ĩ

∑
K̃∈K(I)

s.t. k∈K̃,s∈Ik

ζe
I,K̃

) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (38)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (39)

ζe
I,K̃
≤ 0,∀e ∈ E,∀I ∈ Ĩ , ∀K̃ ∈ K(I). (40)

From (38), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′

−
∑
I∈Ĩ

∑
K̃∈K(I) s.t. k∈K̃,s∈Ik

ζe
I,K̃

]. (41)
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Impact of Interval-Clique Inequalities let % the dual variable associated with the inequalities
(11) such that %cI ≤ 0 for all clique c in the conflict graph G̃EI . We denote by C(G̃EI ) the set of all
clique in the conflict graph G̃EI of the interval I. Let Ĩ denote the set of all intervals I in S. Our
dual program is then defined as follows

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
I∈Ĩ

∑
c∈C(G̃E

I )

%cI , (42)

subject to

βk −
∑
I∈Ĩ

∑
c∈C(G̃E

I )
s.t. vk∈c,s∈Ik

%cI +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′) ≥ 0,

∀k ∈ K, ∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (43)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (44)

%cI ≤ 0,∀I ∈ Ĩ , ∀c ∈ C(G̃EI ). (45)

From (44), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk −
∑
I∈Ĩ

∑
c∈C(G̃E

I )
s.t. vk∈c,s∈Ik

%cI + + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ]. (46)

Impact of Interval-Odd-Hole Inequalities let η the dual variable associated with the inequal-
ities (12) such that ηhI ≤ 0 for all odd-hole h in the conflict graph G̃EI . We denote by H(G̃EI ) the
set of all odd-hole in the conflict graph G̃EI of the interval I. Let Ĩ denote the set of all intervals I
in S. Our dual program is then defined as follows

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
I∈Ĩ

∑
h∈H(G̃E

I )

|H| − 1

2
ηhI , (47)

subject to

βk −
∑
I∈Ĩ

∑
h∈H(G̃E

I )
s.t. vk∈h,s∈Ik

ηhI +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′) ≥ 0,

∀k ∈ K, ∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (48)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (49)

ηhI ≤ 0,∀I ∈ Ĩ , ∀h ∈ H(G̃EI ). (50)

From (49), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk −
∑
I∈Ĩ

∑
h∈H(G̃E

I )
s.t. vk∈h,s∈Ik

ηhI + + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ]. (51)

Impact of Edge-Slot-Assignment-Clique Inequalities let γ the dual variable associated with
the inequalities (14) such that γec ≤ 0 for all e ∈ E and all clique c in the conflict graph G̃eS . We
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denote by C(G̃eS) the set of all clique in the conflict graph G̃eS of the edge e in E. The dual program
is then equivalent to

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
e∈E

∑
c∈C(G̃e

S)

γec , (52)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′ −
∑

c∈C(G̃e
S)

s.t. vk,s∈c

γec ) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (53)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (54)

γec ≤ 0,∀e ∈ E,∀c ∈ C(G̃eS). (55)

From (53), we obtain that the reduced-cost for each k ∈ K and s ∈ {wk, ..., s̄} can be computed
as follows

rcks = βk + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ −
∑

c∈C(G̃e
S)

s.t. vk,s∈c

γec ]. (56)

Impact of Edge-Slot-Assignment-Odd-Hole Inequalities let ξ the dual variable associated
with the inequalities (17) such that ξeh ≤ 0 for all e ∈ E and all odd-hole h in the conflict graph

G̃eS . We denote by H(G̃eS) the set of all odd-hole in the conflict graph G̃eS of the edge e in E. The
dual program is then equivalent to

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
e∈E

∑
h∈H(G̃e

S)

ξeh, (57)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′ −
∑

h∈H(G̃e
S)

s.t. vk,s∈h

ξeh) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (58)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (59)

ξeh ≤ 0,∀e ∈ E,∀h ∈ H(G̃eS). (60)

From (58), we obtain that the reduced-cost for each k ∈ K and s ∈ {wk, ..., s̄} can be computed
as follows

rcks = βk + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ −
∑

h∈H(G̃e
S)

s.t. vk,s∈h

ξeh]. (61)

Impact of Slot-Assignment-Clique Inequalities let λ the dual variable associated with the
inequalities (19) such that λc ≤ 0 for all clique c in the conflict graph G̃ES . We denote by C(G̃ES )
the set of all clique in the conflict graph G̃ES . Our dual program is then defined as follows

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑

c∈C(G̃E
S )

λc, (62)
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subject to

βk −
∑

c∈C(G̃E
S )

s.t. vk,s∈c

λc +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′) ≥ 0,

∀k ∈ K, ∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (63)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (64)

λc ≤ 0,∀c ∈ C(G̃ES ). (65)

From (63), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk −
∑

c∈C(G̃E
S )

s.t. vk,s∈c

λc + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ]. (66)

Impact of Slot-Assignment-Odd-Hole Inequalities let ϕ the dual variable associated with
the inequalities (21) such that ϕh ≤ 0 for all odd-hole h in the conflict graph G̃ES . We denote by
H(G̃ES ) the set of all odd-hole in the conflict graph G̃ES . Our dual program is then defined as follows

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑

h∈H(G̃E
S )

|h| − 1

2
ϕh, (67)

subject to

βk −
∑

h∈H(G̃E
S )

s.t. vk,s∈h

ϕh +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′) ≥ 0,

∀k ∈ K, ∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (68)

µes ≤ 0,∀e ∈ E,∀s ∈ S, (69)

ϕh ≤ 0,∀h ∈ H(G̃ES ). (70)

From (63), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk −
∑

h∈H(G̃E
S )

s.t. vk,s∈h

ϕh + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ]. (71)

Impact of Edge-Capacity-Cover Inequalities let φ the dual variable associated with the
inequalities (25) such that φe

K̃
≤ 0 for all e ∈ E and all minimal cover K̃ for the edge e. We denote

by C(e) the set of all minimal cover K̃ for the edge e. The dual program can be defined as follows

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µes +
∑
e∈E

∑
K̃∈C(e)

(|K̃| − 1)φe
K̃
, (72)

subject to

βk +
∑

e∈E(p)

(le −
s∑

s′=s−wk+1

µes′ −
∑

K̃∈C(e)

s.t. k∈K̃

φe
K̃

) ≥ 0,

∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (73)
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µes ≤ 0,∀e ∈ E,∀s ∈ S, (74)

φe
K̃
≤ 0,∀e ∈ E,∀K̃ ∈ C(e). (75)

From (74), we obtain that for all k ∈ K and s ∈ {wk, ..., s̄}

rcks = βk + min
p∈Pk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ −
∑

K̃∈C(e)

s.t. k∈K̃

φe
K̃

]. (76)

Based on these results, we ensure that our pricing problem stills equivalent to the RCSP problem
for any class of valid inequalities proposed in this paper.

8.4 Dynamic Programming Algorithm for the Pricer

We propose a pseudo-polynomial time algorithm to solve the pricing problem using dynamic pro-
gramming adapated to our C-RSA problem that takes into account the transmission-reach con-
straint to identify a feasible path for a given pair of demand p and slot s. It is based on the dynamic
programming algorithm proposed by Dumitrescu et al. in [17] to solve the RCSP problem. For each
demand k ∈ K and slot s, we associate to each node v ∈ V in the graph G a set of labels Lv s.t.
each label corresponds to differents paths from th origin node ok to the node v, and each label p
is specified by a cost equals to

∑
e∈E(p) = le−

∑s
s′=s−wk+1 µ

e
s′ , and a weight equals to

∑
e∈E(p) le.

We denote by Tv the set of labels on node v ∈ V . For each demand k and slot s ∈ {wk, ..., s̄},
the complexity of our algorithm is bounded by O(|E \ Ek0 |l̄k) [17]. Algorithm 8.4 summarizes the
different steps of our dynamic programming algorithm.

8.5 Basic Columns

The basic sub-set of paths used to define the restricted master problem are generated using a
brute-force search algorithm which creates a search tree that covers all the feasible paths P k for
each demand k. It is then used to pre-compute an initial subset Bk of feasible paths for each
demand k ∈ K taking into account the transmission-reach constraint which allows us to prune
some non-intersecting nodes in our search tree of this algorithm.

8.6 Overwiew of Branch-and-Price and Branch-and-Cut-Price Algorithms

Based on these features, we derive a Branch-and-Price algorithm by combining a column generation
algorithm with a Branch-and-Bound algorithm. The main purpose of this algorithm is to solve a
sequence of linear programs using the column generation algorithm at each node of a Branch-and-
Bound algorithm. At each iteration of a certain level of our algorithm, we solve our pricing problem
by identifying one or more than one new column by solving an RCSP problem for each demand k
and slot s ∈ {wk, ..., s̄} using our dynamic programming algorithm. Furthermore, we derive Branch-
and-Cut-and-Price based on our Branch-and-Price algorithm combined with a cutting-plane-based
algorithm by adding several valid inequalities useful to obtain tighter bounds. Consider a fractional
solution ȳ. At each iteration of our Branch-and-Price algorithm, our aim is to identify for a given
class of valid inequalities the existence of one or more than one inequalities of this class that are
violated by the current solution. We repeat this procedure in each iteration of our algorithm until
non violated inequality is identified. Algorithm 8.6 summarizes the different steps of our Branch-
and-Cut-and-Price algorithm for a given class of valid inequalities.
In what follows, we study the separation problem of each valid inequality.

