Ibrahima Diarrassouba 
  
Youssouf Hadhbi 
email: youssouf.hadhbi@uca.fr
  
Ali Ridha Mahjoub 
email: ridha.mahjoub@lamsade.dauphine.fr
  
Valid Inequalities and Branch-and-Cut-and-Price Algorithm for the Constrained-Routing and Spectrum Assignment Problem

Keywords: Spectrally flexible optical network, network design, constrained-routing, spectrum assignment, complexity, ILP, pre-processing, valid inequality, separation, column generation, branch-and-price algorithm, branch- primal heuristic, metaheuristics, heuristic, greedy-algorithm, dynamic programming algorithm, branching rules

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The second decade of a new millennium saw a profound change in optical transport networks with continuous growth in bandwidth capacity due to the growth of global communication services and networking: mobile internet network (e.g., 5th generation mobile network), cloud computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social networks) [START_REF] Cheng | Routing and Spectrum Assignment Algorithm based on Spectrum Fragment Assessment of Arriving Services[END_REF], etc... Therefore, a new generation of optical transport network architecture called Spectrally Flexible Optical Networks (SFONs) has been introduced as promising technology because of their flexibility and efficiency compared with the traditional Optical Wavelength Division Multiplexing (WDM) [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF] [START_REF] Ramaswami | Multiwavelength lightwave networks for computer communication[END_REF]. In SFONs the optical spectrum is divided into slots having the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T [START_REF] Amar | Performance assessment and modeling of flexible optical networks[END_REF]. We refer the reader to [START_REF] Lopez | Elastic Optical Networks: Architectures, Technologies, and Control[END_REF] for more information about the architectures, technologies, and control of SFONs. The Routing and Spectrum Assignment (RSA) problem plays an important role when dimensioning and designing SFONs. It consists of assigning for each traffic demand k, a physical optical path, and an interval of contiguous slots (called also channels) while optimizing some linear objective(s) and satisfying the following constraints [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]:

1. spectrum contiguity: an interval of contiguous slots should be allocated to each traffic demand k with a width equals to the number of slots requested by demand k; 2. spectrum continuity: the interval of contiguous slots allocated to each traffic demand stills the same along the chosen path; 3. non-overlapping spectrum: the intervals of contiguous slots of traffic demands whose paths are not edge-disjoints in the network cannot share any slot over the shared edges.

In general, the routing and resources allocation in communication networks receives increasing attention. In particular, numerous research studies have been conducted on the RSA problem since its first appearance. From a complexity point of view, the RSA is known to be an NP-hard problem [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF] [START_REF] Talebi | Spectrum management techniques for elastic optical networks: A survey[END_REF]. Various integer linear programming formulations based on the so-called path formulation and edge-node formulation and algorithms have been proposed to solve it. A detailed survey of spectrum management techniques for SFONs is presented in [START_REF] Talebi | Spectrum management techniques for elastic optical networks: A survey[END_REF] where authors classified variants of the RSA problem into two variants: offline and online RSA. The edge-path formulation is majorly used in the literature where variables are associated with all possible physical optical paths inducing a huge number of variables and constraints which grow exponentially and in parallel with the growth of the instance size: number of demands, number of slots, spectrum-width and topology size [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]. To the best of our knowledge, we observe that several papers which use the edge-path formulation to solve RSA problem, use a set of precomputed-paths without guaranty of optimality e.g. in [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF], [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF], [START_REF] Klinkowski | Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF]. On the other hand, column generation has been applied by Klinkowski et al. in [START_REF] Ruiz | Column generation algorithm for RSA problems in flexgrid optical networks[END_REF] and Jaumard et al. in [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF] to solve the relaxed problem of RSA taking into account all the possible paths for each traffic demand. To improve the lower bound of the RSA relaxation, Klinkowsky et al. proposed in [START_REF] Klinkowski | Valid inequalities for the routing and spectrum allocation problem in elastic optical networks[END_REF] a valid inequality based on clique inequality separated by a branch-and-bound algorithm. On the other hand, branch-and-cut-and-price method has been applied to guarantee the optimality using the edge-path formulation for the RSA problem by Klinkowski et al. in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF] introducing one valid inequality based on the so-called clique inequalities.

On the other hand, a compact formulation based on the so-called edge-node formulation has been introduced as an alternative for the edge-path formulation to solve routing issues in general with the guarantee of optimality. The edge-node formulation overcomes the drawbacks of the edge-path formulation usage, which holds a polynomial number of variables and constraints that grow only polynomially with the size of the instance. We found just a few works in the literature that use the edge-node formulation to solve the RSA problem e.g. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF]. Several edge-node formulations have been compared by Bertero et al. in [START_REF] Bertero | Integer programming models for the routing and spectrum allocation problem[END_REF]. However, all these proposals' formulations and exact algorithms were not able to solve large-scale instances of this problem to optimality. Therefore, several heuristics have been proposed to solve the RSA problem by Ding et al. in [START_REF] Ding | Hybrid routing and spectrum assignment algorithms based on distance-adaptation combined coevolution and heuristics in elastic optical networks[END_REF], Mesquita et al. in [START_REF] Mesquita | A Routing and Spectrum Assignment Heuristic for Elastic Optical Networks under Incremental Traffic[END_REF], Santos et al. in [START_REF] Santos | Heuristics for Routing and Spectrum Allocation in Elastic Optical Path Networks[END_REF], and recently by He et al. in [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF]. Mahala et al. proposed in [START_REF] Mahala | Spectrum assignment technique with first-random fit in elastic optical networks[END_REF] a greedy algorithm to solve the problem. Moreover, metaheuristics have applied also to solve the RSA problem, we found for example tabu search algorithm proposed by Goscien et al. in [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF], simulated annealing algorithm by Klinkowski et al. in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF], genetic algorithms by Gong et al. in [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF], Hai et al. in [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF], and ant colony algorithms by Lezama et al. in [START_REF] Lezama | Solving routing and spectrum allocation problems in flexgrid optical networks using precomputing strategies[END_REF]. Based on this, a hybrid meta-heuristic approach has been applied by Ruiz in [START_REF] Ruiz | A hybrid meta-heuristic approach for optimization of routing and spectrum assignment in Elastic Optical Network (EON)[END_REF] to solve large-sized instances of the RSA problem. Furthermore, we noticed also that artificial intelligence algorithms can be used to boost the performance of the proposals' algorithms used to solve the RSA problem, see for example the work of Liu et al. in [START_REF] Liu | A Monte Carlo Based Routing and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] and Lohani et al. in [START_REF] Lohani | Routing, Modulation and Spectrum Assignment using an AI based Algorithm[END_REF]. Moreover, some techniques related to the learning aspect are also used to improve the efficiency of the algorithms proposed using deep-learning algorithms [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF], and also machine-learning algorithms in [START_REF] Salani | Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic Optical Networks[END_REF], and recently in [START_REF] Zhang | Overview on routing and resource allocation based machine learning in optical networks[END_REF] and [START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF].

In this paper, we are interested in the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the network should also satisfy the transmission-reach constraint that is the route for each traffic demand should not exceed a certain length. Recently, Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] introduced a cut formulation to solve the C-RSA problem based on the so-called cut inequalities that are separable in polynomial time using network flow algorithms. It has been used by Chouman et al. in [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] and [START_REF] Chouman | Assessing the Health of Flexgrid Optical Networks[END_REF] to show the impact of several objective functions on the optical network state. Computational results show that their formulation solves larger instances compared with those of Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF] and Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF]. Note that the transmission-reach constraint has not been taken into account by Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF], and Bertero et al. in [START_REF] Bertero | Integer programming models for the routing and spectrum allocation problem[END_REF]. On the other hand, Colares et al. in [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] propose a compact formulation for the C-RSA problem [START_REF] Carlyle | Lagrangian relaxation and enumeration for solving constrained shortest-path problems[END_REF] The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V, E), which is specified by a set of nodes V , and a multiset4 E of links (optical-fibers). Each link e = ij ∈ E is associated with a length e ∈ R + (in kms), a cost c e ∈ R + such that each fiber-link e ∈ E is divided into s ∈ N + slots. Let S = {1, . . . , s} be an optical spectrum of available frequency slots with s ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz [START_REF] Jiang | An defragmentation scheme for extending the maximal unoccupied spectrum block in elastic optical networks[END_REF], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node for demand k. As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential edges can be determined in polynomial time using network flows as follows.

1. we create a proper topology G k = G(V \ V k 0 , E \ E k t ) for the demand k 2. we fix a weight equals to 1 for all the edges e in E \ E k t for the demand k in G k 3. we calculate o k -d k min-cut which separates o k from d k . 4. if δ G k (W ) = {e} then the edge e is an essential edge for the demand k such that o k ∈ W and d k ∈ V \ W . We increase the weight of the edge e by 1. Go to (3). 5. if |δ G k (W )| > 1 then end of algorithm.

Let E k 1 denote the set of essential edges of demand k, and K e denote a subset of demands in K such that edge e is an essential edge for each demand k ∈ K e . Figure 4 shows the proper-topology G k for a demand k between the two nodes o k = a and d k = g with lk = 4 by deleting V k 0 nodes and E k 0 edges from G. In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there may exist some edges that may be forbidden because of lack of resources for demand k. This is the case when, for instance, the residual capacity of the edge in question does not allow a demand to use this edge for its routing, i.e., w k > sk ∈Ke w k . Let E k c denote the set of forbidden edges for demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges E k c and forbidden nodes v in V with δ(v) ⊆ E k t ∪ E k c , should also be deleted from the proper graph

G k of demand k, which means that G k contains |E| \ |E k t ∪ E k c | edges and |V | \ |{v ∈ V, δ(v) ⊆ E k t ∪ E k c }| nodes. Let E k 0 = E k t ∪ E k c
denote the set of all forbidden edges for demand k that can be determined due to the transmission reach and resources constraints. As a result of the pre-processing stage, some non-compatibility between demands may appear due to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k with e /

∈ E k 0 ∪ E k 1 ∪ E k 0 ∪ E k 1
, are said non-compatible demands because of lack of resources over the edge e if and only if the the residual capacity of the edge e does not allow to route the two demands k, k together through e, i.e., w k + w k > sk"∈Ke w k" . Let K e c denote the set of pair of demands (k, k ) in K that are non-compatibles for the edge e.

In the next section, we introduce our path formulation.

The C-RSA Integer Linear Programming Formulation

Let P k denote the set of all feasible (o k ,d k ) paths in G such that for each demand k ∈ K, we have

e∈E(p k ) l e ≤ lk , for all p k ∈ P k .
Our path formulation is based on one family of variables. We consider for k ∈ K and p ∈ P k and s ∈ S, a variable y k p,s which takes 1 if slot s is the last slot allocated along the path p for the routing of demand k and 0 if not, such that s represents the last slot of the interval of contiguous slots of width w k allocated by the demand k ∈ K, with s ∈ S and p ∈ P k . Note that all the slots s ∈ {s -w k + 1, ..., s} should be assigned to demand k along the path p whenever y k p,s = 1. Let P k (e) denote set of all admissible (o k ,d k ) paths going through the edge e in G for the demand k. The C-RSA is then equivalent to the following integer linear programming min

k∈K p∈P k e∈E(p) s s=w k l e y k p,s , (1) 
subject to

p∈P k w k -1 s=1 y k p,s = 0, ∀k ∈ K, (2) 
p∈P k s s=w k y k p,s = 1, ∀k ∈ K, (3) 
k∈K p∈P k (e) s+w k -1 s =s y k p,s ≤ 1, ∀e ∈ E, ∀s ∈ S, (4) 
y k p,s ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ S, (5) 
y k p,s ∈ {0, 1}, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ S. (6) 
Inequalities (2) express the fact that a demand k ∈ K cannot occupy a slot s as the last slot before her slot-width w k . Inequalities (3) express the routing and spectrum constraints such that they ensure that exactly one slot s ∈ {w k , . . . , s} is assigned as last slot for the routing of demand k, and exactly one single path from P k is allocated by each demand k ∈ K. Note that a slot s ∈ S is said an allocated slot by the demand k if and only if p∈P k s+w k -1 s =s y k p,s = 1 which means that s is covered by the interval of contiguous slots allocated by demand k. Inequalities (4) ensure that a slot s over the edge e cannot be allocated to at most by one demand k ∈ K. Inequalities (5) are trivial inequalities, and constraints [START_REF] Cheng | Routing and Spectrum Assignment Algorithm based on Spectrum Fragment Assessment of Arriving Services[END_REF] are the integrality constraints. Let P (G, K, S, P K ) be the polytope, convex hull of the solutions for our path formulation (2)-( 6). In the remainder of this paper, we focus on the introduction of valid inequalities used to obtain tighter LP bounds and some symmetry-breaking inequalities that allow avoiding the equivalents sub-problems in the different enumeration trees.

Valid Inequalities

In what follows, we present several valid inequalities for P (G, K, S, P K ) such that throughout each proof, we take into account that 0 ≤ y k p,s ≤ 1 for each demand k ∈ K and path p ∈ P k and s ∈ S, and

p∈P k s s=1 y k p,s ≤ 1 for each k ∈ K, and 0 ≤ p∈P k y k p,s ≤ 1 for each demand k ∈ K and slot s ∈ S. Note that a slot s ∈ S is assigned to a demand k ∈ K if and only if p∈P k min(s,s+w k -1) s =s y k p,s = 1.
Let n k denote the total number of possibilities to choose a k element in a set of n elements. Let us denote by the symbole a b iff b dominates a.

Edge-Interval-Cover Inequalities

Let's first introduce some valid inequalities which can be seen as cover inequalities using some notions of cover related to our problem. Definition 2. An interval I = [s i , s j ] represents a set of contiguous slots situated between the two slots s i and s j with j ≥ i + 1 and s j ≤ s. Definition 3. For an interval of contiguous slots I = [s i , s j ], a subset of demands K ⊆ K is said a cover for the interval I = [s i , s j ] if and only if k∈ K w k > |I| and w k < |I| for each k ∈ K.

Definition 4. For an interval of contiguous slots

I = [s i , s j ], a cover K is said a minimal cover if K \ {k} is not a cover for interval I = [s i , s j ] for each demand k ∈ K, i.e., k ∈ K\{k} w k ≤ |I| for each demand k ∈ K.
Based on these definitions, we introduce the following inequalities.

Proposition 1. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with j ≥ i + 1. Let K be a minimal cover for the interval I s.t.

- k∈ K w k ≤ s - k ∈Ke\ K w k , -e / ∈ E k 0 for each demand k ∈ K, -K ≥ 3, -(k, k ) / ∈ K e c for each pair of demands (k, k ) in K.
Then, the inequality

k∈ K p∈P k (e) sj s=si+w k -1 y k p,s ≤ | K| -1, (7) 
is valid for P (G, K, S, P K ).

Proof. The interval I = [s i , s j ] can cover at most | K| -1 demands given that K is a minimal cover for interval I = [s i , s j ] over edge. It follows that if the demands K pass together through the edge e, there is at most | K| -1 demands that can share the interval I over edge e. We start our proof by assuming that the inequality [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which

{s i + w k -1, ..., s j } ∩ S k = ∅ for a demand k ∈ K s.t. k ∈K \{k} p∈P k (e) sj s=si+w k -1 y k p,s (S) ≥ |K |.
Since {s i +w k -1, ..., s j }∩S k = ∅ for a demand k ∈ K this means that p∈P k (e) sj s=si+w k -1 y k p,s (S) = 0, and taking into account that K is minimal cover for the interval I = [s i , s j ] over edge e, and

p∈P k (e) sj s=si+w k -1 y k p,s (S) ≤ 1 for each demand k ∈ K , it follows that k ∈K \{k} p∈P k (e) sj s=si+w k -1 y k p,s (S) ≤ |K | -1,
which contradicts what we supposed before. We conclude at the end that the inequality ( 7) is valid for P (G, K, S, P K ).

The inequality [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] can be strengthened by introducing its extended format of the minimal cover K for the interval I over edge e as follows.

