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Abstract. The constrained-routing and spectrum assignment (C-RSA) problem is a key
issue when dimensioning and designing an optical network. Given an optical network G
and a multiset of traffic demand K, it aims at determining for each traffic demand k € K
a path and an interval of contiguous slots while satisfying technological constraints and
optimizing some linear objective function(s). In this paper, we introduce an integer linear
programming formulation based on the so-called cut formulation for the C-RSA problem.
We describe several valid inequalities for the associated polytope, and further give necessary
and sufficient conditions under which these inequalities are facet defining. Based on these
results, we develop a branch-and-cut algorithm to solve the problem.

Keywords: Optical networks, constrained-routing, spectrum assignment, integer linear pro-
gramming, polyhedron, dimension, valid inequality, facet, separation, branch-and-cut.

1 Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by 2022, up
from 194.4 Exabytes per month in 2020 [84]. Optical transport networks are then facing a serious
challenge related to continuous growth in bandwidth capacity due to the growth of global communi-
cation services and networking: mobile internet network (e.g., 5th generation mobile network), cloud
computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social
networks) [9], etc... To sustain the network operators face this trend of increase in bandwidth, a new
generation of optical transport network architecture called Spectrally Flexible Optical Networks
(SFONSs) (called also FlexGrid Optical Networks) has been introduced as promising technology
because of their flexibility, scalability, efficiency, reliability, survivability [7][9] compared with the
traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[68][69]. In SFONs the
optical spectrum is divided into small spectral units, called frequency slots as shown in Figure 1.
They have the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T
[1]. The concept of slots was proposed initially by Jinno et al. in 2008 [38], and later explored by
the same authors in 2010 [87]. This can be seen as an improvement in resource utilization. We
refer the reader to [44] for more information about the architectures, technologies, and control of
SFONS.

The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimensioning
and designing of SFONs which is the main task for the development of this next generation of
optical networks. It consists of assigning for each traffic demand, a physical optical path, and an
interval of contiguous slots (called also channels) while optimizing some linear objective(s) and
satisfying the following constraints [31]:

1. spectrum contiguity: an interval of contiguous slots should be allocated to each demand k with
a width equal to the number of slots requested by demand k;

2. spectrum continuity: the interval of contiguous slots allocated to each traffic demand stills the
same along the chosen path;

* This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project
FLEXOPTIM.
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Fig. 1. Slot concept illustration in SFONs [77].

3. non-overlapping spectrum: the intervals of contiguous slots of demands whose paths are not
edge-disjoints in the network cannot share any slot over the shared edges.

1.1 Related Works

Numerous research studies have been conducted on the RSA problem since its first appearance. The
RSA is known to be an NP-hard problem [80] [83], and is more complex than the historical Rout-
ing and Wavelength Assignment (RWA) problem [34]. Various (mixed) integer linear programming
(ILP) formulations and algorithms have been proposed to solve it. A detailed survey of spectrum
management techniques for SFON is presented in [83] where authors classified variants of the RSA
problem: offline RSA which has been initiated in [63], and online or dynamic RSA which has been
initiated in [88] and recently developed in [58] and [91], and an investigation of numerous aspects
proposed in the tutorial [6]. This work focuses on the offline RSA problem. There exist two classes
of ILP formulations used to solve the RSA problem, called edge-path and edge-node formulations.
The ILP edge-path formulation is majorly used in the literature where variables are associated with
all possible physical optical paths inducing a huge number of variables and constraints which grow
exponentially and in parallel with the growth of the instance size: number of demands, the total
number of slots, and topology size: number of links and nodes [31]. To the best of our knowledge,
we observe that several papers which use the edge-path formulation as an ILP formulation to solve
the RSA problem, use a set of precomputed-paths without guaranty of optimality e.g. in [12], [63],
[64], [86], [93], and recently in [75]. On the other hand, column generation techniques have been
used by Klinkowski et al. in [73], Jaumard et al. in [36], and recently by Enoch in [21] to solve the
relaxation of the RSA taking into account all the possible paths for each traffic demand. To improve
the LP bounds of the RSA relaxation, Klinkowsky et al. proposed in [65] a valid inequality based
on clique inequality separable using a branch-and-bound algorithm. On the other hand, Klinkowski
et al. in [66] propose a branch-and-cut-and-price method based on an edge-path formulation for
the RSA problem. Recently, Fayez et al. [23], and Xuan et al. [89], they proposed a decomposition
approach to solve the RSA separately (i.e., R+SA) based on a recursive algorithm and an ILP
edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formulation
has been introduced as an alternative for it. It holds a polynomial number of variables and con-
straints that grow only polynomially with the size of the instance. We found just a few works in
the literature that use the edge-node formulation to solve the RSA problem e.g. [4], [86], [93].

On the other front, and due to the NP-Hardness of the C-RSA problem, we found that several
heuristics [18],[51],[77], and recently in [35], and greedy algorithms [46], and metaheuristics as
tabu search in [27], simulated annealing in [66], genetic algorithms in [25], [33], [34], ant colony
algorithms in [41] , and a hybrid meta-heuristic approach in [72], have been used to solve large
sized instances of the RSA problem. Furthermore, some resseraches start using some artificial in-
telligence algorithms, see for example [42] and [43], and some deep-learning algorithms [8], and
also machine-learning algorithms in [76], and recently in [90] and [29] to get more perefermonce.
Selvakumar et al. gives a survey in [79] in which they summarise the most contributions done for
the RSA problem before 2019.

In this paper, we are interested in the resolution of a complex variant of the RSA problem, called
the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the
network should also satisfy the transmission-reach constraint for each traffic demand according to
the actual service requirements. To the best of our knowledge a few related works on the RSA, to
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say the least, take into account this additional constraint such that the length of the chosen path for
each traffic demand should not exceed a certain length (in kms). Recently, Hadhbi et al. in [31] and
[32] introduced a novel tractable ILP based on the cut formulation for the C-RSA problem with a
polynomial number of variables and an exponential number of constraints separable in polynomial
time using network flow algorithms. Computational results show that their cut formulation solves
larger instances compared with those of Velasco et al. in [86] and Cai et al. [4]. It has been used
also as a basic formulation in the study of Colares et al. in [15], and also by Chouman et al. in [10]
and [11] to show the impact of several objective functions on the optical network state. Bertero et
al. in [3] give a comparative study between several edge-node formulations and introduce new ILP
formulations adapted from the existing ILP formulations in the literature. Note that Velasco et al.
in [86] and Cai et al. [4] did not take into account the transmission-reach constraint.

1.2 Owur Contributions

However, so far the exact algorithms proposed in the literature could not solve large-sized instances.
We believe that a cutting-plane-based approach could be powerful for the problem. To the best
of our knowledge, such an approach has not been yet considered. For that, the main aim of our
work is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end,
we aim to provide a deep polyhedral analysis of the C-RSA problem, and based on this, devise a
branch-and-cut algorithm for solving the problem considering large-scale networks that are often
used. Our contribution is then to introduce a new ILP formulation for the C-RSA problem which
can be seen as an improved formulation for the one introduced by Hadhbi et al. in [31] and [32].
We investigate the facial structure of the associated polytope. We further identify several classes
of valid inequalities to obtain tighter LP bounds. Some of these inequalities are obtained by using
conflict graphs related to the problem: clique inequalities, odd-hole, and lifted odd-hole inequalities.
We also use the Chvatal-Gomory procedure to generate larger classes of inequalities. We then give
sufficient conditions under which these inequalities are facet defining. Based on these results, we
develop a Branch-and-Cut (B&C) algorithm to solve the problem [16].

1.3 Organization

Following the introduction, the rest of this paper is organized as follows. In Section (2), we present
the C-RSA problem (input and output). In Section (3), we provide the notation, then we introduce
our ILP, called cut formulation based on the so-called cut inequalities. In Section (4), we thoroughly
investigate the theoretical properties of the C-RSA problem by providing several valid inequalities.
Furthermore, a detailed polyhedral investigation is given in Section (5). We close with a brief
summary of results and future outlook.

2 The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider
a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V, E),
which is specified by a set of nodes V, and a multiset * E of links (optical-fibers). Each link
e =ij € E is associated with a length ¢, € R, (in kms), a cost ¢, € Ry such that each fiber-link
e € F is divided into § € N slots. Let S = {1, ..., 5} be an optical spectrum of available frequency
slots with 5 < 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz
[37], and K be a multiset ° of demands such that each demand k € K is specified by an origin node
o, € V, a destination node d, € V'\ {ox}, a slot-width wy, € Z,, and a transmission-reach /; € R,
(in kms). The C-RSA problem consists of determining for each demand k € K, a (og,dy)-path pg
in G such that ZeeE(pk) lo < Iy, where E(py) denotes the set of edges belong the path py, and a

4 We take into account the presence of parallel fibers such that two edges e, e’ which have the same
extremities 7 and j are independents.

® We take into account that we can have several demands between the same origin-node and destination-
node.
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subset of contiguous frequency slots Sy C S of width equal to wy such that S N Sy = @ for each
pair of demands k, k' € K (k # k') with E(pr) N E(prr) # 0 so the total length of the paths used
for routing the demands (i.e., > pcx D cep(py) le) 15 minimized.

Figure 2 shows the set of established paths and spectrums for the set of demands {k1, ko, k3, ks}
(Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t. each
edge e is characterized by a triplet [l., c., §], and optical spectrum S = {1,2,3,...,8,9} with § = 9.

klog — dy|ws|Pr k| oy = di | (0xdi) — path S¢
24 1| a=¢ a-f-¢ 12

2la—=d |14 2| a=d | a-f-e-d

3lb—=f |24 3| b= f b-c-f 34

4 b—se |14 4| boe | b-c-d-e 1
| (k) | | (d) |
L J L . J

[ |
Inputs Outputs

Fig. 2. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, ks, ka}
defined in Table 2(b).

3 The C-RSA Integer Linear Programming Formulation

Let’s us introduce some notations which will be useful throughout this paper. For any subset of
nodes X C V with X # (), let §(X) denote the set of edges having one extremity in X and the
other one in X =V \ X which is called a cut. When X is a singleton (i.e., X = {v}), we use 6(v)
instead of 6({v}) to denote the set of edges incidents with a node v € V. The cardinality of a set
K is denoted by |K]|.

Here we introduce our integer linear programming formulation based on cut formulation for the
C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi et al. in
[31]. For k € K and e € E, let z¥ be a variable which takes 1 if demand k goes through the edge
e and 0 if not, and for k € K and s € S, let 2* be a variable which takes 1 if slot s is the last-slot
allocated for the routing of demand k and 0 if not. The contiguous slots s’ € {s — wp + 1,..., s}
should be assigned to demand k whenever z¥ = 1.

Before introducing our ILP, we proceeded to some pre-processing techniques to determine some
zero-one variables s.t. we are able to determine them in polynomial time using shortest-path and
network flows algorithms as follows.

For each demand k£ and each node v, one can compute a shortest path between each of the pair
of nodes (o, v), (v,dy). If the lengths of the (o, dy)—paths formed by the shortest paths (o, v)
and (v, d}) are both greater that [, then node v cannot be in a path routing demand k, and we
then say that v is a forbidden node for demand k£ due to the transmission-reach constraint. Let
Vok denote the set of forbidden nodes for demand k € K. Note that using Dijkstra’s algorithm,
one can identify in polynomial time the forbidden nodes V¥ for each demand k € K. On the
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other hand and regarding the edges, for each demand k and each edge e = ij, one can compute
a shortest path between each of the pair of nodes (o, 1), (j,dk), (ok,j) and (i,dy). If the lengths
of the (o, dy)—paths formed by e together with the shortest (og,) and (j,dx) (resp. (og,j) and
(i,dy)) paths are both greater that I;, then edge ij cannot be in a path routing demand k, and we
then say that ij is a forbidden edge for demand k due to the transmission-reach constraint. Let
EF denote the set of forbidden edges due to the transmission-reach constraint for demand k € K.
Note that using Dijkstra’s algorithm, one can identify in polynomial time the forbidden edges EF
for each demand k € K. This allows us to create in polynomial time a proper topology G, for each
demand k by deleting the forbidden nodes V§ and forbidden edges EF from the original graph
G (ie., G, = G(V\VF, E\ EF)). As a result, there may exist some forbidden-nodes due to the
elementary-path constraint which means that all the (og, dy)—paths passed through a node v are
not elementary-paths. This can be done in polynomial time using Breadth First Search (BFS)
algorithm of complexity O(|E \ E§| + |V \ V{|) for each demand k. Note that we did not take into
account this case in our study. Table 1 below shows the set of forbidden edges Ef and forbidden
nodes V¥ for each demand k in K already given in Fig. 2(b).

k‘ok — dk\wk\fk\ Vok ‘ E(I)C

1l a—c |2 |4{e,d,g}|{cg,dg,de,df cd,ef}
2la—d |1|4] {g} {cg,dg, df }

3l b= f |24 {e,d,g}{cg,dg,de,df cd,ef}
4 b—e 1|4 {g} {cg,dg,df}

Table 1. Topology pre-processing for the set of demands K given in Fig. 2(b).

Let 0, (v) denote the set of edges incident with a node v for the demand k in Gj. Let 6%(W)
denote a cut for demand k € K in Gy, s.t. o, € W and dj, € V \ W where W is a subset of nodes in
V of G. Let f be an edge in 6(W) s.t. all the edges e € §(W) \ {f} are forbidden for demand k.
As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential
edges can be determined in polynomial time using network flows as follows.

we create a proper topology Gy = G(V \ VF, E'\ EF) for the demand k

we fix a weight equals to 1 for all the edges e in E'\ EF for the demand k in G

we calculate op — di min-cut which separates oy from dj.

if 6, (W) = {e} then the edge e is an essential edge for the demand k s.t. o € W and
dr, € V' \ W. We increase the weight of the edge e by 1. Go to (3).

5. if |dg, (W)| > 1 then end of algorithm.

Ll o A

Let E¥ denote the set of essential edges of demand k, and K. denote a subset of demands in K
s.t. edge e is an essential edge for each demand k € K..

In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there
may exist edges that may be forbidden because of lack of resources for demand k. This is the case
when, for instance, the residual capacity of the edge in question does not allow a demand to use
this edge for its routing, i.e., wx > 5 — 3 1 e, wir- Let E* denote the set of forbidden edges for
demand k, k € K, due to the resource constraints. Note that the forbidden edges E* and forbidden
nodes v in V with §(v) C EF, should also be deleted from the proper graph G}, of demand k, which
means that G contains |E|\ |EF| edges and |V|\ |[{v € V,d(v) C EF}| nodes. Let E} = EF denote
the set of all forbidden edges for demand k that can be determined due to the transmission reach
and resources constraints.

As a result of the pre-processing stage, some non-compatibility between demands may appear due
to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k' with e = ij ¢ E§ U E¥ U Eé“l u Ef/, are
said non-compatible demands because of lack of resources over the edge e if and only if the the
residual capacity of the edge e does not allow to route the two demands k, k' together through e,
i.e., W + wgr > 8§ — Zk”GKg W .
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Let K¢ denote the set of pair of demands (k, k') in K that are non-compatibles for the edge e.
The C-RSA problem can hence be formulated as follows.

min Z Z lox®, (1)

keK eeE
subject to
> ab>1,Vk € K,VX CV st | X 0 {or,di}| = 1, (2)
e€d(X)
> leak <6, VE €K, (3)
ecl

xF =0,Vk € K,Ve € E}, (4)
8 =1,Vk € K Ve € EY, (5)
M =0,Vk € K,Vs € {1,...,w — 1}, (6)
Y i >1vVkeK, (7)

S=Wg

min(s+wi—1,5) min(s+w,s —1,5)

ab 2 4 Yoo b+ > 2 <3.Y(e, kK, s) €Q, (8)
0<zF<1,Vke K VecE, (9)
2 >0,Vk e K,Vs €S, (10)
z* € {0,1},Vk € K,Ve € E, (11)
2k € {0,1},Vk € K,Vs €. (12)

where @ denotes the set of all the quadruples (e, k, k', s) for all e € E,k € K, k' € K \ {k}, and
s €S with (k, k') ¢ K¢.

Inequalities (2) ensure that there is an (o, dy)-path between o and dj, for each demand k, and
guarantee that all the demands should be routed. They are called cut inequalities. By optimizing
the objective function (1), and given that the capacities of all edges are strictly positives, this
ensures that there is exactly one (o, di)-path between oy, and dj which will be selected as optimal
path for each demand k. We suppose that we have sufficient capacity in the network so that all the
demands can be routed. This means that we have at least one feasible solution for the problem.
Inequalities (3) express the length limit on the routing paths which is called ”the transmission-
reach constraint”. Equations (4) ensure that the variables associated to the forbidden edges for
demand k are always equal to 0, and those of the essential edges are always equal to 1 for demand
k. Equations (6) express the fact that a demand k cannot use slot s < wy — 1 as the last-slot .
The slots s € {1,...,wy — 1} are called forbidden last-slots for demand k. Inequalities (7) should
normally be an equation form ensuring that exactly one slot s € {wg,...,5} must be assigned to
demand k as last-slot . Here we relax this constraint. By a choice of the objective function, the
equality is guaranteed at the optimum (e.g. min Y, cp Do, s.z¥ormin, je D e savg.2R).
Inequalities (8) express the contiguity and non-overlapping constraints. Inequalities (9)-(10) are
the trivial inequalities, and constraints (11)-(12) are the integrality constraints.

Note that the linear relaxation of the C-RSA can be solved in polynomial time given that inequal-
ities (2) can be separated in polynomial time using network flows, see e.g. preflow algorithm of
Goldberg and Tarjan introduced in [26] which can be run in O(|V \ V{|?) time for each demand
ke K.

Proposition 1. The formulation (2)-(12) is valid for the C-RSA problem.

Proof. Tt is trivial given the definition of each constraint of the formulation (2)-(12) such that any
feasible solution for this formulation is necessary a feasible solution for the C-RSA problem.
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4 Valid Inequalities

An instance of the C-RSA is defined by a triplet (G, K, S). Let P(G, K, S) be the polytope, convex
hull of the solutions for our cut formulation (1)-(12). In this section we provide several valid
inequalities to obtain tighter LP bounds.

Throughout our proofs, we take into account that ¥ < 1 for each demand k € K and edge e € E,
and z¥ > 0 for each demand k € K and slot s € S. Note that a slot s € S is assigned to a demand

k € K if and only if Z?;Z(S’S+w’“_l) 2k =1

In what follows, we present several valid inequalities for P(G, K, S). Note that some proof of validity
necessitates more details that may generate an overrun of the number of authorized pages. Please
feel free to contact the authors for more details about each proof.

We start this section by introducing the classes of valid inequalities that can be found using

Chvatal-Gomory procedures.

4.1 Edge-Slot-Assignment Inequalities
Proposition 2. Consider an edge e € E with K. # (. Let s be a slot in S. Then, the inequality

min(s+wg» —1,5)

> > 2K <, (13)

k”eK, s"=s
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Based on the non-overlapping inequality (8) and using the Chvatal-Gomory procedure, we define
the following inequality.

Proposition 3. Consider an edge e € E. Let s be a slot in S. Consider a triplet of demands
k k' k" € K with e ¢ E§NEY NEY . Then, the inequality

min(s+wg—1,5) min(s+wys—1,5) min(s+wg» —1,5)
’ » / »
R N S E PVRE g PR E 2R <4, (14)
s'=s s'=s s"=s

is valid for P(G, K, S).
Proof. See the detailed report in [16] for more information.

The inequality (14) can then be generalized for any subset of demand K C K under certain
conditions.

Proposition 4. Consider an edge e € E, and a slot s in S. Let K be a subset of demands of K
with e ¢ EY for each demand k € K, (k,k') ¢ K¢ for each pair of demands (k,k') in K, and
DokeR Wk S8 =D prer ik Wk - Then, the inequality

min(s+w,s—1,5)

dab+ > oo <R+, (15)

keK keK s'=s
is valid for P(G, K,S)°.
Proof. See the detailed report in [16] for more information.

The inequality (15) can be strengthened as follows. Based on the inequalities (13) and (8), we
strengthen the inequality (8) without modifying its right hand side as follows.

5 Thanks to Prof. Hervé Kerivin for its support to have an initial idea in order to define inequalities (15)
and (20).
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Proposition 5. Consider an edge e € E. Let s be a slot in'S. Consider a pair of demands k, k' € K
with e ¢ E§ NEY and (k, k') ¢ K¢. Then, the inequality

min(s+wi—1,5) min(s+wy,—1,5) min(s+wg» —1,5)
k K k K’ k”
Tg +x, + Zg + Zg + zy <3, (16)
s'=s s'=s k" €K \{k,k"} s'=s

is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Let’s us generalize the inequality (16) for each edge e and all slot s € S and any subset of demand
K C K under certain conditions.

Proposition 6. Consider an edge e € E, and a slot s in S. Let K be a subset of demands of K
with e ¢ EY for each demand k € K, (k,k') ¢ K¢ for each pair of demands (k,k') in K, and
DokeRk Wk <8 — D ek g Wk - Then, the inequality

min(s+wy—1,5) min(s+w;,—1,5)
PIEAD DD DN S D DNED DR L g a7
keK keK s'=s K EKNEK & —s

is valid for P(G, K,S).

Proof.

4.2 Edge-Interval-Cover Inequalities

Let’s us now introduce some valid inequalities that can be seen as cover inequalities using some
notions of cover related to our problem.

Definition 2. An interval I = [s;, s;] represents a set of contiguous slots situated between the two
slots s; and s; with j > i+ 1 and s; < 5.

Definition 3. For an interval of contiguous slots I = [s;, s;], a subset of demands K' C K is said
a cover for the interval I = [s;, s;] if and only if Y, .z wi. > |I| and wy < |I| for each k € K.

Definition 4. For an interval of contiguous slots I = [s;, s;], a cover K is said a minimal cover
if K\{k} is not a cover for interval I = [s;, s;] for each demand k € K, i.e., 3 1 c g\ oy W < |1
for each demand k € K.

Based on these definitions, we introduce the following inequalities.

Proposition 7. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots in [1, §]
with j > i+ 1. Let K' C K, be a minimal cover for interval I = [s;,s;] over edge e with e ¢ E}
for each demand k € K'. Then, the inequality

55
oY A<, (18)
keK'’ s=s;+wi—1
is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

The inequality (18) can be strengthened using an extention of each minimal cover K’ C K, for an
interval I over edge e as follows.
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Proposition 8. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots in
[1,5]. Let K' C K. be a minimal cover for interval I = [s;,s;] over edge e with e ¢ EE for each
demand k € K', and Z(K') be a subset of demands in K\ K’ s.t. Z(K') = {k € K\ K’ s.t. wg >
wy VK" € K'}. Then, the inequality

) Z A+ ) Z A <K -1, (19)
kEK’ s=s;i+wy—1 K E€E(K') s'=sitw —1

is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

Moreover, the inequality (18) can be strengthened using lifting procedures proposed by Nemhauser

and Wolsey in [52] without modifying its right-hand side.

Proposition 9. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots in [1, ]
with j > i+ 1. Let K be a subset of demands of K s.t.

Zwk2|1|+17

keK
— Z wy < |I| for each k' € K,
keK\{k'}
- Zwkﬁgf Z Wk,
keK k'eKA\K
—e¢ Ek for each demand k € K,
- K>3,

- (k;,%’) ¢ K¢ for each pair of demands (k,k') in K.

Then, the inequality
S ok Z R <9K| -1, (20)
keEK k€K s=sitwr—1

is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

As we did before for the inequality (18), the inequality (20) can be strengthened by introducing
the extended version of the minimal cover K’ for the interval I over edge e as follows.

Proposition 10. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots in
[1,5] with j > i+ 1. Let K be a subset of demands of K, and K. be a subset of demands in K.\ K
s.1.

kEK
— Z wy < |I| for each k' € K,
keK\{k'}
- ZwkSE* Z Wk,
keK k'eKA\K
—e¢ Ek for each demand k € K,
- K >3,

— (k, k') ¢ K¢ for each pair of demands (k, k') in K,
— wy > wy, for each k € K and each k' € K,.
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Then, the inequality

Sk Z Ry Z M <2lK| -1, (21)

keK keK s=sitwr—1 KeK, s'=sitwy —1
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

More general, the inequality (20) can be strengthened using lifting procedures proposed by Nemhauser
and Wolsey in [52] without modifying its right-hand side.

Remark 1. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots with s; +1 <
sj, s” be a slot in S, and K be a subset of demands in K satisfying the conditions of the two
inequalities (17) and (20). We ensure that the inequality (17) can never dominate the inequality
(20).

4.3 Edge-Interval-Clique Inequalities

In what follows, we need to introduce some notions of graph theory to provide some valid inequal-
ities for P(G, K, S).

Definition 5. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots in [1, 3]
with s; < s; — 1. Consider the conflict graph G"} defined as follows. For each demand k € K with
wy, < |I| and e ¢ Eg, consider a node vy in é? Two nodes v, and vg are linked by an edge in
G if wy +wy > |I] and (k, k') ¢ KS. This is equivalent to say that two linked nodes vy, and vy
means that the two demands k,k’ define a minimal cover for the interval I over edge e.

For an edge e € FE, the conflict graph G¢ is a threshold graph with threshold value equals to
t=5— Zk”eKe wy» s.t. for eachnode vy, with e ¢ EF U EY, we associate a positive weight w,, = wy,
s.t. all two nodes vy and vy are linked by an edge if and only if 4, + w,,, > t which is equivalent
to the conflict graph Ge.

Proposition 11. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots. Let
C be a clique in the conflict graph G§ with |C| = 3, and 3, ccwr < 8= 3 pex\c Wk Then,
the inequality

S

doak+ Y <o+, (22)

v eC s=s;+wr—1
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Remark 2. Consider an edge e and an interval of contiguous slots I = [s;, s;]. Let K be a subset
of demands in K satisfying the conditions of validity of the inequalities (17) and (22). Then, the

inequality (22) is dominated by the inequality (17) associated with slot s” = s; + min wy, + 1 if and
keK

only if |{s; + wg, ., s;}| < wy for each demand k € K.

Remark 8. Consider an edge e and an interval of contiguous slots I = [s;, s;]. Let K be a subset

of demands in K satisfying the conditions of validity of the inequalities (17) and (22). Then,

the inequality (22) dominates the inequality (17) associated with each slot s” € I if and only if

[{si+wp, —1,..., 8;}| > wy, for each demand k € K and s” € {s; + max wy — 1, ..., s; —maxwy, +1}.
k€K keK

Moreover, the inequality (22) can be strengthened as follows.
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Proposition 12. Consider an edge e € E. Let I = [s;,s;] be an interval of contiguous slots. Let
C be a clique in the conflict graph G¢ with |C| > 3, and ), cowr < 5 — Zk’eKe\C wy. Let

Ce C K.\ C be a clique in the conflict graph é‘-} s.t. wi +wy > |I| + 1 for each vy, € C and
vi € Ce. Then, the inequality

Z x4 Z Z 28 4 Z Z zf/l <|C|+1, (23)
v eC v €C s=s;+wr—1 v €Ce s'=s;+wyr —1

is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

Looking to the definition of the inequality (22), we detected that there may exist some cases that
we can face that are not covered by the inequality (22). For this, we provide the following inequality
and its generalization.

4.4 Interval-Clique Inequalities

Proposition 13. Consider an interval of contiguous slots I = [s;,s;] in S with s; < s; — 1. Let
k, k' be a pair of demands in K with E{"ﬁE{“, £ 0, and wy, < |I|, and wy < |I|, and wy, +wy > |I|.
Then, the inequality

Sj S5
’
> AR 2k <, (24)
s=s;+wr—1 s'=s;+wy —1

is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Definition 6. Let I = [s;, s;] be an interval of contiguous slots in [1,5] with s; < s; —1. Consider
the conflict graph G¥ defined as follows. For each demand k € K with wy, < |I|, consider a node
v in GF. Two nodes vy and vy are linked by an edge in GE if wy, + wy > |I| and E¥ N E{“, £ 0.

Proposition 14. Let I = [s;, s;] be an interval of contiguous slots in [1,5] with s; < s; — 1, and
C be a clique in the conflict graph G¥ with |C| > 3. Then, the inequality

YooY asy (25)
v €C s=s;+wi—1
is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

4.5 Interval-Odd-Hole Inequalities

Proposition 15. Let I = [s;, s;] be an interval of contiguous slots in [1,3] with s; < s; — 1, and
H be an odd-hole H in the conflict graph G¥ with |H| > 5. Then, the inequality

S5
H| -1
oy A<l (20
v €EH s=s;+wr—1
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

The inequality (26) can be strengthened without modifying its right-hand side by combining the
inequality (25) and (26) as follows.
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Proposition 16. Consider an interval of contiguous slots I = [s;,s;] €S with s; < s; —1. Let H
be an odd-hole H in the conflict graph G¥, and C be a clique in the conflict graph G¥ with
- |H| =5,
— and |C| > 3,
and HNC =0, _
— and the nodes (vg,vx) are linked in G¥ for all vy € H and vy € C.

Then, the inequality

Sj Sj
|H| -1 . |H| -1
O S e D S o)
v €H s=s;+wr—1 v, €C 8'=s;+w; —1

is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

4.6 Edge-Slot-Assignment-Clique Inequalities
Taking into account the non-overlapping inequalities (8), we define another conflict graph totally
different compared with the conflict graphs introduced previously.
Definition 7. Let Gg be a conflict graph defined as follows. For each slot s € {wy,...,5} and
demand k € K with e ¢ Eé“, consider a node vy s in Gg. Two nodes vy s and vy o are linked by
an edge in G¢ if and only if

- k=K,

—or{s—wp+ 1, s}N{s —wp +1,...8 #0if k £k and (k, k') ¢ K¢.
The conflict graph ég is not a perfect graph given that some nodes v, and vy o are linked even
if the {s —wr +1,....,8} N{s' —wp +1,....,8'} =0, i.e., when k = k.
Proposition 17. Consider an edge e € E. Let C be a clique in the conflict graph ég with |C| > 3,
and Y pcowy <5 — Zk'eKe\C’ wyr. Then, the inequality

Yo @+ <o+, (28)
’Uk,SGC

5
is valid for P'(G,K,S) = {(z,2) € P(G, K,S) : Z 2 =1 for all k € K}.
S=Wgk
Proof. See the detailed report in [16] for more information.
This gives us an idea about new non-overlapping inequalities defined as follows.
Proposition 18. Consider an edge e, and a pair of demands k, k' € K with e ¢ Ef U E(lf,. Let s
be a slot in {wy,...,5}. Then, the inequality
) min(s+wys—1,5) )
oh 4o 2k Z 2k <3, (29)
s"=s—wr+1

is valid for P” (G, K,S) = {(z,2) € P(G,K,S) : Z d=1 & Z zfl =1}.

S=Wgk S=Wy/
Proof. See the detailed report in [16] for more information.
Remark 4. The inequality (29) is a particular case of inequality (28) for a clique C = {vy s} U
{vprs € GE st {s —w), + 1,8} N {s —w, +1,...,s} # 0}.
Remark 5. The inequality (28) associated with a clique C' over edge e, it is dominated by the
inequality (22) associated with an interval I = [s;, s;] and the subset of demands K over edge e iff

—se{s—wr+1,...,stN{s —wp + 1,5} for each pair of nodes (vg,s,vi s ) in C,
— and [ min (s —wy + 1), max s] C I.
v, s €C v, s €C

Proof. See the detailed report in [16] for more information.
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4.7 Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered by the
inequalities (17) and (28). For this, we provide the following definition of a conflict graph and its
associated inequality.

Definition 8. Let Gg be a conflict graph defined as follows. For all slot s € {wg,...,5} and
demand k € K, consider a node vy, s in Gg. Two nodes vy, s and vy o are linked by an edge in Gg

WEFNEY £0 and {s —wip +1,....,s} N {s' —wp +1,...,5} #0.

Proposition 19. Let C be a clique in conflict graph égj with |C| > 3. Then, the inequality

Sk <, (30)

v, s EC
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.
Remark 6. The inequality (30) associated with a clique C, it is dominated by the inequality (25)

associated with an interval I = [s;, s;] and the subset of demands K if and only if | minc(s —wg +
Vk,s €

1), maxcs] C I and wy + wyr > |I| + 1 for each (vg,vgr) € C, and 2wy, > |I| + 1 and wy, < |I] for
Vg, s €
each v, € C.

Proof. See the detailed report in [16] for more information.

4.8 Slot-Assignment-Odd-Hole Inequalities

Proposition 20. Let H be an odd-hole in the conflict graph C?E with |H| > 5. Then, the inequality

H -1
ZZ§§| |2 : (31)

UkYSEH

is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Remark 7. The inequality (31) is dominated by the inequality (26) if and only if there exists an
interval of contiguous slots I = [s;, s;] C [1,5] with

— [ min (s—wp+1), max ]cClI,

v, s EHUC Uk.,sEHUC]
— and wy, +wyg > |I| + 1 for each (vg,vys) linked in H,
— and 2wy, > |I| + 1 and wy < |I] for each v, € H.

The inequality (31) can be strengthened without modifying its right hand side by combining the
inequality (31) and (30) as follows.

Proposition 21. Let H be an odd-hole, and C be a clique in the conflict graph G‘g with

- |H| =5,

— and |C| > 3,

—and HNC =0, ~

— and the nodes (v s,V ) are linked in GE forallvg s € H and vy o € C.

Then, the inequality
ko [H =1 wo_ HI—1
PR 5 YA < 5 (32)
vk, s€EH vy 51 €C

is valid for P(G, K,S).
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Proof. See the detailed report in [16] for more information.

Remark 8. The inequality (32) is dominated by the inequality (27) if and only if there exists an
interval of contiguous slots I = [s;, s;] C [1,5] with

— [ min (s—wp+1), max ]cCI,

v, s EHUC v, s EHUC

— and wy +wy > |I| + 1 for each (vg,vys) linked in H,

— and wy, + wyy > |I| + 1 for each (vi,vps) linked in C,

— and wy +wyy > |I] + 1 for each v € H and vy € C,

— and 2wy, > |I| 4+ 1 and wy, < |I] for each v, € H,

— and 2wy > |I] 4+ 1 and wyy < |I| for each vy € C.

4.9 Non-Compatibility-Clique Inequalities

Let us now introduce some valid inequalities that are related to the routing sub-problem due to
the transmission-reach constraint.

Definition 9. For a demand k, two edges e = ij ¢ EE N EF¥, e = Im ¢ ES N EY are said non-
compatible edges if and only if the lengths of (o, dy)-paths formed by e = ij and e’ = Im together
are greater that ly.

Note that we are able to determine the non-compatible edges for each demand % in polynomial
time using shortest-path algorithms.