8.7 Separation Procedures: Complexity and Algorithms

Separation of Edge-Interval-Cover Inequalities Let’s discuss the separation problem of the
inequality (7). Given a fractional solution ȳ, and an edge e ∈ E. We first construct a set of intervals
of contiguous slots I ∈ Ie s.t. each interval of contiguous slots I = [si, sj ] ∈ Ie is identified using
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Algorithm 1 Dynamic Programming Algorithm

Data: An undirected, loopless, and connected graph G = (V,E), a spectrum S, a multi-set K of demands,
a linear program LP, a demand k and a slot s ∈ {wk, ..., s̄}, a set Bk of feasible paths already exists
in the current LP for the demand k ∈ K and slot s, and the optimal values of the duals variables
(α∗, β∗, µ∗)

Result: Optimal path p∗ for the demand k and slot s
Set Lok = {(0, 0)} and Lv = ∅ for each node v ∈ V \ (V k

0 ∪ {ok});
Set T v = ∅ for each node v ∈ V \ V k

0 ;
Set STOP=FALSE;
Set p∗ = NULL;
while STOP==FALSE do

if ∪v∈V (Lv \ Tv) = ∅ then
Set STOP= TRUE;
Set p∗ = ∅;
We select one label p from the labels Ldk of destination node dk s.t. p /∈ Bk with βk +

∑
e∈E(p) le−∑s

s′=s−wk+1 µ
e
s′ < 0;

if such label exists then
Set p∗ = p;

end

end
if ∪v∈V (Lv \ Tv) 6= ∅ then

Select a node i ∈ V \ V k
0 and a label p ∈ Li \ T i having the smallest value of

∑
e∈E(p) le;

for each e = ij ∈ δ(i) \ Ek
0 s.t.

∑
e′∈E(p) le′ −

∑s
s′=s−wk+1 µ

e′

s′ + le ≤ l̄k do

if j /∈ V (p) then
Set p′ = p ∪ {e};
Update the set of label Lj = Li ∪ {p′} ;

end

end

Set T i = T i ∪ {p};

end

end
return the best optimal path p∗ for the demand k and slot s;
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Algorithm 2 Branch-and-Cut-and-Price Algorithm

Data: An undirected, loopless, and connected graph G = (V,E), a spectrum S, a multi-set K of demands,
a set Bk of precomputed feasible paths for each demand k ∈ K, and a given class of valid inequality

Result: Optimal solution for the C-RSA problem
LP←− RMP0;
// Cut-and-Price Stage
Stop= FALSE;
while STOP==FALSE do

// Column Generation Stage
Solve the linear program LP;
Let y∗ be the optimal solution of LP;
Consider the optimal values of the duals variables (α∗, β∗, µ∗);
ADD = FALSE;
for each demand k ∈ K do

for each slot s ∈ {wk, ..., s̄} do
Compute its associated reduced cost rcks ;
if rcks < 0 then

Consider the optimal path p∗ for the demand k and slot s with rcks (p) < 0;
Add the new variable (column) ykp∗,s to the current LP;
ADD= TRUE ;

end

end

end
if ADD==FALSE then

// Cutting-Plane Stage
if there exist inequalities from the given class that are violated by the current solution y∗ then

Add them to LP ;

end
else

STOP = TRUE;

end

end

end
Consider the optimal solution y∗ of LP;
if y∗ is integer for the C-RSA then
y∗ is an optimal solution for the C-RSA;
End of our Branch-and-Cut-and-Price algorithm;

end
else

Create two sub-problems by branching one some variables or constraints;

end
// Branching Stage
for each sub-problem not yet solved do

go to the Cut-and-Price stage;

end
return the best optimal solution y∗ for the C-RSA;
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two slots si and sj randomly generated in S with sj ≥ si + 2 maxk∈K\K̄e
wk. Consider now an

interval of contiguous slots I = [si, sj ] ∈ Ie over an edge e. The separation problem associated with

the inequality (7) is Np-Hard [33] given that it consists in identifying a cover K̃∗ for the interval
I over the edge e, s.t.

∑
k∈K̃∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ȳkp,s′ > |K̃∗| − 1.

For that, we use a greedy algorithm introduced by Nemhauser and Sigismondi in [50] as follows. We
first select a demand k ∈ K having largest number of requested slot wk with

∑
p∈Pk(e)

∑sj
s′=si+wk−1 ȳ

k
p,s′ >

0, and assign it to K̃∗, i.e., K̃∗ = {k}. After that, we iteratively add each demand k′ ∈ K \ K̃∗ to
K̃∗ with with

∑
p∈Pk′ (e)

∑sj
s′=si+wk′−1 ȳ

k′

p,s′ > 0 and while
∑
k∈K̃∗ wk ≤ |I|, i.e., until a cover K̃∗

is obtained for the interval I over the edge e with
∑
k∈K̃∗ wk > |I|. We further derive a minimal

cover from the cover K̃∗ by deleting each demand k ∈ K̃∗ if
∑
k′∈K̃∗\{k} wk′ ≤ |I|. We then add

the inequality (7) induced by the minimal cover K̃∗ for the interval I and edge e to the current
LP if it is violated, i.e.,

∑
k∈K̃∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ykp,s′ ≤ |K̃∗| − 1.

Furthermore, the inequality (7) induced by the minimal cover K̃∗ can be lifted by introducing an
extended cover inequality (8) as follows

∑
k∈K̃∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ykp,s′ +
∑
k′∈K̃∗e

∑
p∈Pk′ (e)

sj∑
s′=si+wk′−1

yk
′

p,s′ ≤ |K̃∗| − 1,

where wk′ ≥ wk for each k ∈ K̃∗ and each k′ ∈ K̃∗e .

Separation of Edge-Interval-Clique Inequalities The separation problem related to the in-
equality (9) is NP-hard [54][32] given that it consists in identifying a maximal clique C∗ in the
conflict graph G̃eI for a given edge e and a given interval I s.t.

∑
k∈C∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ȳkp,s′ > 1,

for a given fractional solution ȳ of the current LP.
We start our procedure of separation by constructing a set of intervals of contiguous slots I ∈ Ie
for a given edge e ∈ E s.t. each interval of contiguous slots I = [si, sj ] ∈ Ie is identified for each
slot si ∈ S and slot sj with sj ∈ {si + maxk∈K\K̄e

wk, ...,min(s̄, si + 2 maxk∈K\K̄e
wk)}. Consider

now an interval of contiguous slots I = [si, sj ] ∈ Ie over an edge e, and its associated conflict

graph G̃eI . We then use a greedy algorithm introduced by Nemhauser and Sigismondi in [50] to
identify a maximal clique in conflict graph G̃eI as follows. We first associate a positive weight for
each node vk in G̃eI equals to

∑
p∈Pk(e)

∑sj
s′=si+wk−1 ȳ

k
p,s′ . We then set C∗ = {k} s.t. k is a demand

in K having the largest number of slots wk and weight
∑
p∈Pk(e)

∑sj
s′=si+wk−1 ȳ

k
p,s′ . After that, we

iteratively add each demand k′ having
∑
p∈Pk′ (e)

∑sj
s′=si+wk′−1 ȳ

k′

p,s′ s.t. its corresponding node vk′

is linked with all the nodes vk with k already assigned to the current C∗. After that, we check if
the inequality (9) induced by the maximal clique C∗ for the interval I and edge e is violated or
not. If so, we add the inequality (9) induced by the maximal clique C∗ to the current LP, i.e.,

∑
k∈C∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ykp,s′ ≤ 1.
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One can strengthen such inequality by adding the inequality (9) induced by the maximal clique
C∗ and C∗e ⊂ Ke \ C∗, i.e.,

∑
k∈C∗

∑
p∈Pk(e)

sj∑
s′=si+wk−1

ykp,s′ +
∑
k′∈C∗e

∑
p∈Pk′ (e)

sj∑
s′=si+wk′−1

yk
′

p,s′ ≤ 1,

s.t.

– wk′ + wk ≥ |I|+ 1 for each k ∈ C∗ and k′ ∈ C∗e ,
– wk′ + wk” ≥ |I|+ 1 for each k′ ∈ C∗e and k” ∈ C∗e ,
– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗e .

Separation of Interval-Clique Inequalities Given a fractional solution ȳ, and an interval of
contiguous slots I = [si, sj ]. Our separation algorithm for the inequality (11) consists in identifying

a maximal clique C∗ in the conflict graph G̃EI s.t.

∑
k∈C∗

∑
p∈Pk

sj∑
s′=si+wk−1

ȳkp,s′ > 1.

As result, its associated sepration problem is NP-hard given that computing a maximal clique in
a given graph is known to be a NP-hard problem [32]. For that, we also use the greedy algorithm
introduced by Nemhauser and Sigismondi in [50] to identify a maximal clique in conflict graph G̃EI
as follows. We first generate a set of intervals of contiguous slots denoted by IE s.t. each interval
of contiguous slots I = [si, sj ] ∈ IE is defined for each slot si ∈ S and slot sj with sj ∈ {si +
max
k∈K,
|Ek

1 |≥1

wk, ...,min(s̄, si+2 max
k∈K,
|Ek

1 |≥1

wk)}. We then consider an interval of contiguous slots I = [si, sj ] ∈

IE and its associated conflict graph G̃EI . We associate a positive weight
∑
p∈Pk

∑sj
s′=si+wk−1 ȳ

k
p,s′

for each node vk in G̃EI . We select a demand k s.t. k is a demand in K having the largest number
of slots wk and weight

∑
p∈Pk

∑sj
s′=si+wk−1 ȳ

k
p,s′ , and then set C∗ = {k}. After that, we iteratively

add each demand k′ having
∑
p∈Pk′

∑sj
s′=si+wk′−1 ȳ

k′

p,s′ > 0 s.t. its corresponding node vk′ is linked

with all the nodes vk with k ∈ C∗. At the end, we add the inequality (11) induced by the maximal
clique C∗ if it is violated, i.e., we add the following inequality to the current LP

∑
k∈C∗

∑
p∈Pk

sj∑
s′=si+wk−1

ykp,s′ ≤ 1.

Moreover, this additional inequality can be strengthened as follows

∑
k∈C∗

∑
p∈Pk

sj∑
s′=si+wk−1

ykp,s′ +
∑
k′∈C∗e

∑
p∈Pk′

sj∑
s′=si+wk′−1

yk
′

p,s′ ≤ 1,

where C∗E ⊂ K \ C∗ s.t.