Proposition 2. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with j ≥ i + 1. Let K be a minimal cover for the interval I, and Ke be a subset of demands in

K e \ K s.t. - k∈ K w k ≤ s - k ∈Ke\ K w k , -e / ∈ E k 0 for each demand k ∈ K, -K ≥ 3, -(k, k ) / ∈ K e c for each pair of demands (k, k ) in K, -w k ≥ w k for each k ∈ K and each k ∈ Ke .
Then, the inequality

k∈ K p∈P k (e) sj s=si+w k -1 y k p,s + k ∈ Ke p∈P k (e) sj s =si+w k -1 y k p,s ≤ | K| -1, (8) 
is valid for P (G, K, S, P K ).

Proof.

Similar with what we did in the proof of the theorem 6.1.

More general, a strengthened inequality based on the inequality (7) can be defined using lifting procedures proposed by Nemhauser and Wolsey in [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF] without modifying its right-hand side. By inspiration of the inequality [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF], and based on the set of minimal cover with cardinality equal to 2, we introduce valid inequalities defined as follows using some notions of graph theory related to conflict graphs. 

I if w k + w k > |I| and (k, k ) / ∈ K e c
. This is equivalent to say that two linked nodes v k and v k means that the two demands k, k define a minimal cover for the interval I over edge e.

For an edge e ∈ E, the conflict graph Ge is a threshold graph with threshold value equals to 

t = s -k"∈Ke w k" s.t. for eachnode v k with e / ∈ E k 0 ∪ E k 1 ,
y k p,s ≤ 1, (9) 
is valid for P (G, K, S, P K ).

Proof. It's trivial given the definition of a clique set in the conflict graph Ge I .

Interval-Clique Inequalities

Note that there may exist some cases that are not covered by the inequality [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. For this, we provide the following inequality and its generalization. 

Proposition 4. Consider an interval of contiguous slots

I = [s i , s j ] in S with s i ≤ s j -1. Let k, k be a pair of demands in K with E k 1 ∩ E k 1 = ∅,
y k p,s + p ∈P k sj s =si+w k -1 y k p ,s ≤ 1, (10) 
is valid for P (G, K, S, P K ).

Proof. It is trivial given that the interval I = [s i , s j ] cannot cover the two demands k, k shared an essential edge with total sum of number of slots exceeds |I|. Furthermore, the inequality ( 10) is a particular case of the inequality (9) for K = {k, k } over each edge e ∈ E k 1 ∩ E k 1 . However, it will be used for a generalized inequality as follows.

Proposition 5. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1, and C be a clique in the conflict graph GE I with |C| ≥ 3. Then, the inequality

v k ∈C p∈P k sj s=si+w k -1 y k p,s ≤ 1, (11) 
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of clique set in the conflict graph GE I s.t. for all two linked node v k and v k in GE I , we know from the inequality (10)

sj s=si+w k -1 p∈P k y k p,s + sj s =si+w k -1 p ∈P k y k p ,s ≤ 1.
By adding the previous inequalities for all two linked node v k and v k in the clique set C, we get

v k (|C| -1) sj s=si+w k -1 p∈P k y k p,s ≤ |C| -1 =⇒ v k , sj s=si+w k -1 p∈P k y k p,s ≤ |C| -1 |C| -1 =⇒ v k ∈C sj s=si+w k -1 p∈P k y k p,s ≤ 1.
We conclude at the end that the inequality ( 11) is valid for P (G, K, S, P K ).

Interval-Odd-Hole Inequalities

Given that the conflict graph GE I is not a perfect graph, one can use the so-called odd-hole to strengthen the valid inequalities introduced previously as follows.

Proposition 6. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1, and H be an odd-hole H in the conflict graph GE I with |H| ≥ 5. Then, the inequality

v k ∈H sj s=si+w k -1 p∈P k y k p,s ≤ |H| -1 2 , ( 12 
)
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of odd-hole set in the conflict graph GE I . We strengthen our proof as belows. For each pair of nodes (v k , v k ) linked in H by an edge, we know that

sj s=si+w k -1 p∈P k y k p,s + sj s =si+w k -1 p ∈P k y k p ,s ≤ 1.
Given that H is an odd-hole which means that we have |H| -1 pair of nodes (v k , v k ) linked in H, and by doing a sum for all pairs of nodes (v k , v k ) linked in H, it follows that

(v k ,v k )∈E(H) sj s=si+w k -1 p∈P k y k p,s + sj s =si+w k -1 p ∈P k y k p ,s ≤ |H| -1.
where E(H) denotes the set of edges in the sub-graph of the conflict graph GE I induced by H. Taking into account that each node v k in H has two neighbors in H, this implies that

sj s=si+w k -1 p∈P k y k p,s
appears twice in the previous inequality. As a result,

(v k ,v k )∈E(H) sj s=si+w k -1 p∈P k y k p,s + sj s =si+w k -1 p ∈P k y k p ,s = v k ∈H 2 sj s=si+w k -1 p∈P k y k p,s =⇒ v k ∈H 2 sj s=si+w k -1 p∈P k y k p,s ≤ |H| -1.
By dividing the two sides of the previous sum by 2, it follows that

v k ∈H sj s=si+w k -1 p∈P k y k p,s ≤ |H| -1 2 = |H| -1 2
since |H| is an odd number.

We conclude at the end that the inequality ( 12) is valid for P (G, K, S, P K ).

The inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] can be strengthened without modifying its right hand side by combining the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] 

v k ∈H sj s=si+w k -1 p∈P k y k p,s + |H| -1 2 v k ∈C sj s =si+w k -1 p ∈P k y k p ,s ≤ |H| -1 2 , ( 13 
)
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of odd-hole set and clique set in the conflict graph GE

I s.t. if sj s =si+w k -1 p ∈P k y k p ,s = 1 for v k ∈ C, it forces the quantity v k ∈H sj s=si+w k -1 p∈P k y k p,s
to be equal to 0. Otherwise, we know from the inequality (12) that the sum

v k ∈H sj s=si+w k -1 p∈P k y k p,s
is always smaller than |H|-1 2 . We strengthen our proof by assuming that the inequality (13) is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which {s i + w k -1, ..., s j } / ∈ S k for each demand k with node v k in the clique C s.t.

v k ∈H sj s=si+w k -1 p∈P k y k p,s (S) + |H| -1 2 v k ∈C sj s =si+w k -1 p ∈P k y k p ,s (S) > |H| -1 2 .
Since {s i + w k -1, ..., s j } / ∈ S k for each node v k in the clique C, this means that

v k ∈C sj s =si+w k -1
p ∈P k y k p ,s (S) = 0, and taking into account the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF], and that

sj s=si+w k -1 p∈P k y k p,s (S) ≤ 1 for each v k ∈ H and sj s =si+w k -1 p ∈P k y k p ,s (S) ≤ 1 for each v k ∈ C, it follows that v k ∈H sj s=si+w k -1 p∈P k y k p,s (S) ≤ |H|-1 2 , which contradicts that v k ∈H sj s=si+w k -1 p∈P k y k p,s (S) + |H|-1 2 v k ∈C sj s =si+w k -1 p ∈P k y k p ,s (S) > |H|-1 2 . Hence v k ∈H |S k ∩ I k | + v k ∈C |S k ∩ {s i + w k -1, ..., s j }| ≤ |H|-1 2 .

Edge-Slot-Assignment-Clique Inequalities

On the other hand, and based on the equations (3) and non-overlapping inequalities ( Hence, the inequality ( 14) is dominated by the inequality [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Sufficiency.

Assume that the inequality ( 14) associated with the clique C over edge e, it is dominated by the inequality (9) associated with the interval I = [s i , s j ] and the subset of demands K over edge e.

Taking into account that

K = {k ∈ K s.t. v k,s ∈ C}, it follows that v k,s ∈C p∈P k (e) y k p,s k∈ K s ∈I k p∈P k (e) y k p,s =⇒ k∈ K p∈P k (e) y k p,s k∈ K s ∈I k p∈P k (e) y k p,s =⇒ p∈P k (e) y k p,s s ∈I k p∈P k (e) y k p,s for each k ∈ K =⇒ s ∈ I k for each k ∈ K =⇒ s ∈ I k for each node v k,s ∈ C =⇒ s -w k + 1 ∈ I for each node v k,s ∈ C =⇒ min v k,s ∈C (s -w k + 1) ∈ I and max v k,s ∈C s ∈ I for each node v k,s ∈ C =⇒ [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊆ I.
Furthermore, and given that

w k + w k > |I| for each pair of demands k, k ∈ K, it follows that {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each s ∈ I k and s ∈ I k of each pair of demands k, k ∈ K. It follows that {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each pair (v k,s , v k ,s ) ∈ C since s ∈ I k and s ∈ I k . We conclude at the end that -s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, -and [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I,
which ends our proof.

Edge-Slot-Assignment-Odd-Hole Inequalities

The conflict graph Ge S is not a perfect graph given that some nodes v k,s and v k ,s are linked even if the {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅, i.e., when k = k . As a result, we define the following inequalities based on the so-called odd-hole inequalities that may allow us to obtain tighter LP bounds.

Proposition 9. Let H be an odd-hole in the conflict graph Ge S with |H| ≥ 5. Then, the inequality

v k,s ∈H p∈P k (e) y k p,s ≤ |H| -1 2 , (17) 
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of the odd-hole in the conflict graph Ge S . We strengthen our proof as belows. For each pair of nodes (v k,s , v k ,s ) linked in H by an edge, we know that

p∈P k (e) y k p,s + p ∈P k (e) y k p ,s ≤ 1.
Given that H is an odd-hole which means that we have |H| -1 pair of nodes (v k,s , v k ,s ) linked in H, and by doing a sum for all pairs of nodes (v k,s , v k ,s ) linked in H, it follows that

(v k,s ,v k ,s )∈E(H) p∈P k (e) y k p,s + p ∈P k (e) y k p ,s ≤ |H| -1.
Taking into account that each node v k in H has two neighbors in H, this implies that p∈P k y k p,s appears twice in the previous inequality. As a result,

(v k,s ,v k ,s )∈E(H) p∈P k (e) y k p,s + p ∈P k (e) y k p ,s = v k,s ∈H 2 p∈P k (e) y k p,s =⇒ v k,s ∈H 2 p∈P k (e) y k p,s ≤ |H| -1 =⇒ v k,s ∈H p∈P k (e) y k p,s ≤ |H| -1 2 = |H| -1 2 since |H| is an odd number.
We conclude at the end that the inequality ( 17) is valid for P (G, K, S, P K ).

Note that the inequality ( 17) can be strengthened without modifying its right hand side by combining the inequality ( 17) and ( 14).

Proposition 10. Let H be an odd-hole, and C be a clique in the conflict graph Ge S with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k,s , v k ,s ) are linked in Ge S for all v k,s ∈ H and v k ,s ∈ C. Then, the inequality

v k,s ∈H p∈P k (e) y k p,s + |H| -1 2 v k ,s ∈C p ∈P k (e) y k p ,s ≤ |H| -1 2 , ( 18 
)
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of the odd-hole and clique in Ge

S s.t. if v k ,s ∈C p ∈P k (e) y k p ,s = 1 for a v k ,s ∈ C ∈ C which implies that the quantity v k,s ∈H p∈P k (e) y k
p,s is forced to be equal to 0. Otherwise, we know from the inequality (17) that the sum v k,s ∈H p∈P k (e) y k p,s is always smaller than |H|-1 2 . We strengthen our proof by assuming that the inequality ( 18) is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which s / ∈ S k for each node

v k ,s in the clique C s.t. v k,s ∈H y k p,s (S) + |H| -1 2 v k ,s ∈C y k p ,s (S) > |H| -1 2 .
Since s / ∈ S k for each node v k ,s in the clique C this means that v k ,s ∈C p ∈P k (e) y k p ,s (S) = 0, and taking into account the inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF], p∈P k (e) y k p,s (S) ≤ 1 for each v k,s ∈ H, and that

p ∈P k (e) y k p ,s (S) ≤ 1 for each v k ,s ∈ C, it follows that v k,s ∈H p∈P k (e) y k p,s (S) ≤ |H| -1 2 , which contradicts that v k,s ∈H p∈P k (e) y k p,s (S) + |H|-1 2 v k ,s ∈C p ∈P k (e) y k p ,s (S) > |H|-1 2 . Hence v k,s ∈H |S k ∩ {s}| + v k ,s ∈C |S k ∩ {s }| ≤ |H|-1 2 .

Slot-Assignment-Clique Inequalities

Note that there may exist some cases that are not covered by the inequalities ( 14)- [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF]. For this, we provide the following definition of a conflict graph and its associated inequality.

Definition 7. Let GE S be a conflict graph defined as follows. For all slot s ∈ {w k , ..., s} and demand

k ∈ K, consider a node v k,s in GE S . Two nodes v k,s and v k ,s are linked by an edge in GE S if k = k or E k 1 ∩ E k 1 = ∅ and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ when k = k .

The conflict graph GE

S is not a interval graph given that some nodes v k,s and v k ,s are linked even if the {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅, i.e., when k = k . Based on the conflict graph GE S , we provide the following inequality. Proposition 11. Let C be a clique in conflict graph GE S with |C| ≥ 3. Then, the inequality

v k,s ∈C p∈P k y k p,s ≤ 1, (19) 
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of a clique set in the conflict graph GE S s.t. for each two linked nodes v k,s and v k ,s in GE S , we know that the inequality

p∈P k y k p,s + p ∈P k y k p ,s ≤ 1,
is valid for P (G, K, S, P K ). By adding the previous inequalities for all two linked nodes v k,s and v k ,s in GE S , we get

v k,s (|C| -1)y k p,s ≤ |C| -1 =⇒ v k,s y k p,s ≤ |C| -1 |C| -1 =⇒ v k,s y k p,s ≤ 1,
which ends our proof.

Remark 3. The inequality ( 19) associated with a clique C, it is dominated by the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] associated with an interval I = [s i , s j ] and a subset of demands K if and only if [ min

v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I and w k + w k ≥ |I| + 1 for each (v k , v k ) ∈ C, and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.
Proof. Consider an interval of contiguous slots

I = [s i , s j ] ⊆ [1, s]. Let C be a clique in the conflict graph GE S , and K = {k ∈ K s.t. v k,s ∈ C} be a subset of demands in K with K is a clique in the conflict graph GE I for the interval I = [s i , s j ]. Neccessity. First, assume that -s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, -and [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I. Given that s -w k + 1 ≥ min v k ,s ∈C (s -w k + 1) and s ≤ max v k ,s ∈C s for each v k,s ∈ C, and that |{s -w k + 1, ..., s}| = w k for each v k,s ∈ C, it follows that s ∈ I k = [s i + w k -1, s j ] for each v k,s ∈ C of demand k ∈ K. As a result, we get that k∈ K s ∈I k p∈P k y k p,s = k∈ K p∈P k y k p,s + k∈ K s ∈I k \{s} p∈P k y k p,s . (20) 
Taking into account that K

= {k ∈ K s.t. v k,s ∈ C}, this means that k∈ K p∈P k y k p,s = v k,s ∈C p∈P k y k p,s . It follows that k∈ K s ∈I k p∈P k y k p,s = v k,s ∈C p∈P k y k p,s + k∈ K s ∈I k \{s} p∈P k y k p,s .
Given that all the variable y k p,s is positive for each k ∈ K and s ∈ S, this implies that

v k,s ∈C p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s .
Hence, the inequality ( 19) is dominated by the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF].

Sufficiency.

Assume that the inequality ( 19) is dominated by the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF]. It follows that

v k,s ∈C p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s =⇒ k∈ K p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s
Given that the demands in K are independants, this allows us to take that

p∈P k y k p,s p∈P k s ∈I k y k p,s for each k ∈ K.
Given that the variable p∈P k y k p,s is positive for each k ∈ K and s ∈ S, this means that

s ∈ I k for each k ∈ K,
which is equivalent to say that

s ∈ I k for each node v k,s ∈ C =⇒ s ∈ {s i + w k -1, ..., s j }.