Proposition 22. Consider an edge e € E. Let (k, k') be a pair of non-compatible demands for the
edge e. Then, the inequality

wfal <, (33)
is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

Proposition 23. Consider a demand k € K. Let (e,e') be a pair of non-compatible edges for the
demand k. Then, the inequality

af +ak <1, (34)
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Based on the inequalities (33) and (34), we introduce the following conflict graph.

Definition 10. Let ég be a conflict graph defined as follows. For each demand k and edge e ¢
Ek UEF, consider a node v¥ in GE. Two nodes vk and Uf,/ are linked by an edge in G&

— ifk=Fk':e and e are non compatible edges for demand k.
— ifk£K:k and k' are non compatible demands for edge e.

Proposition 24. Let C be a clique in G‘g Then, the inequality

S <, (35)

vkeC
is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.
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4.10 Non-Compatibility-Odd-Hole Inequalities

Proposition 25. Let H be an odd-hole in the conflict graph ég with |H| > 3. Then, the inequality
d ab< |H|T_1 (36)
vkeH

is valid for P(G, K,S).

Proof. See the detailed report in [16] for more information.

The inequality (36) can be strengthened without modifying its right hand side by combining the
inequality (36) and (35) as follows.

Proposition 26. Let H be an odd-hole in the conflict graph C;’g, and C be a clique in the conflict
graph GE with

- |H| =5,

— and |C| >3,

—and HNC =0, ~

— and the nodes (UE,’UZ) are linked in G& for all v* € H and v’e“,/ eC.

Then, the inequality

po HI=1 woo [HI =1
er+ 5 er,g 5 (37)

vkeH vk,, eC
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

On the other hand, let’s us now provide some inequalities related to the capacity constraint.

4.11 Edge-Capacity-Cover Inequalities
Proposition 27. Consider an edge e in E. Then, the inequality
Z wa® <5 — Z Wi, (38)
keK\K, KEK,
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Based on this, we introduce the following definitions.

Definition 11. For an edge e € E, a subset of demands C C K with e ¢ Ef N E} For each
demand k € C, is said a cover for the edge e if Z wy > 8§ — Z Wi .
keC keK.

Definition 12. For an edge e in E, a cover C is said a minimal cover if C'\ {k} is not a cover

forallk € C, i.e., Z wy < 5 — Z W .

K eC\{k} K EK.

Proposition 28. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then,
the inequality

d b <|C|-1, (39)

keC

is valid for P(G, K,S).
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Proof. See the detailed report in [16] for more information.

We verified that the inequality (39) can be easily strengthened by using its extended format which
we call extended minimal cover for an edge e as follows.

Proposition 29. Consider an edge e in E. Let C be a minimal cover in K for the edge e, and =(C')
be a subset of demands in K\CUK, where = = {k € K\CUK, : e ¢ E} and wj, > w, VK € C}.
Then, the inequality

Yoab+ N WM <ol-1, (40)

keC k' eZ(C)
is valid for P(G, K,S).
Proof. See the detailed report in [16] for more information.

Furthermore, the inequality (39) can have a more generalized strengthening format using lifting
procedures proposed by Nemhauser and Wolsey in [52].

In what follows, a solution of the C-RSA problem is given by two sets Ej and Sy, for each demand
k € K where Ej is a set of edges used for the routing of demand k which contains a path
pr satisfying the continuity of (o, dy)-path pi for the demand k (i.e., E(pr) C FEj) such that
Zee By l. <l and Ef C Ey, and S}, is a set of slots which represent the set of last-slot selected for
the demand k which forms a set of channels such that each channel contains wj contiguous slots.
Figure 3 shows the routing solutions for a demand k that are feasible for our problem throughout
our proofs.

O B d oy P, di 0 Py d
o—o—0—0—0—=0 O o0—0o0—0—0—0—=0
U_r \_) L&J Oo—10 o0—0

k

oF P di
—0 Wo—o—u

Fig. 3. A set of edges Ej for a demand k containing an (og,dr)-path P, together with: isolated-edge,
islated-cycle, two isolated-edges, and linked-cycle.

5 Facial Investigation

In this section, we investigate the facial structure of our polytope P(G, K, S) by characterizing when
the valid inequalities already introduced in the Section (4), are facets defining for P(G, K, S). We
refer the reader to the first part of our polyhedral study detailed in [17] (polytope dimension, and
facial structure of the trivial inequalities).

5.1 Slot-Assignment-Clique Inequalities

Theorem 1. Consider a clique C in the conflict graph ég Then, the inequality (30) is facet
defining for P(G, K,S) if and only if

— C is a mazimal clique in the conflict graph C;'E,
— and there does not exist an interval of contiguous slots I = [s;,s;] C [1, 5] with
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i - 1 I
" Lmgl et ) e sl el

o and wy +wgr > |I| +1 for each (vg,vp) € C,
o and 2wy, > |I| +1 and wy, < |I| for each vy, € C.

Proof. Neccessity.
If C is a not maximal clique in the conflict graph C;’g , this means that the inequality (30) can be
dominated by another inequality associated with a clique C’ s.t. C C C” without changing its right
hand side. Moreover, if there exists an interval of contiguous slots I = [s;, s;] C [1, §] with

_ [vg?gc(s —wy + 1), vinsaex s| C 1,

— and wy, +wyy > |I| + 1 for each (vg,vp) € C,

— and 2wy > |I| + 1 and wy, < |I] for each vi, € C.

Then, the inequality (30) is dominated by the inequality (25). As a result, the inequality (30)
cannot be facet defining for P(G, K, S).
Suﬂ'"lmency

Let F § denote the face induced by the inequality (30), which is given by

FS® ={(x,2) e P(G.K,S5): Y 2
vg,s €C

In order to prove that inequality >0, - 2% <1 is facet defining for P(G, K,S), we start checking
~E ~E 3 S
that ng is a proper face, and ng # P(G, K,S). We construct a solution S! = (E!, S1) as below

— a feasible path FE} is assigned to each demand k € K (routing constraint),

— a set of last-slots S} is assigned to each demand k € K along each edge ¢’ € E} with |Si| > 1
(contiguity and continuity constraints),

—{s—wp+1,.,s}N{s —wp +1,..,5} =0 for each k,k’ € K and each s € S} and s’ € S},
with Ef N E}, # () (non-overlapping constraint),

— and there is one pair of demand k and slot s from the clique C (i.e., vy s € C s.t. the demand
k selects the slot s as last-slot in the solution S, ie., s € S,i for a node vi s € C, and s’ ¢ 5'1,,
for all vy ¢ € C'\ {vg s}

Obviously, S! is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (x8 " z‘sl) is belong to
~E

P(G, K,S) and then to ng given that it is composed by >°, -z, = 1. As a result, FC is not

~E
empty (i.e., FG # (). Furthermore, given that s € {wy, ..., §} for each vy s € C, this means that
there exmtb at least one feasible slot assignment Sy, for the demands k in C' with s ¢ S, for each

vg,s € C. This means that FGS # P(G K,S).
Let denote the inequality ka cc Zs k< 1byaz+pz <\ Let px+oz < 7 be a valid inequality that

is facet defining F' of P(G, K,S). Suppose that ng C F={(z,z) € P(G,K,S) : px + 0z = 7}.
We show that there exist p € R and v = (y1,72,73) (s.t. 71 € R&rex |E§|,72 € RXkex ‘Ef‘7’}/3 €
REkex(We=1D) st (u,0) = p(a, B) +7Q, and that

— 0% =0 for all demands k € K and all slots s € {wy, ..., 5} with v s ¢ C,
— and pF =0 for all demands k € K and all edges e € E\ (E§ U E¥),
— and o¥ are equivalents for all vg,s € C.

We first show that u* = 0 for each edge e € E \ (Ef U E¥) for each demand k € K. Consider a
demand k € K and an edge e € E\ (E} U E¥). For that, we consider a solution S’ = (E'*, S"!) in
which

— a feasible path E}! is assigned to each demand k € K (routing constraint),
— a set of last-slots S}! is assigned to each demand k € K along each edge e € E;! with |S;}| > 1
(contiguity and continuity constraints),
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—{s'—wr+1,...,sIN{s" —wp +1,...,s"} = 0 for each k, k' € K and each s’ € Sj} and s” € S}}
with Ejl N B} # 0, i.e., for each edge e € E and each slot s” € S we have ZkeK,eeE;} |{s' €
St s € {s' —wi + 1,..., 8"} <1 (non-overlapping constraint),

—{s'—wrp+1,..,tN{s" —wp +1,...,8"} =0 for each &’ € K and each s’ € S}! and s” € S}
with (Bl U {e}) N E}} # 0 (non-overlapping constraint taking into account the possibility of
adding the edge e in the set of edges Ej! selected to route the demand k in the solution &),

— the edge e is not non-compatible edge with the selected edges e € E,’} of demand k in the
solution 81, i.e., ZE,GEQ le +1e < li. As a result, E}} U {e} is a feasible path for the demand
k’

— and there is one pair of demand k and slot s from the clique C (i.e., vy s € C s.t. the demand
k selects the slot s as last-slot in the solution 8", i.e., s € S}! for a node vy ;s € C, and s’ ¢ S}}
for all vy ¢ € C'\ {vg s}

S is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

! ’ HE
2)-(12). Hence, the corresponding incidence vector (z° l,zS ") is belong to F' and then to FSs
c

given that it is composed by »_, o 2% = 1. Based on this, we derive a solution S? obtained from

the solution S’* by adding an unused edge e € E \ (EY U E¥) for the routing of demand & in K in
the solution ' which means that Ef = Ej! U {e}. The last-slots assigned to the demands K, and
paths assigned the set of demands K \ {k} in "' remain the same in the solution 82, i.e., S7 = S}!
for each k € K, and E?, = E}} for each k' € K \ {k}. 82 is clearly feasible given that

— and a feasible path E7 is assigned to each demand k € K (routing constraint),

— a set of last-slots S7 is assigned to each demand k € K along each edge e € E7 with |S7| > 1
(contiguity and continuity constraints),

— {8 —wr+1,...,8}N{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S? and s” € SZ,
with B2 N EZ, # 0, i.e., for each edge e € E and each slot s” € S we have ZkeK’eeEi {s' €
S% 5" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (x32,z‘52) is belong to F' and then to Fg S given that it is
composed by >° o 2F = 1. It follows that

S’

1 /1
nx +02° :/wS

/1 /1
s +u§ +025 .

’ + 0'252 = pux
As a result, ¥ = 0 for demand k and an edge e.

As e is chosen arbitrarily for the demand k with e ¢ EF U EF, we iterate the same procedure for
all e’ € E\ (Ef¥ UEY U {e}). We conclude that for the demand k

pk =0, foralle € E\ (EY UEY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &' € K\ {k}
and all e € E\ (E} U E}). We conclude at the end that

pk =0, forall k€ K and all e € E\ (E} U EF).

Let’s us show that o = 0 for all k € K and all s € {wy, ..., 5} with vy s ¢ C. Consider the demand
k and a slot s" in {wy, ..., 5} with vy o ¢ C. For that, we consider a solution §”' = (E”!, 8”1} in
which

— a feasible path E”} is assigned to each demand k € K (routing constraint),

— aset of last-slots S”}c is assigned to each demand k € K along each edge e € E”} with [S74] > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S” and
s € 87}, with E”; N E”}, # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE”i {s' € 57},s" € {s' —wy +1,...,s'} <1 (non-overlapping constraint),

—and { —wi +1,..,8}N{s" —wp +1,...,8"} = 0 for each ¥ € K and s” € S}, with
E”,1C N E”}c, # () (non-overlapping constraint taking into account the possibility of adding the
slot s" in the set of last-slots S”} assigned to the demand k in the solution S”1),
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— and there is one pair of demand k and slot s from the clique C' (i.e., vg s € C s.t. the demand &
selects the slot s as last-slot in the solution 8”1, i.e., s € S”}C for anode vy s € C, and s’ ¢ S},
for all vy o € C'\ {vg s}

87! is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

5 5 ~E
(2)-(12). Hence, the corresponding incidence vector (25", 25™") is belong to F and then to ng
given that it is composed by ka eC 2% = 1. Based on this, we distinguish two cases:

— without changing the paths established in S”!: we derive a solution S* = (E2,S®) from the
solution S”! by adding the slot s’ as last-slot to the demand k without modifying the paths
assigned to the demands K in 8”! (i.e., E} = E”} for each k € K), and the last-slots assigned
to the demands K \ {k} in 8”! remain the same in the solution §? i.e., S”}, = S3, for each
demand k' € K\ {k}, and S} = S”} U{s'} for the demand k. The solution & is feasible given
that

e a feasible path E} is assigned to each demand k € K (routing constraint),

e a set of last-slots S,‘z is assigned to each demand k € K along each edge e € Ei’ with
|S7| > 1 (contiguity and continuity constraints),

o {8 —wp+1,..,8}N{s" —wp +1,...,5"} = 0 for each k,k’ € K and each s’ € S} and
s” € S3, with E} N E}, # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;’; {s' € S}, s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

< ~E
The corresponding incidence vector (:css, z‘ss) is belong to F' and then to Fg S given that it is
composed by ka .eC 2% = 1. We then obtain that

xsw 1 S S” 1 k

M + O'Zs”l = ux ’ + (72283 = /wcs”l + oz +og.
It follows that o = 0 for demand k and a slot s’ € {wy, ..., 5} with v« ¢ C.

— with changing the paths established in 8”!: we construct a solution S8 derived from the
solution S”! by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K ¢ K in "' (i.e., E3 = E”} for each k € K \ K, and
EP # B} for each k € K) s.t.

e a new feasible path E}3 is assigned to each demand k € K (routing constraint),

e and {s' —wp +1,....,8}N{s” —wp +1,...,5"} = 0 for each k € K and k¥’ € K \ K and
each s’ € S”} and s” € S”}, with E;> N E”}, # 0, i.e., for each edge e € E and each slot
s” € S we have Zkef(,eeE;f H{s' € §74,8” € {s' —w +1,...,8'} + ZkEK\R,eGE”}C {s' €
Sl s € {s' —wp +1,...,5'} <1 (non-overlapping constraint),

e and {s' —wp +1,...8} N {s” —wp + 1,...,8”} =  for each k¥’ € K and s” € S}, (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”} assigned to the demand k& in the solution S”1).

The last-slots assigned to the demands K \ {k} in 8”! remain the same in 8’3, i.e., S}, = S}3
for each demand k' € K \ {k}, and S;> = 57} U {s} for the demand k. The solution S is
clearly feasible given that

e a feasible path E,’f’ is assigned to each demand k € K (routing constraint),

e a set of last-slots S;2 is assigned to each demand k € K along each edge e € F}® with
|S;3] > 1 (contiguity and continuity constraints),

o (s’ —wp+1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S;> and
s” € S with E2 N E;3 # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;f {s' € 9;3,8” € {s' —wk + 1,...,s'} < 1 (non-overlapping constraint).

’ 7 S E
The corresponding incidence vector (xS S,zs 3) is belong to F and then to Fg 5 given that it
is composed by Y, . zF = 1. We have so

91 » 1 /3 /3 1 9 1 k ,’% ];
uxs +025 = ,uxs +025 = ,ua:s +025 + Ogr — g E e + E g e«
k€K ecE”}, keK e’€E

It follows that 0%, = 0 for demand k and a slot s’ € {w, ..., 5} with vy » ¢ C given that pu* =0
for all the demand k € K and all edges e € E \ (E§ U EY}).
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The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wg, ..., §} of demand k with v ¢+ ¢ C s.t. we find

0% =0, for demand k and all slots s’ € {wy, ..., 5} with vg,s ¢ C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

g

K= 0, for all k¥ € K \ {k} and all slots s € {wy, ..., 5} with v s & C..

S

Consequently, we conclude that

ok =0, for all k € K and all slots s € {wy, ..., 5} with vy, & C.

Let’s prove that o¥ for all vy s € C are equivalents. Consider a node vy ¢ in C s.t. s ¢ S},. For
that, we consider a solution S* = (E', S') in which

— a feasible path E,i is assigned to each demand k € K (routing constraint),

— a set of last-slots §; is assigned to each demand k € K along each edge e € E’,i with |5’,1| >1

(contiguity and continuity constraints),

—{s—wp+1,...,8}IN{s" —wp +1,...,5"} =0 for each k, k' € K and each s’ € 5% and s” € S},

with Ef N E}, # 0, i.e., for each edge e € E and each slot s” € S we have 3, cc Bl |{s' €

Sl.s” €{s' —wy +1,...,5'}| <1 (non-overlapping constraint),

—and {s —wy, +1,...,s} N {s' —wp +1,...,8'} = 0 for each k € K and s € S} with ELNE}, #0

(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S} assigned to the demand %’ in the solution S'),

— and there is one pair of demand k and slot s from the clique C' (i.e., v s € C s.t. the demand &

selects the slot s as last-slot in the solution S, i.e., s € 7% for a node vy, € C, and s ¢ S”},
for all vy o» € C\ {vgs}-

S is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

~ ~ ~E
(2)-(12). Hence, the corresponding incidence vector (xsl,zsl) is belong to F' and then to ng
given that it is composed by ka eC 2% = 1. Based on this,

— without changing the path established in S': we derive a solution S* = (E*, S*) from the

solution S by adding the slot s’ as last-slot to the demand k without modifying the paths
assigned to the demands K in S* (i.e., E} = E} for each k € K), and also the last-slots assigned
to the demands K \ {k,k’} in S' remain the same in S*, ie., S} = Si for each demand
K’ € K\ {k,k'}, and S, = S}, U{s'} for the demand k', and modifying the last-slots assigned
to the demand k by adding a new last-slot § and removing the last slot s € S} with vy s € C and
vps & Cs.t. SE = (SE\{s})U{3} for the demand k s.t. {5—wg+1,...,5}N{s' —wp +1,...,8'} =0
for each k' € K and s’ € S}, with E} N E{, # (. The solution S* is feasible given that
e a feasible path E} is assigned to each demand k € K (routing constraint),
e a set of last-slots S} is assigned to each demand k € K along each edge e € E} with
|S}| > 1 (contiguity and continuity constraints),
o {s'—wp+1,..,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S and
s” € S{, with E} N B}, # 0, ie., for each edge e € E and each slot s” € S we have
EkeK’eeEﬁ [{s' € S}, 8" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

~E
The corresponding incidence vector (x54, 254) is belong to F' and then to Fg S given that it is
composed by >° ¢ 2% = 1. We then obtain that

;L:csl + 0251 = ux

S

S’ S k

4 8/4 1 1 k}l k
+oz = pux~ +0z° +o0g —og +03.

It follows that ¢ = o¥ for demand k" and a slot s’ € {wg, ..., 5} with v » € C given that
ok =0 for v, 5 ¢ C.



On the Facial Structure of the C-RSA Polyhedron: Part IT 21

— with changing the path established in S': we construct a solution S derived from the solution
St by adding the slot s’ as last-slot to the demand &’ with modifying the paths assigned to a
subset of demands K € K in S' (i.e., E{* = E} for each k € K \ K, and E}* # E} for each
k € K), and also the last-slots assigned to the demands K \ {k, %'} in S remain the same in
S, ie., S}, = Si4 for each demand k7 € K \ {k,k'}, and St = S}, U {s'} for the demand
k', and modifying the last-slots assigned to the demand k by adding a new last-slot § and
removing the last slot s € S} with vy, € C and vy 5 ¢ C s.t. Sit = (S} \ {s}) U {5} for the
demand k s.t. {§ —wg +1,...,8} N{s’ —wp + 1,...,s'} = 0 for each k' € K and s’ € Sj} with
E* N ER # 0. The solution 8™ is clearly feasible given that

e a feasible path E,’c4 is assigned to each demand k € K (routing constraint),

e a set of last-slots S,’;‘ is assigned to each demand k& € K along each edge e € E,’f with
|S;4] > 1 (contiguity and continuity constraints),

o (s —wp+1,...8tN{s" —wp +1,...8"} = 0 for each k, k' € K and each s’ € Si* and
s” € Sy with E* N E;} # 0, i.e., for each edge e € E and each slot s” € S we have
EkeK’eeE’? {s' € S}t 8" € {s' —wk + 1,...,8'} < 1 (non-overlapping constraint).

1 ’ ~E
The corresponding incidence vector (x5 4,25 4) is belong to F' and then to ng given that it
is composed by ka .ec 2 = 1. We have so

S

/m:sl + az‘gl = ux

S

4 4 1 1 ’
ST 4028 = ux +02° +0§/faf+0§

S IDITLED S P

kEK ecE} kEK ecE}}

It follows that ¥ = o for demand &’ and a slot s’ € {wy, ..., 5} with vy« € C given that
o =0forvys¢ C,and pF =0forall k € K and all e € E\ (E} U EF).

Given that the pair (vys, vk s) are chosen arbitrary in the clique C, we iterate the same
procedure for all pairs (vy s, Vg s) 8.t. we find

k

’
oy = a§,7f0r all pairs (vg s, v ) € C.

Consequently, we obtain that o* = p for all pairs vg,s € C.
On the other hand, we ensure that all the edges e € Ef for each demand k are independants s.t.
for each demand k € K we have

k, k,
dome=) o = Y (W) =0

ecEf ecEf e€Ep

The only solution of this system is p* = fyf “ for each e € Ef for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pk =1¢, for all k € K and all e € Ef,

We re-do the same thing for the edges e € E¥ for each demand k which are independants s.t. for
each demand k € K we have

k k.
Dome=) W = Y (=) =0

ecEY ecEY ecEY

The only solution of this system is p* = 75 *“ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pk =5, forall k € K and all e € EF,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wg—1

wk—l 'wk—l

}: k7§:k,s §: k kysy _
Og = Y3 (Js — 73 )* 0

s=1 s=1

s=1
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The only solution of this system is o = 'yf;’s for each s € {1,...,wy — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

oF =~4F% forall ke K and all s € {1,...,w; — 1}. (41)
We conclude that for each k € K and e € F

e ife e BY
_ ke . k
He =N7", ifec By

0, otherwise
and for each k € K and s € S

AESif s e {1, .., wp — 1}
05 = P if Vk,s € Ca
O,if Vk,s ¢ C.

As a result (u,0) = Z pBE + Q.

UkYSEC

5.2 Interval-Clique Inequalities

Theorem 2. Let I = [s;,s;] be an interval of contiguous slots in [1,5] with s; < s; — 1, and C
be a clique in the conflict graph G¥ with |C| > 3. Then, the inequality (25) is facet defining for
P(G,K,S) if and only if

— C is a maximal clique in the conflict graph é’?,

— and there does not exist an interval of contiguous slots I' in [1,38] s.t. I C I' with
o wy +wy > |I'| for each k, k' € C,
o wy < |I'| and 2wy, > |I'| + 1 for each k € C.

Proof. Neccessity.
We distinguish two cases

— if there exists a clique C’ that contains all the demands & € C. Then, the inequality (25)
induced by the clique C is dominated by another inequality (25) induced by the clique C".
Hence, the inequality (25) cannot be facet defining for P(G, K, S).

— if there exists an interval of contiguous slots I’ in [1, 3] s.t. I C I’ with

o wy + wy > |I'| for each k, k' € C,

o wi < |I'] and 2wy > |I’'| + 1 for each k € C.
This means that the inequality (25) induced by the clique C for the interval I is dominated
by the inequality (25) induced by the clique C for the interval I’. Hence, the inequality (25)
cannot be facet defining for P(G, K, S).

Suﬂimency
Let FC’ denote the face induced by the inequality (25), which is given by

~NE
FG" ={(z,2) € P(G,K,S): > Z ZF =1}
v €C s=s;+wp—1
In order to prove that mequahty Y vrecC S 85— 1zk < 1 is facet defining for P(G, K,S),
we start checking that F is a proper face, and F T # P(G,K,S). We construct a solution
S® = (E°,S°) as below

— a feasible path E} is assigned to each demand k € K (routing constraint),
— a set of last-slots S} is assigned to each demand k € K along each edge ¢’ € Ep with |S7| > 1
(contiguity and continuity constraints),
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—{s—wr+1,..,stN{s —wp +1,..,8} =0 for each k, k' € K and each s € S} and s’ € S},
with E} N E}, # 0 (non-overlapping constraint),

— and there is one demand k from the clique C' (i.e., vx € C s.t. the demand k selects a slot s as
last-slot in the solution S° with s € {s; + wy — 1,...,s;}, i.e., s € S} for a node vy € C, and
for each s’ € S}, for all viy € C'\ {vy} we have s’ ¢ {s; + wpr — 1,...,s; }.

Obviously, 8% is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (x35,z‘55) is belong to
~E

P(G, K,S) and then to Fg’ given that it is composed by >°, > k

=s;t+wp—1%s
Fgf is not empty (i.e., ngfE # (). Furthermore, given that s € {s; +wy —1, ..., s;} for each vy, € C,
this means that there exists at least one feasible slot assignment Sy, for the demands & in C' with
s ¢ {si+wr—1,...,s;} for each s € S, and each v, € C. This means that Fg‘fE # P(G,K,S).
We denote the inequality Y-, <o D el 1w, 128 <1 by ax+ Bz <\ Let px + 0z < 7 be a valid
inequality that is facet defining F' of P(G, K,S). Suppose that Fg? C F={(z,2) € P(G,K,S) :
px + oz = 7). We show that there exist p € R and v = (y1,72,73) (s.t. 71 € R&nex |E§|,’}/2 €

REkex 1BHl 5 € RErex(We=1) st (u,0) = p(a, B) +vQ, and that

= 1. As a result,

S
S

— oF = 0 for all demands k¥ € K and all slots s € {wg,...,5} with s & {s; + wy — 1,...,8;} if
v € C,

— and pF = 0 for all demands k € K and all edges e € E\ (Ef U E¥),

— and oF are equivalents for all v, € C and all s € {s; + wy, — 1,...,8;}.

We first show that ¥ = 0 for each edge e € E\ (E¥ U E}) for each demand k € K. Consider a
demand k € K and an edge e € E \ (E} U EY). For that, we consider a solution S8’ = (E’?, $") in
which

— a feasible path E;’f is assigned to each demand k € K (routing constraint),

— a set of last-slots S}° is assigned to each demand k € K along each edge e € E}> with [S?| > 1
(contiguity and continuity constraints),

—{s—wp+1,..,8N{s" —wp +1,...,8"} =0 for each k, k' € K and each s’ € S}°> and s” € S}3
with E;5 N E}5 # 0, i.e., for each edge e € E and each slot s” € S we have ZkeK’eeE? |{s' €
S5, 87 € {s' —wy + 1,...,8'}| <1 (non-overlapping constraint), '

— the edge e is not non-compatible edge with the selected edges e € E}> of demand k in the
solution 8’5, i.e., Ze’eE;f’ le +1e < li. As a result, E}> U {e} is a feasible path for the demand
k,

— and there is one demand k from the clique C' (i.e., v; € C s.t. the demand k selects a slot s as
last-slot in the solution &’ with s € {s; + wy — 1,...,s;}, i.e., s € S} for a node vy, € C, and
for each s’ € S}3 for all vy € C'\ {vy} we have s’ ¢ {s; + wiy — 1,...,s;}.

8’5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (z5°,257) is belong to F and then to Fg’E
given that it is composed by >, ¢ Zi’;erwlrl 2% = 1. Based on this, we derive a solution S°
obtained from the solution &’° by adding an unused edge e € E \ (Ef U EY) for the routing of
demand k in K in the solution &% which means that E = E}5 U {e}. The last-slots assigned to the
demands K, and paths assigned the set of demands K \ {k} in S’° remain the same in the solution
85, ie., S = S5 for each k € K, and EY, = E}> for each k' € K \ {k}. 8% is clearly feasible given
that

— and a feasible path EY is assigned to each demand k € K (routing constraint),

— a set of last-slots S? is assigned to each demand k € K along each edge e € EY with |S¢| > 1
(contiguity and continuity constraints),

— {8 —wr+1,...,8}N{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S{ and s” € S,
with B N E}, # 0, ie., for each edge e € E and each slot s” € S we have 37y cpo {5’ €
S8.s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).
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~E
The corresponding incidence vector (136,236) is belong to F' and then to Fg I given that it is
composed by Y, D21, L, 128 = 1. It follows that
S/

S’

5 15
nx +02° :ums

’ +O'ZSG = ux ’ —|—/ﬂg +O’ZSl5.

As a result, ¥ = 0 for demand k and an edge e.

As e is chosen arbitrarily for the demand k with e ¢ EY U EF, we iterate the same procedure for
alle’ € E\ (E¥ U EY U {e}). We conclude that for the demand k

pk =0, foralle € E\ (EF UEF).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &’ € K\ {k}
and all e € E\ (E§ U EF). We conclude at the end that

ph =0, forallk € K and all e € E\ (E} U EY).

Let’s us show that X = 0 for all k € K and all s € {wy,...,5} with s & {s; + w — 1,...,s;} if
v € C. Consider the demand k and a slot s" in {wy, ..., 5} with s’ & {s; +w, —1,...,s;} if v, € C.
For that, we consider a solution $”® = (E”5,8”?) in which

— a feasible path E”% is assigned to each demand k € K (routing constraint),

— aset of last-slots 577 is assigned to each demand k € K along each edge e € E”} with [S77] > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S and
s € 872, with B} N E”3, # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE,,i {s' € §72,s" € {s' —wy +1,...,s'} <1 (non-overlapping constraint),

—and {s' —wr + 1,...8}N{s" —wp +1,...,8"} = 0 for each ¥ € K and s” € 5”3, with
E’3 N E”Y, # 0 (non-overlapping constraint taking into account the possibility of adding the
slot s’ in the set of last-slots S”? assigned to the demand & in the solution 8”%),

— and there is one demand k from the clique C' (i.e., vy € C s.t. the demand k selects a slot s as
last-slot in the solution 8”5 with s € {s; + wy, — 1,...,s;}, i.e., s € §”2 for a node vy, € C, and
for each s’ € S7%, for all vy € C'\ {vy} we have s’ ¢ {s; + wp — 1,...,5;}.

S7? is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (xsﬁs, zsﬁs) is belong to F' and then to Fg’E
given that it is composed by Y7, < >0, 1o, 1 25 = 1. Based on this, we distinguish two cases:
— without changing the paths established in S”°: we derive a solution S7 = (E7,S") from the
solution S”% by adding the slot s’ as last-slot to the demand k& without modifying the paths
assigned to the demands K in 8" (i.e., E,Z = E”Z for each k € K), and the last-slots assigned
to the demands K \ {k} in 8”5 remain the same in the solution §7 i.e., 7%, = S7, for each
demand k' € K\ {k}, and ST = S”% U {s'} for the demand k. The solution 87 is feasible given
that
e a feasible path Ef is assigned to each demand k € K (routing constraint),
e a set of last-slots S,Z is assigned to each demand k € K along each edge e € E,Z with
|ST| > 1 (contiguity and continuity constraints),
o (s’ —wp+1,.,s}N{s" —wp +1,...,5"} = 0 for each k,k’ € K and each s’ € S] and
s” € Sf, with El N EY, # 0, i.e., for each edge e € E and each slot s” € S we have
ZkEK,eEEZ [{s' € S],s" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (z° 7, 28 7) is belong to F' and then to Fg I given that it is
composed by >, o>, 1., 1 28 = 1. We then obtain that

5715 _ S

,uxsﬁs +oz = ux ' + 0z87 = L k

9 5
+az$ + 0.

S” 5
€ S

It follows that 0¥, = 0 for demand k and a slot s’ € {wy, ..., 5} with 8’ & {s; +wy, — 1,...,8;} if
Vi € C.
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— with changing the paths established in S”°: we construct a solution S'7 derived from the
solution S”® by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K ¢ K in 8" (i.e., E;" = E”} for each k € K \ K, and
EJT # E”3 for each k € K) s.t.

e a new feasible path E,’j is assigned to each demand k € K (routing constraint),

eand {s' —wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k € K and ¥’ € K\ K and
each s’ € S and s” € S”2, with E; N E”?, # 0, i.e., for each edge e € F and each slot
s” € S we have Ekef(,eeE,’] H{s' € §7%,8” € {s/ —wy +1,....8} + ZkeK\f(,eeE”i s €
572,87 € {s' —wp +1,...,5'} <1 (non-overlapping constraint),

e and {s' —wp +1,..,8}N{s" —wp +1,...,5”} = 0 for each ¥’ € K and s” € S”%, (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”?9 assigned to the demand k in the solution S”°).

The last-slots assigned to the demands K \ {k} in $”° remain the same in 8’7, i.e., $"3, = S}
for each demand k' € K \ {k}, and S;” = 573 U {s} for the demand k. The solution 8" is
clearly feasible given that

e a feasible path F}’ is assigned to each demand k € K (routing constraint),

e a set of last-slots S}/ is assigned to each demand k € K along each edge e € E}’ with
|S;7] > 1 (contiguity and continuity constraints),

o {s'—wp+1,...8tN{s" —wp +1,...8"} = 0 for each k, k' € K and each s’ € S}’ and
s” € S)7 with Ef N E) # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE}] {s' € S}, s” € {s' —wk +1,...,s'} < 1 (non-overlapping constraint).

o 7SN . GP . .
The corresponding incidence vector (x5 ,25") is belong to F and then to F,' given that it
is composed by >, o > el g tw—1 78 = 1. We have so
S5 S»5 S'7 S'7 S»5 S»5 k k k
= +oz = pxr® +0z° =ux +oz +as,—Z Z ue+z Z Mot
keK e€E”$ keK e’€E}T

I

It follows that 0% = 0 for demand k and a slot s’ € {wg, ..., 5} with s’ & {s; + wx —1,..., s;} if
vy, € C given that ¥ = 0 for all the demand k € K and all edges e € E \ (E} U EY).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., §} of demand k with s’ ¢ {s; +wy —1,...,s;} if vy € C s.t. we find

ok =0, for demand k and all slots s" € {wy, ..., 5} with 8" ¢ {s; + wp — 1,..., 8} if vy € C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k&’
in K\ {k} such that

o =0, for all K € K\ {k} and all slots s € {wy, ..., 5} with s & {s; + wp — 1, ..., s;}if v € C.
Consequently, we conclude that
ok =0, for all k € K and all slots s € {wy, ..., 5} with s ¢ {s; +wg — 1,...,s;} if v € C.

Let prove that o® for all vy € C and all s € {s; +wy —1,...,s;} are equivalents. Consider a demand
k' and a slot s’ € {s; + wpr — 1,...,8;} with vy € C, and a solution S®> = (E®, S%) in which

— a feasible path E;Z’ is assigned to each demand k € K (routing constraint),

— a set of last-slots SP is assigned to each demand k € K along each edge e € EJ with |S?| > 1
(contiguity and continuity constraints),

— {8 —wr+1,...,8}N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S} and s” € S},
with E? N E}, # 0, i.e., for each edge e € E and each slot s” € S we have > rereeny 5 €
S*Z, s7e{s —wr+1,...,8} <1 (non-overlapping constraint),

—and {s —w +1,...,8} N{s’' —wp +1,...,5'} = 0 for each k € K and s € S? with E} N E}, #0)
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots 5’2, assigned to the demand £’ in the solution 55)7
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— and there is one demand k from the clique C (i.e., v, € C s.t. the demand k selects a slot s as
last-slot in the solution S° with s € {s; + wy, — 1, .8}, le, s € S};’ for a node v, € C, and
for each s’ € S}, for all vy € C'\ {vy} we have s’ ¢ {s; + wpr — 1,...,8; }.