– wk′ + wk ≥ |I|+ 1 and Ek1 ∩ Ek
′

1 6= ∅ for each k ∈ C∗ and k′ ∈ C∗E ,

– wk′ + wk” ≥ |I|+ 1 and Ek
′

1 ∩ Ek”
1 6= ∅ for each k′ ∈ C∗E and k” ∈ C∗E ,

– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗E .

Separation of Interval-Odd-Hole Inequalities For the inequality (12), we propose a separa-
tion algorithm that consists in identifying an odd-hole H∗ in the conflict graph G̃EI for a given
Interval I and a fractional solution ȳ s.t.

∑
k∈H∗

∑
p∈Pk

sj∑
s′=si+wk−1

ȳkp,s′ >
|H∗| − 1

2
.
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This can be done in polynomial time as shown by Rebennack et al. in [57] and [58]. Based on this,
we use the exact algorithm proposed by the same authors which consists of finding a minimum
weighted odd-cycle in a graph. For that, we should first generate a set of intervals of contiguous
slots IE as we did before in the section 8.7. We then consider a conflict graph G̃EI associated with
a given interval of contiguous slots I ∈ IE . We construct an auxiliary conflict graph G̃EI which can
be seen as a bipartite graph by duplicating each node vk in G̃EI (i.e., vk and v′k) and each two nodes

are linked in G̃EI if their original nodes are linked in G̃EI . We assign to each link (va, vb) in G̃EI a

weight equals to

1−
∑
p∈Pa

sj∑
s′=si+wa−1

ȳap,s′ −
∑
p′∈P b

sj∑
s′=si+wb−1

ȳbp′,s′

2 . We then compute for each node

vk in G̃EI , the shortest path between vk and its copy in the auxiliary conflict graph G̃EI denoted by
pvk,v′k . After that, we check if the total sum of weight over edges belong this path is smallest than
1
2 ,

∑
(va,vb)∈E(pvk,v′

k
)

1−
∑
p∈Pa

sj∑
s′=si+wa−1

ȳap,s′ −
∑
p′∈P b

sj∑
s′=si+wb−1

ȳbp′,s′

2
<

1

2
.

If so, the odd-hole H∗ is composed by all the original nodes of nodes belong the computed shortest
path pvk,v′k , i.e., V (pvk,v′k) \ {v′k}. We then add the inequality (12) induced by the odd-hole H∗ to
the current LP, i.e.,

∑
k∈H∗

∑
p∈Pk

sj∑
s′=si+wk−1

ykp,s′ ≤
|H∗| − 1

2
.

It can be lifted using the greedy algorithm introduced by Nemhauser and Sigismondi in [50] to
identify a maximal clique C∗ in conflict graph G̃EI s.t. s.t.

– wk′ + wk ≥ |I|+ 1 and Ek1 ∩ Ek
′

1 6= ∅ for each k ∈ H∗ and k′ ∈ C∗,
– wk′ + wk” ≥ |I|+ 1 and Ek

′

1 ∩ Ek”
1 6= ∅ for each k′ ∈ C∗ and k” ∈ C∗,

– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗.

For that, we assign a positive weight equals to the number of slots request wk′ by the demand k′

for each node vk′ linked with all the nodes vk ∈ H∗ in the conflict graph G̃EI . We then select the
node vk′ linked with all the nodes vk ∈ H∗ in the conflict graph G̃EI having the largest weight,
and set C∗ to {k′}. After that, we iteratively add each demand k” to the current clique C∗ if its
associated node vk” is linked with all the nodes vk ∈ H∗ and nodes vk′ ∈ C∗. As a result, we add
the inequality (13) induced by the odd-hole H∗ and clique C∗ to the current LP, i.e.,

∑
k∈H∗

sj∑
s′=si+wk−1

∑
p∈Pk

sj∑
s′=si+wk−1

ykp,s′ +
|H∗| − 1

2

∑
k′∈C∗

∑
p′∈Pk′

sj∑
s”=si+wk′−1

yk
′

p′,s” ≤
|H∗| − 1

2
.

Separation of Edge-Slot-Assignment-Clique Inequalities Consider an edge e ∈ E, and a
fractional solution (ȳ). The separation algorithm for the inequality (14) consists in identifying a
maximal clique C∗ in the conflict graph G̃eS s.t.∑

vk,s∈C∗

∑
p∈Pk(e)

ȳkp,s > 1.

To do this, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [50] to identify
a maximal clique C∗ in conflict graph G̃eS given that computing a maximal clique in such a graph
is also NP-hard problem [32]. Based on this, we first assign a positive weight

∑
p∈Pk(e) ȳ

k
p,s to each

node vk,s in the conflict graph G̃eS . We then select a node vk,s in the conflict graph G̃eS having the

largest weight compared with the other nodes in G̃eS , and set C∗ = {vk,s}. After that, we iteratively
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add each node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already assigned to the

current clique C∗ and
∑
p′∈Pk′ (e) ȳ

k′

p′,s′ > 0. At the end, we add the inequality (14) induced by the
clique C∗ for edge e to the current LP if it is violated, i.e., we add the following inequality∑

vk,s∈C∗

∑
p∈Pk(e)

ykp,s ≤ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ s.t. each vk′,s′ ∈ N∗ is linked

with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in G̃eS . For that, we use also the greedy algorithm
introduced by Nemhauser and Sigismondi in [50] to identify the clique N∗ as follows. We first set
N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node in G̃eS having the largest value of node-degree (i.e., |δ(vk′,s′)|)
in G̃eS and vk′,s′ is linked with all the nodes vk,s ∈ C∗ in G̃eS and k′ ∈ Ke. Afterwards, we iteratively

add each node vk”,s” /∈ C∗ ∪N∗ to the current N∗ if it is linked in G̃eS with all the nodes already
assigned to C∗ and N∗ and k” ∈ Ke. At the end, we add the following inequality induced by the
clique C∗ ∪N∗ to the current LP, i.e.,∑

vk,s∈C∗

∑
p∈Pk(e)

ykp,s +
∑

vk′,s′∈N∗

∑
p′∈Pk′ (e)

yk
′

p′,s′ ≤ 1.

Separation of Slot-Assignment-Odd-Hole Inequalities Consider an edge e ∈ E, the separa-
tion algorithm for inequality (17) consists in identifying an odd-hole H∗ in the conflict graph G̃eS
for a given fractional solution ȳ s.t.

∑
vk,s∈H∗

∑
p∈Pk(e)

ȳkp,s >
|H∗| − 1

2
.

This can be done in polynomial time as shown by Rebennack et al. in [57] and [58] by finding a
minimum weighted odd-cycle in the conflict graph G̃eS . To do so, we first construct an auxiliary
conflict graph G̃eS which can be seen as a bipartite graph by duplicating each node vk,s in G̃eS (i.e.,

vk,s and v′k,s) and each two nodes are linked in G̃eS if their original nodes are linked in G̃eS . We

assign to each link (ṽk,s, ṽk′,s′) in G̃eS a weight equals to
1−

∑
p∈Pk(e)

ȳkp,s−
∑

p′∈Pk′ (e) ȳ
k′
p′,s′

2 . We then

compute for each node vk,s in G̃eS , the shortest path between vk,s and its copy in the auxiliary

conflict graph G̃eS denoted by pvk,s,v′k,s
. After that, we check if the total sum of weight over edges

belonging to this path is smaller than 1
2 . If so, the odd-hole H∗ is composed by all the original

nodes of nodes belong the computed shortest path pvk,s,v′k,s
, i.e., V (pvk,s,v′k,s

) \ {v′k,s}. As a result,

the following inequality (17) induced by the odd-hole H∗

∑
vk,s∈H∗

∑
p∈Pk(e)

ȳkp,s ≤
|H∗| − 1

2
,

should be added to the current LP. Moreover, one can propose a lifting procedure for the inequality
(17) induced by the odd-hole H∗ by using the greedy algorithm introduced by Nemhauser and
Sigismondi in [50] to identify a maximal clique C∗ in the conflict graph G̃eS s.t. each node vk′,s′ ∈ C∗
should have a link with all the nodes vk,s ∈ H∗, and all the nodes vk”,s” ∈ C∗ \ {vk′,s′} in the

conflict graph G̃eS . For that, we first assign a node vk′,s′ /∈ H∗ to the clique C∗ (i.e., C∗ = {vk′,s′})
s.t. vk′,s′ has the largest value of node-degree (i.e., |δ(vk′,s′)|) in G̃eS and vk′,s′ is linked with all the

nodes vk,s ∈ H∗ in G̃eS . After that, we iteratively add each node vk′,s′ /∈ H∗ ∪ C∗ to the current

clique C∗ if it is linked in G̃eS with all the nodes already assigned to the odd-hole H∗ and the clique
C∗. We then add the inequality (18) induced by the odd-hole H∗ and clique C∗

∑
vk,s∈H∗

∑
p∈Pk(e)

ȳkp,s +
|H∗| − 1

2

∑
vk′,s′∈C∗

∑
p′∈Pk′ (e)

yk
′

p′,s′ ≤
|H∗| − 1

2
.
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Separation of Slot-Assignment-Clique Inequalities Now, we describe the separation algo-
rithm for the inequality (19). It consists in identifying a maximal clique C∗ in the conflict graph
G̃ES s.t. ∑

vk,s∈C∗

∑
p∈Pk

ȳkp,s > 1,

for a given fractional solution ȳ of the current LP.
To do so, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [50] to identify
a maximal clique C∗ in conflict graph G̃ES given that computing a maximal clique in such a graph
is also NP-hard problem [32]. Based on this, we first assign a positive weight

∑
p∈Pk ȳkp,s to each

node vk,s in the conflict graph G̃ES . We then select a node vk,s in the conflict graph G̃ES having

the largest weight compared with the other nodes in G̃ES , and set C∗ = {vk,s}. After that, we
iteratively add each node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already

assigned to the current clique C∗ and
∑
p′∈Pk′ ȳk

′

p′,s′ > 0. At the end, we add the inequality (19)
induced by the clique C∗ to the current LP if it is violated, i.e., we add the following inequality∑

vk,s∈C∗

∑
p∈Pk

ykp,s ≤ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ s.t. each vk′,s′ ∈ N∗ is linked

with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in G̃ES . For that, we use also the greedy algorithm
introduced by Nemhauser and Sigismondi in [50] to identify the clique N∗ as follows. We first set
N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node in G̃ES having the largest value of node-degree (i.e., |δ(vk′,s′)|)
in G̃ES and vk′,s′ is linked with all the nodes vk,s ∈ C∗ in G̃ES . Afterwards, we iteratively add each

node vk′,s′ /∈ C∗ ∪N∗ to the current N∗ if it is linked in G̃ES with all the nodes already assigned to
C∗ and N∗. At the end, we add the inequality (19) induced by the clique C∗ ∪N∗ to the current
LP, i.e., ∑

vk,s∈C∗

∑
p∈Pk

ykp,s +
∑

vk′,s′∈N∗

∑
p′∈Pk′

yk
′

p′,s′ ≤ 1.