It follows that

s -w k + 1 ∈ I for each node v k,s ∈ C.
As a result,

min v k,s ∈C (s -w k + 1) ∈ I and max v k,s ∈C s ∈ I for each node v k,s ∈ C =⇒ [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊆ I.
Furthermore, and given that

w k + w k > |I| for each pair of demands k, k ∈ K, it follows that {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each s ∈ I k and s ∈ {s i + w k -1, ..., s j } of each pair of demands k, k ∈ K. Hence, {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each pair (v k,s , v k ,s ) ∈ C since s ∈ I k and s ∈ {s i + w k -1, ..., s j }.
We conclude at the end that

-s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, -and [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I,
which ends our proof.

Slot-Assignment-Odd-Hole Inequalities

We have observed that the conflict graph GE S cannot define a interval graph graph given that it contains some nodes v k,s and v k ,s that are linked even if the {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅, i.e., when k = k . As a result, one can strengthen the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] by introducing the following inequalities based on the so-called odd-hole inequalities.

Proposition 12. Let H be an odd-hole in the conflict graph GE S with |H| ≥ 5. Then, the inequality

v k,s ∈H p∈P k y k p,s ≤ |H| -1 2 , ( 21 
)
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of the odd-hole in the conflict graph GE S . We strengthen our proof as belows. For each pair of nodes (v k,s , v k ,s ) linked in H by an edge, we know that

p∈P k y k p,s + p ∈P k y k p ,s ≤ 1.
Given that H is an odd-hole which means that we have |H| -1 pair of nodes (v k,s , v k ,s ) linked in H, and by doing a sum for all pairs of nodes (v k,s , v k ,s ) linked in H, it follows that

(v k,s ,v k ,s )∈E(H) p∈P k y k p,s + p ∈P k y k p ,s ≤ |H| -1.
Taking into account that each node v k in H has two neighbors in H, this implies that p∈P k y k p,s appears twice in the previous inequality. As a result,

(v k,s ,v k ,s )∈E(H) p∈P k y k p,s + p ∈P k y k p ,s = v k,s ∈H 2 p∈P k y k p,s =⇒ v k,s ∈H 2 p∈P k y k p,s ≤ |H| -1 =⇒ v k,s ∈H p∈P k y k p,s ≤ |H| -1 2 = |H| -1 2 since |H| is an odd number.
We conclude at the end that the inequality ( 21) is valid for P (G, K, S, P K ).

Remark 4. The inequality ( 21) is dominated by the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] if and only if there exists an interval of contiguous slots 

I = [s i , s j ] ⊂ [1, s] with -[ min v k,s ∈H (s -w k + 1), max v k,s ∈H ] ⊂ I, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked
-s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in H, -and [ min v k,s ∈H (s -w k + 1), max v k,s ∈H s] ⊂ I. Given that s -w k + 1 ≥ min v k ,s ∈H (s -w k + 1) and s ≤ max v k ,s ∈H s for each v k,s ∈ H, and that |{s -w k + 1, ..., s}| = w k for each v k,s ∈ H, it follows that s ∈ I k = [s i + w k -1, s j ] for each v k,s ∈ H of demand k ∈ K. As a result, we get that k∈ K s ∈I k p∈P k y k p,s = k∈ K p∈P k y k p,s + k∈ K s ∈I k \{s} p∈P k y k p,s . (22) 
Taking into account that K = {k ∈ K s.t. v k,s ∈ H}, this means that

k∈ K p∈P k y k p,s = v k,s ∈H p∈P k y k p,s .
This implies that

k∈ K p∈P k s ∈I k y k p,s = v k,s ∈H p∈P k y k p,s + k∈ K p∈P k s ∈I k \{s} y k p,s =⇒ v k,s ∈H p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s =⇒ p∈P k y k p,s s ∈I k p∈P k y k p,s for each v k,s ∈ H.
Hence, the inequality ( 21) is dominated by the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF]. Sufficiency.

Assume that the inequality ( 21) is dominated by the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] and given that K = {k ∈ K s.t. v k,s ∈ H}, this means that

k∈ K p∈P k y k p,s = v k,s ∈H p∈P k y k p,s .
It follows that

v k,s ∈H p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s =⇒ k∈ K p∈P k y k p,s k∈ K s ∈I k p∈P k y k p,s .
Given that the demands in K are independants, this implies that

p∈P k y k p,s s ∈I k p∈P k y k p,s for each k ∈ K =⇒ s ∈ I k for each k ∈ K =⇒ s ∈ I k for each node v k,s ∈ H.
As a result,

s -w k + 1 ∈ I for each node v k,s ∈ H =⇒ min v k,s ∈H (s -w k + 1) ∈ I and max v k,s ∈H s ∈ I for each node v k,s ∈ H =⇒ [ min v k,s ∈H (s -w k + 1), max v k,s ∈H s] ⊆ I.
Furthermore, and given that

w k + w k > |I| for each pair of demands k, k ∈ K, it follows that {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each s ∈ I k and s ∈ {s i + w k -1, ..., s j } of each pair of demands k, k ∈ K. Hence, {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s} = ∅ for each pair (v k,s , v k ,s ) ∈ H since s ∈ I k and s ∈ {s i + w k -1, ..., s j }.
We conclude at the end that

-s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in H, -and [ min v k,s ∈H (s -w k + 1), max v k,s ∈H s] ⊂ I,
which ends our proof.

Note that the inequality ( 21) can be strengthened without modifying its right hand side by combining the inequality ( 21) and ( 19).

Proposition 13. Let H be an odd-hole, and C be a clique in the conflict graph GE S with

-|H| ≥ 5, -and |C| ≥ 3, -and H ∩ C = ∅, -and the nodes (v k,s , v k ,s ) are linked in GE S for all v k,s ∈ H and v k ,s ∈ C. Then, the inequality v k,s ∈H p∈P k y k p,s + |H| -1 2 v k ,s ∈C p ∈P k y k p ,s ≤ |H| -1 2 , ( 23 
)
is valid for P (G, K, S, P K ).

Proof. It is trivial given the definition of the odd-hole and clique in GE

S s.t. if v k ,s ∈C p ∈P k y k p ,s = 1 for a v k ,s ∈ C ∈ C which implies that the quantity v k,s ∈H p∈P k y k
p,s is forced to be equal to 0. Otherwise, we know from the inequality (21) that the sum v k,s ∈H p∈P k y k p,s is always smaller than |H|-1 2 . We strengthen our proof by assuming that the inequality [START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF] is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which s / ∈ S k for each node v k ,s in the clique C s.t.

v k,s ∈H y k p,s (S) + |H| -1 2 v k ,s ∈C y k p ,s (S) > |H| -1 2 .
Since s / ∈ S k for each node v k ,s in the clique C this means that v k ,s ∈C p ∈P k y k p ,s (S) = 0, and taking into account the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF], p∈P k y k p,s (S) ≤ 1 for each v k,s ∈ H, and that

p ∈P k y k p ,s (S) ≤ 1 for each v k ,s ∈ C, it follows that v k,s ∈H p∈P k y k p,s (S) ≤ |H| -1 2 , which contradicts that v k,s ∈H p∈P k y k p,s (S) + |H|-1 2 v k ,s ∈C p ∈P k y k p ,s (S) > |H|-1 2 . Hence v k,s ∈H |S k ∩ {s}| + v k ,s ∈C |S k ∩ {s }| ≤ |H|-1 2 .
Remark 5. The inequality ( 23) is dominated by the inequality (13) iff there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with -[ min v k,s ∈H∪C (s -w k + 1), max v k,s ∈H∪C ] ⊂ I, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in C, -and w k + w k ≥ |I| + 1 for each v k ∈ H and v k ∈ C, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.
Proof. Similar with the proof of the remark 4.

Edge-Capacity-Cover Inequalities

Let's us now provide some inequalities related to the capacity constraint.

Proposition 14. Consider an edge e in E. Then, the inequality

k∈K\Ke w k p∈P k (e) s s=1 y k p,s ≤ s - k ∈Ke w k , (24) 
is valid for P (G, K, S, P K ).

Proof. The total number of slots allocated over the edge e ∈ E should be less than the residual capacity of the edge e which is equal to s -

k ∈Ke w k .
Based on this, we introduce the following definitions. 

w k ≤ s - k"∈Ke w k" .
In what follows, we use these definitions to introduce the so-called cover inequalities related to the capacity constraints.

Proposition 15. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then, the inequality

k∈C p∈P k (e) s s=1 y k p,s ≤ |C| -1, ( 25 
)
is valid for P (G, K, S, P K ).

Proof. If C is minimal cover for edge e ∈ E this means that there is at most |C| -1 demands from the set of demands in C that can use the edge e. We strengthen our proof by assuming that the inequality [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] 

|E k ∩ {e}| ≤ |C| -1.
We conclude at the end that the inequality ( 25) is valid for P (G, K, S, P K ).

Note that the inequality ( 25) can be easily strengthened by using its extended format which we call extended minimal cover for an edge e as follows.

Proposition 16. Consider an edge e in E. Let C be a minimal cover in K for the edge e, and Ξ(C) be a subset of demands in K \C ∪K e where Ξ = {k ∈ K \C ∪K e : e / ∈ E k 0 and w k ≥ w k ∀k ∈ C}. Then, the inequality

k∈C p∈P k (e) s s=1 y k p,s + k ∈Ξ(C) p ∈P k (e) s s =1 y k p ,s ≤ |C| -1, ( 26 
)
is valid for P (G, K, S, P K ).

Proof. If C is minimal cover for edge e ∈ E this means that there is at most |C| -1 demands from the set of demands in C ∪ Ξ(C) that can use the edge e. We strengthen our proof by assuming that the inequality ( 26) is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which e / ∈ E k for each demand k ∈ Ξ(C) s.t. which contradicts what we supposed before, i.e., k∈C p∈P k (e) s s=1 y k p,s (S) > |C| -1 and also the inequality [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF]. Hence

k∈C |E k ∩ {e}| + k ∈Ξ(C) |E k ∩ {e}| ≤ |C| -1.
We conclude at the end that the inequality ( 25) is valid for P (G, K, S, P K ). Furthermore, the inequality [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] can have a more generalized strengthening format using lifting procedures proposed by Nemhauser and Wolsey in [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF].

Symmetry-Breaking Inequalities

We have noticed that several symmetrical solutions may appear given that there exist several feasible solutions that have the same value of the solution (called equivalents solutions), and they can be found by doing some permutations between the slots assigned to some demands without changing the selected paths (routing) while satisfying the C-RSA constraints. There exists several methods to break the symmetry. See, for example, perturbation method proposed by Margot in [START_REF] Margot | Symmetry in integer linear programming[END_REF], isomorphism pruning method by Margot et al. in [START_REF] Margot | Pruning by isomorphism in branch-and-cut[END_REF] and [START_REF] Margot | Exploiting orbits in symmetric ilp[END_REF], orbital branching method by Ostrowski et al. in [START_REF] Ostrowski | Symmetry in scheduling problems[END_REF] and [START_REF] Ostrowski | Orbital branching[END_REF], orbital fixing method by Kaibel et al. in [START_REF] Kaibel | Orbitopal fixing[END_REF], and symmetrybreaking constraints by Kaibel and Pfetsch in [START_REF] Kaibel | Packing and partitioning orbitopes[END_REF] which is applied in our study. Our aim is to introduce breaking-symmetry inequalities to remove the sub-problems in the enumeration tree that are equivalent due to the equivalency of their associated solutions. To do so, we derive the following inequalities.

Proposition 17. Consider a demand k in K, a slot s ∈ {1, ..., s -1}. Let s be a slot in {s, ..., s} min(s +w k -1,s)

s"=s p∈P k y k p,s" - k ∈K min(s+w k -1,s) s"=s p ∈P k y k p ,s" ≤ 0. ( 27 
)
This ensures that the slot s can be assigned to the demand k over a path p ∈ P k if and only if the slot s is already assigned to at least one demand k in K over its final path p ∈ P k .

8 Branch-and-Price and Branch-and-Cut-and-Price Algorithms

Based on the path formulation and several classes of valid inequalities previously introduced, we derive two exact algorithms: Branch-and-Price and Branch-and-Cut-and-Price to solve the C-RSA problem. In this section, we describe the framework of these algorithms. First, we give an overview of our column generation algorithm. Then, we discuss the pricing problem. We further present the different separation procedures associated with the different classes of valid inequalities useful to boost the performance of our algorithms. We give at the end some computational results and a comparative study between Branch-and-Price and Branch-and-Cut-and-Price algorithms.

Column Generation Algorithm

As it has been mentioned before, our path formulation contains a huge number of variables which can be exponentiel in the worst case due to the number of all feasible paths for each traffic demand.

To manage that, we use a column generation algorithm to solve its linear relaxation. To do so, we begin our algorithm with a restricted linear program of our path formulation by considering a feasible subset of variables (columns). For that, we first generate a subset of feasible paths for each demand k ∈ K denoted by B k ⊂ P k such that the variables y k p,s for each k ∈ K, p ∈ B k and s ∈ S induce a feasible basis for the restricted linear program. This means that there exists at least one feasible solution for the restricted linear program. Based on this, we derive the so-called restricted master problem (RMP) as follows

min k∈K p∈B k e∈E(p) s s=w k ley k p,s , subject to p∈B k w k -1 s=1 y k p,s = 0, ∀k ∈ K, p∈B k s s=w k y k p,s = 1, ∀k ∈ K, k∈K p∈B k (e) s+w k -1 s =s y k p,s ≤ 1, ∀e ∈ E, ∀s ∈ S, y k p,s ≥ 0, ∀k ∈ K, ∀p ∈ B k , ∀s ∈ S.
At each iteration, our column generation algorithm checks if there exists a variable y k p,s with p / ∈ B k for a demand k and slot s having a negative reduced cost using the solution of the dual problem, and add it to B k . This procedure is based on the so-called "pricing problem".

Pricing Problem

As noted later, we consider an initial restricted master problem denoted by RM P 0 which is based on an initial subset of variables induced by a subset of feasible path B k ⊂ P k for each demand k ∈ K. The pricing problem consists in finding a feasible path p for a demand k and slot s having a negative reduced cost using the optimal solution of the dual problem. To do so, we consider the following dual variables α associated with the equations (2) such that α k ∈ R for all k ∈ K, β associated with the equations (3) such that β k ∈ R for all k ∈ K, µ associated with the inequalities (4) such that µ e s ≤ 0 for all e ∈ E and s ∈ S. Th dual problem is then equivalent to max -

k∈K β k + e∈E s∈S µ e s , (28) 
subject to

β k + e∈E(p) (l e - s s =s-w k +1 µ e s ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (29) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S. (30) 
As a result, we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k + min p∈P k \B k [ e∈E(p) l e - s s =s-w k +1 µ e s ], (31) 
which defines the reduced-cost associated with each demand k and slot s. This is equivalent to the separation problem associated with the dual constraint [START_REF] Jiang | An defragmentation scheme for extending the maximal unoccupied spectrum block in elastic optical networks[END_REF]. It consists in identifying a path p for a demand k and slot s s.t.

β k + e∈E(p) l e - s s =s-w k +1
µ e s < 0.

Based on this, and taking into account the transmission-reach constraint, the pricing problem consists in solving a Resource Constrained Shortest Path (RCSP) Problem, also called Weight Constrained Shortest Path (WCSP) Problem. This problem is well known to be an NP-hard problem [START_REF] Dror | Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW[END_REF]. Several algorithms have been proposed in the literature to solve this problem based on dynamic programming algorithms, heuristics, and some techniques related to the Lagrangian decomposition. As background references we mention [START_REF] Carlyle | Lagrangian relaxation and enumeration for solving constrained shortest-path problems[END_REF][START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF][START_REF] Eppstein | Finding the k shortest paths[END_REF][START_REF] Joksch | The shortest route problem with constraints[END_REF][START_REF] Lozano | On an exact method for the constrained shortest path problem[END_REF]. In our work, we have developed an efficient algorithm based on the dynamic programming algorithm proposed which allows us to add a path p with a negative reduced cost for each pair of demand k and slot s if it exists while respecting that the length of this path p must be less than lk . We repeat this procedure in each iteration of our column generation until no new column is found (i.e., rc k s ≥ 0 for all k ∈ K and s ∈ {w k , ..., s= . As a result, the final solution is optimal for the linear relaxation of our path formulation. Furthermore, if it is integral, then it is optimal for the C-RSA problem. Otherwise, we create two subproblems called childs by branching on fractional variables ȳ (variable branching rule) or on some constraints using the Ryan & Foster [START_REF] Ryan | An integer programming approach to scheduling[END_REF] branching rule (constraint branching rule).