S5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

~ ~ ~E
(2)-(12). Hence, the corresponding incidence vector (x557255) is belong to F' and then to Fg’
given that it is composed by Y, < >0, 1., 1 25 = 1. Based on this,

— without changing the paths established in S°: we derive a solution S% = (E8,S88%) from the
solution &5 by adding the slot s’ as last-slot to the demand %k without modifying the paths
assigned to the demands K in S° (ie., E} = E,? for each k € K), and also the last-slots
assigned to the demands K \ {k,k’} in S® remain the same in S%, i.e., S3, = S, for each
demand k” € K\ {k,k'}, and S%, = 59, U {s'} for the demand k', and modifying the last-slots
assigned to the demand k by adding a new last-slot s and removing the last slot s € 5';;’ with
s € {si+wyp+1,..,s;} and § ¢ {s; + wr + 1,...,s;} for the demand k with v; € C s.t.
S% = (SI\{sHU {3} st. {§—wp +1,...,5}N{s' —wp +1,...,8'} = 0 for each & € K and
s’ € 5%, with E§ N E,Sg # ). The solution S® is feasible given that

o a feasible path Ej is assigned to each demand k € K (routing constraint),

e a set of last-slots S§ is assigned to each demand k € K along each edge e € E} with
|S8| > 1 (contiguity and continuity constraints),

o (s —wp+1,.,8}N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S and
s” € 8%, with ES N EY, # 0, ie., for each edge e € E and each slot s € S we have
ZkeK,eeE,§ [{s' € S§,8" € {s' —wy, +1,...,s'} <1 (non-overlapping constraint).

~E
The corresponding incidence vector (sr:sg7 258) is belong to F' and then to Fg I given that it is
composed by >, >0, 1., 1 28 = 1. We then obtain that

,u:css + 02‘55 = px‘sg + sts = u:ﬂss + 0285 + af/l — Uf + 0;—“.

It follows that o% = o* for demand k' and a slot s’ € {wy,...,5} with v € C and s’ €
{si +wi +1,...,8;} given that o =0 for 5§ ¢ {s; + wy — 1, ..., s;} with vy, € C.

— with changing the paths established in S®: we construct a solution 8’8 derived from the solution
S5 by adding the slot s’ as last-slot to the demand %" with modifying the paths assigned to a
subset of demands K C K in §° (i.e., E = E} for each k € K \ K, and Ej® # E? for each
k € K), and also the last-slots assigned to the demands K \ {k, &’} in 8% remain the same in
S8, ie., S2 = S8 for each demand k" € K \ {k,k'}, and S = S2, U {s'} for the demand
k’, and modifying the last-slots assigned to the demand k by adding a new last-slot § and
removing the last slot s € SP with s € {s; +wy, +1,...,s;} and 3 ¢ {s; +wx +1,...,5;} for the
demand k with vy € C's.t. S = (S2\{s))U{3} s.t. {5—wi+1,...,5}N{s —wpr +1,...,8} =0
for each k' € K and s’ € S8 with E}® N E}% # 0. The solution 8" is clearly feasible given that

e a feasible path E,’f is assigned to each demand k € K (routing constraint),

e a set of last-slots S;® is assigned to each demand k € K along each edge e € F}® with
|S;8] > 1 (contiguity and continuity constraints),

o (' —wp+1,.,8tN{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S} and
s” € S with EF N ES # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;f {s' € ;8,s” € {s' —wk + 1,...,s'} < 1 (non-overlapping constraint).

/ 7 ~E
The corresponding incidence vector (xS 8,23 8) is belong to F and then to FCG I given that it
is composed by Y, < > el, 1, 1 28 = 1. We have so

5 35
u:rs +02° = uxs

8 /8 5 5 ’
+ 025 :uxs +02° —|—a§,—af+a§

S IDITLES OB ST

kEK ecE? keK ecE®

’

It follows that 0% = o* for demand &’ and a slot s’ € {w,...,5} with v € C and §' €
{si +wp +1,...,5;} given that o% =0 for § ¢ {s; +wy, — 1,...,8;} with vy € C, and p* = 0 for
allk € K and all e € E\ (E¥ U EY).
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Given that the pair (vg,vys) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (vg, vg) s.t. we find

k

o = Uf,/,for all pairs (vg,vr) € C

with s € {s; +wi, —1,...,s;} and s’ € {s; + wyp — 1, ..., 5;}. We re-do the same procedure for each
two slots s, 8" € {s; +wr — 1, ..., s;} for each demand k € K with v, € C s.t.

k

ok = ok for all vy, € C and 5,5’ € {s; +wy, — 1,...,5;}.

Consequently, we obtain that o* = p for all v, € C and all s € {s; +wg — 1, ..., s;}.
On the other hand, we ensure that all the edges e € Ef for each demand k are independants s.t.
for each demand k € K we have

", k.
D= o = Y (W) =0

ecEh ec Bk e€Ef

The only solution of this system is p* = Wf “ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

plh =~7¢, for all k € K and all e € Ef,

We re-do the same thing for the edges e € EF for each demand k which are independants s.t. for
each demand k € K we have

YouE= YW Y () =0

e€EEY e€EEY ecEl

The only solution of this system is p¥ = 'yg’e for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

pf =~5¢ forall k € K and all e € EF,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkfl wkfl wkfl

k k,s 2 k kysy _
E Os = E:’YS - (05_73 )_0
s=1 s=1 s=1

The only solution of this system is 0% = 7§’8 for each s € {1, ...,wy, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

oF =48 forall k€ K and all s € {1,...,w; — 1}. (42)
We conclude that for each k € K and e € F
vf’e, ifee E(’f,

Pe = 75’6, ifeEEf,

0, otherwise,
and for each k € K and s € S

RS if s e {1, .., wy — 1}
of =< pifvp € Cand s e {s;+wp—1,..,5;},

0, otherwise.

As aresult (u,0) = Z Z 8% +4Q.

v €C s=s;+wr—1
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5.3 Interval-Odd-Hole Inequalities

Theorem 3. Let H be an odd-hole in the conflict graph Gf’ with |H| > 5. Then, the inequality
(26) is facet defining for P(G, K,S) if and only if

— for each node vy, ¢ H in G¥, there exists a node vy € H s.t. the induced graph G¥ ((H\ {vy})U
{vr'}) does not contain an odd-hole H' = (H \ {vg}) U {vp },

— and there does not exist a node vy ¢ H in G}E s.t. vgr s linked with all nodes v, € H,

— and there does not exist an interval I' of contiguous slots with I C I' s.t. H defines also an
odd-hole in the associated conflict graph C;”IE,

Proof. Neccessity.
We distinguish the following cases:

— if for a node vy ¢ H in G¥, there exists a node vy, € H s.t. the induced graph G¥ ((H\ {v})U
{vi}) contains an odd-hole H' = (H \ {vi}) U {vg/}. This implies that the inequality (26) can
be dominated by doing some lifting procedures using the following valid inequalities

DID SRR

v €H s'=s;+wr—1

v €EH 8'=s;+wy —1

as follows
Sj Sj Sj
’ ”
§ Zf/ + g Z;C/ + 2 E E Z§7> S |H| - ]..
s'=s;+wr—1 s'=s;+w; —1 vgr EH\{k,k'} 8" =s;+wp»—1
. Sj k' . . . .
By adding the sum Zs’:si twy —1 Zsr 1O the previous inequality, we obtain
Sj Sj Sj Sj
! 9 ’
g 2k 42 E 25 42 g g A <|H| -1+ g 25
s'=s;+wr—1 s'=s;+wyr—1 v €EH\{k,k'} 8" =s;+twp» —1 s'=s;+wyr—1

We know that Y./

5j
s'=s;+wy —1

zf/l < 1, it follows that

Sj Sj Sj
’ 97
E 2k 42 E 25 42 E E 2% < |H|.
s'=s;+wr—1 s'=s;+wy —1 v EH\{k,k’} 8" =s;+wp» —1

By dividing the last inequality by 2, we obtain that

S5 Sj Sj

Lk Y w oo | H]
)MIEN TN SRR DD SR 1)
s'=s;+wp—1 s'=s;+w, —1 vr EH\{k,k'} 8" =s;+wp» —1
Given that H' = (H\{k})U{k'} s.t. |H'| = |H|, and |H| is an odd number which implies that
H _

{HJ = % As a result

2
S S;
D1, . v |H'|-1
E §Zs’ + E E Zg» < T
s'=s;+wr—1 v €EH " =s;+w,r—1

That which was to be demonstrated.
— if there exists a node vy, € H in G? s.t. vgs is linked with all nodes v, € H. As a result, the
inequality (26) is dominated by the following inequality

3 XJ: z§/+|H‘271 ZJ: zf,'gm%.

v €H s'=s;+wr—1 s'=s;+wyr—1
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— if there exists an interval I’ of contiguous slots with I C I’ s.t. H defines also an odd-hole in
the associated conflict graph C;’F, This implies that the inequality (26) induced by the odd-hole
H for the interval I is dominated by the inequality (26) induced by the same odd-hole H for
the interval I’ given that {s; + wy — 1,...,s;} C I’ for each k € H. As a result, the inequality
(26) is not facet defining for P(G, K, S).

If no one of these two cases, the inequality (26) can never be dominated by another inequality
without changing its right-hand side.
Suﬂ’lmency

Let F 7 denote the face induced by the inequality (26), which is given by

FST = {(2,2) e PG, K,S): Y Z zfz‘}”T_l}.

v €EH s=s;+wr—1

In order to prove that 1nequahty D onel S sitwp—1 2k < ‘H‘T_l is facet defining for P(G, K, S),

E
we start checking that FH is a proper face, and FHI # P(G, K,S). We construct a solution
8% = (E?,8%) as below

— a feasible path E} is assigned to each demand k € K (routing constraint),

— a set of last-slots S} is assigned to each demand k € K along each edge ¢’ € E} with |S7| > 1
(contiguity and continuity constraints),

—{s—wr+1,..,stN{s —wp +1,..,8} =0 for each k, k' € K and each s € S} and s’ € S,
with E N E}, # 0 (non-overlapping constraint),

— and there is 1= demands H from the odd-hole H (i.e., vy € H C H s.t. the demand k selects
a slot s as last-slot in the solution 8 with s € {s; + wy — 1, ..., s,}, i.e., s € S} for each node
vy € H, and for each s’ € S9, for all vy, € H\ H we have s' ¢ {s; + wp — 1,...,5;}.

Obviously, S? is a feasible solution for the problem given that it satisfies allgthe 9constmints of
our cut formulation (2)-(1 ) Moreover, the corresponding incidence vector (z° ,2%") is belong to
P(G,K, S) and then to FHI glven that it is composed by Y5, < >0l 1y, 1 2E = |H| L Asa

result, Fyy GF is not empty (i.e., F v # (). Furthermore, given that s € {s; +wg —1,. s]} for each
v € H thls means that there exists at least one feamble slot assignment .S, for the demands kin H

with s ¢ {s;+wr—1,...,s;} for each s € Sy, and each v, € H. This means that F T £ P(G,K,S).
We denote the mequahty S i eH Do s twy 178 < ‘H‘ L by ax—i—ﬁz < A. Let uz+oz < 7 be a valid

inequality that is facet defining F' of P(G, K,S). Suppose that FHI C F={(z,2) € P(G,K,S) :
px 4+ oz = 7. We show that there exist p € R and v = (y1,72,73) (s.t. 71 € RZkex |E§|,72 €
RXkex ‘Ef‘,vg € REvex(Wr=D) st (u,0) = p(a, B) +vQ, and that

— ok =0 for all demands k € K and all slots s € {wg, ...,5} with s ¢ {s; +wr — 1,...,s,} if
v € H,
— and pf =0 for all demands k € K and all edges e € E \ (E} U EY),

— and o¥ are equivalents for all v, € H and all s € {s; +wy — 1, ..., 8 }.

We first show that u* = 0 for each edge e € E \ (E§ U E¥) for each demand k € K. Consider a

demand k € K and an edge e € E\ (E} U E¥). For that, we consider a solution 8" = (E'?,5") in
which

— a feasible path E}? is assigned to each demand k € K (routing constraint),

— a set of last-slots S} is assigned to each demand k € K along each edge e € E}? with [S}?] > 1
(contiguity and continuity constraints),

—{s'—wi+1, ..., sIN{s" —wp +1,...,s"} = 0 for each k, k' € K and each s’ € S} and s” € S})
with E2 N E}S # 0, i.e., for each edge e € E and each slot s” € S we have EkeK,eeE,'j‘ |{s' €
S0 s" € {s' —wk +1,...,8'} <1 (non-overlapping constraint),

— the edge e is not non-compatible edge with the selected edges ¢/ € E}? of demand k in the
solution 8™, i.e., Ze,eEkg ler +1e < lg. As aresult, E}° U {e} is a feasible path for the demand
ka
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— and there is 1= demands H from the odd-hole H (i.e., vy, € H C H s.t. the demand k selects
a slot s as last-slot in the solution & with s € {s; + wx — 1, ..., 5,}, i.e., s € S for each node
v, € H, and for each s’ € S} for all vy, € H \ H we have s’ ¢ {s; + wiy — 1,...,s;}.

8" is clearly feasible for the problem given that it satisfies all the constraints of cut formulatlon

(2)-(12). Hence, the corresponding incidence vector (z s” 2 lg) is belong to F' and then to F g
given that it is composed by >, oy >0, L, 1 2k ‘H‘ L Based on this, we derive a solution
819 obtained from the solution 8" by adding an unused edge e € E\ (Ef U EY) for the routing
of demand k in K in the solution §° which means that E;° = E? U {e}. The last-slots assigned
to the demands K, and paths assigned the set of demands K \ {k} in &’ remain the same in the
solution S0, ie., S{° = S for each k € K, and E}) = E} for each k' € K \ {k}. S is clearly

feasible given that

— and a feasible path E;O is assigned to each demand k € K (routing constraint),

— a set of last-slots S}° is assigned to each demand k € K along each edge e € E;° with [S;9] > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S} and
s € S} with E{° N ELY # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK cc B0 {s" € S,C , 8" €{s —wr +1,...,8'} <1 (non-overlapping constraint).

~E
is belong to F' and then to Fg’ given that it is
. It follows that

. . . 10 10
The corresponding incidence vector (x5, 25)
_ H]=1 | 1

composed by EvkEH Zs sitwp—1 Z

ua:slg + 0_23’9 = ua:sm + o*zsm = uarslg + ,uf + oz5
As a result, ¥ = 0 for demand k and an edge e.

As e is chosen arbitrarily for the demand k with e ¢ Ef U EF, we iterate the same procedure for
alle’ € E\ (E¥ UEY U {e}). We conclude that for the demand k

ph =0, foralle € E\ (Ef UEY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &' € K\ {k}
and all e € E\ (E¥ U E}). We conclude at the end that

pk =0, forall k€ K and all e € E\ (E} U EF).

Let’s us show that o% = 0 for all k € K and all s € {wy,...,3} with s ¢ {s; + w — 1,...,s;} if
vy € H. Consider the demand k and a slot s" in {wg, ..., 5} with s’ ¢ {s; +w, —1,...,s;} if v, € H.
For that, we consider a solution 8”9 = (E”9,579) in which

— a feasible path E”Y is assigned to each demand k € K (routing constraint),

— aset of last-slots 5”9 is assigned to each demand k € K along each edge e € E”9 with [S7)] > 1
(contiguity and continuity constraints),

— {s’ —wp+1,..,8tN{s" —wy +1,...,8"} = 0 for each k,k’ € K and each s’ € S”% and

€ S, with E”) N E”), # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeKeeE”g {s' € S”k, s” €{s —wr+1,...,5} <1 (non-overlapping constraint),

—and {s' —wr + 1,..,8}N{s" —wp +1,..,8"} = 0 for each ¥ € K and s” € S}, with
E”Z N E”Z, # 0 (non—overlapping constraint taking into account the possibility of adding the
slot s" in the set of last-slots S”9 assigned to the demand k in the solution §”9),

— and there is |H|% demands H from the odd-hole H (i.e., vy € H C H s.t. the demand k selects
a slot s as last-slot in the solution 8”2 with s € {s; + wi, — 1, ..., s;}, i.e., s € ") for each node
vy € H, and for each s’ € S7%, for all vy € H\ H we have ' ¢ {s; + wp — 1,..., 5, }.

8§79 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
99 99 S E
(2)-(12). Hence, the corresponding incidence vector ( 8% 25"%) is belong to F and then to FG’

given that it is composed by >, S sitwp—1 2k = |H‘ ! Based on this, we distinguish two
cases:



On the Facial Structure of the C-RSA Polyhedron: Part IT 31

— without changing the paths established in S”: we derive a solution S = (E'!, §11) from the
solution S”9 by adding the slot s’ as last-slot to the demand k without modifying the paths
assigned to the demands K in 8”9 (i.e., E}' = E”) for each k € K), and the last-slots assigned
to the demands K \ {k} in 8”9 remain the same in the solution S'! i.e., $”%, = S}! for each
demand k' € K \ {k}, and S{' = 5”9 U {s'} for the demand k. The solution S'! is feasible
given that

e a feasible path F}! is assigned to each demand k € K (routing constraint),

e a set of last-slots S}' is assigned to each demand k € K along each edge e € E}! with
IS} > 1 (contiguity and continuity constraints),

o (s —wp+1,....stN{s” —wp +1,...,5"} = 0 for each k,k’ € K and each s’ € S}! and
s” € S} with Ejt n Ell # 0, ie., for each edge ¢ € E and each slot s € S we have
ZkeK’eeEil {s' € S}1,s” € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

~E
The corresponding incidence vector (xsu , zsu) is belong to F' and then to Fgf given that it
is composed by Y, oy il 12 = |H|T_1 We then obtain that

8759 . Sl

99 1 11 9
,uacs +o0z = px® + 0% = ,uxs

k

s’

9 99
+ O’ZS + o

It follows that 0%, = 0 for demand k and a slot s’ € {wg, ..., 3} with ' & {s; + wr —1,..., s;} if
v, € H.

— with changing the paths established in S”%: we construct a solution S''!' derived from the
solution 8”9 by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K ¢ K in 8”9 (i.e., B! = E”9 for each k € K \ K, and
El # B9 for each k € K) s.t.

e a new feasible path Ej!! is assigned to each demand k € K (routing constraint),

e and {s' —wi +1,...,8}N{s" —wp +1,....,8} = 0 for each k € K and k' € K\f( and
each s’ € §79 and s” € S”9, with B} N E”), # 0, i.e., for each edge e € E and each slot
s” € S we have Zkef(,eeE,;“ H{s' € 879,s" € {s' —wg + 1,...,s'} + ZkeK\KeeE,,% {s' €
579,87 € {s' —wy, +1,...,s'} <1 (non-overlapping constraint),

e and {s' —wy +1,..,8}N{s" —wp +1,...,8”} = 0 for each ¥’ € K and s” € §”9, (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots 5”9 assigned to the demand k in the solution 8”7).

The last-slots assigned to the demands K\ {k} in 8" remain the same in S'1, i.e., S79, = S}
for each demand k' € K \ {k}, and S} = S”? U {s} for the demand k. The solution S’!! is
clearly feasible given that

e a feasible path E,’f11 is assigned to each demand k € K (routing constraint),

e a set of last-slots Si!! is assigned to each demand k € K along each edge e € Ejl! with
|S;1t] > 1 (contiguity and continuity constraints),

o {s'—wp+1,....stN{s" —wp +1,..,8} =0 for each k,k’ € K and each s € S} and
s” € S with EY 0 EX #£ 0, ie., for each edge e € E and each slot s” € S we have
ZkeK’eeElfcu H{s' € St s” € {s' —wy +1,..., '} <1 (non-overlapping constraint).

’ / ~E
The corresponding incidence vector (z° " , 28 11) is belong to F' and then to Fg’ given that it

; 85 ko_ |H|-1
is composed by kaeH Yo twi_1 % = g

» 9 9 /11 /11 29 99 k ];'; ]'é
,uxs +02° = ;w;s +025 = ,uacs +025 + Ogr — g E e + E g e -
keK e€EY keK e’e B

. We have so

It follows that 0%, = 0 for demand k and a slot s’ € {wg, ..., 3} with ' & {s; + wr —1,..., s;} if
v, € H given that ¥ = 0 for all the demand k € K and all edges e € E \ (E} U EY).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., 5} of demand k with s’ ¢ {s; + wy —1,...,s;} if v, € H s.t. we find

o¥ =0, for demand k and all slots s’ € {wy, ...,5} with 8" ¢ {s; +wy, — 1,...,s;} if v € H.
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Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K \ {k} such that

o =0, for all ¥’ € K \ {k} and all slots s € {wy, ..., 5} with s & {s; + wp — 1, v, St if v € H.
Consequently, we conclude that
ok =0, for all k € K and all slots s € {wy, ..., 5} with s ¢ {s; +wy, — 1,...,5;} if vy € H.

Let prove that af/' for all vy € H and all s € {s; + wy — 1,...,s;} are equivalents. Consider a
demand k" with vy € H and a slot 5" € {s; + wyp — 1,...,s;}. For that, we consider a solution
S'? = (B2, 5'?) in which

— a feasible path EE is assigned to each demand k € K (routing constraint),

— a set of last-slots S}? is assigned to each demand k € K along each edge e € E}? with [S}?] > 1
(contiguity and continuity constraints),

—{s —wp+1,.,8N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S{? and
s” € S}? with E{2 N El? # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeKeeElz {s' € Sk , 87 €{s —wr+1,....,8}| <1 (non-overlapping constraint),

— and {s —wk/—l—l 8" {s” —wi+1,...,8"} = 0 foreach k € K and s” € S}? with EL2NEZ #0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots Si? assigned to the demand &’ in the solution S12),

— and there is |H|T*1 demands H from the odd-hole H (i.e., vy € H C H s.t. the demand k selects
a slot s as last-slot in the solution §'? with s € {s; + wy —1,..., s}, i.e., s € S}? for each node
v, € H, and for each s’ € S}2 for all vy € H \ H we have s ¢ {si+wp —1,...,8;}.

S'2 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
~E
(2)-(12). Hence, the corresponding incidence vector (25, 25") is belong to F and then to FG

given that it is composed by >, S sitwp—1 2k = |H‘ ! Based on this, we distinguish two
cases:

— without changing the paths established in S'?: we derive a solution S'3 from the solution S'2
as belows

e without changing the established paths for the demands K in the solution S12, i.e., E,ig’ =
E}? for each demand k € K,

e remove the last-slot § totally covered by the interval I and which has been selected by a
demand k; € {vg,, ..., vk, } in the solution §'? (i.e., 5 € Si? and 5 € {s; + wy, + 1, ..., 5;})
s.t. each pair of nodes (vjs,vy;) are not linked in the odd-hole H with j # 4,

e and select a new last-slot §' ¢ {si + wk, +1,...,s;} for the demand k; i.e., S;* = (S}2 \
{8}) U{5'} st. {&/ —wy, — ~’}ﬁ{s—wk—l—l s}-@foreachkeKandSGS
with E}3 N E,i?’ # (Z)

e and add the slot s to the set of last-slots Sj? assigned to the demand &’ in the solution
S12 i, SEP =S U{s'},

e without changmg the set of last-slots assigned to the demands K \ {k’, k;}, i.e., S{* = S}?
for each demand K\ {¥’, k;}.

The solution S'3 is clearly feasible given that

e a feasible path F}? is assigned to each demand k € K (routing constraint),

e a set of last-slots S,? is assigned to each demand k € K along each edge e € E,i?’ with
|S}3| > 1 (contiguity and continuity constraints),

o {5’ — wk + 1,0, 8N {s” —wg +1,...,8"} = 0 for each k, k' € K and each s’ € S}3 and
s” € SiP with E}3 N E}? # 0, ie., for each edge e € E and each slot s” € S we have
D keK, cemls l{s' € 5}3 ,s” e{s —wg+1,...,5'} <1 (non-overlapping constraint).

E ~E
The corresponding incidence vector (x 313,2513) is belong to F' and then to ng given that it
is composed by Y, <y Yol i, 12k = |H| L We have so
12 13 2 12 ’ ) .
uxs + crzs = ;w:s +025 = ,ua:Sl +025 + af, + aif} - O’?.

This implies that O’ = 0’ o " for vk, Vi € H given that ¢ = 0 for all demands k € K and all
slots s € {wy, ..., 5} w1ths§é{sz—|—wk+1 Sj}lkaEH.
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— with changing the paths established in S'2: we construct a feasible solution &'*3 derived from
the solution S'? as belows

e without changing the established paths for the demands K \ K in the solution S'2, i.e.,
E}3 = E}2 for each demand k € K \ K,

e and with changing the established paths for the demands K in the solution S'2 to a new
paths E}!3 for each k € K st {s"—wp —1,....,"}N{s—wp+1,...,s} = 0 for each k” € K
and s” € 537 and s € S;* with > N E!3 £ 0,

e remove the last-slot § totally covered by the interval I and which has been selected by a
demand k; € {vg,, ..., vk, } in the solution §'? (i.e., 5 € Si? and 5" € {s; + wy, + 1, ..., 5;})
s.t. each pair of nodes (vjs,vy;) are not linked in the odd-hole H with j # 4,

e and select a new last-slot & ¢ {s; + wy, +1,...,s;} for the demand k; i.e., S;!* = (532 \
(5HU{} st {& —wy, — 1,..,8IN{s—wp+ 1,....,s} =0 for each k € K and s € 5}?
with E13 N E,’is £,

e and add the slot s’ to the set of last-slots S,i? assigned to the demand £’ in the solution
S12 e, Sp3 = S2U{s'},

e and without changing the set of last-slots assigned to the demands K \ {k’, k;}, i.e., S}1% =
S}2 for each demand K \ {k’, k;}.

The solution S*3 is clearly feasible given that

e a feasible path F}'3 is assigned to each demand k € K (routing constraint),

e a set of last-slots S,'j?’ is assigned to each demand k£ € K along each edge e € E,’€13 with
|S;13] > 1 (contiguity and continuity constraints),

o {s'—wp+1,...,8tN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}!* and
s” € Sii3 with B3 N E}® # 0, i.e., for each edge e € E and each slot s” € S we have
EkeK,eeE;jS {s' € S;13,s" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

’ ’ ~E
The corresponding incidence vector (z° 13, S 13) is belong to F' and then to Fg’ given that it

z
is composed by > D 2 = =L 1t follows that
p y v E€EH s=s;+wr—1~s — 2
12 12 713 /13 12 12 ’ A .
,uxs +o02° = ums +02% " = uxs +02° + Uf, + aiff — a?’

D D D D D

keK e€E(py) kek ¢’ €E(p})

This implies that a? = Uf/, for vy, , vy € H given that 0¥ = 0 for all demands k¥ € K and all
slots s € {wg, ..., 5} with s ¢ {s; + wy + 1,...,s;} if vy € H, and p¥ = 0 for all the demand
k € K and all edges e € E'\ (E} U E¥).

Given that the pair (vg, vg) are chosen arbitrary in the odd-hole H, we iterate the same procedure
for all pairs (vg, vg) s.t. we find

k

Os

= 05, for all pairs (vg, v ) € H.

Consequently, we obtain that o = p for all v, € H and all s € {s; + wg — 1,...,5;}.
On the other hand, we ensure that all the edges e € Eé“ for each demand k are independants s.t.
for each demand k € K we have

k, K,
D= Nt Y (- =0.

ee E(’f ee E(’f eeE(’f

The only solution of this system is p¥ = fyf “ for each e € Ef for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

pk =~7¢, for all k € K and all e € Ef,

We re-do same thing for the edges e € Ef for each demand k which are independants s.t. for each
demand k € K we have

k k.
D= w = Y () =0

eEE{C eEE{c eEE‘{C
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The only solution of this system is u* = fyg “ for each e € EY for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

pk =5°, forall k € K and all e € E¥,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkl

wp—1 .
St 3ok S et ok =0
s=1 s=1 s=1

The only solution of this system is o% = 73 ® for each s € {1,...,wy — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all &’ € K \ {k}. We then get that

=% forall ke K and all s € {1,...,wj, — 1}. (43)

We conclude that for each k € K and e € E

k,e

, ifee EY,
pt =~k ife e EF,
0, otherwise,
and for each k € K and s € S
S i s e {1, ., wp — 1,
of = pifvy € Hand s e {s; +wp—1,...,s;5},

0, otherwise.

As a result ( Z Z pﬂf + Q.

v €H s=s;+wr—1
Theorem 4. Let H be an odd-hole, and C' be a clique in the conflict graph G’f with

- |H| > 5;

and |C| > 3,

and HNC =0, ~

— and the nodes (vy,vy) are linked in GE for all vy € H and vy € C.

Then, the inequality (27) is facet defining for P(G, K,S) if and only if

— for each node vy in G¥ with vpr ¢ HUC and C U {vp} is a clique in G¥, there exists a

subset of nodes H C H of size le_ s.t. HU {vy} is stable in G¥,
— and there does not exist an interval I' of contiguous slots with I C I' s.t. H and C define also
an odd-hole and its connected clique in the associated conflict graph GE,.

Proof. Neccessity.

— Note that if there exists a node vg» ¢ HUC in GIE s.t. vg» is linked with all nodes v, € H
and all nodes vy € C. This implies that the inequality (27) is dominated by the following

inequality
s; 55
Lk LI e [H -1
zZg + zs, + Zg < N
v €H s=s;+wr—1 v, €C 8'=s;+w; —1 s'=s;t+wg»—1

— if there exists an interval I’ of contiguous slots with I C I’ s.t. H and C define also an
odd-hole and its connected clique in the associated conflict graph G‘IE, This implies that the
inequality (27) induced by the odd-hole H and clique C for the interval I is dominated by the
inequality (27) induced by the same odd-hole H and clique C for the interval I’ given that
{si+wr—1,...,s;} C I' for each k € H.
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If these cases are not verified, we ensure that the inequality (27) can never be dominated by another
inequality without modifying its right hand side. Otherwise, the inequality (27) is not facet defining
for P(G, K,S).

Sufﬁc1ency

Let FS 1.c denote the face induced by the inequality (27), which is given by

FHcf{(:cz)ePGKS > Z z§+|H‘_1Z Z zf/’:WT_l}.

v €H s=s;+wp—1 v, €C s'=s;+w,r —1

H|-1 ¢ |H|-1
In order to prove that inequality Y7, oy >0, . 1 28 2k 4 | ‘ ka/ec PO w1 2k < | ‘2

is facet defining for P(G, K,S), we start checking that F . 1s a proper face, and FH’C #*
P(G, K,S). We construct a solution S** = (E3,5') as below

— a feasible path E,i?’ is assigned to each demand k € K (routing constraint),

— aset of last-slots S}? is assigned to each demand k € K along each edge ¢/ € E? with |S}3] > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € 5} and s’ € S?
with E}3 N E # () (non- overlappmg constraint),

— and there is |2 ! demands H from the odd-hole H (ie., vy € H C H s.t. the demand k selects
a slot s as last-slot in the solution §'* with s € {s; + wy — 1,..., s}, i.e., s € S}3 for each node
v, € H, and for each s’ € S} for all vy € H \ H we have s ¢ {si+wp —1,...,8;},

— and no demand from the clique C selects a last-slot s in the interval I in the solution S*3, i.e
for each k € C and each s € S}? we have s & {s; + wg + 1,...,s; }.

b

Obviously, S'3 is a feasible solution for the problem given that it satisfies all tge colrslstraints
of our cut formulation (2)-(12). Moreover the corresponding incidence vector (x5 ,25 ") is be—

long to P(G, K,S) and then to FHC given that it is composed by > .en ZS i1 2k +

H|-1 / H|—1
l ‘2 kalecz e sitwg 17 = | |2 . As a result, FH7C is not empty (i.e., F HC # 0). Fur-
thermore, given that s € {s; +wyr —1,...,s;} for each v, € H, this means that there exists at least

one feasible slot assignment Sy, for the demands k in H with s ¢ {s;+w,—1,...,s;} for each s € S},
~E

and each vy € H. This means that Ffjg + P(G K,S).

We denote the inequality Y, oy D 2L, 1y 126 < ‘H‘ L by ax + Bz < A Let px + 0z < 7 be

a valid inequality that is facet defining F of P(G,K, S). Suppose that FH’C CF ={(z2) €
P(G,K,S) : px + oz = 7}. We show that there exist p € R and v = (71,7%2,73) (s.t. 11 €
RZkeK ‘Eg‘vaQ c RZkeK |Elf|’f}/3 c RzkeK(wkfl)) s.t. (,u’o-) = p(a’ﬂ) + 7Q7 and that

— oF = 0 for all demands k € K and all slots s € {wg,...,5} with s & {s; + wy — 1,...,s;} if
v € HUC as we did in the proof of theorem 3,

— and p* = 0 for all demands k € K and all edges e € E'\ (Ef U EY) as we did in the proof of
theorem 3,

— and o are equivalents for all v, € H and all s € {s; +wy — 1,...,5;} as we did in the proof of
theorem 3,

s.t. the solutions $°— 814 still feasible for FHcglven that it is composed by >, > w1 2o
lH‘z ! kalecz " s fwy—1 k/ = ‘H‘Tl We should prove now that ¢¥ are equivalents for all
v € C and all s € {s; + wk —1,...,s;}. For that, we consider a node vy € C and a slot

s € {s; + wr, — 1,...,s;}. For that, we consider a solution §'°® = (E'5, 515) in which

— a feasible path E}° is assigned to each demand k € K (routing constraint),

— a set of last-slots S}° is assigned to each demand k € K along each edge e € E}.° with [S}°] > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s” —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S{° and
s” € Si? with E{° N El? # 0, i.e., for each edge e € E and each slot s” € S we have
ZkeKeeElo {s' € S,~c ,80 €{s —wr+1,....,8'} <1 (non-overlapping constraint),
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—and {s' —wp +1,..,8}N{s" —w, +1,..,8"} = 0 for each k € K and s € S}° with
E N EY #0,

— and there is |H|Tl demands H from the odd-hole H (i.e., vy € H C H s.t. the demand k selects
a slot s as last-slot in the solution S'® with s € {s; + wy —1,...,s;}, i.e., s € S}5 for each node
vy € H, and for each s’ € S}? for all vy € H \ H we have s’ ¢ {s; +wpr — 1,...,5;}.