Separation of Slot-Assignment-Odd-Hole Inequalities For the inequality (21), our separa-
tion algorithm consists in identifying an odd-hole H∗ in the conflict graph G̃ES for a given fractional
solution ȳ s.t. ∑

vk,s∈H∗

∑
p∈Pk

ȳkp,s >
|H∗| − 1

2
.

This can be done in polynomial time as shown by Rebennack et al. in [57] and [58] by finding a
minimum weighted odd-cycle in the conflict graph G̃ES . To do so, we first construct an auxiliary
conflict graph G̃ES which can be seen as a bipartite graph by duplicating each node vk,s in G̃ES
(i.e., vk,s and v′k,s) and each two nodes are linked in G̃ES if their original nodes are linked in G̃ES .

We assign to each link (ṽk,s, ṽk′,s′) in G̃ES a weight equals to
1−

∑
p∈Pk ȳ

k
p,s−

∑
p′∈Pk′ ȳ

k′
p′,s′

2 . We then

compute for each node vk,s in G̃ES , the shortest path between vk,s and its copy in the auxiliary

conflict graph G̃ES denoted by pvk,s,v′k,s
. After that, we check if the total sum of weight over edges

belonging to this path is smaller than 1
2 . If so, the odd-hole H∗ is composed by all the original

nodes of nodes belong the computed shortest path pvk,s,v′k,s
, i.e., V (pvk,s,v′k,s

) \ {v′k,s}. As a result,

the following inequality (21) induced by the odd-hole H∗∑
vk,s∈H∗

∑
p∈Pk

ȳkp,s ≤
|H∗| − 1

2
,

should be added to the current LP. Moreover, one can strengthen the inequality (21) induced by
the odd-hole H∗ using the greedy algorithm introduced by Nemhauser and Sigismondi in [50] to
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identify a maximal clique C∗ in the conflict graph G̃ES s.t. each node vk′,s′ ∈ C∗ should have a

link with all the nodes vk,s ∈ H∗, and all the nodes vk”,s” ∈ C∗ \ {vk′,s′} in the conflict graph G̃ES .
For that, we first assign a node vk′,s′ /∈ H∗ to the clique C∗ (i.e., C∗ = {vk′,s′}) s.t. vk′,s′ has the

largest value of node-degree (i.e., |δ(vk′,s′)|) in G̃ES and vk′,s′ is linked with all the nodes vk,s ∈ H∗
in G̃ES . After that, we iteratively add each node vk′,s′ /∈ H∗ ∪ C∗ to the current clique C∗ if it is

linked in G̃ES with all the nodes already assigned to the odd-hole H∗ and the clique C∗. We then
add the inequality (23) induced by the odd-hole H∗ and clique C∗∑

vk,s∈H∗

∑
p∈Pk

ȳkp,s +
|H∗| − 1

2

∑
vk′,s′∈C∗

∑
p′∈Pk′

yk
′

p′,s′ ≤
|H∗| − 1

2
.

Separation of Edge-Capacity-Cover Inequalities Let’s now study the separation problem
of the inequality (25). Given a fractional solution ȳ, and an edge e ∈ E. The separation problem
associated with the inequality (25) is Np-Hard [33] given that it consists in identifying a cover K̃∗

the edge e, s.t. ∑
k∈K̃∗

∑
p∈Pk(e)

∑
s∈S

ȳkp,s > |K̃∗| − 1.

To do so, we propose a separation algorithm based on a greedy algorithm introduced by Nemhauser
and Sigismondi in [50]. We first select a demand k ∈ K \Ke having largest number of requested slot
wk with

∑
p∈Pk(e)

∑
s∈S ȳ

k
p,s > 0, and set K̃∗ to K̃∗ = {k}. After that, we iteratively add each de-

mand k′ ∈ K\(KeK̃
∗) to K̃∗ with

∑
p′∈Pk′ (e)

∑
s∈S ȳ

k′

p′,s > 0 and while
∑
k∈K̃∗ wk ≤ s̄−

∑
k̃∈Ke

wk̃,

i.e., until a cover K̃∗ is obtained for the the edge e with
∑
k∈K̃∗ wk > s̄ −

∑
k̃∈Ke

wk̃. We further

derive a minimal cover from the cover K̃∗ by deleting each demand k ∈ K̃∗ if
∑
k′∈K̃∗\{k} wk′ ≤

s̄ −
∑
k̃∈Ke

wk̃. We then add the inequality (25) induced by the minimal cover K̃∗ for the edge e
to the current LP if it is violated, i.e.,∑

k∈K̃∗

∑
p∈Pk(e)

∑
s∈S

ykp,s ≤ |K̃∗| − 1.

Furthermore, the inequality (25) induced by the minimal cover K̃∗ can be lifted by introducing an
extended cover inequality (26) as follows∑

k∈K̃∗

∑
p∈Pk(e)

∑
s∈S

ykp,s +
∑
k′∈K̃∗e

∑
p′∈Pk′ (e)

∑
s∈S

yk
′

p′,s ≤ |K̃∗| − 1,

where wk′ ≥ wk for each k ∈ K̃∗ and each k′ ∈ K̃∗e with k /∈ Ke.

8.8 Primal Heuristic

Here, we propose a primal heuristic based on a hybrid method between a local search algorithm
and a greedy algorithm. It is necessary to boost the performance of our algorithms, obtain tighter
bounds, accelerate our algorithm, and reduce the memory consumed by the tree of B&P and
B&C&P by pruning certain nodes that are not interesting. Given a feasible fractional solution
ȳ, our primal heuristic consists of constructing an integral ”feasible” solution from this fractional
solution. To do so, we propose a local search algorithm that consists of generating at each iteration
a sequence of demands L (order) enumerated with L = 1′, 2′, ..., |K|′ − 1, |K|′. Based on this
sequence of demands, our greedy algorithm selects a path p and a slot s for each demand k′ ∈ L
with yk

′

p,s 6= 0 while respecting the non-overlapping constraint with the set of demands that precede
the demand k′ in the list L (i.e., the demands 1′, 2, ..., k′−1). However, if there does not exist such
pair of path p and slot s for the demand k′, we then select a path p and a slot s for the demand
k′ ∈ L with yk

′

p,s = 0 and s ∈ {wk′ , ..., s̄} while respecting the non-overlapping constraint with the
set of demands that precede the demand k′ in the list L. Algorithm 8.8 summarizes the different
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Algorithm 3 Greedy-Algorithm for the B&P and B&C&P Algorithms

Data: A set of edges E, a spectrum S, a multi-set K of demands, a set Bk
s of precomputed feasible paths

for each demand k ∈ K and slot s ∈ S, an optimal solution y∗ of the current LP, set FIX0 of fixed
variables to 0, a set FIX1 of fixed variables to 1 in the current node in the tree of B&P or B&C&P,
and a sequence of demands L = 1′, 2′, ..., |K|′ − 1, |K|′

Result: integral solution
Set Ek = ∅, Pk = ∅, and Sk = ∅ for each demand k ∈ K for each demand k′ ∈ L do

Set SERVED = FALSE for each slot s ∈ {wk′ , ..., s̄} do
if SERVED = FALSE then

Order the set of paths in Bk′
s in increasing order according to the total length of the paths

p ∈ Bk′
s , and let B′k

′
s denote the set of ordered paths in Bk′

s for each path p ∈ B′k
′

s do

if yk
′

p,s ∈ FIX1 then
Set Ek′ = E(p), Sk′ = {s}, Pk′ = {p}, and SERVED = TRUE

end
else

if yk
′

p,s /∈ FIX0 and 0 < y∗k
′

p,s ≤ 1 then
Set FEASIBLE= TRUE for each demand k ∈ {1, ..., k′ − 1} do

Let sk denote the last-slot already selected for the demand k with sk ∈ Sk if
E(p) ∩ Ek 6= ∅ and {s− wk′ + 1, ..., s} ∩ {sk − wk + 1, ...sk} 6= ∅ then

Set FEASIBLE= FALSE
end

end
if FEASIBLE = TRUE then

Set Ek′ = E(p), Sk′ = {s}, Pk′ = {p}, and SERVED = TRUE
end

end

end

end

end

end
if SERVED = FALSE then

for each slot s ∈ {wk′ , ..., s̄} do
if SERVED = FALSE then

for each path p ∈ B′k
′

s do

if yk
′

p,s /∈ FIX0 and y∗k
′

p,s = 0 then
Set FEASIBLE= TRUE for each demand k ∈ {1, ..., k′ − 1} do

Let sk denote the last-slot already selected for k with sk ∈ Sk if E(p)∩Ek 6= ∅
and {s− wk′ + 1, ..., s} ∩ {sk − wk + 1, ...sk} 6= ∅ then

Set FEASIBLE= FALSE
end

end
if FEASIBLE = TRUE then

Set Ek′ = E(p), Sk′ = {s}, Pk′ = {p}, and SERVED = TRUE
end

end

end

end

end

end

end
Let S = ({Pk for all k ∈ K}, {Sk for all k ∈ K}) be the final solution obtained by our greedy-algorithm.
It is feasible for the C-RSA iff Ek 6= ∅ and Sk 6= ∅ for each demand k ∈ K return integral solution S
for current node in the tree of our B&P and B&C&P algorithms
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steps of our greed algorithm for a given sequence of demands.
After that, we compute the associated total length of the paths selected for the set of demands
K in the final solution S given by the greedy algorithm. Our local search algorithm generates a
new sequence by doing some permutation of demands in the last sequence of demands if the value
of the solution given by the greedy algorithm is smaller than the value of the best solution found
until the current iteration. Otherwise, we stop our algorithm, and we give in the output the best
solution found during our primal heuristic induced by the best sequence of demands having the
smallest value of the total length of the selected path compared with the other generated sequences.
Algorithm 8.8 summarizes the different steps of our local search algorithm which calls our greedy-
algorithm 8.8 at each iteration.