Impact of Adding Valid Inequalities on the Structure of the Pricing Problem

Note that adding some valid inequalities can have an impact on the structure of our pricing problem but our pricing problem stills equivalent to the RCSP problem s.t. adding some valid inequalities in a certain level of our algorithms can change the calculation of the reduced-cost associated with certain demands in K and slots in S as follows.

Impact of Edge-Interval-Cover Inequalities let ρ the dual variable associated with the inequalities [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] such that ρ e I, K ≤ 0 for all e ∈ E and all I = [s i , s j ] in S and all K in K. The associated dual program is then equivalent to max -

k∈K β k + e∈E s∈S µ e s + e∈E I∈ Ĩ K∈K(I) ( K -1)ρ e I, K , (32) 
subject to

β k + e∈E(p) (l e - s s =s-w k +1 µ e s - I∈ Ĩ K∈K(I) s.t. k∈ K,s∈I k ρ e I, K ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (33) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (34) 
ρ e I, K ≤ 0, ∀e ∈ E, ∀I ∈ Ĩ, ∀ K ∈ K(I). (35) 
From [START_REF] Klabjan | The complexity of cover inequality separation[END_REF], we obtain that the reduced-cost for each k ∈ K and s ∈ {w k , ..., s}, becomes equal to 

rc k s = β k + min p∈P k [ e∈E (p) 
subject to

β k + e∈E(p) (l e - s s =s-w k +1 µ e s - I∈ Ĩ K∈K(I) s.t. k∈ K,s∈I k ζ e I, K ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (38) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (39) 
ζ e I, K ≤ 0, ∀e ∈ E, ∀I ∈ Ĩ, ∀ K ∈ K(I). (40) 
From [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF], we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s - I∈ Ĩ K∈K(I) s.t. k∈ K,s∈I k ζ e I, K ]. ( 41 
)
Impact of Interval-Clique Inequalities let the dual variable associated with the inequalities [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] such that c I ≤ 0 for all clique c in the conflict graph GE I . We denote by C( GE I ) the set of all clique in the conflict graph GE I of the interval I. Let Ĩ denote the set of all intervals I in S. Our dual program is then defined as follows max -

k∈K β k + e∈E s∈S µ e s + I∈ Ĩ c∈C( GE I ) c I , (42) 
subject to

β k - I∈ Ĩ c∈C( GE I ) s.t. v k ∈c,s∈I k c I + e∈E(p) (l e - s s =s-w k +1 µ e s ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (43) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (44) 
c I ≤ 0, ∀I ∈ Ĩ, ∀c ∈ C( GE I ). (45) 
From ( 44), we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k - I∈ Ĩ c∈C( GE I ) s.t. v k ∈c,s∈I k c I + + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s ]. (46) 
Impact of Interval-Odd-Hole Inequalities let η the dual variable associated with the inequalities [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] such that η h I ≤ 0 for all odd-hole h in the conflict graph GE I . We denote by H( GE I ) the set of all odd-hole in the conflict graph GE I of the interval I. Let Ĩ denote the set of all intervals I in S. Our dual program is then defined as follows max -

k∈K β k + e∈E s∈S µ e s + I∈ Ĩ h∈H( GE I ) |H| -1 2 η h I , (47) 
subject to

β k - I∈ Ĩ h∈H( GE I ) s.t. v k ∈h,s∈I k η h I + e∈E(p) (l e - s s =s-w k +1 µ e s ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (48) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (49) 
η h I ≤ 0, ∀I ∈ Ĩ, ∀h ∈ H( GE I ). (50) 
From [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF], we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k - I∈ Ĩ h∈H( GE I ) s.t. v k ∈h,s∈I k η h I + + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s ]. (51) 
Impact of Edge-Slot-Assignment-Clique Inequalities let γ the dual variable associated with the inequalities [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part II[END_REF] such that γ e c ≤ 0 for all e ∈ E and all clique c in the conflict graph Ge S . We denote by C( Ge S ) the set of all clique in the conflict graph Ge S of the edge e in E. The dual program is then equivalent to max -

k∈K β k + e∈E s∈S µ e s + e∈E c∈C( Ge S ) γ e c , (52) 
subject to

β k + e∈E(p) (l e - s s =s-w k +1 µ e s - c∈C( Ge S ) s.t. v k,s ∈c γ e c ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (53) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (54) 
γ e c ≤ 0, ∀e ∈ E, ∀c ∈ C( Ge S ). (55) 
From ( 53), we obtain that the reduced-cost for each k ∈ K and s ∈ {w k , ..., s} can be computed as follows

rc k s = β k + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s - c∈C( Ge S ) s.t. v k,s ∈c γ e c ]. (56) 
Impact of Edge-Slot-Assignment-Odd-Hole Inequalities let ξ the dual variable associated with the inequalities [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] such that ξ e h ≤ 0 for all e ∈ E and all odd-hole h in the conflict graph Ge S . We denote by H( Ge S ) the set of all odd-hole in the conflict graph Ge S of the edge e in E. The dual program is then equivalent to max -

k∈K β k + e∈E s∈S µ e s + e∈E h∈H( Ge S ) ξ e h , (57) 
subject to

β k + e∈E(p) (l e - s s =s-w k +1 µ e s - h∈H( Ge S ) s.t. v k,s ∈h ξ e h ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (58) µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (59) 
ξ e h ≤ 0, ∀e ∈ E, ∀h ∈ H( Ge S ). (60) 
From ( 58), we obtain that the reduced-cost for each k ∈ K and s ∈ {w k , ..., s} can be computed as follows

rc k s = β k + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s - h∈H( Ge S ) s.t. v k,s ∈h ξ e h ]. (61) 
Impact of Slot-Assignment-Clique Inequalities let λ the dual variable associated with the inequalities [START_REF] Eppstein | Finding the k shortest paths[END_REF] such that λ c ≤ 0 for all clique c in the conflict graph GE S . We denote by C( GE S ) the set of all clique in the conflict graph GE S . Our dual program is then defined as follows max -

k∈K β k + e∈E s∈S µ e s + c∈C( GE S ) λ c , (62) 
subject to

β k - c∈C( GE S ) s.t. v k,s ∈c λ c + e∈E(p) (l e - s s =s-w k +1 µ e s ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (63) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (64) 
λ c ≤ 0, ∀c ∈ C( GE S ). (65) 
From ( 63), we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k - c∈C( GE S ) s.t. v k,s ∈c λ c + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s ]. (66) 
Impact of Slot-Assignment-Odd-Hole Inequalities let ϕ the dual variable associated with the inequalities [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] such that ϕ h ≤ 0 for all odd-hole h in the conflict graph GE S . We denote by H( GE S ) the set of all odd-hole in the conflict graph GE S . Our dual program is then defined as follows max -

k∈K β k + e∈E s∈S µ e s + h∈H( GE S ) |h| -1 2 ϕ h , (67) 
subject to

β k - h∈H( GE S ) s.t. v k,s ∈h ϕ h + e∈E(p) (l e - s s =s-w k +1 µ e s ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (68) 
µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (69) 
ϕ h ≤ 0, ∀h ∈ H( GE S ). (70) 
From [START_REF] Santos | Heuristics for Routing and Spectrum Allocation in Elastic Optical Path Networks[END_REF], we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k - h∈H( GE S ) s.t. v k,s ∈h ϕ h + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s ]. (71) 
Impact of Edge-Capacity-Cover Inequalities let φ the dual variable associated with the inequalities [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] such that φ e K ≤ 0 for all e ∈ E and all minimal cover K for the edge e. We denote by C(e) the set of all minimal cover K for the edge e. The dual program can be defined as follows max -

k∈K β k + e∈E s∈S µ e s + e∈E K∈C(e) (| K| -1)φ e K , (72) 
subject to

β k + e∈E(p)
(l e - 

µ e s ≤ 0, ∀e ∈ E, ∀s ∈ S, (74) 
φ e K ≤ 0, ∀e ∈ E, ∀ K ∈ C(e). (75) 
From (74), we obtain that for all k ∈ K and s ∈ {w k , ..., s}

rc k s = β k + min p∈P k [ e∈E(p) l e - s s =s-w k +1 µ e s - K∈C(e) s.t. k∈ K φ e K ]. (76) 
Based on these results, we ensure that our pricing problem stills equivalent to the RCSP problem for any class of valid inequalities proposed in this paper.

Dynamic Programming Algorithm for the Pricer

We propose a pseudo-polynomial time algorithm to solve the pricing problem using dynamic programming adapated to our C-RSA problem that takes into account the transmission-reach constraint to identify a feasible path for a given pair of demand p and slot s. It is based on the dynamic programming algorithm proposed by Dumitrescu et al. in [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] to solve the RCSP problem. For each demand k ∈ K and slot s, we associate to each node v ∈ V in the graph G a set of labels L v s.t. each label corresponds to differents paths from th origin node o k to the node v, and each label p is specified by a cost equals to e∈E(p) = l e -s s =s-w k +1 µ e s , and a weight equals to e∈E(p) l e . We denote by T v the set of labels on node v ∈ V . For each demand k and slot s ∈ {w k , ..., s}, the complexity of our algorithm is bounded by O(|E \ E k 0 | lk ) [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF]. Algorithm 8.4 summarizes the different steps of our dynamic programming algorithm.

Basic Columns

The basic sub-set of paths used to define the restricted master problem are generated using a brute-force search algorithm which creates a search tree that covers all the feasible paths P k for each demand k. It is then used to pre-compute an initial subset B k of feasible paths for each demand k ∈ K taking into account the transmission-reach constraint which allows us to prune some non-intersecting nodes in our search tree of this algorithm.

Overwiew of Branch-and-Price and Branch-and-Cut-Price Algorithms

Based on these features, we derive a Branch-and-Price algorithm by combining a column generation algorithm with a Branch-and-Bound algorithm. The main purpose of this algorithm is to solve a sequence of linear programs using the column generation algorithm at each node of a Branch-and-Bound algorithm. At each iteration of a certain level of our algorithm, we solve our pricing problem by identifying one or more than one new column by solving an RCSP problem for each demand k and slot s ∈ {w k , ..., s} using our dynamic programming algorithm. Furthermore, we derive Branchand-Cut-and-Price based on our Branch-and-Price algorithm combined with a cutting-plane-based algorithm by adding several valid inequalities useful to obtain tighter bounds. Consider a fractional solution ȳ. At each iteration of our Branch-and-Price algorithm, our aim is to identify for a given class of valid inequalities the existence of one or more than one inequalities of this class that are violated by the current solution. We repeat this procedure in each iteration of our algorithm until non violated inequality is identified. Algorithm 8.6 summarizes the different steps of our Branchand-Cut-and-Price algorithm for a given class of valid inequalities.

In what follows, we study the separation problem of each valid inequality.

Separation Procedures: Complexity and Algorithms

Separation of Edge-Interval-Cover Inequalities Let's discuss the separation problem of the inequality [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF]. Given a fractional solution ȳ, and an edge e ∈ E. We first construct a set of intervals of contiguous slots I ∈ I e s.t. each interval of contiguous slots I = [s i , s j ] ∈ I e is identified using two slots s i and s j randomly generated in S with s j ≥ s i + 2 max k∈K\ Ke w k . Consider now an interval of contiguous slots I = [s i , s j ] ∈ I e over an edge e. The separation problem associated with the inequality ( 7) is Np-Hard [START_REF] Klabjan | The complexity of cover inequality separation[END_REF] given that it consists in identifying a cover K * for the interval I over the edge e, s.t.

k∈ K * p∈P k (e) sj s =si+w k -1 ȳk p,s > | K * | -1.
For that, we use a greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] as follows. We first select a demand k ∈ K having largest number of requested slot w k with p∈P k (e) sj s =si+w k -1 ȳk p,s > 0, and assign it to K * , i.e., K * = {k}. After that, we iteratively add each demand k ∈ K \ K * to K * with with p∈P k (e) sj s =si+w k -1 ȳk p,s > 0 and while k∈ K * w k ≤ |I|, i.e., until a cover K * is obtained for the interval I over the edge e with k∈ K * w k > |I|. We further derive a minimal cover from the cover K * by deleting each demand k ∈ K * if k ∈ K * \{k} w k ≤ |I|. We then add the inequality [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] induced by the minimal cover K * for the interval I and edge e to the current LP if it is violated, i.e.,

k∈ K * p∈P k (e) sj s =si+w k -1 y k p,s ≤ | K * | -1.
Furthermore, the inequality (7) induced by the minimal cover K * can be lifted by introducing an extended cover inequality (8) as follows

k∈ K * p∈P k (e) sj s =si+w k -1 y k p,s + k ∈ K * e p∈P k (e) sj s =si+w k -1 y k p,s ≤ | K * | -1,
where w k ≥ w k for each k ∈ K * and each k ∈ K * e .

Separation of Edge-Interval-Clique Inequalities

The separation problem related to the inequality ( 9) is NP-hard [54] [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF] given that it consists in identifying a maximal clique C * in the conflict graph Ge I for a given edge e and a given interval I s.t. 

ȳk p,s > 1.
As result, its associated sepration problem is NP-hard given that computing a maximal clique in a given graph is known to be a NP-hard problem [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. For that, we also use the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] p,s > 0 s.t. its corresponding node v k is linked with all the nodes v k with k ∈ C * . At the end, we add the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] induced by the maximal clique C * if it is violated, i.e., we add the following inequality to the current LP

k∈C * p∈P k sj s =si+w k -1 y k p,s ≤ 1.
Moreover, this additional inequality can be strengthened as follows

k∈C * p∈P k sj s =si+w k -1 y k p,s + k ∈C * e p∈P k sj s =si+w k -1 y k p,s ≤ 1,
where

C * E ⊂ K \ C * s.t. -w k + w k ≥ |I| + 1 and E k 1 ∩ E k 1 = ∅ for each k ∈ C * and k ∈ C * E , -w k + w k" ≥ |I| + 1 and E k 1 ∩ E k" 1 = ∅ for each k ∈ C * E and k" ∈ C * E , -w k ≤ |I| and 2w k ≥ |I| + 1 for each k ∈ C * E .
Separation of Interval-Odd-Hole Inequalities For the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF], we propose a separation algorithm that consists in identifying an odd-hole H * in the conflict graph GE I for a given Interval I and a fractional solution ȳ s.t.

k∈H * p∈P k sj s =si+w k -1 ȳk p,s > |H * | -1 2 .
This can be done in polynomial time as shown by Rebennack et al. in [START_REF] Rebennack | Stable Set Problem: Branch & Cut Algorithms[END_REF] and [START_REF] Rebennack | A tutorial on branch and cut algorithms for the maximum stable set problem[END_REF]. Based on this, we use the exact algorithm proposed by the same authors which consists of finding a minimum weighted odd-cycle in a graph. For that, we should first generate a set of intervals of contiguous slots I E as we did before in the section 8.7. We then consider a conflict graph GE I associated with a given interval of contiguous slots I ∈ I E . We construct an auxiliary conflict graph GE I which can be seen as a bipartite graph by duplicating each node v k in GE I (i.e., v k and v k ) and each two nodes are linked in GE I if their original nodes are linked in GE I . We assign to each link (v a , v b ) in GE I a weight equals to

1- p∈P a sj s =si+wa-1 ȳa p,s - p ∈P b sj s =si+w b -1 ȳb p ,s 2 
. We then compute for each node v k in GE I , the shortest path between v k and its copy in the auxiliary conflict graph GE I denoted by p v k ,v k . After that, we check if the total sum of weight over edges belong this path is smallest than

1 2 , (va,v b )∈E(p v k ,v k ) 1 - p∈P a sj s =si+wa-1 ȳa p,s - p ∈P b sj s =si+w b -1 ȳb p ,s 2 < 1 2 .
If so, the odd-hole H * is composed by all the original nodes of nodes belong the computed shortest path

p v k ,v k , i.e., V (p v k ,v k ) \ {v k }.
We then add the inequality ( 12) induced by the odd-hole H * to the current LP, i.e.,

k∈H * p∈P k sj s =si+w k -1 y k p,s ≤ |H * | -1 2 .
It can be lifted using the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify a maximal clique C * in conflict graph GE I s.t. s.t.