S' is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

5 ~E
(2)-(12). Hence, the corresponding incidence vector ( s" ,2515) is belong to F' and then to FgIC

H|-1 K _ |H|-1
given that it is composed by kaeH S w1 2 kol | ka/ec Zs’:s w1 7 = %
Based on this, we construct a solution S'6 derived from the solution S' as belows

— without changing the established paths for the demands K in the solution §'°, i.e., E}¢ = El5
for each demand k € K,

— remove all the last-slots §; totally covered by the interval I and which has been selected by
each demand k; € {vg,, ..., vg, } in the solution ' (i.e., 5 € Si° and 5 € {s; + wy, +1,...,5;})
for each k; € {viy, ..., Vg, }s

— and select a new last-slot 8 ¢ {s; + wg, + 1,...,5;} for each k; € {vg,,..., v, } ie., S0 =
(S2\{3: ) U{5} st {5 —wp, — 1,.., 8} N{s—wp +1,...,s} = 0 for each k € K and s € S},°
with E}S N ELS # 0 for each k; € {vg,, ..., vk, },

— and add the slot s’ to the set of last-slots Si? assigned to the demand k' in the solution S'?,
ie, S =S uU{s},

_ without changmg the set of last-slots assigned to the demands K \ {k’, k;}, i.e., S}¢ = S} for
each demand K \ {k', k;}.

The solution S8 is clearly feasible given that

— a feasible path F} is assigned to each demand k € K (routing constraint),

— a set of last-slots S}° is assigned to each demand k € K along each edge e € ELS with [S}6] > 1
(contiguity and continuity constraints),

—{s = wk + 1,8t N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S5 and
s" € Si¢ with E{S N ElS # 0, ie., for each edge e € E and each slot s” € S we have
ZkeKeeElﬁ s € Sk ,8” e{s —wr+1,..,8} <1 (non-overlapping constraint).

. . . 16 16
The corresponding incidence vector (z5 25 )

8j k [H|[-1 |H| 1
composed by >, i Do ls fu—1% T 5 2ouec > os, w1 28 = . We have so

~E
is belong to F' and then to FgIC given that it is

s T
15 15 16 16 15 15 ’ ki ki
uxS +o02° = uxs +025 = ums +02° + o'f, + g 0§; — E O+

This implies that »;_; a~ = ok, , for vy € H given that 0¥ = 0 for all demands k € K and all
slots s € {wg, ..., s}w1ths¢{sz—|—wk—|—l Sj}lkaEHUC

Given that the vy and s' € {s; + wir +1,...,5;} are chosen arbitrary in the clique C, we iterate
the same procedure for all pairs vy € C' and all " € {s; +wp +1,...,s;} s.t. we find

—1
Jor all vy € Cand ¢ € {s; + wp +1,...,8;}.

As a result,

= crf/l,for all (vg,vp) € Cand s € {s; + wp +1,...,s;} and " € {s; + wyr + 1, ..., 5, }.

Consequently, we obtain that af,l = p% for all vy € C'and all §" € {s; + wir — 1,...,5;}.
Furthermore, we ensure that all the edges e € E{f for each demand k are independants s.t. for each
demand k € K we have

", k.
D= o = Y (wE-w) =0

ee E(’f ee E(’f eeE(’f
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The only solution of this system is p¥ = fyf “ for each e € Ef for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

pF =% forall k € K and all e € EF,

We re-do the same thing for the edges e € E¥ for each demand k which are independants s.t. for
each demand k € K we have

D= = > (w25 =0

ecEY ecEY c€EEY

The only solution of this system is p* = 7§ *“ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pk =~5°, forall k € K and all e € E¥,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkfl

- e—1
Z Z 7= ) (08 =5 =0
s—1 s=1

s=1

The only solution of this system is o% = 73 * for each s € {1, ...,wy, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all &’ € K \ {k}. We then get that

ok = %’)f’s, for all k € K and all s € {1,...,w, — 1}. (44)
We conclude that for each k € K and e € F
e if e € BE,

He = vg’e, if e € E¥,

0, otherwise,
and for each k € K and s € S

%I,f’s,if se{l, ..., wg — 1},
p,if vy € H and s € {s; +wp — 1,...,s;},

k
o H| -1
) pL,ikaEC’andsE{si—l—wk—l,...,sj},

0, otherwise.

As a result ( Z Z pBY + |H|T_1 Z i: pﬁff + Q.

v €H s=s;+wr—1 v €C s'=s;+wyr—1

5.4 Slot-Assignment-Odd-Hole Inequalities

Theorem 5. Let H be an odd-hole in the conflict graph ég with |H| > 5. Then, the inequality
(31) is facet defining for P(G, K,S) iff

— for each node v o ¢ H in GE, there exists a node vy, . € H s.t. the induced graph GE((H \
{vk,s}) U{vir s }) does not contain an odd-hole,

— and there does not ezist a node vy o ¢ H in C;’g 5.t v ¢ s linked with all nodes vy, s € H,

— and there does not exist an interval of contiguous slots I = [s;, s;] C [1, 5] with

e [ min (s —wy+1), maX]CI
vk, s€H sE€EH

o and wg +wg > |I| + 1 for each (v, vg:) linked in H,
o and 2wy > |I| + 1 and wg < |I] for each v, € H.
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Proof. Neccessity.
We distinguish the following cases:

— if for a node vy o ¢ H in GE, there exists a node vy, € H s.t. the induced graph GE(H \
{vk,s} U{vr ¢ }) contains an odd-hole H = (H \ {vi,s}) U {vgr s }. This implies that the
inequality (31) can be dominated using some technics of lifting based on the following two

k H|-1 % H'|—1

zg < |H] 7and ka/ys/GH’ Zgr S%

inequalities ), 2y <5

— if there exists a node vy & ¢ H in GE s.t. vy & is linked with all nodes vy s € H. This implies
that the inequality (31) can be dominated by the following valid inequality

e |HI-1 o JH|-1
E , < .
zg + 5 Zg < B
vk, s €EH

— if there exists an interval of contiguous slots I = [s;, s;] C [1,5] with
i - 1), c I,
T
o and wy + wy > |I| + 1 for each (vy,vy) linked in H,
e and 2wy > |I| + 1 and wy, < |I] for each vy, € H.

This implies that the inequality (31) is dominated by the inequality (26).

If no one of these cases is verified, the inequality (31) can never be dominated by another inequality
without changing its right hand side. Otherwise, the inequality (31) cannot be facet defining for
P(G,K,S).
Sufficiency.

~E
Let F gs denote the face induced by the inequality (31), which is given by

FG® ={(x,2) € P(G,K,S): 3 k= |H|2_ !

vg, s €H

}.

In order to prove that inequality >, 2k < % is facet defining for P(G, K,S), we start

~E ~E
checking that ng is a proper face, and FSS # P(G,K,S). We construct a solution S'6 =
(E'6, S16) as below

— a feasible path Elg" is assigned to each demand k € K (routing constraint),
— aset of last-slots 516 is assigned to each demand k € K along each edge ¢’ € E}S with [S16] > 1
(contiguity and continuity constraints),
—{s—wr+1,..,s}N{s —wp +1,...,5'} =0 for each k, k' € K and each s € S}° and s’ € Si9
with E}6 N ElS # 0 (non-overlapping constraint),
[H|-1

— and there is “=— pairs of demand £ and slot s from the odd-hole H (i.e., vz s € H s.t. the

demand k selects the slot s as last-slot in the solution S'® denoted by Hig, i.c., s € S}6 for
each vy s € Hg, and s’ ¢ Si¢ for all vy € H \ Hig.

Obviously, S is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (ﬂcsm7 2516) is belong
~E ~E
to P(G, K,S) and then to FSS given that it is composed by >,y 2k = |H|T_1 As a result, FIC;S

~NE
is not empty (i.e., FSS # 0). Furthermore, given that s € {wy, ..., 5} for each vy s € H, this means
that there exists at least one feasilgle slot assignment Sy for the demands &k in H with s ¢ Sy for

each v; s € H. This means that Fgg # P(G,K,S).

Let denote the inequality ka,SeH 2k < % by ax + fz < A. Let px + 0z < 7 be a valid
inequality that is facet defining F of P(G, K,S). Suppose that FS? C F={(z,2) € P(G,K,S) :
px 4+ oz = 7. We show that there exist p € R and v = (y1,72,73) (s.t. 71 € R2Zkex |E§|,’}/2 €
RXkex ‘Ef‘,"}% e REvex (k=) st (u,0) = p(a, B) +vQ, and that

— oF =0 for all demands k € K and all slots s € {wy, ..., 3} with vy s ¢ H,
— and pF =0 for all demands k € K and all edges e € E \ (E§ U E}),



On the Facial Structure of the C-RSA Polyhedron: Part IT 39

— and af are equivalents for all vy, s € H.

We first show that ¥ = 0 for each edge e € E\ (E¥ U E}) for each demand k € K. Consider a
demand k € K and an edge e € E \ (E} U E¥). For that, we consider a solution §'*¢ = (E'16 §16)
in which

— a feasible path E,’jﬁ is assigned to each demand k € K (routing constraint),

— a set of last-slots S;!¢ is assigned to each demand k € K along each edge e € E}I6 with
|S;16| > 1 (contiguity and continuity constraints),

—{s —wp+ 1,8 N{s" —wp +1,...,5"} = 0 for each k, k' € K and each s’ € S}!¢ and
s” € Si6 with B} N ELS £ 0, ie., for each edge e € E and each slot s € S we have
ZkeKeeE;jG [{s" € S}16 5" € {s' —wy +1,..., '} <1 (non-overlapping constraint),

— the edge e is not non-compatible edge with the selected edges €’ € E16 of demand k in the
solution 816/ i.e., Yeeppele +le < lp. As a result, E}6 U {e'} is a feasible path for the
demand k,

|H]-1

— and there is “=— pairs of demand £ and slot s from the odd-hole H (i.e., vx s € H s.t. the

demand k selects the slot s as last-slot in the solution S’'® denoted by Hig, ie., s € S,’€16 for
each vy s € Hig, and s’ ¢ S;30 for all vy o € H \ Hye.

816 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

’ ’ ~E
(2)-(12). Hence, the corresponding incidence vector (z° 28 16) is belong to F' and then to ng

Sk [H][=1
vg,s€H “s T2

from the solution &6 by adding an unused edge e € E \ (E§ U E¥) for the routing of demand k in
K in the solution §' which means that E}!” = E;1® U {e}. The last-slots assigned to the demands
K, and paths assigned the set of demands K \ {k} in S’*® remain the same in the solution S’'7,
ie., ST = 516 for each k € K, and E}X" = EJ}6 for each k' € K\ {k}. §’'7 is clearly feasible given
that

given that it is composed by > . Based on this, we derive a solution 817 obtained

— and a feasible path E}!7 is assigned to each demand k € K (routing constraint),

— a set of last-slots S;!7 is assigned to each demand k € K along each edge e € E}!7 with
|S;17| > 1 (contiguity and continuity constraints),

—{s —wp +1,..,8}N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S;}7 and
s7 € ST with BT N EXT # 0, ie., for each edge e € E and each slot s” € S we have
ZkGK,eGE,’c” [{s" € S}}7,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

’ / ~E
The corresponding incidence vector (z° 17, 28 17) is belong to F' and then to ng given that it

is composed by >°, g zk = ‘H‘;l. It follows that
’ ’ 17 7 ’ ’
/,Lxsm—&—o'zsm:uxsl —|—0'z$1 zuxsm—kulz—!-azsm.

As a result, p* = 0 for demand k and an edge e.

As e is chosen arbitrarily for the demand k with e ¢ EY U EF, we iterate the same procedure for
alle’ € E\ (E¥ U EY U {e}). We conclude that for the demand k

pk =0, foralle € E\ (EF UEFY).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &’ € K\ {k}
and all e € E\ (E} U EF). We conclude at the end that

ph =0, forall k € K and all e € E\ (E} U EY).

Let’s us show that o% = 0 for all k € K and all s € {wy, ..., 5} with vy s ¢ H. Consider the demand
k and a slot s’ in {wy,...,5} with vy ¢ ¢ H. For that, we consider a solution §”16 = (E”16,5716)
in which

— a feasible path E” ,lf is assigned to each demand k € K (routing constraint),
— a set of last-slots S”}f is assigned to each demand k£ € K along each edge e € E” }CG with
|5746] > 1 (contiguity and continuity constraints),
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- {s — wg + 1.} N{s” —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S71% and
€ 5710 with E”16 N E”}% # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE”iﬁ {s' € 578, € {s' —wx + 1,...,s'}| <1 (non-overlapping constraint),

—and {s' —wy + 1,...,8}N{s” —wp +1,...,8"} = 0 for each k¥’ € K and s” € S”}% with
E"16N E”1% £ () (non-overlapping constraint taking into account the possibility of addmg the
slot s’ in the set of last-slots 5”16 assigned to the demand k in the solution §”16),

— and there is one pair of demand k and slot s from the odd-hole H (i.e., vy s € H s.t. the
demand k selects the slot s as last-slot in the solution $”!6, i.e., s € S”}6 for a node vy, s € H,
and s’ ¢ S”1¢ for all vy o € H \ {vp s}

S716 s clearly feasible for the problem given that it satisfies all the constraints of cut formulation

99 99 SE
(2)-(12). Hence, the corresponding incidence vector (x5 S 16) is belong to F' and then to ng

f\HI 1

given that it is composed by > = . Based on this, we distinguish two cases:

Vi, s EHS

— without changing the paths established in §”!¢: we derive a solution S8 = (E'®, §18) from
the solution §”!¢ by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”16 (i.e., E}8 = E”}6 for each k € K), and the last—slots
assigned to the demands K \ {k} in §”'¢ remain the same in the solution S'® i.e., S} = 53
for each demand k' € K \ {k}, and S}® = S716 U {s'} for the demand k. The solutlon S8 is
feasible given that

e a feasible path E,is is assigned to each demand k € K (routing constraint),
e a set of last-slots S}® is assigned to each demand k € K along each edge e € E}® with
|S}8| > 1 (contiguity and continuity constraints),
. {s’ — wk +1,..,8}N{s” —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}® and
€ S}¥ with E}® N EL} # 0, ie., for each edge e € E and each slot s € S we have
ZkeK ccls {s' € S}, s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

~E
The corresponding incidence Vector (x ‘518,2318) is belong to F' and then to ng given that it

is composed by >, oy 2k = ‘H‘ . We then obtain that

» 16 16 18 18 » 16 16
,uxs +025 " = ,uxs +025 = ,uxs +025 + af,.

It follows that o = 0 for demand k and a slot s’ € {wy, ..., 5} with v o ¢ H.

— with changing the paths established in S”!6: we construct a solution S’*® derived from the
solution S”'¢ by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K C K in 8”6 (i.e., E}!® = E”}6 for each k € K \ K, and

E}'8 £ 710 for each k € K) s.t.

e a new feasible path Ej, 18 is assigned to each demand k € K (routing constraint),
e and {s' —wp+1,....5} N{s” —wp +1,...,57} = 0 for each k € K and ¥’ € K \ K and
each s € §7}0 and s” € §7;¢ with E}* N E”}% # 0, i.e., for each edge e € E and each slot
s” €S we have 37y g cepps s € 8710,8" € {s' —wp + L, s'H A Yer\ g eeris {5 €
5716 5" € {s' —wy +1,..., '} <1 (non-overlapping constraint),
eand {s' —wp +1,...8} N {s” —wp +1,...,8”"} = 0 for each &’ € K and s” € §7}% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots 5716 assigned to the demand k in the solution &”'6).
The last-slots assigned to the demands K\ {k} in §”'¢ remain the same in $"'8, i.e., $7}9 = S8
for each demand k' € K \ {k}, and S}!® = 57;° U {s} for the demand k. The solutlon 8’18
clearly feasible given that
e a feasible path Ej; 18 is assigned to each demand k € K (routing constraint),
e a set of last- slots S;18 is assigned to each demand k € K along each edge e € E}!'® with
IS8 > 1 (contiguity and continuity constraints),
o {s'—wp+1,....8}N{s" —wp +1,..,8"} =0 for each k,k’ € K and each s’ € S}!® and
s” e S w1th E’18 N E® + 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;jS s € 918, s” e{s —wp+1,..,5} <1 (non-overlapping constraint).
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’ ’ ~E
The corresponding incidence vector (z° 18, 28 18) is belong to F' and then to ng given that it

. ! k _ |H|-1 5
is composed by >, o 25 = —5—. We have so

» 16 9 16 718 718 5 16 95 16 7. 1.
,uxs +025 = ,uxs +025 = ,LL:ES +025 + Uf, - E E ulg + E g ,u’(f/.

k€K ecE S keK e'€E}8

It follows that 0¥, = 0 for demand k and a slot s’ € {wy, ..., 3} with vy o ¢ H given that pu* =0
for all the demand k € K and all edges e € E \ (E} U EY).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., §} of demand k with vy o ¢ H s.t. we find

ok =0, for demand k and all slots s € {wy, ..., 5} with vgs & H.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

o =0, for all K € K \ {k} and all slots s € {wy, ..., 5} with vy, ¢ H..
Consequently, we conclude that
af =0, for all k € K and all slots s € {wy, ..., 5§} with vy s ¢ H.

Let’s prove that o for all v, € H are equivalents. Consider a node v, in H. For that, we
consider a solution §'¢ = (E'6,5') in which

— a feasible path E’iG is assigned to each demand k € K (routing constraint),

— aset of last-slots 518 is assigned to each demand k € K along each edge e € E}6 with |S}6] > 1
(contiguity and continuity constraints),

—{s —wp+1,..,8}N{s" —wp +1,....8"} = 0 for each k, k' € K and each s’ € 5’,%6 and
s” € SIS with E} N ES # 0, ie., for each edge e € E and each slot s € S we have
ZkeK’eeEiﬁ {s' € S’,i‘}, s €{s —wr+1,...,8} <1 (non-overlapping constraint),

—and {s—wg+1,....;s}N{s' —wi +1,...,8'} = 0 for each k € K and s € 510 with E;SNELS # 0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S16 assigned to the demand %’ in the solution E~,i6),

— and there is % pairs of demand k and slot s from the odd-hole H (i.e., vy s € H s.t. the

demand k selects the slot s as last-slot in the solution §'® denoted by Hjg, i.e., s € S}6 for
each vy s € H{g, and s’ ¢ Sp9 for all vy o € H \ Hig.

S16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

~ ~ ~E
- . ence, € corresponding imclaence vector (o 167 z ' 1S belong to al en to
2)-(12). Hence, th ding incid tor (z5°°,25°) is belong to F and then to Fij°

k_ |H

given that it is composed by > zZ8 = |271. Based on this, we distinguish two cases:

v,s€H s
— without changing the paths established in S'®: we derive a solution S = (E'?, $19) from the
solution S'6 by

e without modifying the paths assigned to the demands K in S6 (i.e., E,ig = E;G for each
ke K),

e and the last-slots assigned to the demands K \ {k, &’} in S'® remain the same in S'7, i.e.,
Si$ = S19 for each demand k” € K \ {k,k'}, where k is a demand with vy, , € H}s and
s € S,iﬁ 8.t. U/ ¢ is not linked with any node vy o € }NI{G \ {vk,s},

e and adding the slot s’ as last-slot to the demand ¥, i.e., S} = S}0 U {s'} for the demand
K,

e and modifying the last-slots assigned to the demand k£ by adding a new last-slot s and
removing the last slot s € S}0 with vy o € H and vy 5 ¢ H s.t. Sp° = (S30\ {s}) U {5} for
the demand k s.t. {§ —wp+1,...,5}N{s' —wi +1,..., '} = 0 for each k' € K and s’ € S}7
with E19 0 EL9 £ 0.
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The solution S'? is feasible given that
e a feasible path F}? is assigned to each demand k € K (routing constraint),
e a set of last-slots S}? is assigned to each demand k € K along each edge e € E}? with
|S}9] > 1 (contiguity and continuity constraints),
o {5 — wk + 1,0, 8N {s” —wy +1,...,8"} = 0 for each k, k' € K and each s’ € S} and
s7 € S with E19 N E19 # (), i.e., for each edge e € FE and each slot s” € S we have
> kek, cemlo |{s' € 5}° ,s” e{s —wg+1,...,5} <1 (non-overlapping constraint).

~E
The corresponding incidence vector (xsw, zsw) is belong to F' and then to ng given that it

is composed by ka cH2r = ‘H‘ . We then obtain that

5"16 8"16 519 519 8"16 5"16

prs ozt =prt +o0z5 =puxc +o0z5 + 0’5 - af + aif.

It follows that 0% = o* for demand &’ and a slot s' € {wy, ..., 5} with v o € H given that
of =0for vz ¢ H.

with changing the paths established in S': we construct a solution S derived from the
solution S'6 by

e modifying the paths assigned to a subset of demands K € K in S'6 (i.e., E{1? = E}6 for
each k € K\ K, and E}!® # E}S for each k € K),

e and the last-slots assigned to the demands K \ {k, %’} in S'® remain the same in §’'9, i.e.,
Sk,, = S,’}g for each demand k” € K \ {k, k’'}, where k is a demand with v s € Hyg and
s € S s.t. Up ¢ is not linked with any node vy o € Hig \ {vg, s},

e and adding the slot s’ as last-slot to the demand &', i.e., S = S}0 U {s'} for the demand
K,

e and modifying the last-slots assigned to the demand k by adding a new last-slot § and
removing the last slot s € S{% with vy, ; € H and vy, 5 ¢ H s.t. S = (516 {s}) U {5} for
the demand k s.t. {§—w; +1, .. s}ﬂ{s —wi +1,. ’}—(Z)foreachk'eKands € S0
with E} N B39 #£ 0.

The solution S’*° is clearly feasible given that

e a feasible path F}!? is assigned to each demand k € K (routing constraint),

e a set of last- slots S’lg is assigned to each demand k € K along each edge e € E’19 with
|S;19] > 1 (contlgulty and continuity constraints),

o {8’ —wg+ 1y, 8N {s" —wp +1,...,87} = 0 for each k, k' € K and each s’ € S}!? and

€ S Wlth E’19 NELY # 0, ie., for each edge e € E and each slot s” € S we have
EkeK,eeE,;w {s' € S;19, s” e{s —wp+1,...,8} <1 (non-overlapping constraint).

7 ’ ~E

The corresponding incidence vector (xS 19, 28 19) is belong to F' and then to ng given that it
is composed by >, oy 2k = ‘H‘ . We have so
uzs"lﬁ + UZs"lG _ ,unrsllg + O-Zsllg _ uxs"lﬁ + 0-2316 + O-f// - O-f + U§
516 8/19
S ID MRS 3B pr
k€K ecE}S keK e€Ej1®

It follows that 0% = o* for demand k’ and a slot s’ € {wy, ..., 5} with v o € H given that

of =0for v,z ¢ H,and pf =0forall k € K and all e € E\ (Ef U EY). For that, we consider
a solution 80 = (E"?°,8"?Y) in which
e a feasible path F}?" is assigned to each demand k € K (routing constraint),
e a set of last-slots S;2° is assigned to each demand k € K along each edge e € E;?° with
|5;2°] > 1 (contiguity and continuity constraints),
o {s'—wip+1,....8tN{s" —wp +1,..,8} =0 for each k,k’ € K and each s’ € S}?" and
s” € §%0 w1th E'20 NEZY # 0, ie., for each edge e € E and each slot s” € S we have
D okeK, cc B2 s € 929, s” e{s —wp+1,..,5} <1 (non-overlapping constraint),
e the edge e is not non-compatible edge with the selected edges ¢’ € E;2° of demand k in the
solution S, i.e., Ze'eE;fO ler +1e < lg. As a result, E?° U {e} is a feasible path for the
demand k,
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e and there is |H‘2_1 pairs of demand % and slot s from the odd-hole H (i.e., vy s € H s.t. the
demand k selects the slot s as last-slot in the solution S8"?° denoted by Hayyg, i.e., s € Si2°
for each vy, € Hag, and &' ¢ 520 for all vy o € H \ Hyp.

8’V is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (25 ,23/20) is belong to F' and then to
~E

ngc given that it is composed by ka cH % ko ‘H| 1 ka/ o z _ IHI ! Based on this, we

derive a solution §?! obtained from the solution &’ 20 by adding an unused edge e € E\(ESUEY)
for the routing of demand k in K in the solution $?* which means that EZ' = E;?° U {e}. The
last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in &*°
remain the same in the solution 82!, i.e., S = ;20 for each k € K, and EZ! = E;° for each
k' € K\ {k}. 8?! is clearly feasible given that
e and a feasible path E?! is assigned to each demand k € K (routing constraint),
e a set of last-slots 521 is assigned to each demand k € K along each edge e € E?! with
IS > 1 (contlgulty and continuity constraints),
o {s' —wp+1,..,8}N{s” —wp +1,..,8"} =0 for each k,k’ € K and each s’ € S! and
s” € S with EF' N EZ! # 0, i.e., for each edge e € E and each slot s” € S we have
D kek, ccED |{s' € S ,s” e{s —wp+1,...,5} <1 (non-overlapping constraint).

21 21
The corresponding incidence vector (x5 25 )

IH' ! ka/ il = |H‘ L Tt follows that

~E
is belong to F' and then to ngc given that it

is composed by ka €H ?s t

120 120 21 21 120 ’
/ws +02° = M:rs +02° = u:rs + ,u’g +02°

As a result, p* = 0 for demand & and an edge e.

Let’s us show that o® = 0 for all k € K and all s € {wg,...,5} with vz ¢ H U C. Consider
the demand k and a slot s’ in {wg,...,5} with vy ¢ H U C. For that, we consider a solution
S” 20 _ (E” 20, S” 20) in which

— a feasible path E” io is assigned to each demand k € K (routing constraint),

— a set of last-slots S72Y is assigned to each demand k € K along each edge e € E”2° with
|5729] > 1 (contiguity and continuity constraints),

— {s — wy + 1., dtN{s” —wy +1,..,8"} = 0 for each k,k’ € K and each s’ € S"3° and

€ 5720 with E”2° N E"39 # (), ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE”iO {s' € 8720, 87 € {s' —wp + 1, ..., s'}| <1 (non-overlapping constraint),

— and {s' — W +1,..,8N{s" —wp +1,. = () for each ¥ € K and s” € S”% with
E”20 N E” #0 (non overlappmg constramt takmg into account the possibility of addmg the
slot s in the set of last-slots S”2° assigned to the demand k in the solution §”29),

— and there is one pair of demand k and slot s from the odd-hole H (i.e., vy s € H s.t. the
demand k selects the slot s as last-slot in the solution $”%°, i.e., s € $”2° for a node vy, s € H,
and s’ ¢ S”20 for all vy o € H \ {vps}-

8720 is clearly feasible for the problem given that it satisfies all the constraints of cut formulatlon

(2)-(12). Hence, the corresponding incidence vector (25", 25" is belong to F and then to FH =

\HI 12 k’lel 1

given that it is composed by ka cH %S ky vpr 1 €C Zs’

two cases:

. Based on this, we distinguish

— without changing the paths established in $”%°: we derive a solution §*2 = (E??,$?2) from
the solution 8720 by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”20 (i.e., Ef? = E”0 for each k € K), and the last-slots
assigned to the demands K \ {k} in §”?° remain the same in the solution §%? i.e., $”2? = S2?
for each demand k' € K \ {k}, and S?? = 730 U {s'} for the demand k. The solution %2 is
feasible given that

e a feasible path E,%z is assigned to each demand k € K (routing constraint),
e a set of last-slots 5,32 is assigned to each demand k € K along each edge e € E,%z with
|S#2| > 1 (contiguity and continuity constraints),
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o {s'— wk + 1,0, 8N {s” —wg +1,...,8"} = 0 for each k, k' € K and each s’ € 572 and
s” € S with E#? N E# # 0, i.e., for each edge e € E and each slot s” € S we have
D keK, ccB2? |{s' € 532 ,s” e{s —wg+1,...,5'} <1 (non-overlapping constraint).

~E
The corresponding incidence vector (mszz,zszz) is belong to F' and then to ngc given that it

is composed by >, oy 2 by IH' ! Evk, cC 2 = |H‘ L 'We then obtain that

» 20 220 22 22 » 20 220
,ua:s —l—azs :,uxs +02° :,uxs —l—azs +

o
It follows that % = 0 for demand k and a slot s’ € {wy, ..., 8} with v s ¢ H UC.

— with changing the paths established in S”2°: we construct a solution S’?? derived from the
solution S”2° by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K € K in 8”20 (i.e., E{?? = E”30 for each k € K \ K, and
ER? # E"30 for each k € K) s.t.

e a new feasible path E}?? is assigned to each demand k € K (routing constraint),
e and {s' —wp+1,....,5} N {s” —wp +1,...,5”} = 0 for each k € K and ¥’ € K \ K and
each s’ € 8720 and s” € S7%) with E22 N E”%) # 0, i.e., for each edge e € E and each slot
s” €S we have 3y i cepre {5 € 5720 " e {s' —w +1,..., '} + Yker\Recpo [{s' €
5720 87 € {s' —wy + 1,...,8'}| < 1 (non-overlapping constraint),
eand {s' —wp +1,...8} N {s” —wp +1,...,8”} = 0 for each &’ € K and s” € §73% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S729 assigned to the demand k in the solution &”2).
The last-slots asmgned to the demands K\ {k} in §”2° remain the same in §'??, i.e., S7%9 = 522
for each demand k' € K \ {k}, and S;?? = S§7%° U {s} for the demand k. The solutlon 8’22 is
clearly feasible given that
e a feasible path E,’c22 is assigned to each demand k € K (routing constraint),
e a set of last-slots 57?2 is assigned to each demand k € K along each edge e € E;*? with
|S;22] > 1 (contiguity and continuity constraints),
D {s’ —wp 4+ 1,.., 8N {s" —wp +1,...,87} = 0 for each k, k' € K and each s’ € S}?? and
€ S22 with E22NEZ £ 0, ie., for each edge e € E and each slot s € S we have
EkeK,eeE,;” {s' € S;?2,s" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

! ’ N E
The corresponding incidence vector (z° #2S 22‘) is belong to F' and then to ngc given that
it is composed by >_, .y 2k + |H‘271 ka/ eC 25 ‘HI L. We have so
» 20 220 122 122 » 20 20 7. T.
,uxs +025 = ,ua:s +02°5 = ,uxs +0257 + Uf, - Z Z u’; + Z Z ,uf,.

heR ecE20 ke e/ €Ej??

It follows that 0%, = 0 for demand k and a slot s’ € {wy, ..., 5} with vy ¢ ¢ H U C given that
k =0 for all the demand k € K and all edges e € E \ (E§ U E}).

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., §} of demand k with v, ¢ ¢ H UC s.t. we find

0% =0, for demand k and all slots s € {wy, ..., 5} with v, o ¢ HUC.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

K= 0, for all k¥ € K \ {k} and all slots s € {wy, ..., 5} with v s € HUC..

Os

Consequently, we conclude that

ok =0, for all k € K and all slots s € {wy, ..., 5} with v, ¢ HUC.

Let’s prove that o for all vg,s € H are equivalents. Consider a node vy & in H. For that, we
consider a solution §%° = (E?°,5%) in which
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— a feasible path E‘,%O is assigned to each demand k € K (routing constraint),

— aset of last-slots S7° is assigned to each demand k € K along each edge e € E?° with |S7°| > 1
(contiguity and continuity constraints), ~

—{s' —wp + 1,..., 8} N {s" —wp + 1,...,8"} = 0 for each k, k' € K and each s’ € S and
s’ € 5’,%9 with Eio N E,%P # (), i.e., for each edge ¢ € E and each slot s € S we have
Yker,ccir {5 € 520" € {s' —wy + 1,...,8'} <1 (non-overlapping c~0nstraint2, )

—and {s—wip+1,....s}N{s'—wp +1,...,8'} = 0 for each k € K and s € S?° with EX’NEZ £ 0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S7 assigned to the demand &’ in the solution S%°),

— and there is |H‘2_1 pairs of demand k and slot s from the odd-hole H (i.e., vy s € H s.t. the
demand k selects the slot s as last-slot in the solution §?° denoted by Hby, i.e., s € S for
cach vy, . € Hby, and s’ ¢ S0 for all vy o € H \ Hpg.

S0 is clearly feasible for the problem given that it satisfies all the constraints of cut formulatlon (2)-

(12). Hence, the corresponding incidence vector (25" 520 25 ) is belong to F and then to FH - given

that it is composed by ZU)C cH ? kot |H‘ ! ka/ cC zs ‘HI L. Based on this, we distinguish

two cases:

— without changing the paths established in S?°: we derive a solution S?* = (E2?,.523) from the
solution §2° by
e without modifying the paths assigned to the demands K in §2° (ie., B = E20 for each
ke K),
e and the last-slots assigned to the demands K \ {k, &’} in $?° remain the same in §23, i.e.,
520 = Sk,, for each demand k” € K \ {k,k'}, where k is a demand with v, , € H}, and
s € S s.t. v o is not linked with any node vy o € Hbo \ {vg, st
e and adding the slot s’ as last-slot to the demand ¥, i.e., S# = S U {s'} for the demand
K
e and modifying the last-slots assigned to the demand k£ by adding a new last-slot § and
removing the last slot s € S2° with vy s € H and vy, 5 ¢ HUC s.t. S2% = (S2°\ {s}) U {5}
for the demand k s.t. {§ —wp +1,...,5} N{s —wp +1,...,8'} = V) for each k' € K and
s’ € S¥ with E¥ N EF # 0.
The solution S22 is feasible given that
e a feasible path E,%S is assigned to each demand k € K (routing constraint),
e a set of last-slots Sﬁg is assigned to each demand k£ € K along each edge e € Eg‘? with
|S23| > 1 (contiguity and continuity constraints),
. {s’ —wk+ 1., 83N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S7* and
€ SZ with EZ* N EZ # 0, ie., for each edge e € E and each slot s € S we have
ZkeK cc B2 |{s' € 33 ,s” e{s —wp+1,..,5} <1 (non-overlapping constraint).

P P ~E
The corresponding incidence vector (xS%,zS%) is belong to F' and then to ngc given that it

H'Zg + |H|271 ka/ ,eC ? k/ = lH‘ . We then obtain that

is composed by >

Vk,s €

8"20 K’

320 23 320
S S S +og — cr;C + a§.

320 823
nx +oz = ux +oz = ux +oz
It follows that crf/' = o¥ for demand k' and a slot s’ € {wy, ..., 5} with vy« € H given that
of =0forv,s ¢ HUC.
Given that the pair (vy s, vg,s/) are chosen arbitrary in the odd-hole H, we iterate the same
procedure for all pairs (vy 3, Uk s ) S.t. we find
k

oh =gk ', for all pairs (Vk,s, Uk s7) € H.