Algorithm 4 Primal Heuristic Based on a Hybrid Algorithm Between a Local Search Algorithm
and Greedy-Algorithm for the B&P and B&C&P Algorithms.

Data: A set of edges E, a spectrum S, a multi-set K of demands, a set Bk
s of precomputed feasible paths

for each demand k ∈ K and slot s ∈ S, a maximum number of iterations iter, maximal size of
neighborhood n

Result: integral solution
Let y∗ be the optimal solution of the current LP Let FIX0 be the fixed variables to 0 in the current
node in the tree of B&P or B&C&P Let FIX1 be the fixed variables to 1 in the current node in the
tree of B&P or B&C&P Set val∗ = INF , and best solution S∗ = ∅ Consider a sequence of demands
L = 1′, 2′, ..., |K|′ − 1, |K|′ Call the greedy-algorithm 8.8 based on the sequence L Let S be the final
solution obtained by our greedy-algorithm 8.8 for the sequence L Compute its associated cost by summing
the total length of the paths selected to route the demands K in the solution S, denoted by V AL if S
is feasible then

Set val∗ = V AL Set S∗ = S
end
Set i = 1 while i ≤ iter do

Set val∗i = INF Construct n sequences denoted by N(L) from the sequence L by doing some
permutations between some demands selected randomly in the sequence L for each neighbour Lj ∈
N(L) do

Call the greedy-algorithm 8.8 based on the sequence Lj Let Sj be the final solution obtained by
our greedy-algorithm 8.8 for the sequence Lj Compute its associated cost by summing the total
length of the paths selected to route the demands K in the solution Sj , denoted by valj if Sj is
feasible and val∗i > valj then

Set val∗i = valj Set S̃∗i = Sj
end

end
if val∗ > val∗i then

Set val∗ = val∗i Set S∗ = S̃∗i
end
Set i = i+ +

end
return integral solution S∗ for current node in the tree of our B&P and B&C&P algorithms
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In the next section, we will show the effectiveness of our approach.

9 Computational Results

9.1 Implementation’s Feature

Our B&P and B&C&P algorithms have been implemented in C++ under Linux using the ”Solving
Constraint Integer Programs” (SCIP 7.0) framework [66]. For the resolution of the linear relaxation
at each node in the B&P and B&C&P trees, SCIP uses CPLEX 12.9 [10]. These have been tested
on LIMOS high-performance servers with a memory size limited to 64 Gb while benefiting from
parallelism by activating 8 threads, and with a CPU time limited to 5 hours (18000 s).

9.2 Description of Instances

We further proposed a deep study of the behavior of our algorithl using two types of instances:
random and real, and 14 graphs (topologies). They are composed of two types of graphs: real,
and other realistics. They are composed of two types of graphs: real, and other realistics from
SND-Lib [51] with a number of links 21 ≤ |E| ≤ 166, and a number of nodes 14 ≤ |V | ≤ 161
as shown in the table of Table 1. Note that we tested 4 instances for each triplet (G,K, s̄) with
|K| ∈ {10, 20, 30, 40, 50, 100, 150, 200, 250, 300}, and s̄ up to 320 slots.

Topology
Number
of Nodes

Number
of Links

Max Node
Degree

Min Node
Degree

Average Node
Degree

German 17 25 5 2 2.94
Nsfnet 14 21 4 2 3
Spain 30 56 6 2 3.73

Conus75 75 99 5 2 2.64

Real
Topology

Coronet100 100 136 5 2 2.72

Europe 28 41 5 2 2.92
France 25 45 10 2 3.6

German50 50 88 5 2 3.52
Brain161 161 166 37 1 2.06
Giul39 39 86 8 3 4.41
India35 35 80 9 2 4.57
Pioro40 40 89 5 4 4.45
Ta65 65 108 10 1 3.32

Realistic
Topology

Zib54 54 80 10 1 2.96

Table 1. Characteristics of different topologies used for our experiments.

9.3 Impact of Valid Inequalities

We first studied the efficiency of each family of valid inequalities introduced before to strengthen
the linear relaxation of our B&P algorithm. To do so, we consider a subset of instances with
a number of demands ranges in {10, 20, 30, 40, 50} and s̄ up to 50, while using three topologies
(German, Nsfnet, and Spain). The results show that introducing each family of valid inequalities
improves the effectiveness of our B&P algorithm considering 5 criteria, the average number of
nodes in the enumeration tree (Nb Nd), average gap (Gap) which represents the relative error
between the lower bound gotten at the end of the resolution and best upper bound, average CPU
time computation (T Cpu), the average number of columns added during the pricing procedure
(Ncols Add), the average number of violated inequalities added (Ineq Add). In fact, the results
show that introducing each family of valid inequalities enables reducing the average number of
nodes in the B&C&P tree, and also the average CPU time for several instances. Furthermore,
we observe that adding valid inequalities decreases the average number of added columns for
several instances. On the other hand, the results show that the cover-based inequalities (25) and
(7) are efficient compared with those of clique-based inequalities (19), (14) and (9). In fact, our
B&C&P algorithm is very efficient when adding the cover-based inequalities (25) and (7). We
notice that adding these families of valid inequalities reduces the average gap, average number
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of nodes, average CPU time, and also the number of generated columns. Moreover, the results
show also that several inequalities of the cover-based inequalities (25) and (7), and clique-based
inequalities (19), (14) and (9), they are generated along our B&C&P algorithm. However, the
number of clique-based inequalities (19) generated is very less high for the instances tested such
that they have not generated for several instances. Based on these results, we conclude that our
valid inequalities are very interesting to obtain tighter bounds and strengthen the linear relaxation.
On the other hand, the different families of odd-hole inequalities are shown to be not efficient for
the instances used such that the number of their violated inequalities generated is very less and
equals to 0 for several instances. As a result, we combine these families of valid inequalities such
that their separation is performed along with the B&C&P algorithm in the following order

1. edge-capacity-cover inequalities (25),
2. edge-interval-cover inequalities (7),
3. edge-slot-assignment-clique inequalities (14),
4. edge-interval-clique inequalities (9),
5. slot-assignment-clique inequalities (19).

We further provide a comparative study between B&P (without additional valid inequalities) and
B&C&P (with additional valid inequalities) algorithms. To do so, we evaluate the impact of valid in-
equalities used together within our B&C&P algorithm. For this, we present some computational re-
sults using several instances with a number of demand ranges in {10, 20, 30, 40, 50, 100, 150, 200, 250, 300}
and s̄ up to 320 slots. We classify instances in two classes: small-sized instances with number of
demands {10, 20, 30, 40, 50} and s̄ up to 180, and ones of large-sized instances with number of
demands ranges in {100, 150, 200, 250, 300} and s̄ up to 320. We use two types of topologies: real,
and realistic ones from SND-LIB already described in Table 1.
Tables 2 and 3 respectively, present a comparison between B&P and B&C&P using small-scale and
large-scale instances based on real graphs. In Tables 4 and 5 respectively, we give some numerical
results obtained for small-sized instances and large-instances with additional valid inequalities.
Note that the gap values given in red, represent the instances solved to optimality.
As reported in the Tables 2...5, the results show that adding several families of valid inequalities
improves the effectiveness of our B&C&P algorithm compared with the classical approach when
adding just one family of valid inequalities. In fact, we first notice that introducing valid inequali-
ties allows solving several instances to optimality that are not solved to optimality using the B&P
algorithm. Furthermore, they enabled reducing the average number of nodes in the B&C&P tree,
and also the average CPU time for several instances. On the other hand, and when the optimality
is not guaranteed, adding valid inequalities decreases the average gap for several instances. How-
ever, there exist few instances very rare in which adding valid inequalities does not improve the
results of the B&P algorithm. Based on these results, we ensure that using our valid inequalities
strengthens the linear relaxation of our path formulation.