-

w k + w k ≥ |I| + 1 and E k 1 ∩ E k 1 = ∅ for each k ∈ H * and k ∈ C * , -w k + w k" ≥ |I| + 1 and E k 1 ∩ E k" 1 = ∅ for each k ∈ C * and k" ∈ C * , -w k ≤ |I| and 2w k ≥ |I| + 1 for each k ∈ C * .
For that, we assign a positive weight equals to the number of slots request w k by the demand k for each node v k linked with all the nodes v k ∈ H * in the conflict graph GE I . We then select the node v k linked with all the nodes v k ∈ H * in the conflict graph GE I having the largest weight, and set C * to {k }. After that, we iteratively add each demand k" to the current clique C * if its associated node v k" is linked with all the nodes v k ∈ H * and nodes v k ∈ C * . As a result, we add the inequality [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] induced by the odd-hole H * and clique C * to the current LP, i.e.,

k∈H * sj s =si+w k -1 p∈P k sj s =si+w k -1 y k p,s + |H * | -1 2 k ∈C * p ∈P k sj s"=si+w k -1 y k p ,s" ≤ |H * | -1 2 .
Separation of Edge-Slot-Assignment-Clique Inequalities Consider an edge e ∈ E, and a fractional solution (ȳ). The separation algorithm for the inequality ( 14) consists in identifying a maximal clique C * in the conflict graph Ge S s.t.

v k,s ∈C * p∈P k (e) ȳk p,s > 1.
To do this, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify a maximal clique C * in conflict graph Ge S given that computing a maximal clique in such a graph is also NP-hard problem [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. Based on this, we first assign a positive weight p∈P k (e) ȳk p,s to each node v k,s in the conflict graph Ge S . We then select a node v k,s in the conflict graph Ge S having the largest weight compared with the other nodes in Ge S , and set C * = {v k,s }. After that, we iteratively add each node v k ,s to the current C * if it is linked with all the nodes v k,s already assigned to the current clique C * and p ∈P k (e) ȳk p ,s > 0. At the end, we add the inequality ( 14) induced by the clique C * for edge e to the current LP if it is violated, i.e., we add the following inequality

v k,s ∈C * p∈P k (e) y k p,s ≤ 1.
Furthermore, it can be lifted by identifying a maximal clique

N * s.t. each v k ,s ∈ N * is linked with all the nodes v k,s ∈ C * ∪ (N * \ {v k ,s }) in Ge S .
For that, we use also the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify the clique N * as follows. We first set 

N * = {v k ,s } with v k ,s / ∈ C *
y k p,s + v k ,s ∈N * p ∈P k (e) y k p ,s ≤ 1.
Separation of Slot-Assignment-Odd-Hole Inequalities Consider an edge e ∈ E, the separation algorithm for inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] consists in identifying an odd-hole H * in the conflict graph Ge S for a given fractional solution ȳ s.t.

v k,s ∈H * p∈P k (e) ȳk p,s > |H * | -1 2 .
This can be done in polynomial time as shown by Rebennack et al. in [START_REF] Rebennack | Stable Set Problem: Branch & Cut Algorithms[END_REF] and [START_REF] Rebennack | A tutorial on branch and cut algorithms for the maximum stable set problem[END_REF] by finding a minimum weighted odd-cycle in the conflict graph Ge S . To do so, we first construct an auxiliary conflict graph Ge S which can be seen as a bipartite graph by duplicating each node v k,s in Ge S (i.e., v k,s and v k,s ) and each two nodes are linked in Ge S if their original nodes are linked in Ge S . We assign to each link (ṽ k,s , ṽk ,s ) in Ge S a weight equals to . We then compute for each node v k,s in Ge S , the shortest path between v k,s and its copy in the auxiliary conflict graph Ge S denoted by p v k,s ,v k,s . After that, we check if the total sum of weight over edges belonging to this path is smaller than 1 2 . If so, the odd-hole H * is composed by all the original nodes of nodes belong the computed shortest path p v k,s ,v k,s , i.e., V (p v k,s ,v k,s ) \ {v k,s }. As a result, the following inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] S with all the nodes already assigned to the odd-hole H * and the clique C * . We then add the inequality [START_REF] Enoch | Nested Column Generation decomposition for solving the Routing and Spectrum Allocation problem in Elastic Optical Networks[END_REF] induced by the odd-hole H * and clique

C * v k,s ∈H * p∈P k (e) ȳk p,s + |H * | -1 2 v k ,s ∈C * p ∈P k (e) y k p ,s ≤ |H * | -1 2 .
Separation of Slot-Assignment-Clique Inequalities Now, we describe the separation algorithm for the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF]. It consists in identifying a maximal clique C * in the conflict graph GE S s.t.

v k,s ∈C * p∈P k ȳk p,s > 1,
for a given fractional solution ȳ of the current LP.

To do so, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify a maximal clique C * in conflict graph GE S given that computing a maximal clique in such a graph is also NP-hard problem [START_REF] Karp | Reducibility among Combinatorial Problems[END_REF]. Based on this, we first assign a positive weight p∈P k ȳk p,s to each node v k,s in the conflict graph GE S . We then select a node v k,s in the conflict graph GE S having the largest weight compared with the other nodes in GE S , and set C * = {v k,s }. After that, we iteratively add each node v k ,s to the current C * if it is linked with all the nodes v k,s already assigned to the current clique C * and p ∈P k ȳk p ,s > 0. At the end, we add the inequality (19) induced by the clique C * to the current LP if it is violated, i.e., we add the following inequality

v k,s ∈C * p∈P k y k p,s ≤ 1.
Furthermore, it can be lifted by identifying a maximal clique

N * s.t. each v k ,s ∈ N * is linked with all the nodes v k,s ∈ C * ∪ (N * \ {v k ,s }) in GE S .
For that, we use also the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify the clique N * as follows. We first set

N * = {v k ,s } with v k ,s / ∈ C * a node in GE S having the largest value of node-degree (i.e., |δ(v k ,s )|) in GE S and v k ,s is linked with all the nodes v k,s ∈ C * in GE S . Afterwards, we iteratively add each node v k ,s / ∈ C * ∪ N * to the current N * if it is linked in GE
S with all the nodes already assigned to C * and N * . At the end, we add the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] induced by the clique C * ∪ N * to the current LP, i.e.,

v k,s ∈C * p∈P k y k p,s + v k ,s ∈N * p ∈P k y k p ,s ≤ 1.
Separation of Slot-Assignment-Odd-Hole Inequalities For the inequality (21), our separation algorithm consists in identifying an odd-hole H * in the conflict graph GE S for a given fractional solution ȳ s.t.

v k,s ∈H * p∈P k ȳk p,s > |H * | -1 2 .
This can be done in polynomial time as shown by Rebennack et al. in [START_REF] Rebennack | Stable Set Problem: Branch & Cut Algorithms[END_REF] and [START_REF] Rebennack | A tutorial on branch and cut algorithms for the maximum stable set problem[END_REF] by finding a minimum weighted odd-cycle in the conflict graph GE S . To do so, we first construct an auxiliary conflict graph GE S which can be seen as a bipartite graph by duplicating each node v k,s in GE S (i.e., v k,s and v k,s ) and each two nodes are linked in GE S if their original nodes are linked in GE S .

We assign to each link (ṽ k,s , ṽk ,s ) in GE S a weight equals to

1-p∈P k ȳk p,s -p ∈P k ȳk p ,s 2 
. We then compute for each node v k,s in GE S , the shortest path between v k,s and its copy in the auxiliary conflict graph GE S denoted by p v k,s ,v k,s . After that, we check if the total sum of weight over edges belonging to this path is smaller than 1 2 . If so, the odd-hole H * is composed by all the original nodes of nodes belong the computed shortest path p v k,s ,v k,s , i.e., V (p v k,s ,v k,s ) \ {v k,s }. As a result, the following inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] induced by the odd-hole

H * v k,s ∈H * p∈P k ȳk p,s ≤ |H * | -1 2 ,
should be added to the current LP. Moreover, one can strengthen the inequality (21) induced by the odd-hole H * using the greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] S with all the nodes already assigned to the odd-hole H * and the clique C * . We then add the inequality [START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF] induced by the odd-hole H * and clique

C * v k,s ∈H * p∈P k ȳk p,s + |H * | -1 2 v k ,s ∈C * p ∈P k y k p ,s ≤ |H * | -1 2 .
Separation of Edge-Capacity-Cover Inequalities Let's now study the separation problem of the inequality [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF]. Given a fractional solution ȳ, and an edge e ∈ E. The separation problem associated with the inequality ( 25) is Np-Hard [START_REF] Klabjan | The complexity of cover inequality separation[END_REF] given that it consists in identifying a cover K * the edge e, s.t.

k∈ K * p∈P k (e) s∈S ȳk p,s > | K * | -1.
To do so, we propose a separation algorithm based on a greedy algorithm introduced by Nemhauser and Sigismondi in [START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF]. We first select a demand k ∈ K \K e having largest number of requested slot w k with p∈P k (e) s∈S ȳk p,s > 0, and set K * to K * = {k}. After that, we iteratively add each demand k ∈ K \(K e K * ) to K * with p ∈P k (e) s∈S ȳk p ,s > 0 and while k∈ K * w k ≤ s-k∈Ke w k, i.e., until a cover K * is obtained for the the edge e with k∈ K * w k > s -k∈Ke w k. We further derive a minimal cover from the cover K * by deleting each demand k ∈ K * if k ∈ K * \{k} w k ≤ s -k∈Ke w k. We then add the inequality [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] induced by the minimal cover K * for the edge e to the current LP if it is violated, i.e.,

k∈ K * p∈P k (e) s∈S y k p,s ≤ | K * | -1.
Furthermore, the inequality (25) induced by the minimal cover K * can be lifted by introducing an extended cover inequality (26) as follows

k∈ K * p∈P k (e) s∈S y k p,s + k ∈ K * e p ∈P k (e) s∈S y k p ,s ≤ | K * | -1,
where w k ≥ w k for each k ∈ K * and each k ∈ K * e with k / ∈ K e .

Primal Heuristic

Here, we propose a primal heuristic based on a hybrid method between a local search algorithm and a greedy algorithm. It is necessary to boost the performance of our algorithms, obtain tighter bounds, accelerate our algorithm, and reduce the memory consumed by the tree of B&P and B&C&P by pruning certain nodes that are not interesting. Given a feasible fractional solution ȳ, our primal heuristic consists of constructing an integral "feasible" solution from this fractional solution. To do so, we propose a local search algorithm that consists of generating at each iteration a sequence of demands L (order) enumerated with L = 1 , 2 , ..., |K| -1, |K| . Based on this sequence of demands, our greedy algorithm selects a path p and a slot s for each demand k ∈ L with y k p,s = 0 while respecting the non-overlapping constraint with the set of demands that precede the demand k in the list L (i.e., the demands 1 , 2, ..., k -1). However, if there does not exist such pair of path p and slot s for the demand k , we then select a path p and a slot s for the demand k ∈ L with y k p,s = 0 and s ∈ {w k , ..., s} while respecting the non-overlapping constraint with the set of demands that precede the demand k in the list L. Algorithm 8.8 summarizes the different steps of our greed algorithm for a given sequence of demands. After that, we compute the associated total length of the paths selected for the set of demands K in the final solution S given by the greedy algorithm. Our local search algorithm generates a new sequence by doing some permutation of demands in the last sequence of demands if the value of the solution given by the greedy algorithm is smaller than the value of the best solution found until the current iteration. Otherwise, we stop our algorithm, and we give in the output the best solution found during our primal heuristic induced by the best sequence of demands having the smallest value of the total length of the selected path compared with the other generated sequences. Algorithm 8.8 summarizes the different steps of our local search algorithm which calls our greedyalgorithm 8.8 at each iteration.

Algorithm 4 Primal Heuristic Based on a Hybrid Algorithm Between a Local Search Algorithm and Greedy-Algorithm for the B&P and B&C&P Algorithms.

Data: A set of edges E, a spectrum S, a multi-set K of demands, a set B k s of precomputed feasible paths for each demand k ∈ K and slot s ∈ S, a maximum number of iterations iter, maximal size of neighborhood n Result: integral solution Let y * be the optimal solution of the current LP Let F IX0 be the fixed variables to 0 in the current node in the tree of B&P or B&C&P Let F IX1 be the fixed variables to 1 in the current node in the tree of B&P or B&C&P Set val * = IN F , and best solution S * = ∅ Consider a sequence of demands L = 1 , 2 , ..., |K| -1, |K| Call the greedy-algorithm 8.8 based on the sequence L Let S be the final solution obtained by our greedy-algorithm 8.8 for the sequence L Compute its associated cost by summing the total length of the paths selected to route the demands K in the solution S, denoted by In the next section, we will show the effectiveness of our approach. 9 Computational Results

V AL if S is feasible then Set val * = V AL Set S * = S end Set i = 1 while i ≤ iter do Set val * i = IN F

Implementation's Feature

Our B&P and B&C&P algorithms have been implemented in C++ under Linux using the "Solving Constraint Integer Programs" (SCIP 7.0) framework [START_REF] Gamrath | The SCIP Optimization Suite 7.0[END_REF]. For the resolution of the linear relaxation at each node in the B&P and B&C&P trees, SCIP uses CPLEX 12.9 [START_REF] Cplex | V12. 9: User's Manual for CPLEX[END_REF]. These have been tested on LIMOS high-performance servers with a memory size limited to 64 Gb while benefiting from parallelism by activating 8 threads, and with a CPU time limited to 5 hours (18000 s).

Description of Instances

We further proposed a deep study of the behavior of our algorithl using two types of instances: random and real, and 14 graphs (topologies). They are composed of two types of graphs: real, and other realistics. They are composed of two types of graphs: real, and other realistics from SND-Lib [START_REF] Orlowski | SNDlib 1.0-Survivable Network Design Library[END_REF] 

Impact of Valid Inequalities

We first studied the efficiency of each family of valid inequalities introduced before to strengthen the linear relaxation of our B&P algorithm. To do so, we consider a subset of instances with a number of demands ranges in {10, 20, 30, 40, 50} and s up to 50, while using three topologies (German, Nsfnet, and Spain). The results show that introducing each family of valid inequalities improves the effectiveness of our B&P algorithm considering 5 criteria, the average number of nodes in the enumeration tree (Nb Nd), average gap (Gap) which represents the relative error between the lower bound gotten at the end of the resolution and best upper bound, average CPU time computation (T Cpu), the average number of columns added during the pricing procedure (Ncols Add), the average number of violated inequalities added (Ineq Add). In fact, the results show that introducing each family of valid inequalities enables reducing the average number of nodes in the B&C&P tree, and also the average CPU time for several instances. Furthermore, we observe that adding valid inequalities decreases the average number of added columns for several instances. On the other hand, the results show that the cover-based inequalities ( 25) and ( 7) are efficient compared with those of clique-based inequalities ( 19), ( 14) and [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. In fact, our B&C&P algorithm is very efficient when adding the cover-based inequalities ( 25) and [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF]. We notice that adding these families of valid inequalities reduces the average gap, average number of nodes, average CPU time, and also the number of generated columns. Moreover, the results show also that several inequalities of the cover-based inequalities ( 25) and ( 7), and clique-based inequalities ( 19), ( 14) and ( 9), they are generated along our B&C&P algorithm. However, the number of clique-based inequalities [START_REF] Eppstein | Finding the k shortest paths[END_REF] generated is very less high for the instances tested such that they have not generated for several instances. Based on these results, we conclude that our valid inequalities are very interesting to obtain tighter bounds and strengthen the linear relaxation.