Consequently, we obtain that o¥ = p for all pairs Vk,s € H.
— with changing the paths established in S§20: we construct a solution $"2* derived from the
solution &§2° by
e modifying the paths assigned to a subset of demands K C K in 8% (ie., B = E2 for
each k € K\ K, and E{?3 # E° for each k € K),
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e and the last-slots assigned to the demands K \ {k, %’} in S?* remain the same in §’?3 i.e.,
520 = S,’ﬁ?’ for each demand k” € K \ {k,k’'}, where k is a demand with vy . € Hoo and
s € S s.t. Vg & is not linked with any node vy o € Hoyp \ {vk,s},

e and adding the slot s’ as last-slot to the demand ®, ie. , 5133 = 520U {s'} for the demand
k/

° and modifying the last-slots assigned to the demand k by adding a new last-slot § and
removing the last slot s € 520 with vy s € H and vy s ¢ HUC s.t. S2% = (S2°\ {s}) U {3}
for the demand k s.t. {§ —wr +1,...,5} N{s’ —wp + 1,...,s'} = 0 for each ¥’ € K and
s’ € $123 with EZ3 N EZ + 0.

The solutlon S is clearly feasible given that

e a feasible path Ej; 23 is assigned to each demand k € K (routing constraint),

e a set of last- slots S;?3 is assigned to each demand k € K along each edge e € E}?? with
15123 > 1 (contiguity and continuity constraints),

o {8 —wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € $;?* and
s” € S% Wlth E’23 NEZ3 # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;fS‘ {s' € 923, s” €{s —wgp+1,...,5} <1 (non-overlapping constraint).

/' ’ N E
The corresponding incidence vector (z° ¥ S 23) is belong to F' and then to ngc given that

o |H\ 1 \H| 1
it is composed by }_, .y 2 ky ZW Lec P . We have so

)

320 320 123 123 320 320 ’
uzs +02° = ,u:vs +025 = ,uaz‘s + 025 +U§, - af +0§

D ID IR D VD DN

k€K ec B3O keK e€Ej23

It follows that 0¥ = o* for demand &’ and a slot s' € {wy, ..., 5} with v o € H given that
of =0forvgs¢ HUC, and puf =0 forallk € K and alle € E\ (E¥ U E}).

On the other hand, we ensure that all the edges e € Ef for each demand k are independants s.t.
for each demand k € K we have

doub=d = Y () =0

ecEk ecEk ec Bk

The only solution of this system is p* = 7f “ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

plh =~7°, for all k € K and all e € Ef,

We re-do the same thing for the edges e € E¥ for each demand k which are independants s.t. for
each demand k € K we have

k, K,
D= > (s =0

ecEY ecEY ecEY

The only solution of this system is p* = 75 “ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pk =5, for all k € K and all e € EF,

On the other hand, all the slots s € {1,...,wy — 1} for each demand k are independants s.t. for
each demand k € K, we have

wg—1 wg—1 wg—1

dook=> e —>Z Y- =0
s=1 s=1

The only solution of this system is o = 'yg’s for each s € {1,...,w, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

of =8 forall ke K and all s € {1,...,w; — 1}. (45)
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We conclude that for each k € K and e € F

e, if e € BY
k :
e = vb¢ ife e EF

0, otherwise

and for each k € K and s € S

AES i s e {1, .., wp — 1}
oy = p,if v € H,
0,if vps ¢ H.

As aresult (u,0) = Z pBE +4Q.

vg, s €H

Theorem 6. Let H be an odd-hole, and C' be a clique in the conflict graph G’g with

- |H|25;
— and |C| > 3,

and HNC =0, R
and the nodes (Vg s, Vi sr) are linked in GE for all vy s € H and vy ¢ € C.

Then, the inequality (32) is facet defining for P(G, K,S) iff

— for each node vy ¢ in C:'E with vir o ¢ HUC and CU{vp ¢} is a clique in G’g, there exists
a subset of nodes H C H of size =L st HU {vp> o} is stable in GE,

2

— and there does not exist an interval of contiguous slots I = [s;, s;] C [1, 5] with

min (s —wi+1), max |CI,
vk,SEHUC vy, s EHUC

and w, +wg > |I| + 1 for each (vg,vg) linked in H,
and wy, +wg > |I| + 1 for each (vg,vyr) linked in C,
and wy, +wg > |I| + 1 for each v, € H and vy € C,
and 2wy, > |I| + 1 and wy, < |I| for each v, € H,
and 2wy > |I| + 1 and wy < |I| for each vy € C.

Proof. Neccessity.
We distinguish the following cases:

— if there exists a node vy o» ¢ HUC in ég s.t. vg» s is linked with all nodes v, s € H and
also with all nodes vy s € C. This implies that the inequality (32) can be dominated by the
following valid inequality

ko H[ -1 wo [HI=1 e [H[ -1
Z Zg + T Z Zgr + Tzsw S T
Uk,seH vk/,S/eC

— if there exists an interval of contiguous slots I = [s;, s,] C [1, 5] with

min (s —w;+1), max ]CI,
vg,s EHUC vg,s EHUC

and wy + wyg > |I] + 1 for each (vk, vys) linked in H,
and wy + wyr > |I] + 1 for each (vg, vir) linked in C,
and wg + wgr > |[I| + 1 for each vy, € H and v € C,
and 2wy, > |I| 4+ 1 and wy, < |I] for each v, € H,
and 2wy > |I| + 1 and wy < |I| for each vy € C.

This implies that the inequality (32) is dominated by the inequality (27).

If no one of these cases is verified, the inequality (27) can never be dominated by another inequality
without changing its right hand side. Otherwise, the inequality (32) cannot be facet defining for
P(G,K,S).
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Sufficiency.
~E
Let ngc denote the face induced by the inequality (32), which is given by

G k |H| -1 k' |H| -1
Fyo={(.2) €P(G.KS): Y i+ —5— Y zfi=—5—}
v, s €H vy o1 €C
i i ko |H|-1 K’ |H|-1 . .
In order to prove that inequality >, .y 25 + =5 ka/ Lec 2y < 5 is facet defining for

~E ~E
P(G,K,S), we start checking that FSSC is a proper face, and ngc #+ P(G, K,S). We construct a
solution §%* = (E?*, §2%) as below

— a feasible path E?* is assigned to each demand k € K (routing constraint),

— aset of last-slots S2* is assigned to each demand k € K along each edge ¢’ € E?* with |24 > 1
(contiguity and continuity constraints),

—{s—wr+1,...,s}N{s —wp +1,...,5'} = 0 for each k, k' € K and each s € S?* and s’ € S}
with B2 N EZ! # () (non-overlapping constraint),

|H‘2_1 pairs of demand k and slot s from the odd-hole H (i.e., vxs € H s.t. the

demand k selects the slot s as last-slot in the solution §?* denoted by Hay, i.e., s € S3* for
each vy s € Hay, and s’ ¢ S2* for all vy o € H \ Hag.

— and there is

Obviously, S?* is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (5, 25”") is belong to
~E ’ —
P(G, K,S) and then to ngc given that it is composed by >, Zh+ ‘H|2_1 ka/,S,eC P |H|T1

~E ~E
As a result, ngc is not empty (i.e., ngc # (). Furthermore, given that s € {wy, ..., 5} for each
vk,s € H, this means that there exists at least one feasible slot assignment Sj for the demands k

~E
in H with s ¢ Sy, for each vy s € H. This means that ngc # P(G, K,S).

Let denote the inequality ka eH zk+ |H‘2_1 ka, eC f,, < ‘H|2_1 by ax+8z < A. Let px+oz < 7

~NE
be a valid inequality that is facet defining F' of P(G, K,S). Suppose that ngc CF={(x,2) e
P(G,K,S) : px + oz = 7}. We show that there exist p € R and v = (71,72,73) (s.t. 11 €
REwex 1B0] qy € REwer 151 g € REkex(@=D) 54 (4, 0) = p(a, B) +7Q, and that

— oF =0 for all demands k € K and all slots s € {wy,...,5} with v, s ¢ HUC as done in the
proof of theorem 5,

— and p¥ = 0 for all demands k € K and all edges e € E \ (E¥ U E¥) as done in the proof of
theorem 5,

— and o¥ are equivalents for all Vk,s € H as done in the proof of theorem 5,

given that the solutions S0 — &23 still feasible given that their corresponding incidence vec-

B
tors are belong to P(G, K,S) and then to ngc given that they are composed by > ~— _p 2k +

H|-1 ©_|H|-1 ’ ;
| ‘2 dv eC k= % In what follows, we prove that o¥ are equivalents for all vy € C.

To do so, we consider a node vf/l € O, and a solution §?° = (E?°,525) in which

— a feasible path E,%5 is assigned to each demand k € K (routing constraint),

— a set of last-slots S7° is assigned to each demand k € K along each edge e € EZ° with [S2°] > 1
(contiguity and continuity constraints),

—{s' —wp + 1,..,}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S7 and
s" € S with EZ° N EZ +# 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE§5 |{s' € S#5,8” € {s' —wi +1,...,5'}| <1 (non-overlapping constraint),

—and {s—wr+1,...,s}N{s' —wp +1,...,5'} = 0 for each k € K and s € S2° with EZ°NEZ (),

— and there is % pairs of demand k and slot s from the odd-hole H (i.e., vy s € H s.t. the

demand k selects the slot s as last-slot in the solution $** denoted by Hjs, ie., s € S for
each vy s € Hbs, and s’ ¢ S for all vy o € H \ Hb.
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825 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-

5 E
(12). Hence, the corresponding incidence vector (xSZ ,2‘525) is belong to F' and then to FSSC given

IH\ 1

that it is composed by ka cH %s by Zw Lec zs, = \HI ! Based on this, we distinguish

two cases:

— without changing the paths established in S2°: we derive a solution $?% from the solution $2°
by

e without modifying the paths assigned to the demands K in §%° (i.e., 2 = EZ° for each
ke K),

e and the last-slots assigned to the demands K \ ({k € K with v, , € Hys} U {K'}) in §?°
remain the same in $%°, ie., S = S for each demand k" € K \ ({k € K with vy s €
Hys} U{k'}),

e and adding the slot s as last-slot to the demand ¥/, i.e., S2% = SZ U {s'} with vy o € C,

e and modifying the last-slots assigned to each demand k € {k € K with Vs € _H25}
by adding a new last-slot 5 and removing the last slot s, € S?° with vy s, € H and
Vks, & HUC s.t. S26 = (S75\ {s1.}) U {3} for each demand k € {k € K with Vi, € Hys)
st. {§—wp +1,.,5N{s —wp +1,..,8} = 0 for each ¥ € K and s’ € S with
EXNE #0.

The solution S29 is clearly feasible given that

e a feasible path F326 is assigned to each demand k € K (routing constraint),

e a set of last-slots S2° is assigned to each demand k € K along each edge e € EZ® with
|S26| > 1 (contiguity and continuity constraints),

o (s —wp+1,..,8}N{s” —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S° and
s” € S with E2° N EZ # 0, ie., for each edge e € E and each slot s € S we have
D okek, cc B2 [{s" € $2¢,s” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

~E
The corresponding incidence vector (:cs%,zs%) is belong to F' and then to ngc given that it
is composed by >, 2k + IH' ! ka, Lec Za = |H‘ L We have so
’LL(L-S25 + 0_2825 _ ux826 + 0_2826 _ Mx825 + 0_2825 + O—;C,/ . Z O—fk

(k,sk)EHas

-+ Z O’ék .

ke{k€K with vy _€Has}

It follows that o% = D (ksp)eflas O
given that 0~ =0 for vy 5, ¢ HUC As a result, of = pFi—

for demand k' and aslot s’ € {wy, ..., 5} with vy o € C
|H| 1

5
given that 0¥ are equivalents
for all vy 5 € H. This means that O'S/ = o¥ for all pairs (Vs vk/ys/) in C.
— with changing the paths established in S2°: we construct a solution 8¢ derived from the
solution S%° by
e with modifying the paths assigned to a subset of demands K C K in 8% (i.e., E{?6 = E2°
for each k € K \ K, and E}?® # E? for each k € K),
e and the last-slots assigned to the demands K \ ({k € K with v, € Has} U {k'}) in 825
remain the same in 8?6, i.e., S22 = S;2% for each demand k” € K\ ({k € K with vy
Hys} U {K'}),
e and adding the slot s’ as last-slot to the demand &', i.e., S;2¢ = S U {s'} with vy » € C,
e and modifying the last-slots assigned to each demand k € {l% € K withv , € I~{25}
by adding a new last-slot §; and removing the last slot s € 525 with vy, € H and
Ve s, & HUC s.t. $120 = (S25\ {s1}) U {3} for each demand k € {k € K with Vs € Hys}
st. {§—wp +1,..,5 N {s —wp +1,...,8} = 0 for each k' € K and s’ € S;25 with
E26 N E26 £ 0.
The solution S'26 is clearly feasible given that
e a feasible path E’ is assigned to each demand k € K (routing constraint),
e a set of last- Slots S'26 is assigned to each demand k € K along each edge e € E,’C26 with
|S;26] > 1 (contlgmty and continuity constraints),
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o {8 —wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}?° and
s” € S;% with Ej26 N Ej%6 +£ 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE,;% {s' € 9}26,s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

! 2 S E
The corresponding incidence vector (z° 26, 28 26) is belong to F' and then to ngc given that

- H|-1 r_|H|-1
it is composed by >,y 2k + | ‘2 ka/ e 2k = % We have so

25 25 126 726 25 25 ’
,uxs +02° = ,uxs +025 = ua:s + 0z° + Uf, - Z afk
(k,si)EHas

+ 2. SRDID ISP BT

ke{keK with U,’cyseﬁgs} keK ecE}2S keK ecE®

It follows that 0% = 2 (ki) EfTas ok for demand Kk’ and a slot 5" € {wy, ..., 5} with vy o € C

given that 0¥ =0 for vz 5, ¢ HUC, and pf =0 forall k € K and all e € E \ (Ej U EY). As
[H|-1
2

a result, af/l =p given that o¥ are equivalent for all vy, ; € H.

Given that the pair vy s is chosen arbitrary in the clique C, we iterate the same procedure for all

v € C. Consequently, we obtain that o% = lel% for all vy o € C.
Furthermore, we ensure that all the edges e € E¥ for each demand k are independants s.t. for each
demand k € K we have

k, k,
Dub=>" s > () =0.

ec E(’)C eGE'(’)C eEEéc

The only solution of this system is p* = *yf “ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

plk =~7¢, for all k € K and all e € Ef,

We re-do the same thing for the edges e € E} for each demand k which are independants s.t. for
each demand k € K we have

k k
Dub=d = > (w45 =0

ecEY e€EY e€EY

The only solution of this system is p* = *y§ *“ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

plh =~y°, for all k € K and all e € E¥,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkfl wkfl wkfl

2 : k _ E : k,s 2 : k kysy _
Os = V3 (Us — 73 ) =0

s=1 s=1 s=1

The only solution of this system is o% = 'yg’s for each s € {1,...,wy, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We then get that

o =45 forall ke K and all s € {1,...,w;, — 1}. (46)
We conclude that for each k € K and e €
'yf’e, if e € EX,

k .
e = 4 v8¢ ife € EF,

0, otherwise,
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and for each k € K and s € S

'y§ Slifse {1,...,w, — 1},

Ps if Vk,s € Ha
k
0s = H| -1
3 p‘ | Jifoes € C,
0, otherwise.
As a result ( Z Bk — Z pﬁf,, + Q.
vg,s€EH vy o €C

Let N(v) denote the set of neighbors of node v in a given graph.

Theorem 7. Consider an interval of contiguous slots I = [s;, s;], and a pair of demands k, k" €
K with (vg,vi) in GY. Then, the inequality (24) is facet defining for P(G, K,S) if and only if
N(v) N N(vgr) =0 in the conflict graph GE.

Proof. Neccessity.
We distinguish two cases:

— if N(vg) N N(vg) # 0 in the conflict graph G¥, this means that there exists a clique C' in the
conflict graph C?f of cardinality equals to |C| > 3 with k, k' € C. As a result, the inequality
(24) is dominated by the inequality (25) induced by the clique C. Hence, the inequality (24)
is not facet defining for P(G, K, S).

— if there exists an interval of contiguous slots I’ in [1,3] s.t. I C I’ with

o wy, +wi > |I'],

o wi < |I'| and 2wy, > |I'| + 1,

o wi < |I'| and 2wy > |I'| + 1.
This means that the inequality (24) induced by the two demands k, k' for the interval I is
dominated by the inequality (24) induced by the same demands for the interval I'.

Sufficiency. ~
We use the same proof of the theorem 2 for a clique C' = {vj, vx} in the conflict graph G¥.

5.5 Non-Compatibility-Clique Inequalities

Theorem 8. Consider a clique C' in the conflict graph @g Then, the inequality (35) is facet
defining for P(G, K,S) if and only if C is a mazimal clique in the conflict graph G .

Proof. Tt is trivial given that the inequality (35) can never be dominated by another inequality
without changlng its right-hand side.

Let F £ denote the face induced by the inequality (35), which is given by

FS® = {(2,2) € P(G,K,S): Y af
Vg, €C

In order to prove that inequality ka .eC 2% < 1is facet defining for P(G, K,S), we start checking

~K K
that FgE is a proper face, and FgE # P(G, K,S). We construct a solution S = (E28,5%8) as
below

— a feasible path Egs is assigned to each demand k € K (routing constraint),

— aset of last-slots S7® is assigned to each demand k € K along each edge ¢’ € E?® with [S38] > 1
(contiguity and continuity constraints),

—{s—wp+1,..,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € S3% and s’ € S
with E28 N EZ # () (non-overlapping constraint),

— and there is one pair of demand k and edge e from the clique C (i.e., v, € C s.t. the demand
k selects the edge e for its routing in the solution 8?8, i.e., e € EZ® for a node vy € C, and
e ¢ EZ for all vy o € C\ {vge}-
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Obviously, S% is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (x‘5287 2328) is belong
~ ~K

K
to P(G, K,S) and then to FgE given that it is composed by >°, - % = 1. As a result, FgE is

K
not empty (i.e., FgE # (). Furthermore, given that s € {wy, ..., 5} for each vy s € C, this means
that there exists at least one feasible slot assignment S}, for the demands & in C' with s ¢ Sy for

K
each vg s € C. This means that FgE # P(G, K,S).
Let denote the inequality ka .eC % <1by ar+Bz < A\ Let pz+oz < 7 be a valid inequality that

~K
is facet defining F of P(G, K,S). Suppose that FgE C F={(z,2) € P(G,K,S) : px + 0z = 7}.
We show that there exists p € R and v = (y1,792,73) (s.t. 71 € RZwex ‘Eg‘,'yg € RXkex ‘Ef‘,’yg €
REkex(We=D) st (u,0) = p(a, B) +7Q, and that

— 0% =0 for all demands k € K and all slots s € {wy, ..., 5},
— and p¥ =0 for all demands k € K and all edges e € E\ (E} U E¥) with vy, ¢ C,
— and p¥ are equivalent for all vy, . € C.

We first show that u* = 0 for each edge e € E \ (E§ U EY) for each demand k € K with v . ¢ C.
Consider a demand k € K and an edge e € E \ (E} U EF). For that, we consider a solution
8?8 = (E'?8,5%) in which

— a feasible path E}?® is assigned to each demand k € K (routing constraint),

— a set of last-slots S;?® is assigned to each demand k € K along each edge e € E}?® with
|S;28| > 1 (contiguity and continuity constraints),

—{s—wp+1,..,8}N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S;*® and
s7 € S;% with E2 N EZ® # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE,’fS |{s' € S%8,5” € {s' —wi, +1,...,5'}| <1 (non-overlapping constraint),

— the edge e is not non-compatible edge with the selected edges e € E}?® of demand k in the
solution 8", i.e., Ze’eE,'fS le +1e < li. As aresult, E;2® U{e} is a feasible path for the demand
k’

— and there is one pair of demand k and edge e from the clique C (i.e., vg, € C s.t. the demand
k selects the edge e for its routing in the solution 8?8, i.e., e € E}? for a node vy € C, and
e’ ¢ B for all vy o € C\ {vgc}-

8’28 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

’ ’ K
(2)-(12). Hence, the corresponding incidence vector (x5 * 28 28) is belong to F' and then to FgE
given that it is composed by ka .eC z® = 1. Based on this, we derive a solution S*° obtained

from the solution $’?® by adding an unused edge e € E \ (E5 U EY) for the routing of demand k in
K in the solution §?® which means that EZ° = E;?® U {e}. The last-slots assigned to the demands
K, and paths assigned the set of demands K \ {k} in &’*® remain the same in the solution 27,
ie., S? = 5% for each k € K, and E}Y = E}28 for each k' € K \ {k}. §*% is clearly feasible given
that

)

— and a feasible path E,Zg is assigned to each demand k € K (routing constraint),

— a set of last-slots S7° is assigned to each demand k € K along each edge e € EZ® with [S2%] > 1
(contiguity and continuity constraints),

—{s' —wp + 1,8} N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S7 and
s € S with EZ° N EZ +# 0, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE§9 {s' € §3,8” € {s' —wg +1,...,s'}| <1 (non-overlapping constraint).

~K
The corresponding incidence vector (1829,2‘529) is belong to F' and then to Fg E given that it is
composed by >° o 2% = 1. Tt follows that

2

/28 28 29 28
wS S S {ES

9 128
+oz = ST

i +oz :uxs +u’§+az

As a result, ¥ = 0 for demand k and an edge e with vy ¢ C.
As e is chosen arbitrarily for the demand k with e ¢ E§f U E¥ and vg ¢ C, we iterate the same
procedure for all ¢’ € E\ (EF U E} U {e}) with vg . ¢ C. We conclude that for the demand k

ph =0, forall e € E\ (Ef U EY) with vy ¢ C.
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k' € K\ {k}
and all e € E\ (E} U E}) with v . ¢ C. We conclude at the end that

pk =0, forall k € K and all e € E\ (E} U EY) with vy ¢ C.

Let’s us show that ¥ = 0 for all K € K and all s € {wy, ..., 5}. Consider the demand k and a slot
s in {wy, ..., 5}, and a solution §”%® = (E”28,5728) in which

— a feasible path E” 28 is assigned to each demand k € K (routing constraint),

— a set of last-slots S”%g is assigned to each demand k£ € K along each edge e € E” ig with
|S728] > 1 (contiguity and continuity constraints),

— {s — Wy, + L.,stN{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S”2% and

€ S with B2 N E"% #£ (), i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE”is {s' € 5728 5" € {s' —wj + 1,...,s'}| <1 (non-overlapping constraint),

— and {s' — wk +1,..,8N{s —wp +1,. s”} = () for each k' € K and s” € 5723 with
E”28 N E” £ (non—overlapplng constralnt taking into account the possibility of addmg the
slot s in the set of last-slots S”%% assigned to the demand k in the solution 8”2%),

— and there is one pair of demand k and edge e from the clique C (i.e., v € C s.t. the demand
k selects the edge e for its routing in the solution 728, i.e., e € E”2® for a node vy . € C, and
e ¢ E"28 for all vgs o € C \ {vpc }-

8728 is clearly feasible for the problem given that it satisfies all the constraints of cut formulatlon

(2)-(12). Hence, the corresponding 1nc1dence vector (2577, 257"} is belong to F and then to F &
given that it is composed by ka cc e = 1. Based on thls we distinguish the following cases:

— without changing the paths established in $”2%: we derive a solution $30 = (E3°, $3%) from
the solution §”2% by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”28 (i.e., B = E”%® for each k € K), and the last-slots
assigned to the demands K \ {k} in §”2% remain the same in the solution 83 i.e., $72% = 539
for each demand k' € K \ {k}, and S;° = $”28 U {s'} for the demand k. The solution S3° is
feasible given that

e a feasible path Ego is assigned to each demand k € K (routing constraint),

e a set of last-slots S,fo is assigned to each demand k € K along each edge e € Ego with
|S3°| > 1 (contiguity and continuity constraints),

o (' —wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}° and
s” € S0 with E3ON EY # 0, ie., for each edge e € E and each slot s € S we have
Yker,cepw {5 € S0 s” e {s' —wy, +1,...,5'} <1 (non-overlapping constraint).

~AK
The corresponding incidence vector (xsgo, 2530) is belong to F' and then to FgE given that it

is composed by >° ¢ x% = 1. We then obtain that

» 28 28 30 30 » 28 28
,uxs +02° :,Lw:S + 028 :,uxs +0257 +

ok
It follows that o = 0 for demand k and a slot s’ € {wy, ..., 5}.

— with changing the paths established in §”28: we construct a solution S3° derived from the
solution S”28 by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K C K in 8”8 (i.e., E{2° = E"3® for each k € K \ K, and
EP0 £ 728 for each k € K) s.t.

e a new feasible path E,’fo is assigned to each demand k € K (routing constraint),

e and {s —wi +1,. ’}ﬂ{s” —wp +1,...,8”} = for cach k € K and k' € K \ K and
each s € 728 and s” € 5728 with B30 N E”38 £ (), i.e., for each edge e € E and each slot
s" €8S we have Ykek ecppo {5 € S”k 8" € —wr + L S+ e\ ke {8 €
5728 s € {s' —wg + 1,...,s'}| <1 (non-overlapping constraint),

e and there is one pair of demand & and edge e from the clique C' (i.e., vy € C s.t. the

demand k selects the edge e for its routing in the solution 8", i.e., e € E3Y for a node
vge € C, and e ¢ B30 for all vy o € O\ {vge},
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e and {8 —wp +1,...,5} N {s” —wp +1,...,8"} = 0 for each k¥’ € K and s” € S73% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”2% assigned to the demand k in the solution S”2%).

The last-slots assigned to the demands K\ {k} in 728 remain the same in §"3°, i.e., $72% = S
for each demand k' € K \ {k}, and S2° = $728 U {s} for the demand k. The solution S"° is
clearly feasible given that

e a feasible path E,’f’o is assigned to each demand k € K (routing constraint),

e a set of last-slots S2¥ is assigned to each demand k € K along each edge e € E;*° with
|5;30] > 1 (contiguity and continuity constraints),
o {s'—wip+1,....8}N{s" —wp +1,..,8} =0 for each k,k’ € K and each s’ € S;>" and

s” € SV with E2O N EZ° # 0, ie., for each edge e € F and each slot s” € S we have

ZkeK,eeE,'fO H{s' € 939, s" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint).

’ /7 K
The corresponding incidence vector (z° 307 28 3O) is belong to F' and then to Fg E given that
it is composed by >, - r% = 1. We have so

S” 28 S>728 _ 8/30 SIB(J o 87728 87728 k ZC .I;,‘
nr +oz = ux + oz = px +oz +og — E E e + E E Mor-
IEGf(eeE”is ];ER@IEE,?O

It follows that ¥ = 0 for demand k and a slot s’ € {wg, ..., 5} given that u* = 0 for all the
demand k € K and all edges e € E\ (E§ U EY) with vy, ¢ C.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., §} of demand k with vy ¢+ ¢ C s.t. we find

ok, =0, for demand k and all slots s’ € {wy, ..., 5} with vg,sr ¢ C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

o =0, for all K € K \ {k} and all slots s € {wy, ..., 5} with v, ¢ C..
Consequently, we conclude that
ok =0, for all k € K and all slots s € {wy, ..., 5} with vg,s & C.

Let’s prove that u’; for all vy . are equivalents. Consider a node vg/ o in C s.t. €’ ¢ E,%?. For that,
we consider a solution §2® = (E2%,5%%) in which

— a feasible path E‘,%S is assigned to each demand k € K (routing constraint),

— aset of last-slots S2° is assigned to each demand k € K along each edge e € E?® with |S2%| > 1
(contiguity and continuity constraints), ~

—{s' —wp + 1,.., 8} N{s" —wp + 1,...,8"} = 0 for each k, k' € K and each s’ € S and
s” € S’%? with E,%g N E%? # (), i.e., for each edge ¢ € E and each slot s” € S we have
ZkeK,eeézs {s' € 528,s” € {s' —wy + 1,...,5'}| <1 (non-overlapping constraint),

— and there is one pair of demand k and edge e from the clique C (i.e., vk, € C s.t. the demand
k selects the edge e for its routing in the solution S28 ie., ee€ Ei8 for a node vy, € C, and
¢’ ¢ E¥ for all vy o € C\ {vp.c}.

828 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

~ ~ A K
(2)-(12). Hence, the corresponding incidence vector (33528,2:528) is belong to F' and then to FgE
given that it is composed by ka .eC x% = 1. Based on this, we distinguish two cases:

— without changing the spectrum assignment established in S%8: we derive a solution S3! =
(E3,§31) from the solution S8 by
e modifying the path assigned to the demand &’ in S from E,%? to a path E}} passed
through the edge e’ with vy . € C,
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¢ modifying the path assigned to the demand % in S?® with e € E‘,%S and vg . € C from Eis
to a path E}! without passing through any edge ¢” € E \ (E§ U EY) s.t. v o and vy e»
linked in C and {s —wi +1,...,s} N{s’ —wpr + 1,...,8'} = 0 for each ¥’ € K and each
s' € $2 with E3 N EM 0.
The paths assigned to the demands K \ {k, ¥’} in S?® remain the same in S3' (i.e., E}} = E7
for each k7 € K \ {k,k'}), and also without modifying the last-slots assigned to the demands
K in 8% ic., S?® = 3! for each demand k € K. The solution S3! is feasible given that
e a feasible path F}! is assigned to each demand k € K (routing constraint),
e a set of last-slots S3' is assigned to each demand k € K along each edge e € E3! with
|S31] > 1 (contiguity and continuity constraints),
o (' —wp+1,..,8N{s” —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S}! and
s’ e Sg,l with E,i’l N E,Z’,1 # (), i.e., for each edge e € E and each slot s” € S we have
Zk6K7e€ESI {s' € 31, 5" € {s' —wy +1,..., '} <1 (non-overlapping constraint).

~K
The corresponding incidence vector (x531,2331) is belong to F' and then to FgE given that it
is composed by ka .ec x¥ = 1. We then obtain that

328 328 31 31 328 328 /
;w:‘s +02° = ;m:‘s +025 = ;ms +025 + ,u’;/ - u]e“
’ ’
+ E ,u];, — E ,u];, + E ,u];, — E MZ’ .
€”€Eg,l\{€/} eueE”vilg €”€E21 e”EEﬁg\{E}

It follows that ¥ = u* for demand k' and a edge €’ € E\ (E} U EF) with vy o € C given
that ¥ =0 for all k € K and all e” € E \ (Ef U EY) with v » ¢ C.

with changing the spectrum assignment established in $?8: we construct a solution S"3! derived
from the solution S8 by

e modifying the path assigned to the demand &’ in §28 from E%? to a path E2' passed
through the edge e’ with vy . € C,

e modifying the path assigned to the demand k in $?® with e € EZ2® and vy, € C from EZ®
to a path E}3! without passing through any edge ¢” € E \ (Ef U ET) s.t. v o and vy, e
linked in C,

¢ modifying the last-slots assigned to some demands K C K from 5‘%8 to S’?l for cach k € K
while satisfying non-overlapping constraint.

The paths assigned to the demands K\ {k, ¥} in §*® remain the same in S (i.e., E{3' = E
for each k7 € K \ {k,k'}), and also without modifying the last-slots assigned to the demands
K\ K in 8%, ie., S?* = 53! for each demand k € K \ K. The solution S’3! is clearly feasible
given that

e a feasible path E,’fl is assigned to each demand k € K (routing constraint),

e a set of last-slots 2! is assigned to each demand k € K along each edge e € E;3! with
|S;31] > 1 (contiguity and continuity constraints),

o {s —wp+1,....stN{s" —wp +1,..,87} =0 for each k,k’ € K and each s’ € S;>! and
s” € St with ERY N B3 #£ 0, ie., for each edge e € E and each slot s” € S we have
Zk€K7e€E£31 {s' € S21,s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

/ 7, S K
The corresponding incidence vector (z° . , 28 31) is belong to F' and then to Fg E given that
it is composed by ka .eC 2% = 1. We have so

328 328 731 731 328 328 k‘l k ]’% ]’é
ux‘g +02° :W;S +02° z/ws +02° + g — pe + E g Ty — g O,

keK sSSPt s€528
K K k k
+ E Her — E Mer + E Mg — E e -
e’ €E;3\{e'} e’ eE2 e eE®! e’ €E®\{e}

It follows that ¥ = u¥ for demand &’ and a edge ¢/ € E\ (EY U EF') with vy o € C given
that u% =0forallk € K and all e” € E\ (Ef UE}) with v, » ¢ C,and 0% =0 for all k € K
and all s € {wy, ..., §}.
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Given that the pair (vg e, Vi o) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (vg,e, Vg ) 8.t. we find

pk = ,u]e“:,for all pairs (vge, v o) € C.
Consequently, we obtain that ulg =p for all vy € C.

On the other hand, we ensure that all the edges e € Ef for each demand k are independants s.t.
for each demand k € K we have

douE= D 0w = Y () =0

ecEf ecE} e€E}

The only solution of this system is p* = *yf “ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pk = ~7¢, for all k € K and all e € Ef,

We re-do the same thing for the edges e € E¥ for each demand k which are independants s.t. for
each demand k € K we have

Doub=> = > W) =0

e€EEY e€EEY ecEk

The only solution of this system is p* = 75 *“ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

plk =~y¢, for all k € K and all e € EY,

On the other hand, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for
each demand k € K, we have

wr—1 wg—1 wg—1
k k,s k k,s\ __
0g = V3 § (s —737°) =0
s=1 s=1 s=1

The only solution of this system is 0% = 7§’5 for each s € {1,...,w, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all &’ € K \ {k}. We then get that

o =45 forall k€ K and all s € {1,...,w;, — 1}. (47)
We conclude that for each k € K and e € F

A€ if e € BE,
k 75’6, if e ¢ E¥,
Ne'_ .

p, ifvg . €C,

0, otherwise,

and for each k € K and s € S

X 7§’S,ifs€ {1,...,wg — 1},
O-S = .
0, otherwise.

As aresult (u,0) = Z pak +~Q.
Vg, e €C
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5.6 Edge-Interval-Clique Inequalities

Theorem 9. Consider an edge e € E. Let I = [s;,5;] be an interval of contiguous slots. Let C
be a clique in the conflict graph G’? with |C| > 3, and ) cowp <5 — Zk/eKe\C wyr. Then, the
inequality (22) is facet defining for P(G, K,S) iff

— there does not exist a demand k' € K.\ C with wy, + wy: > |I| and wyy < |I| and 2wy > |1,

— and |{s; + wip — 1,...,5;}| > wy, for each demand k with vy, € C,

— and there does not exist an interval I' of contiguous slots with I C I’ s.t. C' defines also a
clique in the associated conflict graph C:‘?,

Proof. Neccessity.
It is trivial given that

— if
e there does not exist a demand k¥’ € K.\ C with w, +wy > |I] and wyy < |I] and 2wy > |I],
o and |{s; + wr —1,...,5;}| > wy, for each demand k with v € C.
Then, the inequality (22) can never be dominated by another inequality without changing its
right hand side. Otherwise, if there exists a demand k' € K, \ C with wy + wy > |I| and
wyr < |I] and 2wy, > |I|, this implies that the inequality is dominated by (23). Moreover, if
H{si +wr — 1,...,5;}| < wy for each demand k with v, € C, then the inequality (22) is then
dominated by the inequality (15) for a set of demands K = {k € K s.t. v, € C} and slot
s=35; +Eéig wg + 1 over edge e. Hence, the inequality (22) is not facet defining for P(G, K, S).