9.4 Impact of Symmetry-Breaking Inequalities

Here we show the impact of our symmetry-breaking inequalities already introduced on the effec-
tiveness of our B&P and B&C&P algorithms. To do this, we consider a subset of instances with a
number of demands ranges in {10, 20, 30, 40, 50} and s̄ up to 50, while using three real topologies
(German, Nsfnet, and Spain), and two realistic topologies (Ta65 and Zib54). The results are re-
ported in the following Tables 9.4 and 9.4. As reported in these Tables, we notice that adding these
symmetry-breaking inequalities allows solving to optimality some instances that are not solved to
optimality using the B&C&P algorithm (without additional symmetry-breaking inequalities). Fur-
thermore, they allow reducing the average gap, average number of nodes for several instances.
However, there exist some cases in which adding these inequalities makes the problem hard for
solving to optimality. As a result, we observe in the Tables 9.4 and 9.4, the B&P and B&C&P al-
gorithms (without additional symmetry-breaking inequalities) are able to solve to optimality some
instances that are not solved to optimality when adding our symmetry-breaking inequalities.
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Instances B&P SCIP B&C&P SCIP
Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
Conus75 10 40 1 0,00 1,26 0 1 0,00 1,45 0 0
Conus75 20 40 1 0,00 2,57 0 1 0,00 2,72 0 0
Conus75 30 40 3694 0,33 18000 124,25 2648 0,26 18000 497,50 430
Conus75 40 40 2282 0,31 13500,73 233,50 954 0,28 13507,02 401,25 824
Conus75 50 80 1 0,00 15,02 0 1 0,00 14,46 0 0

Coronet100 10 40 1 0,00 32,58 1,75 1 0,00 29,82 1,75 0
Coronet100 20 40 1 0,00 42,94 0 1 0,00 37,95 0 0
Coronet100 30 40 1922,50 0,47 13501,82 232,50 634,50 1,64 14331,94 612,25 325,75
Coronet100 40 40 1818,50 0,40 13504,14 267 807 0,33 13513,17 976,50 413,75
Coronet100 50 80 2 0,00 51,97 0,75 189 0,04 4522,96 20 36,75
German 10 15 28 0,00 1,56 1,50 3,50 0,00 0,36 1,25 9,25
German 20 45 227,50 0,00 74,68 0 1 0,00 0,57 0 2,25
German 30 45 1,50 0,00 1,01 0 2,50 0,00 2,27 0 1,25
German 40 45 1002,50 0,37 4498,37 68,25 1107 0,17 4502,33 55 223
German 50 55 4243,50 0,35 18000 76,50 3132,75 0,17 13505,87 52,50 429
Nsfnet 10 15 1 0,00 0,05 0 1 0,00 0,06 0 0
Nsfnet 20 20 120,50 0,00 12,52 11 137 0,00 18,20 0 3
Nsfnet 30 30 1434 0,00 749,96 1 1292 0,00 391,26 0 0
Nsfnet 40 35 2030,50 0,21 5184,20 21,50 828 0,18 4527,57 0 1,50
Nsfnet 50 50 4305 0,45 13478,99 6,50 3926 0,45 13497,69 0 7,75
Spain 10 15 1 0,00 0,18 0 1 0,00 0,19 0 0
Spain 20 20 1 0,00 0,55 0,50 1 0,00 0,87 0,50 3
Spain 30 25 30,50 0,00 28,48 5,25 1 0,00 1,53 0,25 1,75
Spain 40 30 1912,50 0,07 4495,04 30,75 314,50 0,00 489,39 3,25 48,50
Spain 50 35 2506,25 0,11 13485,82 24,25 1818,50 0,10 5445,88 28,75 320,50

Table 2. Efficiency of a combination of valid inequalities using real topologies for small-scale instances :
B&P Vs B&C&P.

Instances B&P SCIP B&C&P SCIP
Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
Conus75 100 120 51 0,00 1460,58 1,50 46 0,00 1745,17 1 21
Conus75 150 200 1 0,00 705,35 0 1 0,00 555,89 0 0
Conus75 200 240 6 0,01 5215,75 0,75 1,25 0,01 2119,99 0,75 7,25
Conus75 250 320 1 0,00 2101,99 0,50 1 0,00 2111,54 0,50 4,25
Conus75 300 320 1 0,00 6087,75 1,25 1 0,00 2828,78 1,25 0

Coronet100 100 120 1 0,00 139,61 0 1 0,00 158,51 0 0
Coronet100 150 200 1 0,00 461,86 0 1 0,00 429,36 0 0
Coronet100 200 280 12,50 0,02 5845,43 1 1,25 0,02 4142,16 1 3
Coronet100 250 320 12,25 0,01 18000 1,25 1 0,01 3769,06 1,25 12,50
Coronet100 300 320 3,50 0,08 9933,59 9 1 0,08 4414,07 9 0
German 100 140 1 0,00 11,25 0 1 0,00 11,84 0 0
German 150 210 1 0,00 53,03 0 1 0,00 74,89 0 0
German 200 260 99 0,01 4621,81 0 1 0,02 1079,52 0 3,25
German 250 320 1 0,00 847,06 0 1 0,00 764,77 0 0
German 300 320 1 0,00 1386,45 0 1 0,00 1496,42 0 0
Nsfnet 100 120 1 0,00 6,37 0 1 0,00 7,88 0 0
Nsfnet 150 160 1 0,00 29,08 0 1 0,00 44,37 0 0
Nsfnet 200 210 232 0,01 5497,21 0 196,50 0,01 5911,91 0 0,50
Nsfnet 250 285 1 0,00 375,21 0 1 0,00 484,91 0 0
Nsfnet 300 320 6,50 0,00 5125,24 0 7,50 0,00 5196,10 0 0,25
Spain 100 120 1 0,00 22,05 0 1 0,00 22,28 0 0
Spain 150 160 1 0,00 86,47 0,25 1 0,00 121,71 0,25 0,25
Spain 200 200 1 0,00 359,46 0,25 1 0,00 451,46 0,25 7,25
Spain 250 240 1 0,00 958,33 1,25 1 0,00 1779,34 1,25 11,25
Spain 300 280 1 0,00 1864,60 1,50 1 0,03 2274,13 1,50 6,25

Table 3. Efficiency of a combination of valid inequalities using real topologies for large-scale instances :
B&P Vs B&C&P.
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Instances B&P SCIP B&C&P SCIP
Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
Brain161 10 40 1 0,00 3,17 0 1 0,00 3,12 0 0
Brain161 20 40 1 0,00 6,25 0 1 0,00 6,15 0 0
Brain161 30 40 1 0,00 9,45 0 1 0,00 9,40 0 0
Brain161 40 40 1635,50 0,01 18000 0 1579 0,01 18000 0 205,50
Brain161 50 40 1932,25 0,73 18000 6,50 1774,50 0,36 18000 12,75 487,25
Europe 10 25 7 0,00 1,45 1,25 12,50 0,00 2,47 2,75 1,75
Europe 20 60 1196 0,14 4499,56 77 1857,50 0,00 4496,18 75,50 220,25
Europe 30 80 3861,50 0,24 13490,79 480 1649,50 0,20 8997,69 814,75 363
Europe 40 80 1998 0,46 9024,29 434,50 806,50 0,31 9139,18 428,50 866,50
Europe 50 180 1 0,00 13,83 0 1 0,00 11,96 0 0
France 10 50 409,50 0,00 341,88 115,75 61,50 0,00 47,28 37 11,50
France 20 60 3345 0,73 12010,59 88 176 0,39 4511,73 0 100,50
France 30 80 3549 0,74 18000 244,50 1090,50 0,55 18000 0,25 666,50
France 40 100 1932,50 0,33 13548,11 81,25 545,75 0,23 14633,48 0 332
France 50 120 1679,50 0,25 13499,67 78,75 543 0,23 13520,17 0 843,50

German50 10 35 1 0,00 0,88 0 1 0,00 0,97 0 0
German50 20 40 1 0,00 2,09 0 1 0,00 2,31 0 0
German50 30 50 1 0,00 4,05 0 1 0,00 4,53 0 0
German50 40 50 1 0,00 5,62 0 1 0,00 6 0 0
German50 50 50 1 0,00 7,26 0 1 0,00 7,62 0 0
Giul39 10 40 1 0,00 1,06 0 1 0,00 1,17 0 0
Giul39 20 40 1 0,00 2,17 0 1 0,00 2,31 0 0
Giul39 30 40 1 0,00 3,20 0 1 0,00 3,37 0 0
Giul39 40 40 1 0,00 4,45 0 1 0,00 4,74 0 0
Giul39 50 40 683,75 0,02 4502,95 0,50 1 0,00 9,40 0 4,50
India35 10 40 16,50 0,00 13,95 0 1 0,00 1,05 0 2
India35 20 40 1 0,00 1,67 0 1 0,00 2,10 0 14,25
India35 30 40 2456,50 0,10 8996,21 96,50 917,50 0,12 4665,90 84,75 115,50
India35 40 40 1830,50 0,50 13505,63 533 375 0,52 7073,75 82,25 219,50
India35 50 80 544 0,00 4509,40 0 368,50 0,00 4478,10 0 242,25
Pioro40 10 40 1 0,00 1,22 0,25 1 0,00 1,28 0,25 0
Pioro40 20 40 1 0,00 2,42 1,25 1 0,00 2,50 1,25 0
Pioro40 30 40 1 0,00 3,38 0 1 0,00 3,54 0 0
Pioro40 40 40 907,50 0,02 4503,98 14,75 1 0,00 20,20 1,25 11,25
Pioro40 50 80 388,50 0,00 4515,13 21 1 0,00 31,62 0,75 17,75
Ta65 10 40 1 0,00 1,58 0 1 0,00 1,71 0 0
Ta65 20 40 1 0,00 4,13 1,25 1 0,00 4,52 1,25 0
Ta65 30 40 706 0,01 4509,13 16,50 483 0,01 4513,46 28,75 173,25
Ta65 40 40 2098 0,09 13503,83 130,50 401,50 0,04 4526,49 63 156,50
Ta65 50 40 2339,50 0,05 18000 90,75 1573,50 0,01 13661,46 68,50 381,50
Zib54 10 40 1 0,00 1,30 0 1 0,00 1,25 0 301,75
Zib54 20 40 1 0,00 2,23 0,75 1 0,00 2,29 0,75 1583,75
Zib54 30 40 1 0,00 5,97 3,50 1 0,00 9,73 3,50 4999,25
Zib54 40 40 757,50 0,10 4503,19 28,25 66,50 0,00 478,74 11 13375,75
Zib54 50 40 2835,50 0,31 18000 92,25 2376 0,31 18000 92,50 143067