On the other hand, the different families of odd-hole inequalities are shown to be not efficient for the instances used such that the number of their violated inequalities generated is very less and equals to 0 for several instances. As a result, we combine these families of valid inequalities such that their separation is performed along with the B&C&P algorithm in the following order 1. edge-capacity-cover inequalities (25), 2. edge-interval-cover inequalities (7), 3. edge-slot-assignment-clique inequalities ( 14), 4. edge-interval-clique inequalities (9), 5. slot-assignment-clique inequalities [START_REF] Eppstein | Finding the k shortest paths[END_REF].

We further provide a comparative study between B&P (without additional valid inequalities) and B&C&P (with additional valid inequalities) algorithms. To do so, we evaluate the impact of valid inequalities used together within our B&C&P algorithm. For this, we present some computational results using several instances with a number of demand ranges in {10, 20, 30, 40, 50, 100, 150, 200, 250, 300} and s up to 320 slots. We classify instances in two classes: small-sized instances with number of demands {10, 20, 30, 40, 50} and s up to 180, and ones of large-sized instances with number of demands ranges in {100, 150, 200, 250, 300} and s up to 320. We use two types of topologies: real, and realistic ones from SND-LIB already described in Table 1. Tables 2 and3 respectively, present a comparison between B&P and B&C&P using small-scale and large-scale instances based on real graphs. In Tables 4 and5 respectively, we give some numerical results obtained for small-sized instances and large-instances with additional valid inequalities. Note that the gap values given in red, represent the instances solved to optimality. As reported in the Tables 2...5, the results show that adding several families of valid inequalities improves the effectiveness of our B&C&P algorithm compared with the classical approach when adding just one family of valid inequalities. In fact, we first notice that introducing valid inequalities allows solving several instances to optimality that are not solved to optimality using the B&P algorithm. Furthermore, they enabled reducing the average number of nodes in the B&C&P tree, and also the average CPU time for several instances. On the other hand, and when the optimality is not guaranteed, adding valid inequalities decreases the average gap for several instances. However, there exist few instances very rare in which adding valid inequalities does not improve the results of the B&P algorithm. Based on these results, we ensure that using our valid inequalities strengthens the linear relaxation of our path formulation.

Impact of Symmetry-Breaking Inequalities

Here we show the impact of our symmetry-breaking inequalities already introduced on the effectiveness of our B&P and B&C&P algorithms. To do this, we consider a subset of instances with a number of demands ranges in {10, 20, 30, 40, 50} and s up to 50, while using three real topologies (German, Nsfnet, and Spain), and two realistic topologies (Ta65 and Zib54). The results are reported in the following Tables 9.4 and 9.4. As reported in these Tables, we notice that adding these symmetry-breaking inequalities allows solving to optimality some instances that are not solved to optimality using the B&C&P algorithm (without additional symmetry-breaking inequalities). Furthermore, they allow reducing the average gap, average number of nodes for several instances. However, there exist some cases in which adding these inequalities makes the problem hard for solving to optimality. As a result, we observe in the Tables 9.4 and 9.4, the B&P and B&C&P algorithms (without additional symmetry-breaking inequalities) are able to solve to optimality some instances that are not solved to optimality when adding our symmetry-breaking inequalities. Table 7. Efficiency of symmetry-breaking inequalities for the B&C&P algorithm using small-scale instances.

Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We introduced integer linear programming based on the so-called path formulation for the problem. We further derive several valid inequalities for the associated polytope that have been shown to be efficient within the Branch-and-Cut-and-Price algorithm. As a result, we notice that the Branchand-Cut-and-Price algorithm was very efficient compared with the Branch-and-Price algorithm using several instances. Some instances are still difficult to solve with both B&P and B&C&P algorithms. Our next step is to study the impact of the following branching strategies on the effectivness of the B&P and B&C&P algorithms.

Demand-Path-Slot Classical Variable Branching Strategy

Here, we use the classical branching schemes. We select a variable y k p,s induced by a demand k ∈ K and slot s ∈ {w k , ..., s} and path p ∈ B k having the largest value y * k p,s with 0 < y * k p,s < 1. Then, our branching algorithm generates two nodes by selecting or not the slot s as last-slot along path p for the demand k, i.e., y k p,s = 0 or y k p,s = 1 which induces two new sub-problems. This has no impact on the structure of our pricing problem.

Demand-Path Constraint Branching Strategy

We propose a new branching scheme based on the Ryan and Foster branching scheme. It consists in branching on a constraint 0 ≤ s s=1 y k p,s ≤ 1 for a demand k and path p ∈ B k which is valid for the C-RSA problem given that p∈P k s s=1 y k p,s = 1. To do so, we select a demand k ∈ K and a path p ∈ B k having the largest value of s s=1 y * k p,s with 0 < s s=1 y * k p,s < 1. Then, we generate two nodes by imposing the usage of the path p to route the demand k or no, i.e., we create two sub-problem with s s=1 y k p,s = 0 or s s=1 y k p,s = 1. However, if such pair of demand k and path p does not identified in a certain level of our algorithm, we select a variable y k p,s induced by a demand k ∈ K and slot s ∈ {w k , ..., s} and path p ∈ B k having the largest value y * k p,s with 0 < y * k p,s < 1, and then generate two nodes by imposing that y k p,s = 0 or y k p,s = 1. Note that, branching in certain constraint s s=1 y k p,s = 0 or s s=1 y k p,s = 1, it has no impact on the structure of our pricing problem.

Demand-Slot Constraint Branching Strategy

Let us present now another branching scheme based on the Ryan and Foster branching scheme. It consists in branching on a constraint 0 ≤ p∈B k y k p,s ≤ 1 for a demand k and slot s which is valid for the C-RSA problem given that p∈P k s s=1 y k p,s = 1. To do so, we select a demand k ∈ K and a slot s having the largest value of p∈B k y * k p,s with 0 < p∈B k y * k p,s < 1. Then, we generate two nodes by imposing the assignment of slot s as last-slot for the demand k or no, i.e., p∈P k y k p,s = 0 or p∈P k y k p,s = 1. However, if such pair of demand k and slot s does not exist in a certain level of our algorithm, we select a variable y k p,s induced by a demand k ∈ K and slot s ∈ {w k , ..., s} and path p ∈ B k having the largest value y * k p,s with 0 < y * k p,s < 1, and then generate two nodes by imposing that y k p,s = 0 or y k p,s = 1. Note that, branching in certain constraint p∈P k y k p,s = 0 or p∈P k y k p,s = 1, it changes the calculation of the reduced-cost associated with the demand k and slot s in each child node of the current node as follows. 

where λ k s ∈ R is the dual variable associated with this branching constraint induced by demand k and slot s. However, it has no impact on the structure of our pricing problem given that it consists in solving RCSP problem.

Demand-Edge Constraint Branching Strategy

In what follows, we introduce a new branching scheme based on the Ryan and Foster branching scheme. It consists in branching on a constraint 0 ≤ s s=1 p∈B k (e) y k p,s ≤ 1 for a demand k and an edge e / ∈ E \ (E k 1 ∪ E k 0 ) which is valid for the C-RSA problem given that p∈P k s s=1 y k p,s = 1. For this, we select a demand k ∈ K and an edge e / ∈ E \ (E k 1 ∪ E k 0 ) having the largest value of 

where λ k e ∈ R is the dual variable associated with this branching constraint induced by demand k and edge e. However, it has no impact on the structure of our pricing problem given that it consists in solving RCSP problem. where γ e s ∈ R is the dual variable associated with this branching constraint induced by edge e and slot s. However, it has no impact on the structure of our pricing problem given that it consists in solving RCSP problem.

o

  k ∈ V , a destination node d k ∈ V \ {o k }, a slot-width w k ∈ Z + , and a transmission-reach ¯ k ∈ R + (in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (o k ,d k )-path p k in G such that e∈E(p k ) l e ≤ lk , where E(p k ) denotes the set of edges belong the path p k , and a subset of contiguous frequency slots S k ⊂ S of width equal to w k such that S k ∩ S k = ∅ for each pair of demands k, k ∈ K (k = k ) with E(p k ) ∩ E(p k ) = ∅ so the total length of the paths used for routing the demands (i.e., k∈K e∈E(p k ) l e ) is minimized.Figure 2 shows the set of established paths and spectrums for the set of demands {k 1 , k 2 , k 3 , k 4 } (Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) such that each edge e is characterized by a triplet [l e , c e , s], and optical spectrum S = {1, 2, 3, ..., 8, 9} with s = 9.

Fig. 1 .

 1 Fig. 1. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4} defined in Table 2(b).

Fig. 2 .

 2 Fig. 2. Proper-topology G k for a given demand k between o k = a and d k = g with lk = 4.

Proposition 3 .

 3 we associate a positive weight wv k = w k s.t. all two nodes v k and v k are linked by an edge if and only if wv k + wv k > t which is equivalent to the conflict graph Ge . Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots. Let C be a clique in the conflict graph Ge I with |C| ≥ 3, and v k ∈C w k ≤ sk ∈Ke\C w k . Then, the inequality v k ∈C p∈P k (e) sj s=si+w k -1

  and w k ≤ |I|, and w k ≤ |I|, and w k + w k > |I|. Then, the inequality p∈P k sj s=si+w k -1

Definition 8 .

 8 For an edge e ∈ E, a subset of demands C ⊆ K with e / ∈ E k 0 ∩ E k 1 For each demand k ∈ C, is said a cover for the edge e if k∈C w k > sk ∈Ke w k . Definition 9. For an edge e in E, a cover C is said a minimal cover if C \ {k} is not a cover for all k ∈ C, i.e., k ∈C\{k}

  k∈C p∈P k (e) s s=1 y k p,s (S) > |C| -1. Since e / ∈ E k for for each demand k ∈ Ξ(C)this means that p ∈P k (e) s s =1 y k p ,s (S) = 0, and taking into account that C is minimal cover for the edge e, x k e (S) ≤ 1 for each k ∈ C and x k e (S) ≤ 1, it follows that k∈C p∈P k (e) s s=1 y k p,s (S) ≤ |C| -1

  Impact of Edge-Interval-Clique Inequalities let ζ the dual variables associated with the inequalities[START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF] such that ζ e I, K ≤ 0 for all e ∈ E and all I = [s i , s j ] in S and all K in K. We denote by K(I) the set of all the minimal cover K for the interval I over edge e, and by Ĩ the set of all intervals I in S. Based on this, we define its assocoiated dual program max -

ss

  =s-w k +1 µ e s -K∈C(e) s.t. k∈ K φ e K ) ≥ 0, ∀k ∈ K, ∀p ∈ P k , ∀s ∈ {w k , ..., s}, (73)

  Construct n sequences denoted by N (L) from the sequence L by doing some permutations between some demands selected randomly in the sequence L for each neighbour Lj ∈ N (L) doCall the greedy-algorithm 8.8 based on the sequence Lj Let Sj be the final solution obtained by our greedy-algorithm 8.8 for the sequence Lj Compute its associated cost by summing the total length of the paths selected to route the demands K in the solution Sj, denoted by valj if Sj is feasible and val * i > valj then Set val * i = valj Set S * i = Sj end end if val * > val * i then Set val * = val * i Set S * = S * i end Set i = i + + end return integral solution S * for current node in the tree of our B&P and B&C&P algorithms

  s s=1 p∈B k (e) y * k p,s with 0 < s s=1 p∈B k (e) y * k p,s < 1. Then, we generate two nodes by imposing the usage of edge e to route the demand k or no, i.e., s s=1 p∈P k (e) y k p,s = 0 or s s=1 p∈P k (e) y k p,s = 1. However, if such pair of demand k and edge e does not exist in a certain level of our algorithm, we select a variable y k p,s induced by a demand k ∈ K and slot s ∈ {w k , ..., s} and path p ∈ B k having the largest value y * k p,s with 0 < y * k p,s < 1, and then generate two nodes by imposing that y k p,s = 0 or y k p,s = 1. Note that, branching in certain constraint s s=1 p∈P k (e) y k p,s = 0 or s s=1 p∈P k (e) y k p,s = 1, it changes the calculation of the reduced-cost associated with the demand k and slot s in each child node of the current node as follows. rc k s = β k + min( min p∈P k \B k , e∈E(p) [λ k e + e ∈E(p)\{e} l e -s s =s-w k +1 µ e s ], min p∈P k \B k , e / ∈E(p) [ e ∈E(p) l e -s s =s-w k +1 µ e s ]),

10. 5

 5 Edge-Slot Constraint Branching StrategyWe further present another constraint branching scheme which consists in branching on the nonoverlapping constraint 0 ≤ p∈P k (e) min(s+w k -1,s) s =s y k p,s ≤ 1. For this, we select an edge e and a slot s having the largest value of p∈P k (e) min(s+w k -1,s) s =s y * k p,s with 0 < p∈P k (e) min(s+w k -1,s) s =s y * k p,s < 1. Then, we generate two nodes by imposing the usage of edge e to route the demand k or no, i.e., p∈P k (e) min(s+w k -1,s) s =s y k p,s = 0 or p∈P k (e) min(s+w k -1,s) s =s y k p,s = 1. However, if such pair of edge e and slot s does not exist, we select a variable y k p,s induced by a demand k ∈ K and slot s ∈ {w k , ..., s} and path p ∈ B k having the largest value y * k p,s with 0 < y * k p,s < 1, and then generate two nodes by imposing that y k p,s = 0 or y k p,s = 1. Note that, branching in certain constraint s s=1 p∈P k (e) y k p,s = 0 or s s=1 p∈P k (e) y k p,s = 1, it changes the calculation of the reduced-cost associated with the demand k and each slot s with s ∈ {s -w k + 1, ..., s } in each child node of the current node as follows. rc k s = β k + min( min p∈P k \B k , e∈E(p) and s∈{s -w k +1,...,s }

  and (12) as follows.