— if there exists an interval I’ of contiguous slots with I C I’ s.t. C' defines also a clique in the
associated conflict graph G¢,. This implies that the inequality (22) induced by the clique C
for the interval I is dominated by the inequality (22) induced by the same clique C' for the
interval I’ given that {s; + wy —1,...,s;} C I’ for each k € C. As a result, the inequality (22)
is not facet defining for P(G, K, S).

Sufficiency.
Let Fg I denote the face induced by the inequality (22), which is given by

Sj

FG'={(z,2) e P(G,K,S): > al+ Y 2F=jol+1}).
v, eC s=s;twr—1
In order to prove that inequality kaecx + 30 sitwn— 1z§ < |C| + 1 is facet defining for

P(G,K,S), we start checking that F; 7 is a proper face, and F i # P(G,K,S).
We construct a solution S3? = (E32, 532) as below

— a feasible path E,‘:’2 is assigned to each demand k € K (routing constraint),

— aset of last-slots S3? is assigned to each demand k € K along each edge ¢’ € E3? with [S3?| > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € S}? and s’ € S3?
with E3? N E3? # () (non-overlapping constraint),

— and there is one demand k from the clique C' (i.e., v; € C s.t. the demand k selects a slot s as
last-slot in the solution 832 with s € {s; + wy — 1, ..., s}, le., s € 5,32 for a node v, € C, and
for each s’ € S3? for all vy € C'\ {vg} we have s’ ¢ {s; + wy — 1,...,5;},

— and all the demands in C pass through the edge e in the solution 832, i.e., e € E3? for each
keC.

Obviously, 832 is a feasible solution for the problem given that it satisfies all ‘ggle cgglstraints of
our cut formulation (2)-(1 ) Moreover the corresponding incidence vector (x5, 28 ) is belong

to P(G, K, S) and then to FC given that it is composed by > viec k4 57% =1.Asa

sS=s;twr— 1 s
result, F " is not empty (i.e., F i # (). Furthermore, given that s € {s; + wi — 1, ..., s;} for each
v € C, thls means that there ex1sts at least one feasible slot assignment S, for the~demands kin C

with s ¢ {s; +wy —1,...,s;} for each s € S and each v, € C. This means that ng # P(G,K,S).
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We denote the inequality >, o o+ 3% 2P <|C|+1byaxr+B2z< A Let ur +oz <1

=s;twr—1 -
be a valid inequality that is facet defining F' of P(G, K,S). Suppose that ng C F={(x,z2) €
P(G,K,S) : ux + oz = 7}. We show that there exists p € R and v = (y1,72,73) (s.t. 11 €
REkex |51~y € REkex BT 4y € R2=rex(We=1)) st (u,0) = p(a, ) + 7Q, and that

— oF = 0 for all demands k € K and all slots s € {wg,...,5} with s & {s; + wy — 1,...,8;} if
v € C,

— and o¥ are equivalents for all vy, € C and all s € {s; +wi — 1, ..., sit,

— and p¥, = 0 for all demands k € K and all edges e € E \ (E§ U EY) with e # ¢’ if v, € O,

— and all ¥ are equivalents for the set of demands in C,

— and o% and p¥ are equivalents for all v, € C and all s € {s; + wg — 1,...,5;}.

We first show that u¥ = 0 for each edge ¢’ € E\ (E} U EY) for each demand k € K with e # ¢’ if
k € C. Consider a demand k € K and an edge ¢’ € E \ (Ef U EF) with e # ¢ if k € C. For that,
we consider a solution 8?2 = (E’32,§32) in which

— a feasible path E}?? is assigned to each demand k € K (routing constraint),

— and a set of last-slots ;32 is assigned to each demand k € K along each edge ¢’ € E}3? with
|S;32| > 1 (contiguity and continuity constraints),

—and {s' —wp +1,....8tN{s” —wp + 1,...,s"} = 0 for each k,k' € K and each s’ € 53
and s” € S;2? with E2? N E3? # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e'eE,;” {s' € 325" € {s' —wy +1,...,s'} <1 (non-overlapping constraint),

— the edge ¢’ is not non-compatible edge with the selected edges €” € E3? of demand k in the
solution 8”32, i.e., ZeneE?z leo + le < . As a result, E2? U {€'} is a feasible path for the
demand £k,

— and there is one demand k from the clique C' (i.e., v; € C s.t. the demand k selects a slot s as
last-slot in the solution 8’32 with s € {s; + wi, — 1,..., s}, i.e., s € S22 for a node vy, € C, and
for each s’ € 932 for all vy € C'\ {vx} we have s’ & {s; + wp — 1, ...,5,},

— and all the demands in C pass through the edge e in the solution §32, i.e., e € E>? for each
keC.

8’32 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (25, 25 is belong to F and then to F i
given that it is composed by Y, ok + 301, 4, 128 = [C| + 1. Based on this, we derive a
solution 833 obtained from the solution 8’32 by adding an unused edge ¢’ € E\ (E§ U E¥) for the
routing of demand k in K in the solution §*? which means that E3* = E}32 U {e’}. The last-slots
assigned to the demands K, and paths assigned the set of demands K \ {k} in S’*? remain the
same in the solution 833, i.e., 3% = 532 for each k € K, and E}} = E2? for each k' € K \ {k}.

833 is clearly feasible given that

— and a feasible path E}? is assigned to each demand k € K (routing constraint),

— and a set of last-slots S5 is assigned to each demand k € K along each edge ¢/ € E3® with
|S23] > 1 (contiguity and continuity constraints),

—and {s' —wi +1,...,8}N{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € S33
and s” € S with E33 N E} # 0, ie., for each edge ¢’ € E and each slot s” € S we have
Yrer,eeps {5 € S8 87 € {s' —wy +1,...,8'} <1 (non-overlapping constraint).

The corresponding incidence vector (xssa, z533) is belong to F' and then to Fg i given that it is
composed by >, o ak + 3200, . 128 = |C| + 1. Tt follows that

8/32 3 8/32

,uxsm +o0z = ,uxs ’ + 02533 = ,uxsm + u’; +oz
As a result, ,u’g, = 0 for demand k and an edge ¢’.

As ¢’ is chosen arbitrarily for the demand k with e ¢ E¥ U E¥ and e # ¢’ if k € C, we iterate the
same procedure for all e € E \ (E§ U E¥ U {€¢'}) with e # ¢” if k € C. We conclude that for the

demand k
pk =0, forall ¢’ € E\ (ES UEY) with e # ¢’ if k € C.
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k' € K\ {k}
and all ¢/ € E'\ (E§ U EF). We conclude at the end that

pk =0, forall k € K and all ¢ € E\ (EY UEY) with e £ ¢ if k € C.

Let’s us show that o% = 0 for all k € K and all s € {wy,...,5} with s & {s; + w — 1,...,s;} if
v, ¢ C. Consider the demand k and a slot s” in {wy, ..., 5} with s’ ¢ {s; +w, —1,...,s;} if vx ¢ C.
For that, we consider a solution 7”32 = (E”32,5732) in which

— a feasible path E” 22 is assigned to each demand k € K (routing constraint),

— a set of last-slots S”3? is assigned to each demand k € K along each edge ¢’ € E”3? with
|S732| > 1 (contiguity and continuity constraints),

— {s —wy, + 1., N{s” —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S”%* and

€ S7%2 with E"32 N E”37 #£ 0, ie., for each edge ¢ € E and each slot s € S we have
ZkeKc ‘g3 {s" € S”k ,s” e{s —wp+1,...,5} <1 (non-overlapping constraint),

—and {s' —wp + 1,..,8}N{s" —wp +1,...,8"} = 0 for each k¥’ € K and s” € S”3? with
E” 22 N E”i? # () (non-overlapping constraint taking into account the possibility of adding the
slot s in the set of last-slots S”$? assigned to the demand k in the solution §”32),

— and there is one demand k from the clique C' (i.e., v; € C s.t. the demand k selects a slot s as
last-slot in the solution 8”32 with s € {s; + wy — 1,...,5;}, i.e., s € §732 for a node vy, € C,
and for each s’ € S737 for all vy € C'\ {vg} we have s’ ¢ {s; +wr — 1, ..., 5;},

— and all the demands in C pass through the edge e in the solution 732, i.e., ¢’ € E”$? for each
keC.

8732 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (x‘s”w, 237,32) is belong to F' and then to ng
given that it is composed by >, o zk 43 2% = 1. Based on this,

s=s;twr—1

— without changing the paths established in $”32: we derive a solution $3* = (E34,93%) from
the solution 8”32 by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8732 (i.e., E}* = E”3? for each k € K), and the last-slots
assigned to the demands K \ {k} in §”32 remain the same in the solution 834 i.e., S”37 = S3}
for each demand &’ € K \ {k}, and S}* = S”32 U {s'} for the demand k. The solution S3 is
feasible given that

e a feasible path E3* is assigned to each demand k € K (routing constraint),
e a set of last-slots S3* is assigned to each demand k € K along each edge ¢’ € E3* with
|S34] > 1 (contiguity and continuity constraints),
o {s —wk—&—l ’}O{s”—wk/—i—l s”}—@foreachkk’GKandeaChs’€S34
e St Wlth E34 NE # 0, ie., for each edge ¢/ € E and each slot s” € S we have
ZkeK ere B3t [{s'" € S}, s” e{s' —wi+1,..,5} <1 (non-overlapping constraint).

The corresponding 1n(21dence vector (x 5347 z534) is belong to F' and then to Fg 7 given that it

is composed by Y, coak +30, 1, 128 =|C|+1. We then obtain that

» 32 97 32 34 34 » 32 97 32
,u:cs +02° :,u:cs +02° :,u:cs +02°

+ Uf/.

It follows that o¥, = 0 for demand k and a slot s’ € {wy, ..., 5} with 8’ & {s; +wj, — 1, ..., 8;} if
Vg ¢ C.

— with changing the paths established in S”32: we construct a solution S’3* derived from the
solution 8”32 by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K C K in 8”32 (i.e., E?* = E”32 for each k € K \ K, and
EP* £ E"3 for each k € K) s.t.

e a new feasible path E}>* is assigned to each demand k € K (routing constraint),

oand{s—wk+1 SN {s” —wp +1, .. s”}z(])foreachkef(andk’EK\f(and
each s’ € §732 and s” € S732 with B34 ﬁE” # (), i.e., for each edge ¢’ € FE and each slot
s” €S we have D okeR o repp |{s" € 5’73275” 6 {s/ —wr+1,...,8'} JereK\f(,e'eE”g? |{s" €
5732 5" € {s' —wy +1,..., '} <1 (non-overlapping constraint),
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e and {8 —wp +1,...,5} N {s” —wp +1,...,8"} = 0 for each &’ € K and s” € §732 (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”3? assigned to the demand k in the solution &”32).

The last-slots assigned to the demands K\ {k} in 8”32 remain the same in 8’34, i.e., $737 = 534
for each demand k' € K \ {k}, and SP* = S”"32 U {s} for the demand k. The solution S"3* is
clearly feasible given that

e a feasible path E3 is assigned to each demand k € K (routing constraint),

e a set of last-slots S}2* is assigned to each demand k € K along each edge e’ € E;3* with
|S;34] > 1 (contiguity and continuity constraints),

o {s' —wp+1,....8tN{s" —wp +1,..,87} =0 for each k,k’ € K and each s’ € S;>* and
s” € St with ERY N ER3* # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkEK,e’GE,’f‘“ [{s" € 8;34,s” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x$/34, 28 /34) is belong to F' and then to Fg I given that it
is composed by >, ook +30, L, 128 =|C|+1. We have so

32 32 134 134 » 32 32 k ]’é ]’%
uxs +02° :uxs + 025 :,ijs +02° ‘o — g g Her + E E JUCR

IQEI?E'EE”iz %GRC”EE?‘L

It follows that 0%, = 0 for demand k and a slot s’ € {wy,...,5} with s & {s; +wp —1,...,s;}
if vy ¢ C given that u¥ = 0 for all the demand k € K and all edges ¢’ € E \ (Ef U EY) with
e#£e ifkeC.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wg, ..., 5} of demand k with s’ ¢ {s; +wy — 1, ...,s;} if vy ¢ C s.t. we find

ok =0, for demand k and all slots s’ € {wy, ..., 5} with 8" & {s; +wy, — 1,...,s;} if v & C.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

F'—0, for all k¥ € K\ {k} and all slots s € {wy, ..., 5} with s & {s; + wp — 1, ..., 5;} if v & C.

O

Consequently, we conclude that
o =0, for all k € K and all slots s € {wy, ..., 5} with s ¢ {s; +wy, — 1,...,5;} if v & C.

Let prove that o¥ for all v, € C and all s € {s; + wy — 1,...,s;} are equivalents. Consider a
demand %" and a slot s’ € {s; + wyp — 1,...,s;} with vy € C. For that, we consider a solution
S32 = (E%2,5%2) in which

— a feasible path E}? is assigned to each demand k € K (routing constraint),

— aset of last-slots S}? is assigned to each demand k € K along each edge ¢’ € E}? with |S3?| > 1
(contiguity and continuity constraints), ~

—{s' —wp + 1,..,}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S3? and
s" e 5',3,2 with E’,ZQ N Ei’? # (), i.e., for each edge ¢/ € E and each slot s” € S we have
ZkeK,e'eEg2 [{s' € $32,5” € {s' —wi + 1,...,8'}| <1 (non-overlapping constraint),

— and {s —wg+1,...,8}N{s' —wp +1,...,5'} = 0 for each k € K and s € S3? with ER2NE3? £ 0
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots S3? assigned to the demand &’ in the solution S32),

— and there is one demand k& from the clique C' (i.e., v; € C s.t. the demand k selects a slot s as
last-slot in the solution $32 with s € {si+wp—1,..,s;} 1e,s€ g,?;z for a node v, € C, and
for each s’ € S37 for all vy € C'\ {vy} we have s’ ¢ {s; +wi — 1,..., 5, },

— and all the demands in C pass through the edge e in the solution 52, i.e., ¢/ € E? for each
keC.

S%2 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (m‘532, 2832) is belong to F' and then to ng
given that it is composed by Y3, coah + 3201, 1, 128 = |C| + 1. Based on this,

S
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— without changing the paths established in S32: we derive a solution S35 = (E35, $3%) from the
solution S32 by adding the slot s’ as last-slot to the demand k without modifying the paths
assigned to the demands K in S32 (ie., EF = E,%Q for each k € K), and also the last-slots
assigned to the demands K \ {k, %’} in S§3? remain the same in S%°, i.e., Sj? = S3? for each
demand k” € K\ {k,k'}, and S3 = S3? U {s'} for the demand &', and modifying the last-slots
assigned to the demand k£ by adding a new last-slot s and removing the last slot s € 5”22
with s € {s; +wr +1,...,s;} and § ¢ {s; +wi + 1,...,s;} for the demand k with v, € C s.t.
S35 = (SP\{sH U {5} st. {5 —wi +1,...,5}N{s —wp +1,....5'} = 0 for each k¥’ € K and
s’ € S with E® N E3? # (). The solution 83° is feasible given that

e a feasible path E,§5 is assigned to each demand k € K (routing constraint),

e a set of last-slots S3° is assigned to each demand k € K along each edge ¢’ € E3® with
|S25| > 1 (contiguity and continuity constraints),

o {s' —wp+1,..,8}N{s” —wp +1,...,8"} =0 for each k,k’ € K and each s’ € S}° and
s” € S with Ef° N EY # 0, ie., for each edge ¢/ € E and each slot s € S we have
EkeK,e’eE;j5 [{s' € 835,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x335,2335) is belong to F' and then to Fg i given that it

Sj

is composed by >, (o ak + 3L, 1, 128 =[C|+ 1. We then obtain that

332 332 35 35 332 332 /
uass +025 = ;w:s +025 = ;w:s +025 + Ufl — af + O’§.

It follows that 0% = o* for demand &’ and a slot s’ € {wy,...,5} with v € C and §' €
{si +wir +1,...,5;} given that o =0 for 5§ ¢ {s; + w, — 1, ..., s;} with vy € C.

— with changing the paths established in S32: we construct a solution S’3° derived from the
solution &32 by adding the slot s’ as last-slot to the demand k' with modifying the paths
assigned to a subset of demands K C K in 8% (ie., Ef® = E}? for each k € K \ K, and
EP5 # EJ? for each k € K), and also the last-slots assigned to the demands K \ {k,k’}
in 8% remain the same in 8%, ie., 557 = S for each demand k" € K \ {k,k'}, and
S35 = 5';:’,2 U {s'} for the demand k', and modifying the last-slots assigned to the demand k
by adding a new last-slot § and removing the last slot s € 5,32 with s € {s; +wir +1,...,s;}
and § ¢ {s; + wy + 1,...,s;} for the demand k with v, € C s.t. S/ = (532 \ {s}) U {5} s.t.
{§—wp+1,.,5}N{s' —wp +1,...,8'} = 0 for each k' € K and s’ € S;2° with E;>* N E}2° # 0.
The solution S’3% is clearly feasible given that

e a feasible path E,’f’s is assigned to each demand k € K (routing constraint),

e a set of last-slots S;>° is assigned to each demand k € K along each edge €’ € E;*® with
|5;3%] > 1 (contiguity and continuity constraints),

o {s' —wp+1,....8tN{s" —wp +1,..,8"} =0 for each k,k’ € K and each s’ € S;>° and
s” € S5 with E2® N E3® +# 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE;% [{s" € 9;35,5” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector ($Sl35 , 2 /35) is belong to F' and then to Fg I given that it
is composed by >, (o ak + 30, 1, 1 2F =|C|+ 1. We have so

S3 k

5”32 2 k' k
=pux® 402" +og —og +o0;

YD VTS S ST

kEK e’c E3? kEK e'€E3®

332 332 135 135
,Lm:s +02° :pxs +02°

It follows that af/' = 0% for demand k' and a slot s’ € {wy,...,5} with vy € C and s’ €
{si +wp +1,...,5;} given that 0§ =0for 5¢ {s; +wr —1,...,s;} with v, € C, and ,u’;f, =0
forall k € K and all ¢’ € E\ (E§ U E¥) with ' # e if k € C.

Given that the pair (vg, vxs) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (v, vgs) s.t. we find

k

o, = O'f//,fOI" all pairs (vg,vr) € C
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with s € {s; +wr, —1,...,s;} and s’ € {s; +wyp — 1, ..., 5;}. We re-do the same procedure for each
two slots s, 8" € {s; +wr — 1, ..., s;} for each demand k € K with v, € C s.t.

ok = ok for all vy € C and 5,5 € {s; +wy, — 1,...,5;}.
Let us prove now that p¥ for all k € K with v, € C are equivalents. For that, we consider a
solution &3¢ = (E36, 536) defined as below

— a feasible path E,?C’6 is assigned to each demand k € K (routing constraint),

— aset of last-slots S3° is assigned to each demand k € K along each edge ¢’ € E¢ with [S36] > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € S}% and s’ € S3P
with E36 N E3S # 0 (non-overlapping constraint),

— and there is one demand k& from the clique C (i.e., vy € C s.t. the demand k pass through the
edge e in the solution 836, i.e., e € E3¢ for a node vy, € C, and e ¢ E3¢ for all vy € C\ {vy},

— and all the demands in C are covered by the interval I in the solution 8%, i.e., {s; + wy +
1,..,8;} NS3¢ £ for each k € C.

Obviously, 836 is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (25, 25™) is belong

to P(G, K,S) and then to Fy! given that it is composed by Yo T+ w1 28 = O]+ 1.
Consider now a node vy in C s.t. e ¢ ES. For that, we consider a solution S36 = (E36, §36) in
which

— a feasible path E,§’6 is assigned to each demand k € K (routing constraint),

— a set of last-slots 5’26 is assigned to each demand k € K along each edge e € E’i’ﬁ with \5’};’6| >1
(contiguity and continuity constraints), _

—{s —wp+1,..,8N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S and
s” € S with EJ% N E¥ # 0, ie., for each edge ¢ € E and each slot s € S we have
ZkeK,eeEge {s' € 530" € {s' —wy + 1,...,5'}| <1 (non-overlapping constraint),

—and {s—wp+1,...,s}N{s' —wp +1,...,s'} = 0 for cach k € K and s € S3° with E}SNEZS # 0,

— and there is one demand & from the clique C (i.e., v, € C s.t. the demand k pass through the
edge e in the solution 539, i.e., e € E3¢ for a node vy, € C, and e ¢ E3S for all v € C'\ {v},

— and all the demands in C' are covered by the interval I in the solution 5’36, ie., {s; + wp +
1,..,8;} NS3¢ £ for each k € C.

836 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (x‘é%, 2336) is belong to F and then to Fg i
S

given that it is composed by >, o2k + Y01, .. 128 = |C| + 1. Based on this, we derive a
solution 8”37 = (E”37,8737) from the solution S®¢ by

— the paths assigned to the demands K\ {k, &’} in §3¢ remain the same in $”37 (i.e., E"3] = E3¢
for each k7 € K\ {k,k'}),

— without modifying the last-slots assigned to the demands K in S, i.e., §36 = §737 for each
demand k € K,

— modifying the path assigned to the demand &’ in S3¢ from E,‘Z’/G to a path E”3/ passed through
the edge e (i.e., e € E"3]) with vy € C s.t. {s —wp + 1,...,8} N {s —wpr +1,...,8'} = 0 for
each k € K and each ¢’ € 5’2,6 and each s € 526 with E’gﬁ NE"T #10,

— modifying the path assigned to the demand k in S3¢ with e € Ege’ and v, € C from E,‘Z’G to
a path E”$7 without passing through the edge e (i.e., e ¢ E"3") and {s — wy + 1,...,s} N
{8 —wp> +1,...,8'} = 0 for each k” € K \ {k,k'} and each s € S36 and each s’ € S3¢ with
E,‘Z’? NE’3 0, and {s —wy, +1,...,s} N{s’ —wp +1,...,8'} = 0 for each s € 5’;’6 and each
s' € S39 with E”31 0 E737 # 0.

The solution 737 is feasible given that

— a feasible path E”;Z’,7 is assigned to each demand k € K (routing constraint),
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— a set of last-slots S”f is assigned to each demand k£ € K along each edge e € E”f with
|S737] > 1 (contiguity and continuity constraints),

— {8 —wp +1,.,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S7%7 and
s7 € S”37 with E”37 N E”3] # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK’eeEw? {s' € 8737, 8" € {s' —wx + 1,...,s'}| < 1 (non-overlapping constraint).

The corresponding incidence vector (xS”W, 23”37) is belong to F' and then to Fg; given that it is

composed by >, o xk + 301, 1, 128 =|C|+ 1. We then obtain that

336 336 37 37 336 336 ’
u:c‘g +02°5 = uws +025 = u:ﬁs +02°5 + MI; — ,u’;
K’ ! k k
+ E [ E J E Her — E e -
e €E" 3T\ {e} "€ B3 e"eE"}T e’ € E35\{e}

It follows that p* = p¥ for demand k' and a edge ¢ € E\ (EF U EF) with vy € C given that
pk, =0 for all k € K and all e” € E\ (E§ U EY) with vy, ¢ C.

Given that the pair (vg,vys) are chosen arbitrary in the clique C, we iterate the same procedure
for all pairs (v, vgs) s.t. we find

pk = u§/7f0r all pairs (vg, vir) € C.

Furthermore, let prove that all 0% and p¥ are equivalents for all k € C and s € {s; +wy — 1, ..., s}
For that, we consider for each demand k" with vy € C, a solution S§* = (E*®, 5%) derived from
the solution S3¢ as below

— the paths assigned to the demands K \ {£'} in S3 remain the same in S3° (i.e., E3S = E3S for
each k7 € K\ {k'}),

— without modifying the last-slots assigned to the demands K \ {k} in S, i.e., Sg? = S3% for
each demand k7 € K \ {k},

— modifying the set of last-slots assigned to the demand &’ in S3¢ from S’,‘Z’,G to SP¥ st SN {s; +
Wy — ]., ...,Sj} = @

Hence, there are |C| — 1 demands from C' that are covered by the interval I (i.e., all the demands
in C'\ {k'}), and two demands {k, &'} from C that use the edge e in the solution S3%. The solution
S38 is then feasible given that

— a feasible path E}8 is assigned to each demand k € K (routing constraint),

— a set of last-slots S;:’S is assigned to each demand k € K along each edge e € Ei’g with \Sg’s| >1
(contiguity and continuity constraints),

—{s —wp +1,..,8N{s" —wp +1,..,8"} = 0 for each k,k' € K and each s’ € S3® and
s7 € S with Ef¥ N EX # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeEgs [{s' € S38,5” € {s' —wy, +1,...,s'} <1 (non-overlapping constraint),

—and Y, o [EE N {e}[ + (S 0 {si +wp —1,...,5;}| = [C] + 1.

The corresponding incidence vector (xsgs, zSSS) is belong to F' and then to Fg I given that it is
composed by >, ccxk + 3700, 1, ;28 =|C|+ 1. We then obtain that

6 336 ’ ’ ’ ’
S k k k
+o0z° +p, —og + E JC E Lo -
& €E3\{e} " B39

5-36 5-36 S? 5-3

8 SSS
pnxrs +oz = px® +oz = ux

It follows that ¥ = ¢ for demand &’ and slot s € {s; + wy: — 1, ..., 5;} given that u¥, = 0 for all
k€ K and all ¢’ € E\ (E} U EY) with e # e” if v; € C. Moreover, by doing the same thing over
all slots s € {s; +wpr — 1,..., s;}, we found that

k/

. = Ufl,fOI‘ all s € {s; +wp —1,...,5;}.
Given that &’ is chosen arbitrarily in C, we iterate the same procedure for all k € C to show that

pk = o for all vy € C and all s € {s; +wy, — 1,...,5;}.
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Based on this, and given that all u* are equivalents for all v, € C, and that o are equivalents for
all vy € C'and s € {s; + wypr — 1,...,s;}, we obtain that

pl =¥ for all k,k' € C and all s € {s; + wp — 1, o St
Consequently, we conclude that
E K

pe =0y =p, forall k,k' € C and all s € {s; + wpr — 1,...,8;}.

On the other hand, we ensure that all ¢/ € E} for each demand k are independants s.t. for each

demand k € K we have
o= o Y (=) =0.

e'€EEE e'€Ek e'cEl

The only solution of this system is u% = ¥ " for each ¢’ € Ek for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

pF =5 forall k € K and all ¢ € EF,

We re-do the same thing for the edges ¢’ € E¥ for each demand k which are independants s.t. for
each demand k € K we have

k ke’
ZMS': 72€HZ(N§’*726):0

e’€ER e’€EF e’€EF

The only solution of this system is u*, = 7576' for each ¢’ € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

pk = 75’6,, for all k € K and all ¢ € EF,

Furthermore, all the slots s € {1,...,w; — 1} for each demand % are independants s.t. for each
demand k € K, we have

wg—1

wk—l wk—

k k,s
E oy = E Y3 = E f'yg )=0
s=1 s=1

The only solution of this system is o% = ’Ys ® for each s € {1,...,wy — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all &’ € K \ {k}. We then get that

=8 forall ke K and all s € {1,...,wj, — 1}. (48)
We conclude that for each ¥’ € K and €’ € F
'yf/’e/, if ¢’ € EY,
Wi e e BY,

ks =
p, if k' € Cand e =e,
0, otherwise,
and for each k € K and s € S
7§’S7if se{l,..,wp— 1}
Jf =4 pifvy € Candse{s;+wy—1,..,5;},
0, otherwise.
As a result ( Z pak 4 Z pBE +4Q.

v eC s=s;twr—1
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Theorem 10. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots. Let C be
a clique in the conflict graph G with [C| > 3, and 3, - wi < E—Zk,e&\c wyr. Let Ce C K \C
be a clique in the conflict graph é? s.t. w +wg > I+ 1 for each vy, € C and vy € C.. Then,
the inequality (23) is facet defining for P(G, K,S) if and only if

— there does not exist a demand kK’ € K.\ C. with wy + wg> > |I| + 1 for each vy, € C, and
wy +wir > |I| 4+ 1 for each vy € Ce.
— and [{s; + wi — 1,...,;}| > wy for each demand k with vy, € C'UC,.

Proof. Neccessity.

— If there exists a demand k” € K.\ C, with wi +wg> > |I|+1 for each v, € C, and wys +wy» >
|I]+1 for each vy € C.. Then, the inequality (23) is dominated by its lifted with C!, = C.U{k"}.
Moreover, if [{s; +wi —1, ..., 5;}| < wy, for each demand k with v, € CUC,, then the inequality
(23) is then dominated by the inequality (17) for a set of demands K = {k € K s.t. v, € C}
and slot s = s; —|—k€rgin wg + 1 over edge e. As a result, the inequality (23) is not facet defining

for P(G, K,S).

— if there exists an interval I’ of contiguous slots with I C I’ s.t. C'U C, defines also a clique in
the associated conflict graph G¢,. This implies that the inequality (23) induced by the clique
CUC., for the interval I is dominated by the inequality (23) induced by the same clique CUC,
for the interval I’ given that {s; +wyx — 1,...,s;} C I’ for each k € C'U C,. As a result, the
inequality (23) is not facet defining for P(G, K, S).

e

Sufficiency.
Let FéGI denote the face induced by the inequality (23), which is given by

G {2, e PGES): Y ok Y e Y Z & =|C|+1}.

vpeC s=s;+wr—1 vt €Ce 8'=s54+wyr —1

We denote the inequality >, cc TH+ S sitwp—1 2 ko ka/ec Zs/:s w1 z"j, < IC|+1 by
ar + fz < A Let px 4+ oz < 7 be a valid inequality that is facet defining F' of P(G,K,S).
Suppose that FéG§ C F ={(z,2) € P(G,K,S) : px + oz = 7}. We use the same proof of the
facial structure done for the inequality (22) in the proof of theorem ?? to prove that inequality
kaecx +30, Fuw—1 % +ka/ec Zs’:s Sy -1 2k < |C| +1 is facet defining for P(G, K, S).

We first prove that FC Gi | is a proper face based on the solution S32 defined in the proof of theorem

7?7 which stills feasible s.t. its corresponding incidence vector (x 832,2‘532) is belong to F' and then

to FC given that it is composed by kaecx + i1 2+ > eC. >, fw—1 K=
|C| + 1. Furthermore, and based on the solutions §°* to § with corresponding incidence vec-
tor (x §% 832) to (25, 2538) are belong to F' and then to FéGE given that it is composed by
Evkecx w1 2h F > eC, > os, twy—1%y = |C] + 1, we showed that there ex-
ists p € R and v = (71,72,73) (s.t. 71 € RZkEKIEOI,’YQ € RZkEKlEll,’Yg € RErex(wr=1)y g,
(1, 0) = p(a, B) +~Q, and that

— oF = 0 for all demands k € K and all slots s € {wg,...,5} with s & {s; + wy — 1,...,s;} if

v € CUC,,

— and cr"qC are equivalents for all vy € CUC, and all s € {s; + wx — 1,...,5,},

— and p¥ = 0 for all demands k € K and all edges e € E \ (E§ U EY) with e # ¢’ if vy € C,

— and all uk are equlvalents for the set of demands in C,

— and o¥ "and pk are equivalents for all v, € C and all vy € CUC, and all s € {s;+wg —1,. - Sit

At the end, we found that for each ¥’ € K and ¢’ € E
e it el € BY,
b = Vit e € BY,
p, if k' € C and ¢ =e,

0, otherwise,
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and for each k € K and s € S

’y§ flifse{l,.,w, — 1}
=<¢pifopeCUC. and s € {s; +wr — 1,...,8;},

0, otherwise.

As a result ( Z pak 4 Z Z pBE + Z ZJ pﬁf// +7Q.

v eC v €C s=s;+wp—1 v €Ce s'=s;4+w;r—1

k
Os

5.7 Edge-Slot-Assignment Inequalities

Theorem 11. Consider an edge e € E, and a slot s € S. Let K be a subset of demands in K
with |C| > 3, and ) g wr < 5 — Zk’eKe\f( wys. Then, the inequality (15) is facet defining for
P(G,K,S) iff K.\ K = 0, and there does not exist an interval of contiguous slots I = [s;, s;] s.t.

— |{si + wk — 1,...,8;}| > wy, for each demand k € K,

and s € {s; + maxwy, — 1,...,s; — maxwy + 1},
k'eK keK

— and wi +wir > I+ 1 for eachﬁ,k’ef(,
and 2wy, > |I| + 1 for each k € K.

Proof. Neccessity.
If K.\ K # 0, then the inequality (15) is dominated by the inequality (17) without changing its
right hand side. Moreover, if there exists an interval of contiguous slots I = [s;, 5] s.t.

H{si +wi —1,...,8;}| > wy for each demand k € K,

— and s € {s; + maxwy — 1, ..., s; — maxwy + 1},
k€K keK

and wy, + wy > |I| + 1 for each k, k' € K,
— and 2wy > |I| 4+ 1 for each k € K.

Then the inequality (15) is dominated by the inequality (22). Hence, the inequality (15) is not
facet defining for P(G, K, S).

Sufficiency.

Let F/2° denote the face induced by the inequality (15), which is given by

min(s+wy—1,5)
Fe = {(e,2) e P(G.K,S): > ah+ Y Zh=|K|+1).
keK s'=s

min(s+wy,—1 s) <

/

In order to prove that inequality >,z zF + > 00 < |K | 1 is facet defining for
P(G, K,S), we start checking that FES is a proper face, and F;S # P(G, K,S).
We construct a solution §3 = (E39,5%9) as below

— a feasible path E3° is assigned to each demand k € K (routing constraint),

— aset of last-slots S} is assigned to each demand k € K along each edge ¢’ € E}Y with [S}%) > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wg +1,...,5'} = 0 for each k, k' € K and each s’ € ;% and s’ € S}?
with Eﬁg N E,‘:f? # () (non-overlapping constraint),

— and there is one demand k from the set of demands K (ie., k€ K s.t. the demand k selects a
slot s’ as last-slot in the solution 83 with s’ € {s,...,s +wy — 1}, i.e., s’ € S}? for a demand
k € K, and for each s’ € S for all k' € K \ {k} we have §' ¢ {s,...,s + wyr — 1},

— and all the demands in K pass through the edge e in the solution 8%, i.e., e € E}Y for each
ke K.
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Obviously, §%? is a feasible solution for the problem given that it satisfies all the constraints of our

cut formulation (2)-(12). Moreover, the corresponding incidence vector (x 339,2839) is belong to

P(G, K,S) and then to 2" given that it is composed by >, ¢ ¢ ¢ k4 Zmln(erw’” 1,8) =1 Asa

'=s
result, F ;{S is not empty (1 e, F IE{S # (). Furthermore, given that s € S, this means that there exists
at least one feasible slot assignment Sy, for each demands k in K with Sj, N {8y, s +wp —1} = 0.
Hence, F2° # P(G, K,S).
min(s+wg—1,5) k

We denote the inequality ZkeK D D < |K|+1by az+pBz < \. Let pr+oz <7
be a valid inequality that is facet defining F' of P(G K,S). Suppose that FI%S C F={(x,z2) €
P(G,K,S) : px + oz = 7}. We show that there exists p € R and v = (y1,72,73) (s.t. 71 €
R kex ‘Eg‘,'yg € RXkex |Ef|,73 € RXkex k=) st (u,0) = p(a, B) +7Q, and that

— ok =0 for all demands k € K and all slots s’ € {wy,...,5} with s’ & {s,...,s + wp — 1} if
ke K

— and 0¥, are equivalents for all k € K and all s’ € {s, ..., s +wy, — 1}

— and pf =0 for all demands k € K and all edges e € E\(E0 UEF) withe# ¢ if k€ K,

— and all pk are equwalents for the set of demands in K,

— and 0% and p¥ are equivalents for all k € K and all s’ € {s,...,s +wy — 1}.