Table 4. Efficiency of a combination of valid inequalities using realistic topologies: B&P Vs B&C&P.
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Instances B&P SCIP B&C&P SCIP
Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
Brain161 100 80 521,25 0,14 18000 0 402,50 0,22 18000 0 187,50
Brain161 150 160 131,50 0,01 18000 0 101 0,07 18000 0 49,25
Brain161 200 200 16,50 0,29 18000 0 2 0,10 16500,15 0 24,50
Brain161 250 240 1,50 0,32 18000 0 1 0,54 15984,66 0 12,75
Brain161 300 320 1,50 0,02 9439,62 0 1 0,08 6411,93 0 0
Europe 100 320 1 0,00 1086,09 0 1 0,00 1233,02 0 229,25
Europe 150 320 3 0,26 18000 0,75 1 0,12 16134,92 0 289,75
Europe 200 320 1 0,00 4045,59 0 1 0,00 2635,73 0 421
Europe 250 320 1 0,00 9118,67 0 1 0,00 10000,62 0 592,50
Europe 300 320 1 0,37 18000 0 1 0,00 16824,42 5,50 771,25
France 100 320 211,50 0,20 18000 5,75 32,50 0,32 18000 0 36,50
France 150 320 3,50 2,77 18000 21 1 4,42 18000 0 30,25
France 200 320 14 0,96 18000 3,25 2,50 2,51 18000 0 15,50
France 250 320 1 3,52 18000 0 1 4,34 18000 0 6,75
France 300 320 1 4,65 18000 0 1 7,55 18000 0 0

German50 100 100 1 0,00 48,10 0 1 0,00 35,63 0 0
German50 150 140 1 0,00 224,72 0 1 0,00 196,15 0 0
German50 200 140 44 0,21 8488,93 0 43 0,12 9239,41 39,25 0
German50 250 180 1 0,28 5897,62 0 1,50 0,43 7648,19 12 0
German50 300 180 1 0,57 18000 0 1 0,86 13968,59 12,25 0
Giul39 100 40 2290 0,16 18000 185,75 1253,75 1,13 16076,79 114,50 1598,75
Giul39 150 120 1 0,00 152,94 1,25 1 0,00 430,16 1,25 15
Giul39 200 120 82,50 0,00 6098,96 3,25 59 0,05 6188,09 3 90,25
Giul39 250 160 34,50 0,01 5339,55 1 26 0,00 5852,20 1 30,25
Giul39 300 200 38,50 0,08 18000 6 3,50 0,08 11583,66 5,25 17,25
India35 100 120 641 0,02 18000 0 225 0,01 9320,12 0 608
India35 150 200 31 0,00 4909,68 0 1,25 0,00 3378,23 0 19,50
India35 200 280 1 0,00 7046,13 0 1 0,05 2556,02 0 3
India35 250 280 1 0,01 8389,92 0 1 0,09 9262,44 0 15,25
India35 300 320 1 0,00 5521,26 0 1 0,00 6359,41 0 0
Pioro40 100 80 874,75 0,02 13712,83 15 432,50 0,01 9287,22 13,50 209,25
Pioro40 150 160 8,50 0,00 936,64 16,25 1 0,00 820,48 16,25 12,75
Pioro40 200 280 11 0,04 5780,53 16,50 1 0,04 3719,52 14,50 11,50
Pioro40 250 280 34,50 0,07 12054,33 26,25 1 0,13 7040,90 24,50 8,25
Pioro40 300 320 14 0,25 18000 34,25 1 0,27 9744,06 34,25 3
Ta65 100 80 628,75 0,02 13548,86 31,75 542,25 0,02 13847,85 38 326,25
Ta65 150 160 18,50 0,00 1460,38 3,75 24 0,00 2101,63 3,25 21
Ta65 200 200 1 0,00 1623,90 9 1 0,00 2190,52 8 14,25
Ta65 250 240 20 0,03 10794,63 12,75 1 0,07 5241 12,75 14
Ta65 300 280 10,75 0,10 15819,23 28,50 1 0,11 9440,85 6,75 11,75
Zib54 100 80 849,75 0,13 13770,26 80,25 524,75 0,52 13854,91 36,75 84096
Zib54 150 160 54 0,02 4799,19 15,25 6 0,19 2074,75 13 40639
Zib54 200 200 94 0,00 13018,71 7,75 3,25 0,15 4450,02 5,75 39934,25
Zib54 250 240 24,50 0,20 18000 6,75 1 0,22 5215,45 6,75 32673,50
Zib54 300 280 1,50 0,52 15029,79 26,25 1 0,63 9736,63 26,25 20400

Table 5. Efficiency of a combination of valid inequalities using realistic topologies for large-scale instance:
B&P Vs B&C&P.

Instances B&P SCIP Without Symmetry Breaking Ineq B&P SCIP With Symmetry Breaking Ineq
Topology |K| |S| Nbr Nd Gap T Cpu Ncols Add Nbr Nd Gap T Cpu Ncols Add
German 10 15 28,00 0,00 1,56 1,50 28,50 0,00 2,46 2,25
German 20 45 227,50 0,00 74,68 0,00 763,50 0,15 4504,82 0,00
German 30 45 1,50 0,00 1,01 0,00 1,00 0,00 27,35 0,00
German 40 45 1002,50 0,37 4498,37 68,25 1064,50 0,37 4677,83 60,25
German 50 55 4243,50 0,35 18000 76,50 3461,00 0,35 18000 85,50
Nsfnet 10 15 1,00 0,00 0,05 0,00 1,00 0,00 0,19 0,00
Nsfnet 20 20 120,50 0,00 12,52 11,00 254,50 0,00 94,80 3,25
Nsfnet 30 30 1434,00 0,00 749,96 1,00 1267,00 0,00 720,21 0,00
Nsfnet 40 35 2030,50 0,21 5184,20 21,50 836,00 0,21 4716,39 7,00
Nsfnet 50 50 4305,00 0,45 13478,99 6,50 1179,00 0,14 13928,73 0,00
Spain 10 15 1,00 0,00 0,18 0,00 1,00 0,00 0,32 0,00
Spain 20 20 1,00 0,00 0,55 0,50 1,00 0,00 2,14 0,25
Spain 30 25 30,50 0,00 28,48 5,25 65,00 0,00 179,56 5,25
Spain 40 30 2549,67 0,07 5993,17 41,00 1282,33 0,07 6164,94 44,33
Spain 50 35 2506,25 0,11 13485,82 24,25 2551,50 0,10 9611,75 27,25
Ta65 10 40 1,00 0,00 1,58 0,00 1,00 0,00 1,72 0,00
Ta65 20 40 1,00 0,00 4,13 1,25 1,00 0,00 9,41 0,75
Ta65 30 40 706,00 0,01 4509,13 16,50 665,50 0,01 4559,66 19,50
Ta65 40 40 2098,00 0,09 13503,83 130,50 1848,25 0,08 13534,41 165,50
Ta65 50 40 2339,50 0,05 18000 90,75 973,25 0,04 18000 74,75
Zib54 10 40 1,00 0,00 1,30 0,00 1,00 0,00 3,08 0,00
Zib54 20 40 1,00 0,00 2,23 0,75 1,00 0,00 13,54 0,25
Zib54 30 40 1,00 0,00 5,97 3,50 1,00 0,00 38,72 0,00
Zib54 40 40 757,50 0,10 4503,19 28,25 342,00 0,09 4611,08 34,00
Zib54 50 40 2835,50 0,31 18002,35 92,25 763,75 0,31 18000 44,25

Table 6. Efficiency of symmetry-breaking inequalities for the B&P algorithm using small-scale instances.
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Instances B&C&P SCIP Without Symmetry Breaking Ineq B&C&P SCIP With Symmetry Breaking Ineq
Topology |K| |S| Nbr Nd Gap T Cpu Ncuts Add Ncols Add Nbr Nd Gap T Cpu Ncuts Add Ncols Add
German 10 15 3,50 0,00 0,36 9,25 1,25 1,00 0,00 0,31 4,75 0,25
German 20 45 1,00 0,00 0,57 2,25 0,00 1,00 0,00 15,24 1,50 0,00
German 30 45 2,50 0,00 2,27 1,25 0,00 1,00 0,00 70,31 0,75 0,00
German 40 45 1107,00 0,17 4502,33 223,00 55,00 362,50 0,21 5007,95 68,25 35,00
German 50 55 3132,75 0,17 13505,87 429,00 52,50 175,00 0,16 12892,57 65,25 8,50
Nsfnet 10 15 1,00 0,00 0,06 0,00 0,00 1,00 0,00 0,19 0,00 0,00
Nsfnet 20 20 137,00 0,00 18,20 3,00 0,00 42,50 0,00 27,60 17,25 0,00
Nsfnet 30 30 1292,00 0,00 391,26 0,00 0,00 139,50 0,00 620,51 11,25 0,00
Nsfnet 40 35 828,00 0,18 4527,57 1,50 0,00 53,50 0,18 1002,96 12,25 0,00
Nsfnet 50 50 3926,00 0,45 13497,69 7,75 0,00 924,00 0,62 6558,79 51,00 0,00
Spain 10 15 1,00 0,00 0,20 0,00 0,00 1,00 0,00 0,32 0,00 0,00
Spain 20 20 1,00 0,00 0,87 3,00 0,50 1,00 0,00 1,86 0,00 0,25
Spain 30 25 1,00 0,00 1,53 1,75 0,25 1,00 0,00 6,11 3,75 0,25
Spain 40 30 419,00 0,00 652,29 64,67 4,33 383,00 0,00 2475,74 54,33 12,33
Spain 50 35 1818,50 0,10 4655,84 320,50 28,75 211,50 0,10 4490,18 142,25 9,00
Ta65 10 40 1,00 0,00 1,71 424,25 0,00 1,00 0,00 3,48 0,00 0,00
Ta65 20 40 1,00 0,00 4,52 2280,75 1,25 1,00 0,00 17,51 0,00 0,75
Ta65 30 40 483,00 0,01 4513,47 14585,25 28,75 1,00 0,00 279,41 8,75 2,25
Ta65 40 40 401,50 0,04 4526,49 17037,25 63,00 193,75 0,05 6909,24 182,50 70,25
Ta65 50 40 1573,50 0,01 13661,46 107263,50 68,50 378,25 0,00 10576,28 76,75 14,75
Zib54 10 40 1,00 0,00 1,25 301,75 0,00 1,00 0,00 3,68 0,00 0,00
Zib54 20 40 1,00 0,00 2,29 1583,75 0,75 1,00 0,00 11,52 0,00 0,25
Zib54 30 40 1,00 0,00 9,73 4999,25 3,50 114,50 0,08 2421,37 44,75 21,25
Zib54 40 40 66,50 0,00 478,74 13375,75 11,00 265,00 0,16 2343,81 49,50 8,75
Zib54 50 40 2376,00 0,31 18000 143067,00 92,50 526,00 0,13 13499,72 202,50 34,75

Table 7. Efficiency of symmetry-breaking inequalities for the B&C&P algorithm using small-scale in-
stances.
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10 Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We intro-
duced integer linear programming based on the so-called path formulation for the problem. We
further derive several valid inequalities for the associated polytope that have been shown to be
efficient within the Branch-and-Cut-and-Price algorithm. As a result, we notice that the Branch-
and-Cut-and-Price algorithm was very efficient compared with the Branch-and-Price algorithm
using several instances. Some instances are still difficult to solve with both B&P and B&C&P
algorithms. Our next step is to study the impact of the following branching strategies on the
effectivness of the B&P and B&C&P algorithms.