	Proposition 7. Consider an interval of contiguous slots I = [s i , s j ] ⊆ S with s i ≤ s j -1. Let H
	be an odd-hole H in the conflict graph GE I , and C be a clique in the conflict graph GE I with
	-|H| ≥ 5,
	-and |C| ≥ 3,
	-and H ∩ C = ∅,
	-and the nodes (v k , v k ) are linked in GE I for all v k ∈ H and v k ∈ C.
	Then, the inequality

  or {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ if k = k and (k, k ) / ∈ K e c .The conflict graph GeS is not a perfect graph given that some nodes v k,s and v k ,s are linked even if the {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅, i.e., when k = k . Proposition 8. Consider an edge e ∈ E. Let C be a clique in the conflict graph Ge S with |C| ≥ 3, and k∈C w k ≤ sk ∈Ke\C w k . Then, the inequality The inequality (14) associated with a clique C over edge e, it is dominated by the inequality (4) associated with the slot s and a subset of demands K over edge e if and only if s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C.Proof. Consider an edge e ∈ E. Let s be a slot in S, and C be a clique in the conflict graph Ge S , and K = {k ∈ K s.t. v k,s ∈ C} be a subset of demands in K with e / ∈ E k 0 for each k ∈ K. Neccessity. First, assume that s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C. Taking into account that |{s-w k +1, ..., s}| = w k for each node v k,s in C, and s ≥ s-w k +1 and s ≤ s for each k ∈ K, it follows that s ∈ {s, ...s+ w k -1} for each node v k,s in C. It follows that =⇒ s ≥ s and s ≤ s + w k -1 =⇒ s -w k + 1 ≤ s ≤ s for each node v k,s ∈ C, =⇒ s ∈ {s -w k + 1, ..., s} for each node v k,s ∈ C.It follows that s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, that which was to be demonstrated, and which ends our proof. Proof. Consider an edge e ∈ E, and an interval of contiguous slots I = [s i , s j ] ⊆ [1, s]. Let C be a clique in the conflict graph Ge S , and K = {k ∈ K s.t. v k,s ∈ C} be a subset of demands in K with w k + w k > |I| for each pair of demands k, k ∈ K,

	inequality (4) associated with the slot s and subset of demands K over edge e, and taking into
	account that K = {k ∈ K s.t. v k,s ∈ C}. We have				
	v k,s ∈C p∈P k (e)	y k p,s	k∈	K min(s+w k -1,s) s =s	v k,s ∈C p∈P k (e) p∈P k (e) y k p,s =⇒ y k p,s ≤ 1, k∈ K p∈P k (e)	y k p,s	k∈	s =s K min(s+w k -1,s)	(14) p∈P k (e)	y k p,s
	min(s+w k -1,s) Proof. It is trivial given the definition of a clique set in the conflict graph Ge is valid for P (G, K, S, P K ). =⇒ y k p,s p∈P k (e) s =s p∈P k (e) S s.t. for each two y k p,s for each k ∈ linked nodes v k,s and v k ,s in Ge S , we know that the inequality =⇒ s ∈ {s, ..., min(s + w k -1, s)} for each k ∈	K K
					y k p,s + =⇒ s ∈ {s, ..., min(s + w k -1, s)} for each node v k,s ∈ C, y k p ,s ≤ 1,
				p∈P k (e)	p ∈P k (e)				
	is valid for P (G, K, S, P K ). By adding the previous inequalities for all two linked nodes v k,s and
	v k ,s in GE S , we get								
	v k,s Remark 2. The inequality (14) associated with a clique C over edge e, it is dominated by the (|C| -1)y k p,s ≤ |C| -1 =⇒ v k,s y k p,s ≤ |C| -1 =⇒ y k p,s ≤ 1, |C| -1 v k,s inequality (9) associated with an interval I = [s i , s j ] and the subset of demands K over edge e iff
	which ends our proof. -s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C,
	-and [ min v k,s ∈C -and k∈ K w k ≤ s -(s -w k + 1), max v k,s ∈C k ∈Ke\ K w k , s] ⊂ I. -and e / ∈ E k 0 , and w k ≤ |I| for each demand k ∈ K. Necessity Remark 1. k∈ K min(s+w k -1,s) s =s p∈P k (e) y k p,s = k∈ K p∈P k (e) y k p,s + First, assume that -s ∈ {s -w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, k∈ y k p,s . K min(s+w k -1,s) s =s s =s p∈P k (e) -and [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I.	(15)
								v k,s ∈C		
	Given that s -w k + 1 ≥ min v k ,s ∈C Taking into account that K = {k ∈ K s.t. v k,s ∈ C}, this means that (s -w k + 1) and s ≤ max v k ,s ∈C s for each v k,s ∈ C, and that |{s -w k + 1, ..., s}| = w k for each v k,s ∈ C, it follows that s ∈ I k for each v k,s ∈ C of demand
	k ∈ K. As a result, we get that		y k p,s =	y k p,s .			
				k∈ K p∈P k (e) y k p,s =	v k,s ∈C p∈P k (e) y k p,s +			y k p,s .	(16)
	This implies that k∈ K s ∈I k p∈P k (e)	k∈ K p∈P k (e)	k∈ K s ∈I k \{s} p∈P k (e)
	4), we define S introduced previously as a sub-graph. a new conflict graph which contains the conflict graphs GE Definition 6. Let Ge S be a conflict graph defined as follows. For each slot s ∈ {w k , ..., s} and demand k ∈ K with e / ∈ E k k∈ K min(s+w k -1,s) s =s p∈P k (e) y k p,s = v k,s ∈C p∈P k (e) y k p,s + Taking into account that K = {k ∈ K s.t. v k,s ∈ C}, this means that K min(s+w k -1,s) s =s p∈P k (e) y k p,s y k p,s = y k p,s . k∈ s =s k∈ K p∈P k (e) v k,s ∈C p∈P k (e) v k,s ∈C 0 , consider a node v k,s in Ge S . Two nodes v k,s and v k ,s are linked by an edge in Ge S if and only if -k = k , =⇒ v k,s ∈C p∈P k (e) y k p,s k∈ y k p,s . This implies that K min(s+w k -1,s) s =s p∈P k (e) y k p,s = y k p,s + y k p,s
	k∈ K s ∈I k p∈P k (e) As a result, the inequality (14) is dominated by the inequality (4). v k,s ∈C p∈P k (e) k∈ K s ∈I k \{s} p∈P k (e) Sufficiency. =⇒ y k p,s y k p,s .
	Assume that the inequality (14) associated with the clique C over edge e, it is dominated by the p∈P k (e) k∈ K s ∈I k p∈P k (e)

  in H, and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H.

	Neccessity.
	First, assume that

Proof. Consider an interval of contiguous slots I = [s i , s j ] ⊆

[1, s]

. Let H be an odd-hole in the conflict graph GE S , and K = {k ∈ K s.t. v k,s ∈ H} be a subset of demands in K with K is an odd-hole in the conflict graph GE I for the interval I = [s i , s j ].

  ∈ E k for a demand k ∈ C this means that p ∈P k (e) s s =1 y k p ,s (S) = 0, and taking into account that C is minimal cover for the edge e, x k e (S) ≤ 1 for each k ∈ C \ {k } and x k e (S) ≤ 1, it follows that

		s
		y k p,s (S) ≤ |C| -1
	k∈C\{k } p∈P k (e)	s=1
	which contradicts what we supposed before, i.e., k∈C p∈P k (e) s s=1 y k p,s (S) > |C| -1.
	Hence	
	k∈C	

is not valid for P (G, K, S, P K ). It follows that there exists a C-RSA solution S in which e / ∈ E k for a demand k ∈ C s.t. k∈C p∈P k (e) s s=1 y k p,s (S) > |C| -1.

Since e /

  We start our procedure of separation by constructing a set of intervals of contiguous slots I ∈ I e for a given edge e ∈ E s.t. each interval of contiguous slots I = [s i , s j ] ∈ I e is identified for each slot s i ∈ S and slot s j with s j ∈ {s i + max k∈K\ Ke w k , ..., min(s, s i + 2 max k∈K\ Ke w k )}. Consider now an interval of contiguous slots I = [s i , s j ] ∈ I e over an edge e, and its associated conflict graph Ge I . We then use a greedy algorithm introduced by Nemhauser and Sigismondi in[START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify a maximal clique in conflict graph Ge I as follows. We first associate a positive weight for each node v k in Ge I equals to p∈P k (e) . We then set C * = {k} s.t. k is a demand in K having the largest number of slots w k and weight p∈P k (e) ȳk p,s s.t. its corresponding node v k is linked with all the nodes v k with k already assigned to the current C * . After that, we check if the inequality (9) induced by the maximal clique C * for the interval I and edge e is violated or not. If so, we add the inequality[START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF] induced by the maximal clique C * to the current LP, i.e., One can strengthen such inequality by adding the inequality (9) induced by the maximal clique C * and C * e ⊂ K e \ C * , i.e., w k + w k ≥ |I| + 1 for each k ∈ C * and k ∈ C * e , w k + w k" ≥ |I| + 1 for each k ∈ C * e and k" ∈ C * e , w k ≤ |I| and 2w k ≥ |I| + 1 for each k ∈ C * e . Separation of Interval-Clique Inequalities Given a fractional solution ȳ, and an interval of contiguous slots I = [si, s j ]. Our separation algorithm for the inequality (11) consists in identifying a maximal clique C * in the conflict graph GE I s.t.

		sj			sj
		y k p,s +		y k p,s ≤ 1,
	k∈C * p∈P k (e)	s =si+w k -1	k ∈C * e p∈P k (e)	s =si+w k -1
	s.t.			
		sj s =si+w k -1	ȳk p,s sj s =si+w k -1	ȳk p,s . After that, we
	iteratively add each demand k having p∈P k (e)	sj s =si+w k -1
			sj	
					y k p,s ≤ 1.
		k∈C * p∈P k (e)	s =si+w k -1

k∈C * p∈P k (e) sj s =si+w k -1 ȳk p,s > 1,

for a given fractional solution ȳ of the current LP.

k∈C * p∈P k sj s =si+w k -1

  to identify a maximal clique in conflict graph GE

	k∈K,	w k∈K,	w
	|E k 1 |≥1	|E k 1 |≥1	

I

as follows. We first generate a set of intervals of contiguous slots denoted by I E s.t. each interval of contiguous slots I = [s i , s j ] ∈ I E is defined for each slot s i ∈ S and slot s j with s j ∈ {s i + max k , ..., min(s, s i +2 max k )}. We then consider an interval of contiguous slots I = [s i , s j ] ∈

I

E and its associated conflict graph GE I . We associate a positive weight p∈P k sj s =si+w k -1 ȳk p,s for each node v k in GE I . We select a demand k s.t. k is a demand in K having the largest number of slots w k and weight p∈P k sj s =si+w k -1 ȳk p,s , and then set C * = {k}. After that, we iteratively add each demand k having p∈P k sj s =si+w k -1 ȳk

  a node in Ge S having the largest value of node-degree (i.e., |δ(v k ,s )|) in Ge S and v k ,s is linked with all the nodes v k,s ∈ C * in Ge S and k ∈ K e . Afterwards, we iteratively add each node v k",s" / ∈ C * ∪ N * to the current N * if it is linked in Ge S with all the nodes already assigned to C * and N * and k" ∈ K e . At the end, we add the following inequality induced by the clique C * ∪ N * to the current LP, i.e., v k,s ∈C * p∈P k (e)

  induced by the odd-hole H * v k,s ∈H * p∈P k (e)should be added to the current LP. Moreover, one can propose a lifting procedure for the inequality[START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] induced by the odd-hole H * by using the greedy algorithm introduced by Nemhauser and Sigismondi in[START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] to identify a maximal clique C * in the conflict graph Ge S s.t. each node v k ,s ∈ C * should have a link with all the nodes v k,s ∈ H * , and all the nodes v k",s" ∈ C * \ {v k ,s } in the conflict graph Ge S . For that, we first assign a node v k ,s / ∈ H * to the clique C * (i.e., C * = {v k ,s }) s.t. v k ,s has the largest value of node-degree (i.e., |δ(v k ,s )|) in Ge S and v k ,s is linked with all the nodes v k,s ∈ H * in Ge S . After that, we iteratively add each node v k ,s / ∈ H * ∪ C * to the current clique C * if it is linked in Ge

	ȳk p,s ≤	|H * | -1 2	,

  to identify a maximal clique C * in the conflict graph GE S s.t. each node v k ,s ∈ C * should have a link with all the nodes v k,s ∈ H * , and all the nodes v k",s" ∈ C * \ {v k ,s } in the conflict graph GE S . For that, we first assign a node v k ,s / ∈ H * to the clique C * (i.e., C * = {v k ,s }) s.t. v k ,s has the largest value of node-degree (i.e., |δ(v k ,s )|) in GE S and v k ,s is linked with all the nodes v k,s ∈ H * in GE S . After that, we iteratively add each node v k ,s / ∈ H * ∪ C * to the current clique C * if it is linked in GE

Table 1 .

 1 with a number of links 21 ≤ |E| ≤ 166, and a number of nodes 14 ≤ |V | ≤ 161 as shown in the table of Note that we tested 4 instances for each triplet (G, K, s) with |K| ∈ {10, 20, 30, 40, 50, 100, 150, 200, 250, 300}, and s up to 320 slots.

	Topology	Number of Nodes	Number of Links	Max Node Degree	Min Node Degree	Average Node Degree
		German	17	25	5	2	2.94
	Real Topology	Nsfnet Spain Conus75	14 30 75	21 56 99	4 6 5	2 2 2	3 3.73 2.64
		Coronet100	100	136	5	2	2.72
		Europe	28	41	5	2	2.92
		France	25	45	10	2	3.6
		German50	50	88	5	2	3.52
	Realistic Topology	Brain161 Giul39 India35	161 39 35	166 86 80	37 8 9	1 3 2	2.06 4.41 4.57
		Pioro40	40	89	5	4	4.45
		Ta65	65	108	10	1	3.32
		Zib54	54	80	10	1	2.96

Table 1 .

 1 Characteristics of different topologies used for our experiments.

Table 2 .

 2 Efficiency of a combination of valid inequalities using real topologies for small-scale instances : B&P Vs B&C&P.

	Instances		B&P SCIP				B&C&P SCIP	
	Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
	Conus75 100 120	51	0,00 1460,58	1,50	46	0,00 1745,17	1	21
	Conus75 150 200	1	0,00 705,35	0	1	0,00 555,89	0	0
	Conus75 200 240	6	0,01 5215,75	0,75	1,25	0,01 2119,99	0,75	7,25
	Conus75 250 320	1	0,00 2101,99	0,50	1	0,00 2111,54	0,50	4,25
	Conus75 300 320	1	0,00 6087,75	1,25	1	0,00 2828,78	1,25	0
	Coronet100 100 120	1	0,00 139,61	0	1	0,00 158,51	0	0
	Coronet100 150 200	1	0,00 461,86	0	1	0,00 429,36	0	0
	Coronet100 200 280 12,50 0,02 5845,43	1	1,25	0,02 4142,16	1	3
	Coronet100 250 320 12,25 0,01 18000	1,25	1	0,01 3769,06	1,25	12,50
	Coronet100 300 320	3,50	0,08 9933,59	9	1	0,08 4414,07	9	0
	German 100 140	1	0,00 11,25	0	1	0,00 11,84	0	0
	German 150 210	1	0,00 53,03	0	1	0,00 74,89	0	0
	German 200 260	99	0,01 4621,81	0	1	0,02 1079,52	0	3,25
	German 250 320	1	0,00 847,06	0	1	0,00 764,77	0	0
	German 300 320	1	0,00 1386,45	0	1	0,00 1496,42	0	0
	Nsfnet	100 120	1	0,00	6,37	0	1	0,00	7,88	0	0
	Nsfnet	150 160	1	0,00 29,08	0	1	0,00 44,37	0	0
	Nsfnet	200 210	232	0,01 5497,21	0	196,50 0,01 5911,91	0	0,50
	Nsfnet	250 285	1	0,00 375,21	0	1	0,00 484,91	0	0
	Nsfnet	300 320	6,50	0,00 5125,24	0	7,50	0,00 5196,10	0	0,25
	Spain	100 120	1	0,00 22,05	0	1	0,00 22,28	0	0
	Spain	150 160	1	0,00 86,47	0,25	1	0,00 121,71	0,25	0,25
	Spain	200 200	1	0,00 359,46	0,25	1	0,00 451,46	0,25	7,25
	Spain	250 240	1	0,00 958,33	1,25	1	0,00 1779,34	1,25	11,25
	Spain	300 280	1	0,00 1864,60	1,50	1	0,03 2274,13	1,50	6,25

Table 3 .