We first show that p¥, = 0 for each edge ¢’ € E '\ (E{§ U EY) for each demand k € K with e # ¢ if
k € K. Consider a demand k € K and an edge ¢’ € E \ (E} U EY) with e # ¢’ if k € K. For that,
we consider a solution 89 = (E"39,53%) in which

— a feasible path E,’f’g is assigned to each demand k € K (routing constraint),

— and a set of last-slots S;3? is assigned to each demand k € K along each edge ¢’ € E}3° with
|5;39] > 1 (contiguity and continuity constraints),

—and {s' —wr +1,....,8}N{s” —wp + 1,...,8"} = 0 for each k, k' € K and each s’ € S}3*
and s” € SE° Wlth E’39 NEZY # 0, ie., for each edge ¢’ € E and each slot s” € S we have
D okeK.el ' {s' € 5’39 § e {s —w,+1,...,8} <1 (non-overlapping constraint),

— and there is one demand k from the set of demands K (i.e., k € K s.t. the demand k selects a
slot s’ as last-slot in the solution 8% with s’ € {s,...,s + wy — 1}, i.e., s’ € S for a demand
k € K, and for each s’ € S3° for all k' € K \ {k} we have s’ ¢ {s,...,s +wy — 1},

— and the edge ¢’ is not non-compatible edge with the selected edges €” € E,’C39 of demand k in
the solution 839, i.e. Zf,”eE/sg ler +ler < lg. As a result, E29 U {€'} is a feasible path for the
demand £k,

— and all the demands in K pass through the edge e in the solution 8, i.e., e € E,’f’g for each
ke K.

839 is clearly feasible for the problem given that it satisgfges alg)lgthe constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (z& ,2° ) is belong to F and then to FE’S

given that it is composed by 3, g @, + S 5219 2k — 1. Based on this, we derive a solution

8§ obtained from the solution 8 by adding an unused edge ¢’ € E\ (E§ U EY) for the routing
of demand k in K in the solution $3° which means that E{0 = E/2% U {e’}. The last-slots assigned
to the demands K, and paths assigned the set of demands K \ {k} in 8’3 remain the same in the
solution $%° i.e., 540 S;39 for each k € K, and E}Y = E3° for each £/ € K \ {k}. S is clearly
feasible given that

— and a feasible path E,%O is assigned to each demand k € K (routing constraint),

— and a set of last-slots S,‘CLO is assigned to each demand k € K along each edge ¢’ € E,‘f,o with
|S20] > 1 (contiguity and continuity constraints),

—and {s' —wp +1,.,8}N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S{°
and s” € S with E° N EY # 0, ie., for each edge ¢’ € E and each slot s” € S we have
D okeK.e reB0 s € Sk , 8 €{s —wr+1,...,8}| <1 (non-overlapping constraint).

The corresponding incidence vector (1:840,2540) is belong to F' and then to F ;(’S given that it is
composed by >,z ¥, + Z?TSH_W L) 2k = 1. Tt follows that

8/39 8/39 840 8/39

nx +oz = pr® + 02540 = ux + /1’;, + 028/39.
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As a result, u’e“, = 0 for demand k and an edge €’.

As ¢ is chosen arbitrarily for the demand k with e ¢ ES U EF and e # ¢’ if k € K, we iterate the
same procedure for all e € E \ (Ef U EF U {¢/}) with e # ¢” if k € K. We conclude that for the
demand k

pk =0, forall e’ € E\ (EFUEF) withe # ¢ if k € K.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k' € K\ {k}
and all ¢’ € E'\ (E¥ U E¥). We conclude at the end that

pk, =0, forallk € K and all ¢ € E\ (E¥ UEY) withe #£¢ if k € K.

Let’s us show that o¥ =0 for all k € K and all s’ € {wy,...,5} with s’ ¢ {s,...,s + wp — 1} if
k € K. Consider the demand k and a slot s' in {w,...,5} with s’ ¢ {s,...,s +wy — 1} if k € K.
For that, we consider a solution 8”39 = (E”39,5739) in which

— a feasible path E”ig is assigned to each demand k € K (routing constraint),

— a set of last-slots S”zg is assigned to each demand k € K along each edge €' € E”ig with
|5739] > 1 (contiguity and continuity constraints),

—{s —wp+1,..,tN{s" —wp +1,...,87} = 0 for each k,k’ € K and each s’ € "% and
s7 € S739 with B3 N E”3) # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e/eszg Hs' € 5739, s” € {s' —wg + 1,...,s'}| <1 (non-overlapping constraint),

—and {s' —wg +1,...,s}N{s” —wp +1,...,8"} = 0 for each k' € K and s” € S”3 with
E” 29 N E”i? # () (non-overlapping constraint taking into account the possibility of adding the
slot s" in the set of last-slots S7$? assigned to the demand k in the solution §”39),

— and there is one demand k from the set of demands K (ie., k€ K s.t. the demand k selects a
slot s as last-slot in the solution 8739 with s’ € {s,...,s +wy — 1}, i.e., s’ € §739 for a demand
k € K, and for each s’ € 739 for all k' € K \ {k} we have s’ ¢ {s,...,5 + wj — 1},

— and all the demands in K pass through the edge e in the solution §”39, i.e., ¢/ € E”3? for each
ke K.

8739 is clearly feasible for the problem given that it sati%ﬁes allgthe constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS, 25" ) is belong to F' and then to FI%’S

min(s+wyg—1,5)
s'=s

given that it is composed by >, . x’g, +> z?, = 1. Based on this, we distinguish two

cases:

— without changing the paths established in S”3°: we derive a solution S*' = (E*!, $*1) from
the solution §73° by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”39 (i.e., E}l' = E”39 for each k € K), and the last-slots
assigned to the demands K \ {k} in §”3% remain the same in the solution S*! i.e., $73? = S}i}
for each demand k' € K \ {k}, and Si! = S7%9 U {s'} for the demand k. The solution S* is
feasible given that

e a feasible path F}! is assigned to each demand k € K (routing constraint),

e a set of last-slots S{! is assigned to each demand k € K along each edge ¢’ € E}! with
|SE > 1 (contiguity and continuity constraints),

o (s —wp+1,....stN{s” —wp + 1,...,5"} = 0 for each k,k’ € K and each s’ € S}! and
s” € Spt with EM nEl} # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkeK7e/eE:1 [{s' € SH,s” € {s' —wg +1,...,5'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x541,z541) is belong to F' and then to F;(’s given that it

is composed by >, -z o + Zmin(s+w’°_l’§) 2% = 1. We then obtain that

s'=s
» 39 39 41 41 » 39 2 39
,uxs +02° = ,Lw:S +025 = ,uxs +025 + Uf,.

It follows that o¥ = 0 for demand k and a slot s’ € {wg, ...,5} with &' ¢ {s,...;s + wj, — 1} if
ke K.
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— with changing the paths established in S”3%: we construct a solution S! derived from the
solution §73° by adding the slot s’ as last-slot to the demand & with modifying the paths
assigned to a subset of demands K C K in 8”3 (i.e., B! = E”3 for each k € K \ K, and
Ef #£ B3 for each k € K) s.t.

e a new feasible path E’41 is assigned to each demand k € K (routing constraint),

oand{s—wk+1 S8 N{s —wp + 1, .. ”}—@foreachkef(andk’EK\f(and
each s’ € 739 and 5 € 579 with AN E” # 0, i.e., for each edge ¢’ € E and each slot
s” €S we have ZkeK,e repm |{s" € 5”39 s” G {s fwarl ,s'H +ZkeK\K,e reE [{s" €
5739 87 € {s' —wy +1,..., 8’} <1 (non-overlapping constraint),

e and {8 —wp +1,...5} N {s” —wp + 1,...,8"} = 0 for each &’ € K and s” € §732 (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”3Y assigned to the demand k in the solution &”39).

The last-slots asmgned to the demands K\ {k} in §”3Y remain the same in §'*!, i.e., $73 = S}
for each demand k' € K \ {k}, and S; = 5739 U {s} for the demand k. The solutlon S s
clearly feasible given that

e a feasible path Ej*! is assigned to each demand k € K (routing constraint),

e a set of last-slots Sj!! is assigned to each demand k € K along each edge ¢/ € Ej*!' with
|S;4] > 1 (contiguity and continuity constraints),

o {s'—wp+1,....8}N{s" —wp +1,....,87} =0 for each k,k’ € K and each s’ € S} and
s” € Sl with B/ N Ejft £ 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK’e,eE;ﬁl [{s" € S} s” € {s' —wy +1,..., '} <1 (non-overlapping constraint).

The corresponding incidence vector (z 5/41 3/41) is belong to F' and then to F' ;1(’5 given that it
is composed by >,z o + me shur=l S) 2% = 1. We have so

'=s

35 39 5 39 141 141 39 37 39 1. 1.
ux‘s +025 = u:c‘s +02° = ,uxs +02° +0§/ — E E p’; + g E ,uf

hek '€l ReR B

It follows that o = 0 for demand k and a slot s' € {wg, ..., 5} with s’ ¢ {s,...,s + wp — 1}
if k € K given that pf, = 0 for all the demand k € K and all edges ¢’ € E \ (E} U E}) with
e#£e ifkeK.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., 5} of demand k with s’ ¢ {s,...,s+w, — 1} if k € K s.t. we find
ok, =0, for demand k and all slots 5" € {wy, ..., 5} with §' ¢ {s,...,s +w, — 1} if k € K.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

o¥ =0, for all ¥’ € K \ {k} and all slots s' € {wy,...,5} with s’ ¢ {s,....,s + wp — 1} if k¥’ € K.
Consequently, we conclude that
ok, =0, for all k € K and all slots s" € {wy,...,5} with s’ ¢ {s,...,s + w, — 1} if k € K.

Let prove that o¥, for all k € K and all s € {8,...; 8 +wy — 1} are equivalents. Consider a demand
k' and aslot s’ € {s,...,s+wp —1} with k' € K. For that, we consider a solution S3 = (E39, 539)
in which

— a feasible path E} is assigned to each demand k € K (routing constraint),

— aset of last-slots S3° is assigned to each demand k € K along each edge ¢/ € E3Y with |S3%] > 1
(contiguity and continuity constraints), ~

—{s —wp +1,.,8N{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S} and
s7 € S with B3 N EY # 0, ie., for each edge ¢ € E and each slot s” € S we have
ZkeK’eleggg {s" € 839,5” € {s' —wy, +1,..., s’} <1 (non-overlapping constraint),
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— and {s—wy+1,...,s}N{s' —wp +1,...,s'} = 0 for each k € K and s € S”3° with E}NE}Y #0)
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots 5”37 assigned to the demand k' in the solution §”39),

— and there is one demand k from the set of demands K (ie., k € K s.t. the demand k selects a
slot s’ as last-slot in the solution 8% with s’ € {s,...,s +wy — 1}, i.e., s’ € S}? for a demand
k € K, and for each s’ € S for all k' € K \ {k} we have §' ¢ {s,...,s + wy — 1},

— and all the demands in K pass through the edge e in the solution S, i.e., ¢/ € Ezg for each
ke K.

839 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (x 839,2‘539) is belong to F' and then to FI%’S

min(s+wy—1,5)
'=s

given that it is composed by >, - & zk, 430 2%, = 1. Based on this, we distinguish two

cases:

— without changing the paths established in S39: we derive a solution §*2 = (E*2,5%2) from the
solution 83 by adding the slot " as last-slot to the demand k without modifying the paths
assigned to the demands K in 8% (i.e., E{2 = E¥ for each k € K), and also the last-slots
assigned to the demands K \ {k, %'} in S? remain the same in $*2, i.e., 532 = S{2 for each
demand k” € K\ {k,k'}, and S{? = S} U{s'} for the demand &, and modifying the last-slots
assigned to the demand k by adding a new last-slot § and removing the last slot s’ € 5’};’9
with 8" € {s; +wy, + 1,...,5;} and 5 ¢ {s; +wy, + 1,...,5;} for the demand k with k € K s.t.
S = (SP\{sHU{s}st. {§—wp+1,...,5}N{s —wp +1,....5'} = 0 for each k¥’ € K and
s’ € S}2 with E}2 N E}? # (). The solution S*? is feasible given that

e a feasible path F}? is assigned to each demand k € K (routing constraint),
e a set of last-slots S,%Q is assigned to each demand k € K along each edge ¢’ € E,%Q with
|S#2| > 1 (contiguity and continuity constraints),

o {s—wr+1,.. ’}O{s”—wk/—i—l ”}—@foreachkk’GKandeachs’€S42
s” € Sp2 with E,‘? NEZ #0, ie., for each edge ¢/ € E and each slot s” € S we have
D okeK.e remt [{s'" € S, s” e{s' —wi +1,..,5} <1 (non-overlapping constraint).

The corresponding incidence vector (z 5427 z842) is belong to F' and then to FES given that it
is composed by >,z o + me sty —15) 2% = 1. We then obtain that

'=s

S 42 G39 G39 ’
prs 4oz = px= + 025 = uws +025 + ofw — af/ + O’§.

It follows that 0% = ¢% for demand &’ and a slot s’ € {wg,...,5} with ¥ € K and &' €
{8y, s+ wpr — 1} given that o = 0 for 5 ¢ {s,...,s + wy — 1} with k € K.

— with changing the paths established in S$39: we construct a solution $"*2 derived from the
solution $3 by adding the slot s’ as last-slot to the demand k' with modifying the paths
assigned to a subset of demands K C K in 8% (i.e., B2 = E,Z’g for each k € K \ K, and
E*? £ E3 for each k € K), and also the last- slots assigned to the demands K \ {k,k'}
in $% remain the same in 82, ie., S = S for each demand k” € K \ {k,k'}, and
542 = §39 U {s'} for the demand &', and modifying the last-slots assigned to the demand
by adding a new last-slot 3 and removing the last slot s’ € S3° with s’ € {s; +wy + 1, ..., 5;}
and 5 ¢ {s; +wy, + 1,...,5;} for the demand k with k € K s.t. Si*2 = (539 \ {s}) U {5} s.t.
{—wp+1,.,5}N{s' —wp +1,....,8'} = 0 for each k' € K and s’ € S}3? with E;*2 N E32 #£ 0.
The solution 82 is clearly feasible given that

e a feasible path E’42 is assigned to each demand k € K (routing constraint),

e a set of last-slots S’42 is assigned to each demand k € K along each edge ¢’ € E;** with
|S42] > 1 (contiguity and continuity constraints),

o {8 —wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € Sj*? and
7€ SA? with B[22 N E3% +# (), i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE;j? [{s' € Sj*2,s” € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).
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The corresponding incidence vector (z s 23,42) is belong to F' and then to F;(’S given that it

is composed by Y-,z @ + me stk —1,8) 2%, = 1. We have so

'=s

S"39 S"39 8/42 8142 S"BQ k

pr®  +ozt = pux + oz = ua:gw +o0z° + o’f; — crf/ + o3

I INTED Sl St

kEK e’€ B3 kEK e’€ B}

It follows that 0% = ¢% for demand &’ and a slot s’ € {wg,...,5} with ¥’ € K and &' €
{s,....s +wp — 1} given that o% = 0 for § ¢ {s,...,s + w, — 1} with k € K, and p% = 0 for all
keKandalle GE\(E’“UE’“) with ¢’ ;éelfkeK

Given that the pair (k, k') are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

ok = ok, . for all pairs (k, k') €
with s" € {s,...,s +wy, — 1} and 5" € {s,..., s +wp: — 1}. We re-do the same procedure for each two
slots 5,8 € {s,...,5 + wy, — 1} for each demand k € K with k € K s.t.

ok = ok forall k € K and 5,5’ € {s,...,5 + wy, — 1}.

S

Let us prove now that p* for all k € K with k € K are equivalents. For that, we consider a solution
S*3 = (E*3,5%3) defined as below

— a feasible path E}? is assigned to each demand k € K (routing constraint),

— aset of last-slots S{? is assigned to each demand k € K along each edge ¢’ € E}}* with |3 > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,...,5'} = 0 for each k, k' € K and each s’ € S3 and s’ € S
with E}3 N E}? # 0 (non-overlapping constraint),

— and there is one demand k from the set of demands K (ie, k € K s.t. the demand k pass
through the edge e in the solution %3, i.e., e € E3 for a demand ke K, and e ¢ E for all
K e K\ {k},

— and all the demands in K share the slot s over the edge e in the solution 8%, i.e., {s; + wy +

L85} NS 4 for each k € K.

Obviously, 843 is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (:::‘9437 25" is belong

to P(G, K,S) and then to F2° given that it is composed by 3°, 5 =¢ xz* + Z:}‘fg”w’“ 15) 2k =
Consider now a demand &’ in K s.t. e ¢ E{. For that, we consider a solution $*3 = (E*3, §%3) in
which

— a feasible path E,‘j?’ is assigned to each demand k € K (routing constraint),

— aset of last-slots S; is assigned to each demand k € K along each edge e € Ef? with |S{3| > 1
(contiguity and continuity constraints), ~

—{s' —wp + 1,..., 8} N {s" —wp + 1,...,8"} = 0 for each k, k' € K and each s’ € S} and
s” € S',%,?’ with Egs N E,%?’ # (), i.e., for each edge ¢ € E and each slot s € S we have
ZkeK,eeEg3 {s' € §3,8” € {s' —wy + 1,...,5'}| <1 (non-overlapping constraint),

—and {s—wp+1,...,s}N{s' —wp +1,...,5'} = 0 for each k € K and s’ € S{ with E}*NES # 0,

— and there is one demand k from the set of demands K (ie., k € K s.t. the demand k pass
through the edge e in the solution 5% ie., e c ER for a demand k € K, and e ¢ Ef for all
K e K\ {k},

— and all the demands in K share the slot s over the edge e in the solution S*3, i.e., {s,...,s +

wy — 1} NS £ () for each k € K.

S§43 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

2)- . Hence, the corresponding incidence vector 543,2543 is belong to F' and then to F2°
K

given that it is composed by >, -z = —i-zn,lfgﬁwk 1.5) P

S = (E”*4, 874 from the solution §*3 by

= 1. Based on this, we derive a solution
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— the paths assigned to the demands K \ {k, &'} in $*3 remain the same in S”** (i.e., E"{# = B}
for each k7 € K\ {k,k'}), B B

— without modifying the last-slots assigned to the demands K in §%3, i.e., S{3 = S} for each
demand k € K, ~ ~

— modifying the path assigned to the demand &’ in $*3 from E}? to a path E”{! passed through
the edge e (i.e., e € E"{) with k' € K sit. {s —wp + 1,...,s} N {s' —wp + 1,...,8'} = 0 for
each k € K and each s’ € S{ and each s’ € S}® with E* N E”# # 0,

— modifying the path assigned to the demand k in S* with e € E,%?’ and k € K from E,‘? to
a path E”#* without passing through the edge e (i.e., e ¢ E"4*) and {s — wj + 1,...,s} N
{8 —wp> +1,...,5'} = 0 for each k" € K \ {k,k'} and each s’ € 5% and each s’ € Si# with
Eé? NE" A #£0, and {s —wi +1,...,s} N {s’ —wy +1,...,5'} = 0 for each s’ € 3133 and each
s' € S with B4 n E7{#* # 0.

The solution S”#4 is feasible given that

— a feasible path E”{* is assigned to each demand k € K (routing constraint),

— a set of last-slots S7#* is assigned to each demand k € K along each edge e € E”}* with
|S744 > 1 (contiguity and continuity constraints),

—{s —wp+1,..,tN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S”}* and
s7 € S with E"# N E”# # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE”i‘l {s' € 8744, 8" € {s' —wg + 1,...,5'}| < 1 (non-overlapping constraint).

The corresponding incidence vector (:cS”M, 25”44) is belong to F' and then to FES given that it is

composed by >,z zF + ernm(s+w’“_1’§) 2% = 1. We then obtain that

I=g
343 343 44 44 343 343 ’
uws +02°5 = uxs +025 = uxs +02°5 + u’; — ,u’;

D D N S S T S S T

CEEINGY ey el eeB\(o

It follows that p* = u* for demand &’ and a edge ¢’ € E \ (E§ U E}') with vy € K given that
pk, =0forall k € K and all ¢’ € E\ (Ef U EF) with k € K.

Given that the pair (k, k') are chosen arbitrary in the set of demands K, we iterate the same
procedure for all pairs (k, k') s.t. we find

pF = p¥ for all pairs (k, k') € K.

Furthermore, let prove that all o, and pf are equivalents for all k € K and s’ € {s,...,s +wj, —1}.
For that, we consider for each demand k" with &’ € K, a solution §* = (E*5, §%%) derived from
the solution S*3 as below

— the paths assigned to the demands K \ {k'} in $* remain the same in S*° (i.e., E{f = Ef for
each k7 € K\ {k'}),

— without modifying the last-slots assigned to the demands K \ {k} in %3, i.e., S = S for
each demand k” € K \ {k},

— modifying the set of last-slots assigned to the demand k&’ in S* from S to S s.t. SF N
{8y, s +wpr — 1} = 0.

Hence, there are |K|—1 demands from K that share the slot s over the edge e (i.e., all the demands
in K\ {k'}), and two demands {k, %’} from K that use the edge e in the solution S*>. The solution
S% is then feasible given that

— a feasible path E}® is assigned to each demand k € K (routing constraint),

— aset of last-slots Si5 is assigned to each demand k € K along each edge e € E}® with |Si5] > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s” —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S and
s” € S¥ with Ef» N EY # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE,? [{s" € S5,8” € {s’ —wy, +1,...,s'} <1 (non-overlapping constraint),
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—and 3, x |EE N {e} + 1S N {s,..,s +wp — 1} = [K| + 1.

The corresponding incidence vector (a:545,z545) is belong to F' and then to F ;’S given that it is

composed by Y,z zF + Zg}i:ngsw’rl’g) 2% = 1. We then obtain that
343 343 45 45 343 343 ’ ’ ’ ’
uxs +02° = uxs +025 = ums +025 + uf - Uf, + Z u’g,, — Z e -

CeB\(e} ekl

It follows that p*" = o¥ for demand k' and slot s" € {s, ..., s +wg — 1} given that pk, =0 for all

k€ K and all e” € E\ (E} U EY) with e # ¢” if k € K. Moreover, by doing the same thing over
all slots s’ € {s, ..., s + wg — 1}, we found that

pt = o forall 8" € {s,...,s +wp — 1}.

Given that &’ is chosen arbitrarily in K, we iterate the same procedure for all k € K to show that

pk = ok forall k € K and all s' € {s,...,s + w — 1}.

Based on this, and given that all uk are equivalents for all k € K, and that ok, are equivalents for
all k € K and s’ € {s,...,s + wpr — 1}, we obtain that

pb =o% forall k,k' € K and all 8’ € {s, ..., s + wy: — 1}.

Consequently, we conclude that

b =0k =p, forall k,k' € K and all s’ € {s,...,s +wy — 1}.

On the other hand, we ensure that all ¢/ € E} for each demand k are independants s.t. for each
demand k£ € K we have

> ouk= W= D (=) =0

e'eBf e'eBk e'eEk

The only solution of this system is u*, = vf ' for each ¢’ € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

pk = ’yf’e/, for all k € K and all ¢’ € Ef,

We re-do the same thing for the edges ¢’ € E¥ for each demand k which are independants s.t. for
each demand k € K we have

o= = Y (- =0

e'€EY e'€EEY e'€EEY

The only solution of this system is u¥ = 45 " for each ¢’ € E¥ for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

=+ forall k € K and all ¢ € EF,

Furthermore, all the slots s’ € {1,...,w; — 1} for each demand %k are independants s.t. for each
demand k € K, we have

wkfl wkfl wkfl

k k,s’ k ks’
Zas,z o —>Z(08,—'y3 )=0
s=1 s=1

s=1

The only solution of this system is ¥ = 7§’5' for each s’ € {1,...,w, — 1} for the demand k. As k
is chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

ok, = Ay;f’sl, for all k € K and all s € {1,...,w — 1}. (49)
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We conclude that for each k' € K and ¢/ € E
N5 if e € B,
AE < if el € EF,
p, if ' € Kand ¢ =e,

0, otherwise,

K _
Her =

and for each k € K and s’ € S

N i s e {1, g, — 1}
ok, = pif ke K and " € {s,...,s 4+ wy, — 1},

0, otherwise.

min(s+wy—1,5)

As a result ( Z pak 4 Z pBE + Q.

keK s'=s

Theorem 12. Consider an edge e € E, and a slot s € S. Let K be a subset of demands in K
with |K| = 3, and 32y g wi < 8= 3 e\ g We- Then, the inequality (17) is facet defining for
P(G,K,S) if and only if there does not exist an interval of contiguous slots I = [s;, s;] s.t.

— Hsi+wx —1,...,8;}| > wy for each demand k € K,

— and s € {s; + maxwy — 1, ..., s; — maxwy + 1},
k€K keK

—andwk—i—wk/2|I|+1f07“eachk:,k'~ef(, 3
— and wy +wy > |I| 41 for each k € K and each k' € K.\ K,
— and 2wy, > |I| + 1 for each k € K,

— and 2wy > |I| +1 for eachk’GKe\f(.

Proof. Neccessity.
If there exists an interval of contiguous slots I = [s;, s;] s.t.

— {si +wg — 1,...,5;}| > wy, for each demand k € K,

— and s € {s; + maxwy, — 1, ..., s; — maxwy + 1},
K ek keK

fandwk—i—wk/2|I|—|—1foreachk,k’~6f{, }
— and wy +wy > |I| 41 for each k € K and each k' € K. \ K,
— and 2wy, > |I| +1 foreach k € K,
— and 2wy > |I] 4+ 1 for each k¥’ € K, \ K.

Then the inequality (17) is dominated by the inequality (23) for for a clique C' = K and clique
C. = K.\ K in the conflict graph G%. As result, the inequality (17) is not facet defining for

P(G,K,S).
Sufficiency.
Let’s us denote F' ;’S the face induced by the inequality (17), which is given by
min(s+wy,—1,5) min(s+w,s—1,5)
FZ2° ={(z,2) € P(G,K,S): Zx —|—Z Z ziﬁ—!—Z Z 28 = |K|+ 1}
k€K kEK s'=s K A\K s'=s

We denote the inequality >,z 2% + >, & me(s+wk 1,5) 2+ 3k \K me(”w’“'il’g) 2 <

|K| 4+ 1 by ar + Bz < A. Let px 4+ oz < 7 be a valid inequahty that is facet defining F' of
P(G, K,S). Suppose that FI/;’S C F={(z,z) € P(G,K,S) : uz + 0z = 7}. We show that there
exists p € R and v = (71,72,73) (s.t. 71 € REkex ‘Eg‘,'yg € RXkex ‘Ef‘,’yg € RErex(We=1)) gt
(1,0) = p(a, B) +~4Q, and that

— ok =0 for all demands k € K and all slots s’ € {wy,...,5} with s’ & {s,...,s + wp — 1} if
ke KUK,
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— and oF 7 are equivalents for all k € K UK, and all s’ € {s,...,s +wy — 1},

— and p¥ =0 for all demands k € K and all edges e € E '\ (EO UEF) withe# ¢ if k€ K,

— and all ,u(, are equlvalents for the set of demands in K,

— and ¥ " and p¥ are equivalents for all k € K and all K’ € KUK, and all s’ € {s, ..., s+ wj —1}.

We re-do the same technique of proof already detailed to prove that the inequality (15) is facet
defining for P(G, K,S) s.t. the solutions S3° — §46 still feasible for Fﬁe’s given that their incidence

vector are composed by >, x xF+37, yomin(stwe=L8) ok EDDIRY Emln(s+wk' L) oK <K |+

s'=s

1. We conclude at the end that for each ¥’ € K and ¢’ € E
’yf/’e/, ife' € Eg,
7§ ’el, if ¢ € E¥,

p, if ¥ € Kand ¢ =e,

0, otherwise,

K _
Her =

and for each k € K and s’ € S

’y§ Sl,if se{l,..,wp—1}
af/ =93pif ke KUK, and §' € {8y .y s +wy — 1},

0, otherwise.

min(s+wi—1,5) min(s+w,s—1,5)
As a result ( Z pak + Z Z pBY + Z Z pBY +4Q.
keK keK s'=s keKN\K s'=s

5.8 Non-Compatibility-Odd-Hole Inequalities

Theorem 13. Let H be an odd-hole in the conflict graph ég with |H| > 5. Then, the inequality
(36) is facet defining for P(G, K,S) if and only if
— for each vy o ¢ H, there exists a node vy, . € H s.t. the induced graph G (H\ {vp.c} U{vp o' })
does not contain an odd-hole H' = (H \ {v,}) U{vi e},
— and there does not exist a node vy o ¢ H s.t. all the nodes vy . in H are linked with this node
Vg e @0 the conflict graph ég

Proof. Neccessity.
We distinguish the following cases:

— if for a node vy o ¢ H in G%, there exists a node vy, . € H s.t. the induced graph G (H \
{vk,e} U {vi e }) contains an odd-hole H' = (H \ {vge}) U {vi o }. This implies that the
inequality (36) can be dominated using some technics of lifting based on the following two
inequalities Y7, bk < ‘H‘ L and Do el zh < ‘HI L

— if there exists a node Ve & H in GS s.t. v ¢ is linked Wlth all nodes vy € H. This implies
that the inequality (36) can be dominated by the following valid inequality

Ry =1 HI-1
v e €EH

If no one of these cases is verified, the inequality (36) can never be dominated by another inequal-
ity without changing its right hand side. Otherwise, the inequality (36) is not facet defining for
P(G,K.,S).
Sufficiency.

~K
Let FI?E denote the face induced by the inequality (36), which is given by

Fgg ={(z,2) € P(G,K,S) : Z o |H|T_1}

'UkngH
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In order to prove that inequality >, ; k= |H|2_1 is facet defining for P(G, K,S), we start

~K ~K
checking that FgE is a proper face, and FSE # P(G,K,S). We construct a solution S*7 =
(E*7,547) as below

— a feasible path E,‘f is assigned to each demand k € K (routing constraint),

— aset of last-slots S{7 is assigned to each demand k € K along each edge ¢’ € E} with [S{7| > 1
(contiguity and continuity constraints),

—{s—wp+1, ...,s} N{s' —wp +1,...,8'} = 0 for each k, k' € K and each s € S} and s’ € S{7
with E}7 N B} # 0 (non-overlapping constraint),

— and there is ‘ ‘ L pairs of demands edges (k,e) from the odd-hole H denoted by Hy7 (i.e.,
Vk,e € Hyy s.t. the demand k selects the edge e for its routing in the solution S*7, i.e., e € E47
for each node vy . € Hyr, and €’ ¢ EJ for all vy oo € H \ Hyz.

Obviously, S*7 is a feasible solution for the problem given that it satisfies all the constraints of our

cut formulation (2)-(12). Moreover the corresponding incidence vector (z ST ST ) is belong to

P(G, K,S) and then to F £ given that it is composed by }_,  cy zk ‘HI L As a result, F £

is not empty (i.e., F E # 0). Furthermore, given that s € {wy, ..., 5} for each vy s € H, this means
that there exists at least one feasible slot assignment Sy, for the demands k in H with s ¢ Sy, for
each vy s € H. This means that FGE # P(G,K,S).

Let denote the inequality ka,eeH 3:’; < ‘H‘Tl by ar + Bz < A. Let ux + oz < 7 be a valid

inequality that is facet defining F' of P(G, K,S). Suppose that Fgg Cc F={(z,z2) € P(G,K,S) :
px 4+ oz = 7). We show that there exists p € R and v = (y1,72,73) (s.t. 71 € R2rex |E§|,72 €
RXkex ‘Ef‘,'yg e REvex (k=) st (u,0) = p(a, B) +vQ, and that

— 0% =0 for all demands k € K and all slots s € {w, ..., 5},
— and pf = 0 for all demands k € K and all edges e € E \ (E} U EY) with vy, . ¢ H,
— and p¥ are equivalent for all Vk,e € H.

We first show that u* = 0 for each edge e € E \ (E§ U E¥) for each demand k € K with vy . ¢ H.
Consider a demand k € K and an edge e € E \ (E} U EF). For that, we consider a solution
ST = (E'7,57) in which

— a feasible path Ej7 is assigned to each demand k € K (routing constraint),

— a set of last- slots 5’47 is assigned to each demand k € K along each edge e € E,’C47 with
1S > 1 (contlgulty and continuity constraints),

—{s —wp + 1,8} N{s" —wp +1,...,5"} = 0 for each k, k' € K and each s’ € S;*" and
s" € ST with EAT N EAT # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE,;47 [{s" € S}A7 5" € {s' —wy +1,..., '} <1 (non-overlapping constraint),

— the edge e is not non-compatible edge with the selected edges ¢/ € E{}" of demand k in the
solution 8’7, i.e., Ze'eE;;” ler+1e < li. As aresult, Ej*7U{e} is a feasible path for the demand
k’

— and there is ‘Hlfl pairs of demand-edge (k,e) from the odd-hole H denoted by Hj; (i.e.,
Vge € Hjp .. the demand k selects the edge e for its routing in the solution 8’47, i.e., e € E’47
for each node vy, . € Hj, and €’ ¢ E}7 for all vy oo € H \ H;.