10.1 Demand-Path-Slot Classical Variable Branching Strategy

Here, we use the classical branching schemes. We select a variable ykp,s induced by a demand k ∈ K
and slot s ∈ {wk, ..., s̄} and path p ∈ Bk having the largest value y∗kp,s with 0 < y∗kp,s < 1. Then,
our branching algorithm generates two nodes by selecting or not the slot s as last-slot along path
p for the demand k, i.e., ykp,s = 0 or ykp,s = 1 which induces two new sub-problems. This has no
impact on the structure of our pricing problem.

10.2 Demand-Path Constraint Branching Strategy

We propose a new branching scheme based on the Ryan and Foster branching scheme. It consists
in branching on a constraint 0 ≤

∑s̄
s=1 y

k
p,s ≤ 1 for a demand k and path p ∈ Bk which is valid

for the C-RSA problem given that
∑
p∈Pk

∑s̄
s=1 y

k
p,s = 1. To do so, we select a demand k ∈ K

and a path p ∈ Bk having the largest value of
∑s̄
s=1 y

∗k
p,s with 0 <

∑s̄
s=1 y

∗k
p,s < 1. Then, we

generate two nodes by imposing the usage of the path p to route the demand k or no, i.e., we
create two sub-problem with

∑s̄
s=1 y

k
p,s = 0 or

∑s̄
s=1 y

k
p,s = 1. However, if such pair of demand k

and path p does not identified in a certain level of our algorithm, we select a variable ykp,s induced

by a demand k ∈ K and slot s ∈ {wk, ..., s̄} and path p ∈ Bk having the largest value y∗kp,s with

0 < y∗kp,s < 1, and then generate two nodes by imposing that ykp,s = 0 or ykp,s = 1. Note that,

branching in certain constraint
∑s̄
s=1 y

k
p,s = 0 or

∑s̄
s=1 y

k
p,s = 1, it has no impact on the structure

of our pricing problem.

10.3 Demand-Slot Constraint Branching Strategy

Let us present now another branching scheme based on the Ryan and Foster branching scheme. It
consists in branching on a constraint 0 ≤

∑
p∈Bk ykp,s ≤ 1 for a demand k and slot s which is valid

for the C-RSA problem given that
∑
p∈Pk

∑s̄
s=1 y

k
p,s = 1. To do so, we select a demand k ∈ K and

a slot s having the largest value of
∑
p∈Bk y∗

k
p,s with 0 <

∑
p∈Bk y∗

k
p,s < 1. Then, we generate two

nodes by imposing the assignment of slot s as last-slot for the demand k or no, i.e.,
∑
p∈Pk ykp,s = 0

or
∑
p∈Pk ykp,s = 1. However, if such pair of demand k and slot s does not exist in a certain level

of our algorithm, we select a variable ykp,s induced by a demand k ∈ K and slot s ∈ {wk, ..., s̄} and

path p ∈ Bk having the largest value y∗kp,s with 0 < y∗kp,s < 1, and then generate two nodes by

imposing that ykp,s = 0 or ykp,s = 1. Note that, branching in certain constraint
∑
p∈Pk ykp,s = 0 or∑

p∈Pk ykp,s = 1, it changes the calculation of the reduced-cost associated with the demand k and
slot s in each child node of the current node as follows.

rcks = βk + λks + min
p∈Pk\Bk

[
∑

e∈E(p)

le −
s∑

s′=s−wk+1

µes′ ], (77)

where λks ∈ R is the dual variable associated with this branching constraint induced by demand k
and slot s. However, it has no impact on the structure of our pricing problem given that it consists
in solving RCSP problem.
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10.4 Demand-Edge Constraint Branching Strategy

In what follows, we introduce a new branching scheme based on the Ryan and Foster branching
scheme. It consists in branching on a constraint 0 ≤

∑s̄
s=1

∑
p∈Bk(e) y

k
p,s ≤ 1 for a demand k and

an edge e /∈ E \ (Ek1 ∪Ek0 ) which is valid for the C-RSA problem given that
∑
p∈Pk

∑s̄
s=1 y

k
p,s = 1.

For this, we select a demand k ∈ K and an edge e /∈ E \ (Ek1 ∪ Ek0 ) having the largest value
of
∑s̄
s=1

∑
p∈Bk(e) y

∗k
p,s with 0 <

∑s̄
s=1

∑
p∈Bk(e) y

∗k
p,s < 1. Then, we generate two nodes by

imposing the usage of edge e to route the demand k or no, i.e.,
∑s̄
s=1

∑
p∈Pk(e) y

k
p,s = 0 or∑s̄

s=1

∑
p∈Pk(e) y

k
p,s = 1. However, if such pair of demand k and edge e does not exist in a

certain level of our algorithm, we select a variable ykp,s induced by a demand k ∈ K and slot

s ∈ {wk, ..., s̄} and path p ∈ Bk having the largest value y∗kp,s with 0 < y∗kp,s < 1, and then gen-

erate two nodes by imposing that ykp,s = 0 or ykp,s = 1. Note that, branching in certain constraint∑s̄
s=1

∑
p∈Pk(e) y

k
p,s = 0 or

∑s̄
s=1

∑
p∈Pk(e) y

k
p,s = 1, it changes the calculation of the reduced-cost

associated with the demand k and slot s in each child node of the current node as follows.

rcks = βk + min( min
p∈Pk\Bk,
e∈E(p)

[λke +
∑

e′∈E(p)\{e}

le′ −
s∑

s′=s−wk+1

µe
′

s′ ], min
p∈Pk\Bk,
e/∈E(p)

[
∑

e′∈E(p)

le′ −
s∑

s′=s−wk+1

µe
′

s′ ]),

(78)

where λke ∈ R is the dual variable associated with this branching constraint induced by demand k
and edge e. However, it has no impact on the structure of our pricing problem given that it consists
in solving RCSP problem.

10.5 Edge-Slot Constraint Branching Strategy

We further present another constraint branching scheme which consists in branching on the non-

overlapping constraint 0 ≤
∑
p∈Pk(e)

∑min(s+wk−1,s̄)
s′=s ykp,s′ ≤ 1. For this, we select an edge e and a

slot s having the largest value of
∑
p∈Pk(e)

∑min(s+wk−1,s̄)
s′=s y∗kp,s′ with 0 <

∑
p∈Pk(e)

∑min(s+wk−1,s̄)
s′=s y∗kp,s′ <

1. Then, we generate two nodes by imposing the usage of edge e to route the demand k or no, i.e.,∑
p∈Pk(e)

∑min(s+wk−1,s̄)
s′=s ykp,s′ = 0 or

∑
p∈Pk(e)

∑min(s+wk−1,s̄)
s′=s ykp,s′ = 1. However, if such pair of

edge e and slot s does not exist, we select a variable ykp,s induced by a demand k ∈ K and slot

s ∈ {wk, ..., s̄} and path p ∈ Bk having the largest value y∗kp,s with 0 < y∗kp,s < 1, and then gen-

erate two nodes by imposing that ykp,s = 0 or ykp,s = 1. Note that, branching in certain constraint∑s̄
s=1

∑
p∈Pk(e) y

k
p,s = 0 or

∑s̄
s=1

∑
p∈Pk(e) y

k
p,s = 1, it changes the calculation of the reduced-cost

associated with the demand k and each slot s′ with s ∈ {s′ − wk + 1, ..., s′} in each child node of
the current node as follows.

rcks′ = βk + min( min
p∈Pk\Bk,

e∈E(p) and s∈{s′−wk+1,...,s′}

[λes +
∑

e′∈E(p)\{e}

le′ −
s′∑

s”=s′−wk+1

µe
′

s”],

min
p∈Pk\Bk,

e/∈E(p) or s/∈{s′−wk+1,...,s′}

[
∑

e′∈E(p)

le′ −
s′∑

s”=s′−wk+1

µe
′

s”]), (79)

where γes ∈ R is the dual variable associated with this branching constraint induced by edge e and
slot s. However, it has no impact on the structure of our pricing problem given that it consists in
solving RCSP problem.
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63. Santos, A.F.D, and Assis, K., and Guimarães, M.A., and Hebraico, R.: Heuristics for Routing and Spec-
trum Allocation in Elastic Optical Path Networks. In: 2015, Journal Of Modern Engineering Research
(IJMER), pp. 1-13.

64. Shirazipourazad, S., Zhou, C. , Derakhshandeh, Z., and Sen, A. : On routing and spectrum allocation
in spectrum-sliced optical networks. In: Proceedings IEEE INFOCOM 2013, pp. 385-389.

65. Schrijver, A. : Combinatorial Optimization - Polyhedra and Efficiency. In: Springer-Verlag 2003.
66. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner,

A., Gottwald, L., Halbig, K., and Hendel, G., and Hojny, C., Koch, T., Bodic, L., Maher, P. J., Matter,
F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y.,
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