 3 Efficiency of a combination of valid inequalities using real topologies for large-scale instances : B&P Vs B&C&P.

	Instances		B&P SCIP				B&C&P SCIP	
	Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
	Brain161 10 40	1	0,00	3,17	0	1	0,00	3,12	0	0
	Brain161 20 40	1	0,00	6,25	0	1	0,00	6,15	0	0
	Brain161 30 40	1	0,00	9,45	0	1	0,00	9,40	0	0
	Brain161 40 40 1635,50 0,01 18000	0	1579 0,01 18000	0	205,50
	Brain161 50 40 1932,25 0,73 18000	6,50	1774,50 0,36 18000	12,75	487,25
	Europe 10 25	7	0,00	1,45	1,25	12,50 0,00	2,47	2,75	1,75
	Europe 20 60	1196 0,14 4499,56	77	1857,50 0,00 4496,18	75,50	220,25
	Europe 30 80 3861,50 0,24 13490,79	480	1649,50 0,20 8997,69	814,75	363
	Europe 40 80	1998 0,46 9024,29	434,50	806,50 0,31 9139,18	428,50	866,50
	Europe 50 180	1	0,00 13,83	0	1	0,00 11,96	0	0
	France	10 50 409,50 0,00 341,88	115,75	61,50 0,00 47,28	37	11,50
	France	20 60	3345 0,73 12010,59	88	176	0,39 4511,73	0	100,50
	France	30 80	3549 0,74 18000	244,50	1090,50 0,55 18000	0,25	666,50
	France	40 100 1932,50 0,33 13548,11	81,25	545,75 0,23 14633,48	0	332
	France	50 120 1679,50 0,25 13499,67	78,75	543	0,23 13520,17	0	843,50
	German50 10 35	1	0,00	0,88	0	1	0,00	0,97	0	0
	German50 20 40	1	0,00	2,09	0	1	0,00	2,31	0	0
	German50 30 50	1	0,00	4,05	0	1	0,00	4,53	0	0
	German50 40 50	1	0,00	5,62	0	1	0,00	6	0	0
	German50 50 50	1	0,00	7,26	0	1	0,00	7,62	0	0
	Giul39	10 40	1	0,00	1,06	0	1	0,00	1,17	0	0
	Giul39	20 40	1	0,00	2,17	0	1	0,00	2,31	0	0
	Giul39	30 40	1	0,00	3,20	0	1	0,00	3,37	0	0
	Giul39	40 40	1	0,00	4,45	0	1	0,00	4,74	0	0
	Giul39	50 40 683,75 0,02 4502,95	0,50	1	0,00	9,40	0	4,50
	India35 10 40	16,50 0,00 13,95	0	1	0,00	1,05	0	2
	India35 20 40	1	0,00	1,67	0	1	0,00	2,10	0	14,25
	India35 30 40 2456,50 0,10 8996,21	96,50	917,50 0,12 4665,90	84,75	115,50
	India35 40 40 1830,50 0,50 13505,63	533	375	0,52 7073,75	82,25	219,50
	India35 50 80	544	0,00 4509,40	0	368,50 0,00 4478,10	0	242,25
	Pioro40 10 40	1	0,00	1,22	0,25	1	0,00	1,28	0,25	0
	Pioro40 20 40	1	0,00	2,42	1,25	1	0,00	2,50	1,25	0
	Pioro40 30 40	1	0,00	3,38	0	1	0,00	3,54	0	0
	Pioro40 40 40 907,50 0,02 4503,98	14,75	1	0,00 20,20	1,25	11,25
	Pioro40 50 80 388,50 0,00 4515,13	21	1	0,00 31,62	0,75	17,75
	Ta65	10 40	1	0,00	1,58	0	1	0,00	1,71	0	0
	Ta65	20 40	1	0,00	4,13	1,25	1	0,00	4,52	1,25	0
	Ta65	30 40	706	0,01 4509,13	16,50	483	0,01 4513,46	28,75	173,25
	Ta65	40 40	2098 0,09 13503,83	130,50	401,50 0,04 4526,49	63	156,50
	Ta65	50 40 2339,50 0,05 18000	90,75	1573,50 0,01 13661,46	68,50	381,50
	Zib54	10 40	1	0,00	1,30	0	1	0,00	1,25	0	301,75
	Zib54	20 40	1	0,00	2,23	0,75	1	0,00	2,29	0,75	1583,75
	Zib54	30 40	1	0,00	5,97	3,50	1	0,00	9,73	3,50	4999,25
	Zib54	40 40 757,50 0,10 4503,19	28,25	66,50 0,00 478,74	11	13375,75
	Zib54	50 40 2835,50 0,31 18000	92,25	2376 0,31 18000	92,50	143067

Table 4 .

 4 Efficiency of a combination of valid inequalities using realistic topologies: B&P Vs B&C&P.

	Instances		B&P SCIP				B&C&P SCIP	
	Topology |K| |S| Nb Nd Gap T Cpu Ncols Add Nb Nd Gap T Cpu Ncols Add Ncons Add
	Brain161 100 80 521,25 0,14 18000	0	402,50 0,22 18000	0	187,50
	Brain161 150 160 131,50 0,01 18000	0	101	0,07 18000	0	49,25
	Brain161 200 200 16,50 0,29 18000	0	2	0,10 16500,15	0	24,50
	Brain161 250 240	1,50	0,32 18000	0	1	0,54 15984,66	0	12,75
	Brain161 300 320	1,50	0,02 9439,62	0	1	0,08 6411,93	0	0
	Europe 100 320	1	0,00 1086,09	0	1	0,00 1233,02	0	229,25
	Europe 150 320	3	0,26 18000	0,75	1	0,12 16134,92	0	289,75
	Europe 200 320	1	0,00 4045,59	0	1	0,00 2635,73	0	421
	Europe 250 320	1	0,00 9118,67	0	1	0,00 10000,62	0	592,50
	Europe 300 320	1	0,37 18000	0	1	0,00 16824,42	5,50	771,25
	France 100 320 211,50 0,20 18000	5,75	32,50 0,32 18000	0	36,50
	France 150 320	3,50	2,77 18000	21	1	4,42 18000	0	30,25
	France 200 320	14	0,96 18000	3,25	2,50	2,51 18000	0	15,50
	France 250 320	1	3,52 18000	0	1	4,34 18000	0	6,75
	France 300 320	1	4,65 18000	0	1	7,55 18000	0	0
	German50 100 100	1	0,00 48,10	0	1	0,00 35,63	0	0
	German50 150 140	1	0,00 224,72	0	1	0,00 196,15	0	0
	German50 200 140	44	0,21 8488,93	0	43	0,12 9239,41	39,25	0
	German50 250 180	1	0,28 5897,62	0	1,50	0,43 7648,19	12	0
	German50 300 180	1	0,57 18000	0	1	0,86 13968,59	12,25	0
	Giul39 100 40	2290	0,16 18000	185,75	1253,75 1,13 16076,79	114,50	1598,75
	Giul39 150 120	1	0,00 152,94	1,25	1	0,00 430,16	1,25	15
	Giul39 200 120 82,50 0,00 6098,96	3,25	59	0,05 6188,09	3	90,25
	Giul39 250 160 34,50 0,01 5339,55	1	26	0,00 5852,20	1	30,25
	Giul39 300 200 38,50 0,08 18000	6	3,50	0,08 11583,66	5,25	17,25
	India35 100 120	641	0,02 18000	0	225	0,01 9320,12	0	608
	India35 150 200	31	0,00 4909,68	0	1,25	0,00 3378,23	0	19,50
	India35 200 280	1	0,00 7046,13	0	1	0,05 2556,02	0	3
	India35 250 280	1	0,01 8389,92	0	1	0,09 9262,44	0	15,25
	India35 300 320	1	0,00 5521,26	0	1	0,00 6359,41	0	0
	Pioro40 100 80 874,75 0,02 13712,83	15	432,50 0,01 9287,22	13,50	209,25
	Pioro40 150 160	8,50	0,00 936,64	16,25	1	0,00 820,48	16,25	12,75
	Pioro40 200 280	11	0,04 5780,53	16,50	1	0,04 3719,52	14,50	11,50
	Pioro40 250 280 34,50 0,07 12054,33	26,25	1	0,13 7040,90	24,50	8,25
	Pioro40 300 320	14	0,25 18000	34,25	1	0,27 9744,06	34,25	3
	Ta65	100 80 628,75 0,02 13548,86	31,75	542,25 0,02 13847,85	38	326,25
	Ta65	150 160 18,50 0,00 1460,38	3,75	24	0,00 2101,63	3,25	21
	Ta65	200 200	1	0,00 1623,90	9	1	0,00 2190,52	8	14,25
	Ta65	250 240	20	0,03 10794,63	12,75	1	0,07	5241	12,75	14
	Ta65	300 280 10,75 0,10 15819,23	28,50	1	0,11 9440,85	6,75	11,75
	Zib54	100 80 849,75 0,13 13770,26	80,25	524,75 0,52 13854,91	36,75	84096
	Zib54	150 160	54	0,02 4799,19	15,25	6	0,19 2074,75	13	40639
	Zib54	200 200	94	0,00 13018,71	7,75	3,25	0,15 4450,02	5,75	39934,25
	Zib54	250 240 24,50 0,20 18000	6,75	1	0,22 5215,45	6,75	32673,50
	Zib54	300 280	1,50	0,52 15029,79	26,25	1	0,63 9736,63	26,25	20400

Table 5 .

 5 Efficiency of a combination of valid inequalities using realistic topologies for large-scale instance: B&P Vs B&C&P.

	Instances	B&P SCIP Without Symmetry Breaking Ineq B&P SCIP With Symmetry Breaking Ineq
	Topology |K| |S| Nbr Nd Gap T Cpu	Ncols Add	Nbr Nd Gap T Cpu	Ncols Add
	German 10 15	28,00	0,00	1,56	1,50	28,50	0,00	2,46	2,25
	German 20 45	227,50 0,00 74,68	0,00	763,50 0,15 4504,82	0,00
	German 30 45	1,50	0,00	1,01	0,00	1,00	0,00 27,35	0,00
	German 40 45 1002,50 0,37 4498,37	68,25	1064,50 0,37 4677,83	60,25
	German 50 55 4243,50 0,35 18000	76,50	3461,00 0,35 18000	85,50
	Nsfnet 10 15	1,00	0,00	0,05	0,00	1,00	0,00	0,19	0,00
	Nsfnet 20 20	120,50 0,00 12,52	11,00	254,50 0,00 94,80	3,25
	Nsfnet 30 30 1434,00 0,00 749,96	1,00	1267,00 0,00 720,21	0,00
	Nsfnet 40 35 2030,50 0,21 5184,20	21,50	836,00 0,21 4716,39	7,00
	Nsfnet 50 50 4305,00 0,45 13478,99	6,50	1179,00 0,14 13928,73	0,00
	Spain	10 15	1,00	0,00	0,18	0,00	1,00	0,00	0,32	0,00
	Spain	20 20	1,00	0,00	0,55	0,50	1,00	0,00	2,14	0,25
	Spain	30 25	30,50	0,00 28,48	5,25	65,00	0,00 179,56	5,25
	Spain	40 30 2549,67 0,07 5993,17	41,00	1282,33 0,07 6164,94	44,33
	Spain	50 35 2506,25 0,11 13485,82	24,25	2551,50 0,10 9611,75	27,25
	Ta65	10 40	1,00	0,00	1,58	0,00	1,00	0,00	1,72	0,00
	Ta65	20 40	1,00	0,00	4,13	1,25	1,00	0,00	9,41	0,75
	Ta65	30 40	706,00 0,01 4509,13	16,50	665,50 0,01 4559,66	19,50
	Ta65	40 40 2098,00 0,09 13503,83	130,50	1848,25 0,08 13534,41	165,50
	Ta65	50 40 2339,50 0,05 18000	90,75	973,25 0,04 18000	74,75
	Zib54	10 40	1,00	0,00	1,30	0,00	1,00	0,00	3,08	0,00
	Zib54	20 40	1,00	0,00	2,23	0,75	1,00	0,00 13,54	0,25
	Zib54	30 40	1,00	0,00	5,97	3,50	1,00	0,00 38,72	0,00
	Zib54	40 40	757,50 0,10 4503,19	28,25	342,00 0,09 4611,08	34,00
	Zib54	50 40 2835,50 0,31 18002,35	92,25	763,75 0,31 18000	44,25

Table 6 .

 6 Efficiency of symmetry-breaking inequalities for the B&P algorithm using small-scale instances.

	Instances	B&C&P SCIP Without Symmetry Breaking Ineq B&C&P SCIP With Symmetry Breaking Ineq
	Topology |K| |S| Nbr Nd Gap T Cpu Ncuts Add	Ncols Add	Nbr Nd Gap T Cpu Ncuts Add Ncols Add
	German 10 15	3,50	0,00	0,36	9,25	1,25	1,00	0,00	0,31	4,75	0,25
	German 20 45	1,00	0,00	0,57	2,25	0,00	1,00	0,00 15,24	1,50	0,00
	German 30 45	2,50	0,00	2,27	1,25	0,00	1,00	0,00 70,31	0,75	0,00
	German 40 45 1107,00 0,17 4502,33	223,00	55,00	362,50 0,21 5007,95	68,25	35,00
	German 50 55 3132,75 0,17 13505,87	429,00	52,50	175,00 0,16 12892,57	65,25	8,50
	Nsfnet 10 15	1,00	0,00	0,06	0,00	0,00	1,00	0,00	0,19	0,00	0,00
	Nsfnet 20 20	137,00 0,00 18,20	3,00	0,00	42,50	0,00 27,60	17,25	0,00
	Nsfnet 30 30 1292,00 0,00 391,26	0,00	0,00	139,50 0,00 620,51	11,25	0,00
	Nsfnet 40 35	828,00 0,18 4527,57	1,50	0,00	53,50	0,18 1002,96	12,25	0,00
	Nsfnet 50 50 3926,00 0,45 13497,69	7,75	0,00	924,00 0,62 6558,79	51,00	0,00
	Spain	10 15	1,00	0,00	0,20	0,00	0,00	1,00	0,00	0,32	0,00	0,00
	Spain	20 20	1,00	0,00	0,87	3,00	0,50	1,00	0,00	1,86	0,00	0,25
	Spain	30 25	1,00	0,00	1,53	1,75	0,25	1,00	0,00	6,11	3,75	0,25
	Spain	40 30	419,00 0,00 652,29	64,67	4,33	383,00 0,00 2475,74	54,33	12,33
	Spain	50 35 1818,50 0,10 4655,84	320,50	28,75	211,50 0,10 4490,18	142,25	9,00
	Ta65	10 40	1,00	0,00	1,71	424,25	0,00	1,00	0,00	3,48	0,00	0,00
	Ta65	20 40	1,00	0,00	4,52	2280,75	1,25	1,00	0,00 17,51	0,00	0,75
	Ta65	30 40	483,00 0,01 4513,47	14585,25	28,75	1,00	0,00 279,41	8,75	2,25
	Ta65	40 40	401,50 0,04 4526,49	17037,25	63,00	193,75 0,05 6909,24	182,50	70,25
	Ta65	50 40 1573,50 0,01 13661,46 107263,50	68,50	378,25 0,00 10576,28	76,75	14,75
	Zib54	10 40	1,00	0,00	1,25	301,75	0,00	1,00	0,00	3,68	0,00	0,00
	Zib54	20 40	1,00	0,00	2,29	1583,75	0,75	1,00	0,00 11,52	0,00	0,25
	Zib54	30 40	1,00	0,00	9,73	4999,25	3,50	114,50 0,08 2421,37	44,75	21,25
	Zib54	40 40	66,50	0,00 478,74	13375,75	11,00	265,00 0,16 2343,81	49,50	8,75
	Zib54	50 40 2376,00 0,31 18000	143067,00	92,50	526,00 0,13 13499,72	202,50	34,75

We take into account the presence of parallel fibers such that two edges e, e which have the same extremities i and j are independents.

We take into account that we can have several demands between the same origin-node and destinationnode.

This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project FLEXOPTIM. of the cut formulation proposed by Hadhbi et al. in [24] using an oriented graph.

Algorithm 1 Dynamic Programming Algorithm

Data: An undirected, loopless, and connected graph G = (V, E), a spectrum S, a multi-set K of demands, a linear program LP, a demand k and a slot s ∈ {w k , ..., s}, a set B k of feasible paths already exists in the current LP for the demand k ∈ K and slot s, and the optimal values of the duals variables (α * , β * , µ * ) Result: Optimal path p * for the demand k and slot s Set

We select one label p from the labels L 

Algorithm 3 Greedy-Algorithm for the B&P and B&C&P Algorithms

Data: A set of edges E, a spectrum S, a multi-set K of demands, a set B k s of precomputed feasible paths for each demand k ∈ K and slot s ∈ S, an optimal solution y * of the current LP, set F IX0 of fixed variables to 0, a set F IX1 of fixed variables to 1 in the current node in the tree of B&P or B&C&P, and a sequence of demands L = 1 , 2 , .. for all k ∈ K}, {S k for all k ∈ K}) be the final solution obtained by our greedy-algorithm.

It is feasible for the C-RSA iff E k = ∅ and S k = ∅ for each demand k ∈ K return integral solution S for current node in the tree of our B&P and B&C&P algorithms