S'7 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

’ 7’ A K
(2)-(12). Hence, the corresponding incidence vector (x5 S 47) is belong to F' and then to FgE

IHI 1

given that it is composed by ka cH zk . Based on this, we derive a solution S*® obtained

from the solution &7 by adding an unused edge e € E\ (E} U E¥) for the routing of demand k in
K in the solution 87 which means that E}® = E/*7 U {e}. The last-slots assigned to the demands
K, and paths assigned the set of demands K \ {k} in 8’47 remain the same in the solution S*8,
i.e., Sp& = Si7 for each k € K, and Ef = E}37 for each k' € K \ {k}. 8% is clearly feasible given
that

— and a feasible path Eﬁs is assigned to each demand k € K (routing constraint),
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— a set of last-slots S,%S is assigned to each demand k € K along each edge e € E,%S with \S,%8| >1
(contiguity and continuity constraints),

- {s = wk + 1,8 N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S;® and
s" € S¥ with E¥ N EX # 0, ie., for each edge e € E and each slot s” € S we have
ZkeKeeE4s {s' € Sk , 87 €{s —wp+1,...,5'} <1 (non-overlapping constraint).

~K
The corresponding incidence vector (x848,z‘548) is belong to F' and then to FgE given that it is

|H| L It follows that

composed by -, gy

8/47 8147 848 8147

nx +oz = ux848 +oz = ux + ,u’; + Uz‘sm.

As a result, ¥ = 0 for demand k and an edge e with Vge ¢ H.
As e is chosen arbitrarily for the demand k with e ¢ Ef U EY and vy, ¢ H, we iterate the same
procedure for all ¢’ € E\ (E§ U EY U {e}) with vy ¢ H. We conclude that for the demand k&

pk =0, forall e € E\ (Ef U EY) with vy . ¢ H.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &' € K\ {k}
and all e € E\ (E§ U EY) with v . ¢ H. We conclude at the end that

=0, forall k € K and all e € E\ (Ef U EY) with vy . ¢ H.

Let’s us show that ¥ = 0 for all k € K and all s € {wy, ..., 3}. Consider the demand k and a slot
s" in {wg, ..., 3}. For that, we consider a solution §”47 = (E”47, 5747) in which

— a feasible path E”}7 is assigned to each demand k € K (routing constraint),

— a set of last-slots S”47 is assigned to each demand k£ € K along each edge e € E”f with
|S74T] > 1 (contlgulty and continuity constraints),

—{s—wk+1 L8N {s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S”4" and
s" e S with E"YT N B £ 00, i.e., for each edge e € E and each slot s” € S we have
ZkeK,eeE”;‘] H{s' € 8717, 8" € {s' —wg + 1, ..., s'}| <1 (non-overlapping constraint),

— and {s’ — wk +1,.,8N{s —wp +1,. = ) for each k' € K and s” € S”}] with
E" 47N E” #0 (non overlapping constralnt taklng into account the possibility of addlng the
slot s in the set of last-slots S”7 assigned to the demand k in the solution S”47),

— and there is ‘Hl L pairs of demand edge (k,e) from the odd-hole H denoted by H”4; (i.e.,
Vhe € H47 s. t the demand k selects the edge e for its routing in the solution S”47, i.e.,
e € E"{7 for each node vg . € H” 47, and e’ ¢ E”{ for all vy o € H \ H” 47.

S747 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

9 9 K

- . ence, € corresponding imcidence vector (xr 47,2’ o 1S belong to al en to
2)-(12). Hence, th ding incid t S 25" is belong to F and then to Fi®
_ L)

given that it is composed by ka cH ok

— without changing the paths established in S”*7: we derive a solution S*° = (E*?, $%9) from
the solution 8”47 by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”7 (i.e., E}® = E”}" for each k € K), and the last-slots
assigned to the demands K \ {k} in §”%7 remain the same in the solution 8% i.e., S”3/ = S}
for each demand k' € K \ {k}, and S} = S”#7 U {s'} for the demand k. The solutlon S is
feasible given that

e a feasible path E is assigned to each demand k € K (routing constraint),

e a set of last- blOtb 529 is assigned to each demand k € K along each edge e € E} with
ISP >1 (contlgmty and continuity constraints),

o {s'— wk +1, ...,s’} O {s” —wgr +1,...,8"} = 0 for each k, k' € K and each s’ € S} and
s” € SE with E° P # (0, ie., for each edge e € E and each slot s” € S we have
D kek, ccBto {s' € 549 5” e{s —wi+1,..,5} <1 (non-overlapping constraint)

The corresponding incidence vector (x 549, z 49) is belong to F' and then to F HE given that it

is composed by ka cH zk = |H‘ 1. We then obtain that

» 47 47 49 49 » 47 2 47
,uxs +02° :,uxs +02° :,uxs +02° +U§,.

It follows that o = 0 for demand k and a slot s’ € {wy, ..., 5}.
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— with changing the paths established in S”47: we construct a solution S° derived from the

solution 8”47 by adding the slot s’ as last-slot to the demand & with modifying the paths
assigned to a subset of demands K C K in §"*7 (i.e., B} = E”{7 for each k € K \ K, and
E # E"I for each k € K) s.t.

e a new feasible path E}* is assigned to each demand k € K (routing constraint),

e and {s' —wp+1,...,8} N {s” —wp +1,...,5”} = 0 for ecach k € K and ¥’ € K \ K and
each s’ € §”}" and s” € S7{7 with E} N E”}7 # 0, i.e., for each edge e € E and each slot
§” € S we have Zkef(,eeE;;“’ Hs' € 8717, 87 e {s' —wp +1,...,} + ZkeK\f(,eeE”f {s' €
ST 8" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint), )

e and {s' —wp + 1,...,8'} N{s" —wp +1,...,8"} = 0 for each k¥’ € K and s” € S”¢ (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”}7 assigned to the demand k in the solution &”47).

The last-slots assigned to the demands K\ {k} in 8”7 remain the same in 8§, i.e., S = S}4
for each demand k' € K \ {k}, and S*® = S”}7 U {s} for the demand k. The solution S is
clearly feasible given that

e a feasible path E,’€49 is assigned to each demand k € K (routing constraint),

e a set of last-slots S;19 is assigned to each demand k € K along each edge e € E;* with
|S;49] > 1 (contiguity and continuity constraints),
o {s'—wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S;!° and

s” € S with B N EJ £ 0, ie., for each edge e € F and each slot s” € S we have

EkeK,eeEg” H{s' € ;1 5" € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

/ 7 ~K
The corresponding incidence vector (z° 49,23 49) is belong to F' and then to FSE given that

. k_ |H|-1
it is composed by }_, oy xe = —5—. We have so

347 47 149 149 947 9 47 7. L.
,uxs +025 = ,u:cs +02° = ,UCL‘S +02°7 + Jfl — E E u’g + g E ,u’;,.

keK ecE}7 keK e’'eE*®

It follows that o¥ = 0 for demand k and a slot s’ € {wg, ..., 5} given that u* = 0 for all the
demand k € K and all edges e € E\ (E§ U EY) with vy, . ¢ H.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., 5} of demand k with vy & ¢ H s.t. we find

ok =0, for demand k and all slots 5" € {wy, ..., 5} with vy o ¢ H.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’

in K\ {k} such that

o =0, for all K’ € K \ {k} and all slots s € {wy, ..., 5} with vy, ¢ H..

Consequently, we conclude that

ok =0, for all k € K and all slots s € {wy, ..., 5} with vy, ¢ H.

Let’s prove that u* for all Uy, are equivalents. Consider a node vy o in H s.t. € ¢ E,‘g. For that,
we consider a solution §7 = (E47, 517) in which

— a feasible path E}7 is assigned to each demand k € K (routing constraint),
— a set of last-slots S7 is assigned to each demand k € K along each edge e € E{7 with [S{7] > 1

(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s" —wp +1,..,8} = 0 for each k, k' € K and each s’ € 5’137 and

s” € S with Ef7 N EY # 0, ie., for each edge ¢ € E and each slot s € S we have
ZkeK,eeE;§7 {s' € S}7,s” € {s' —wi +1,...,5'}| <1 (non-overlapping constraint),

—and {s—wp+1,...,s}N{s' —wp +1,....;s'} = 0 for cach k € K and s € S}7 with E{TNEY # 0,

|H|-1

— and there is —— pairs of demand-edge (k,e) from the odd-hole H denoted by Hyz (i.e.,

Vg € Hyr s.t. the demand k selects the edge e for its routing in the solution S, i.e., e € E{7
for each node vy, . € Hyr, and €’ ¢ E}7 for all vy o» € H \ Haz.
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S%7 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

~ ~ ~AK
2)-(12). Hence, the corresponding incidence vector ;v8477z‘547 is belong to F' and then to FG®
H

k_ |H

given that it is composed by > x ‘271. Based on this, we distinguish two cases:

vk, e€H Ve T
— without changing the spectrum assignment established in S*7: we derive a solution S =
(E®Y, §%0) from the solution S*7 by

e modifying the path assigned to the demand k' in S*7 from E,‘g to a path E}Y passed
through the edge ¢’ with vy o € H,

e and selecting a pair of demand-edge (k, ) from the set of pairs of demand-edge in Hy7 s.t.
U e 1s not linked with any node vg» ¢» in Hy, \{vke},

e modifying the path assigned to the demand & in SY7 with e € E’,‘g and v, € H from E;‘f
to a path E,io without passing through any edge ¢’ € E \ (E§ U EF) s.t. Vit er and U e
linked in H and {s —w, +1,...,s} N{s’ —wp +1,...,s'} = 0 for each k¥’ € K and each
s' € ST with EX 0 EYO £ (.

The paths assigned to the demands K \ {k, '} in $*7 remain the same in S (i.e., B39 = B
for each k” € K \ {k,%k'}), and also without modifying the last-slots assigned to the demands
K in §*7, ie., S} = 590 for each demand k € K. The solution S? is feasible given that

e a feasible path E,EO is assigned to each demand k € K (routing constraint),

e a set of last-slots S;;’O is assigned to each demand k € K along each edge e € E,‘Z’O with
|S20] > 1 (contiguity and continuity constraints),

o (s —wp+1,....stN{s” —wp + 1,...,5"} = 0 for each k,k’ € K and each s’ € S}° and
s7 € S with EPO N ER) # 0, ie., for each edge e € E and each slot s € S we have
EkeK,eeE;’;D {s' € S70,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

50 . K .
The corresponding incidence vector (x‘sso, 28 O) is belong to F' and then to FSE given that it

is composed by Y, ok = =L We then obtain that
347 347 50 50 347 347 ’
,uxs +02° = u:cs +02° = ua:s +025 + ,uf/ - u’;
K K k k
+ Z [ Z [ Z Her — Z g -
e”EEEE)\{e/} e”GEﬁf e»eEgo e”GEﬁ7\{€}

It follows that p* = u¥ for demand k’ and a edge ¢’ € E \ (E} U E}) with vy o € H given
that pk, =0 for all k € K and all ¢’ € E \ (E§ U EY) with vy e ¢ H.

— with changing the spectrum assignment established in S*7: we construct a solution 8’3° derived
from the solution S*7 by

e modifying the path assigned to the demand k' in §*7 from E,‘g to a path E2° passed
through the edge e’ with vy . € H,

e and selecting a pair of demand-edge (k, e) from the set of pairs of demand-edge in Hyz s.t.
Vs e 18 not linked with any node vg» ¢» in Hyz \ {vg.e},

e modifying the path assigned to the demand k in S*7 with e € E,‘g and vi . € H from E27
to a path E,’f’o without passing through any edge e” € E'\ (E(’)’“ U EF) s.t. Vi o and vy e
linked in H,

e modifying the last-slots assigned to some demands K C K from 527 to 51/2,50 for each k € K
while satisfying non-overlapping constraint.

The paths assigned to the demands K\ {k, '} in S remain the same in S’ (i.e., B0 = B
for each k7 € K \ {k,k'}), and also without modifying the last-slots assigned to the demands
K\ K in 8, i.e., S}7 = 550 for each demand k € K \ K. The solution S’ is clearly feasible
given that

e a feasible path E}5Y is assigned to each demand k € K (routing constraint),

e a set of last-slots SpP0 is assigned to each demand k € K along each edge e € E;>° with
15;5%] > 1 (contiguity and continuity constraints),

o {s' —wp+1,....8tN{s" —wp +1,..,8"} =0 for each k,k’ € K and each s’ € S}>" and
s” € S with BP0 N ERC +# 0, ie., for each edge e € F and each slot s” € S we have
ZkeK,eeE;fO {s' € 59 s" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint).
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’ 15! . K .
The corresponding incidence vector (z 50, 28 0) is belong to F' and then to FSE given that
‘Hl L. We have so

it is composed by 3.,y zk

S”47 S”47 8150 5/50 S~47 5”47

nx +oz = ux +oz = ux +oz +,u’(f/lfu’:+z Z af,f Z af

keK s'€SP° 36937

LD DR T S T N 7

e’ €50\ {e'} e”eE'ﬁT " EE0 e”€B\{e}

It follows that p* = u* for demand k" and a edge ¢’ € E \ (B} U EF') with vp oo € H given
that u% =0forall k € K and all ¢” € E\ (E§ UEY) with vy ¢ H,and o =0 for allk € K
and all s € {wy, ..., 5}.

Given that the pair (vge,vg o) are chosen arbitrary in the odd-hole H, we iterate the same
procedure for all pairs (vg e, Vg ,er) 8.t. we find

pk = p’;,/,for all pairs (vg,e, V) € H.

Consequently, we obtain that u’; =pforall vy . € H.
On the other hand, we ensure that all the edges e € Ef for each demand k are independants s.t.
for each demand k € K we have

", k.
o=y o = Y (wE-w) =0

ee E(’f ee E(’f eeE(’f

The only solution of this system is p* = 7f *“ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

pF =% forall k € K and all e € EF,

We re-do the same thing for the edges e € EF for each demand k which are independants s.t. for
each demand k € K we have

Doub=d = > (w2 =0

e€EEY e€EEY eEEk

The only solution of this system is p? = 'y§ *“ for each e € Ef for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

pk =5°, forall k € K and all e € EY,

On the other hand, all the slots s € {1,...,w, — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkfl

- r—1
Z Z 7t = Y (of=57) =0
s=1 s=1

s=1

The only solution of this system is o = 'yf,f’s for each s € {1,...,w, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We then get that

oF =45 forall k€ K and all s € {1,...,wy, — 1}. (50)
We conclude that for each k € K and e € E
Ve if e € BE,
s ke, if e € E¥,
p, if v € H,

0, otherwise,
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and for each k € K and s € S

S .
0, otherwise.

N {véf’s,if se{l,..,wy — 1},
0- p—

As a result ( Z pa + Q.
Vk, cEH

Theorem 14. Let H be an odd-hole, and C' be a clique in the conflict graph ég with
- [H| >5,
— and |C| > 3,

and HNC =0, 3

and the nodes (Vg e, Vi er) are linked in Gg forallvg . € H and vy o € C.

Then, the inequality (37) is facet defining for P(G, K,S) if and only if for each node vy» ¢ in Gg
with vy oo ¢ HUC and CU{vg ¢} is a clique in ég, there exists a subset of nodes H C H of
size IH'% s.t. HU {vp o>} is stable in G .

Proof. Neccessity.

If there exists a node vg» o» ¢ HUC in é’g s.t. vg» ¢ is linked with all nodes v . € H and also
with all nodes vgs - € C. This implies that the inequality (37) can be dominated by the following
valid inequality

|H| -1 , |H|-1 ,. |H|-1
Z zf + g Z 375/ + B xlj < 5
’UkYEEH ’Uk/’E:IEC'

As a result, the inequality (37) is not facet defining for P(G, K, S).

Sufﬁmency
Let FH 7. denote the face induced by the inequality (37), which is given by
GE ) e [H|—1 k/_|H|—1
Fpt ={(z,2) € P(G,K,S) : Z xe + 5 Z xo = T}
’Uk,,eGH ’Uk/yelec
In order to prove that inequality Y, g xF + H1 ka, ,ecx ) = |H‘ L is facet defining for

~K
P(G, K,S), we start checking that FEEC is a proper face, and F' H’C #+ P(G, K,S). We construct a
solution 8°2 = (E52, §52) as below

— a feasible path E}? is assigned to each demand k € K (routing constraint),

— aset of last-slots S7? is assigned to each demand k € K along each edge ¢’ € Ep? with [S7?| > 1
(contiguity and continuity constraints),

—{s—wr+1,...,s}N{s’ —wp +1,...,5'} =0 for each k, k' € K and each s € S}? and s’ € S}?
with EP? N ER? ;é () (non-overlapping constraint),

— and there is IH' L pairs of demands edges (k,e) from the odd-hole H denoted by Hs: (i.e
Vk,e € Hs2 s.t. the demand % selects the edge e for its routing in the solution S°2, i.e., e € E52
for each node vy, . € Hsz2, and ¢’ ¢ E}? for all vy oo € H \ Hoe.

Obviously, §°2 is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(1: ) Moreover, the corresponding incidence vector (z 57 2552) is belong to

ok H| 1 H| 1y
P(G, K, S) and then to FHCglven that it is composed by ka cHT —I—I ka/,e/ec ah = =21

As a result, FH7C is not empty (i.e., FH)C # (). Furthermore, given that s € {wg, ..., §} for each
Uk,s € H, this means that there exists at least one feasible slot assignment Sy for the demands k&

in H with s ¢ Sy, for each vy, s € H. This means that F 2, # P(G,K,S).
Let denote the inequality vaeH zh |H|2 ! ka/ eC xk < IH' ! by ax+5z < A. Let pr+oz <7

~AK
be a valid inequality that is facet defining F of P(G, K,S). Suppose that Fg% CF=A{(z,2) €
P(G,K,S) : ux + oz = 7}. We show that there exists p € R and v = (y1,72,73) (s.t. 11 €
REkex |51~y € REwex BT 4y € R2=rex(We=1)) st (u,0) = p(a, ) + 7Q, and that
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— 0% =0 for all demands k € K and all slots s € {wy, ..., 5} as done in the proof of theorem 13,

— and pF = 0 for all demands k € K and all edges e € E \ (E§ U EF) with vy . ¢ HUC as done
in the proof of theorem 13,

— and p¥ are equivalent for all vy, . € H as done in the proof of theorem 13,

given that the solutions defined in the proof of theorem 13, their corresponding incidence vec-
tor are belong to P(G, K, S) and then to F 1. given that they are composed by >
[H|— k’ _ |H \

2 ka/ /GC -
Let us prove now that ,ue/ are equivalent for all vy o € C. For this, we consider a node vy o in C
s.t. ¢ ¢ E}?. For that, we consider a solution &% = (E'?, $/5%) in which

Vi, e GHw +

— a feasible path E’52 is assigned to each demand k € K (routing constraint),

— a set of last-slots 5,252 is assigned to each demand k£ € K along each edge e € E,’fQ with
1552| > 1 (contiguity and continuity constraints),

(s —wp 4+ 1,...,8'} N {s” —wp +1,...,8”} = 0 for each k,k’ € K and each s’ € 552 and
s € S’52 w1th E’52 N E’52 # 0, i.e., for each edge ¢ € E and each slot s” € S we have
5'52, 7 e{s —wr+1,..,8} <1 (non-overlapping constraint),

ZkeK,eeE;;?
—and {s—wr+1,...,s}N{s'"—wp+1,....8'} = (Z) for each k € K and s € S22 with EP?NES? # 0,
% pairs of demand-edge (k,e) from the odd-hole H denoted by Hs: (i.e.,
Vg € Hs> s.t. the demand k selects the edge e for its routing in the solution §’°2, i.e., e € E}>?
for each node vy . € Hs2, and €” ¢ E,’f}Q for all vy » € H \ Hss.

— and there is

8’52 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-

G/ U K
12). Hence, the corresponding incidence vector (z° 52, 25) is belon to F and then to FGE, given
g g HC &

- H|-1
that it is composed by Y, zF + % ka, sec T
two cases:

ki — ‘H‘ . Based on this, we distinguish

— without changing the paths established in $'*2: we derive a solution S5 = (E%*, §%4) from the
solution 8’52 by
e modifying the path assigned to the demand k' in 82 from E}3? to a path EJ! passed
through the edge ¢’ with vy o € C,
¢ modifying the path assigned to each demand k with v . € Hs2 in 82 with e € E’52 and
Ug,e € H from E"’2 to a path Ep* without passing through any edge e” € E\ (Ek U EY)
s.t. {s —wy + 1, ...,s} N{s' —wp +1,...,8} = 0 for cach k' € K and each s’ € S}3? with
B AR 20,
The paths assigned to the demands K \ (K (Hs2) U {k'}) in 82 remain the same in S** (i.e.,
E3* = E32? for each k” € K \ {k,k'}), and also without modifying the last-slots assigned to
the demands K in 82, i.e., 5’,@52 = 51‘24 for each demand k € K. The solution S** is feasible
given that
e a feasible path EP* is assigned to each demand k € K (routing constraint),
e a set of last-slots SP* is assigned to each demand k € K along each edge e € Ep? with
|S74| > 1 (contiguity and continuity constraints),
o {5/ — we +1, ...,s’} ﬂ {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S3* and
s" e S with E 54 # (), i.e., for each edge e € E and each slot s” € S we have
D okeK, ccE5 {s' € Sk ,s” e{s —wp+1,...,5} <1 (non-overlapping constraint).

~K
The corresponding incidence vector (z5°, 2354) is belong to F' and then to Fg% given that it
is composed by 3, oy @t + Lo Dovg sec® b = 121 We then obtain that
S/52 3152 54 54 3152 3152 ’
,uxs +025 = ,u;l:s +025" = ,u:cs +025 + ,u’e“, — Z ule“

Ve €Hs2

D DR D DR S T S T

e eES\{e'} " e B3 e?eEM kEK (Hsz) e’ €E}5?
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It follows that u’e“,/ = ka €l ¥ for demand &’ and a edge ¢’ € E\ (E§ UE}') with Vgt o0 € H

given that pk, =0 for all k € K and all ¢’ € E\ (Ef U EY) with v, » ¢ HUC. As a result,
|H\ 1
/’Le’ =P

— with changmg the paths established in &°2: we construct a solution S’** derived from the
solution 8’52 by
e modifying the path assigned to the demand &’ in 82 from E}3? to a path E3* passed
through the edge ¢’ with vy o € C,
e and modifying the path assigned to each demand k with vy . € Hs2 in S°2 with e € E}5?
and vy . € H from E’52 to a path E}>* without passing through any edge e” € E\(Ek UEk)
e modifying the last-slots assigned to some demands K C K from S’ 52 to S’ 54 for each k € K
while satisfying non-overlapping constraint.
The paths assigned to the demands K \ (K (Hs2) U {k’}) in §’°2 remain the same in S’* (i.e.,
ERt = E2? for each k7 € K \ {k,k'}), and also without modifying the last-slots assigned to
the demands K \ K in 82, i.e., §{>2 = §/5* for each demand k € K \ K. The solution S’ is
clearly feasible given that
e a feasible path F}>* is assigned to each demand k € K (routing constraint),
e a set of last-slots S;>* is assigned to each demand k € K along each edge e € E;>* with
|S;24] > 1 (contiguity and continuity constraints),
o {8 —wp+1,..,8}N{s" —wp +1,....,8"} = 0 for each k, k' € K and each s’ € $;>* and
s” € St Wlth E’54 NEZY # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeE;;‘l s € 924, s” €{s —wgp+1,...,5} <1 (non-overlapping constraint).

8/54 8154
(z

~K
The corresponding incidence vector ,2° ) is belong to F' and then to FSEC given that

T ko [H[=1 o - IHI 1
it is composed by }_, oy we + 75 ka/,e/ec o = . We have so
3152 3152 154 154 G52 352 / T T.
uxs +025 = ,ua:s +02°5 7 = ,ua:s +025 + uf, — g ulg + E E Ufl — g Uf
Uk, e €Hs2 kek s'eSPt seég”z
K’ ’ k k
+ E Mer — E He» + E Her — E E Mg -
e”eE 7\ {e'} e’ eBIT? e’ €E;4 k€K (Hs2) e € 52

It follows that u% = > or € Hso p¥ for demand &’ and a edge €’ € E\ (ES UEY) with vy o € C
given that pk, =0 for all k € K and all ¢” € E\ (EO U EY) with vy e» ¢ HUC, and o =0
for all k € K and all s € {wy, ..., 5}. As a result, u¥, = pIHl L

Given that the pair vy o is chosen arbitrary in the clique C, we iterate the same procedure for all
pairs v oo € C s.t. we find

o |H| =
= p

,for all pairs vy o € C.

As a result, all ,u’g,/ € C are equivalents s.t.

' |H| -
pe = pls = p

, for all pairs vy ¢, vp» o € C

On the other hand, we ensure that all the edges e € E(’j“ for each demand k are independants s.t.
for each demand k € K we have

k, k,
doue=) o = Y (W) =0

ecEf ecEf e€Ep

The only solution of this system is p¥ = fyf “ for each e € E} for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

pk =1, for all k € K and all e € Ef,
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We re-do the same thing for the edges e € E} for each demand k which are independants s.t. for
each demand k € K we have

ouE= YW Y () =0

e€EEY e€EEY ecEk

The only solution of this system is p* = ’yg “ for each e € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

pF =~5¢ forall k € K and all e € EY,

On the other hand, all the slots s € {1,...,wy — 1} for each demand k are independants s.t. for
each demand k € K, we have

wkfl

- p—1
S S S o
s=1 s=1

s=1

The only solution of this system is 0% = 7§’8 for each s € {1, ...,wy, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

oF =~4F% forall k€ K and all s € {1,...,w; — 1}. (51)
We conclude that for each k € K and e € E

V¢, if e € BY,
ybeif e € EF,
p, if g € H,
pIHl -

1
.f e C?
B , L Ve €

0, otherwise,

and for each k € K and s € S

i {%’;’S,if se{l, .., w,—1},
g. =

S .
0, otherwise.

Qe +IYQ

As a result ( Z pak + Z

v, e €H g/ e 1eC

5.9 Edge-Interval-Cover Inequalities

Theorem 15. Consider an edge e € E. Let I = [s;, s;] be an interval of contiguous slots in [1, 3]
with j > i+ 1. Let K be a subset of demands of K s.t.

Zwk2|ll+l;

kEK

- Z wy < |I| for each k' € K,
keK\{k'}

- Zwkﬁg— Z Wy,
keK K eKNK

— e ¢ Ef for each demand k € K,

>3,
— (k,K') ¢ K¢ for each pair of demands (k, k') in K.
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Then, the inequality (20) is facet defining for the polytope P(G, K, S,K,I,e) iff there does not
exist an interval of contiguous slots I' in [1,5] with I C I' s.t. K defines a minimal cover for the
interval I', where

(GKSKIe)f{(o:z)EPGKS Z Z zf,/:O}.
k'eK, \Ks’—s HFwyr—1

Proof. Necessity

If there exists an interval of contiguous slots I "in [1,5] with I C I’ s.t. K defines a minimal cover
for the interval I’. This means that {s; +wr—1,...,s;} C I'. As a result, the inequality (20) induced
by the minimal cover K for the interval I, 1t is domlnated by another inequality (20) induced by
the same minimal cover K for the interval I’. Hence, the inequality (20) cannot be facet defining
for the polytope P(G, K, S, K,I, e).

Sufficiency.

Let F g? denote the face induced by the inequality (20), which is given by

~ SJ
FO' = {(z,2) e PG, K.S, K, I,e): Y ab+ Y h=2K|-1}.

keK s=s;twr—1

In order to prove that inequality Y, oz ok + 302, | 4 2F < 2|[~(| — 1 is facet defining for

P(G,K,S, K,Le), we start checking that Ff(' is a proper face, and F 75 P(G,K,S, K, I, e).
We construct a solution 8§35 = (E55, 5%5) as below

— a feasible path E?° is assigned to each demand k € K (routing constraint),

— aset of last-slots S7° is assigned to each demand k € K along each edge ¢’ € EP° with [S7°| > 1
(contiguity and continuity constraints),

—{s—wr+1,...,s}N{s’ —wp +1,...,5'} =0 for each k, k' € K and each s € S}° and s’ € S}7
with EP° N E2? # () (non-overlapping constraint),

— and there is |[K| — 1 demands from the minimal cover K denoted by Kss which are covered
by the interval I (i.e., if k € K55 means that the demand k selects a slot s as last-slot in the
solution 8% with s € {s; +wy, — 1,...,s;}, i.e., s € Sp° for each k € Kss, and for each s’ € Spp
for all k' € K \ Ks5 we have s’ ¢ {s; +wp — 1,...,5;},

— and all the demands in K pass through the edge e in the solution S, i.e., e € EP® for each
ke K.

Obviously, 8% is a feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2)-(12). Moreover the corresponding incidence vector ( 35572355) is belong
to P(G,K,S,K,I, e) and then to F ! given that it is composed by Y, g ak +300  _ 2h =

2|K| — 1. As a result, Fg? is not empty (i.e., Ff{ # (). Furthermore, given that s € {s; + wy —
1,...,s;} for each kNE K, this means that there exists at least one feasible slot assignment Sy, for
the demands kin K with s ¢ {s; + wr — 1,...,s;} for each s € S;, and each k € K. This means
that FE' # P(G,K,S,K, I e).

We denote the inequality Y, oz ok +> 200, L, 428 < 2|K| —1 by ax+ Bz < A Let pr+oz <T
be a valid inequality that is facet defining F' of P(G7K,S,K,I, e). Suppose that Ff(f C F =
{(z,2) € P(G,K,S,K,I,e): ux + oz = 7}. We show that there exists p € R and v = (71,72, 73)
(s.t. y1 € R&rex 1B51, yp € R ke |BY] g € RErex(We=1) st (u,0) = p(a, B) +vQ, and that

— ok =0 for all demands k € K and all slots s € {wg, ...,5} with s ¢ {s; +wy — 1,...,s;} if
ke K ; )

— and o¥ are equivalents for all k € K and all s € {s; + wy, — HSit

— and pF, —O for all demands k& € K and all edges e € E\(EO UEl) with e # ¢ if k € K,

— and all pk are equlvalents for the set of demands in K,

— and 0¥ and p¥ are equivalents for all k € K and all s € {si+wr—1,...,s;}
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We first show that pk, = 0 for each edge ¢’ € E\ (Ef U EY) for each demand k € K with e # €’ if
k € K. Consider a demand k € K and an edge ¢’ € E \ (E} U EF) with e # ¢’ if k € K. For that,
we consider a solution 8’ = (E’55,55%) in which

— a feasible path E}?® is assigned to each demand k € K (routing constraint),

— and a set of last-slots S;°° is assigned to each demand k € K along each edge e’ € E};>® with
|S5;2%| > 1 (contiguity and continuity constraints),

—and {s' —wr +1,....,8} N{s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € 9>
and s” € S;5° with E>® N E5® # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK’eleE;Css [{s" € 9}2°,s" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint),

— the edge ¢’ is not non-compatible edge with the selected edges ¢” € E,’f’f’ of demand k in the
solution S”%, i.e., Ze”eE,’f’E’ leo 4+ 1o < I As a result, EP U {e} is a feasible path for the
demand k,

— and there is |[K| — 1 demands from the minimal cover K denoted by K% which are covered
by the interval I (i.e., if k € Ki; means that the demand k selects a slot s as last-slot in the
solution 8 with s € {s;+wi —1, ..., s,}, i.e., s € S} for each k € Kl and for each s’ € Sp3
for all k' € K \ Kig we have s’ ¢ {s; +wi — 1,..., 5, },

— and all the demands in K pass through the edge e in the solution 8’ i.e., e € E>° for each
ke K.

8’7 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (25", 25,55) is belong to F' and then to Fg;
given that it is composed by Y, g ok + >0, L, 2k = 2|K| — 1. Based on this, we derive a
solution S°@ obtained from the solution S’°® by adding an unused edge ¢’ € E\ (E§ U E¥) for the
routing of demand & in K in the solution §°° which means that E2% = E;>5 U {€’}. The last-slots
assigned to the demands K, and paths assigned the set of demands K \ {k} in S&°® remain the
same in the solution §°°, i.e., SP6 = S} for each k € K, and E}Y = E;5° for each k' € K \ {k}.
8%% is clearly feasible given that

— and a feasible path E} is assigned to each demand k € K (routing constraint),

— and a set of last-slots 526 is assigned to each demand k € K along each edge ¢’ € E,?G with
|S76| > 1 (contiguity and continuity constraints),

—and {s —wi +1,.,8}N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}°
and s” € S99 with E76 N EPS # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkGK}e/eEZG |{s' € S20,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x356, 2556) is belong to F' and then to F' ;i given that it is
composed by Y, cgak +3700, L, b= 2|K| — 1. It follows that

155 155 5 15
28 + oz S S

o = pux ’ + 02356 = ux ’ + ulzl + azslss.

As a result, ¥, = 0 for demand k and an edge ¢’ }

As ¢’ is chosen arbitrarily for the demand k with e ¢ Ef U EF and e # ¢ if k € K, we iterate the
same procedure for all e € F\ (E5 U E¥ U {e'}) with e # €” if k € K. We conclude that for the

demand k
pk =0, foralle’ € B\ (EYUEY) withe # ¢ if k€ K.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &' € K\ {k}
and all ¢’ € E'\ (E¥ U E¥). We conclude at the end that

pk, =0, forallk € K and all ¢ € E\ (E¥ UEY) withe #£¢ ifk € K.

Let’s us show that ¥ = 0 for all k € K and all s € {wy,...,5} with s & {s; + w — 1,...,s;} if
k ¢ K. Consider the demand k and a slot s" in {wy,...,5} with s" ¢ {s; +w, — 1,...,s;} if k ¢ K.
For that, we consider a solution §”5% = (E”?5,5755) in which
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— a feasible path E”?° is assigned to each demand k € K (routing constraint),

— a set of last-slots S”3° is assigned to each demand k € K along each edge ¢’ € E”?° with
|5725] > 1 (contiguity and continuity constraints),

— {s' — wy, + L.,stn{s" —wp +1,..,8"} = 0 for each k, k' € K and each s’ € S”2° and
§” € 872 with E”2° N E”3? # 0, ie., for each edge ¢’ € E and each slot s € S we have
DokeK.el I3 H{s' € 8735,8” € {s' —wg + 1,...,s'}| <1 (non-overlapping constraint),

— and {s' — wk +1,..,8tN{s" —wp +1,...,s"} = 0 for each ¥’ € K and s” € 5”3} with
E"NES 40 (non—overlapplng constralnt taking into account the possibility of addmg the
blOt s in the set of last-slots S77° assigned to the demand k in the solution 8”5%),

— and there is |K' | — 1 demands from the minimal cover K denoted by K755 which are covered
by the interval I (i.e., if k € I~(”55 means that the demand k selects a slot s as last-slot in
the solution 8”5° with s € {s; + wy, — 1, .8}, e, s € S725 for each k € K755, and for each
s' € 8750 for all K € K\ K755 we have ' ¢ {s; +wp — 1,...,8;},

— and all the demands in K pass through the edge e in the solution 8”55, i.e., ¢ € E” 25 for each
ke K.

8733 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (z 80 5”55) is belong to F' and then to FG?

given that it is composed by Y-, g @k +>700, L, 1 2F = = 2|K| — 1. Based on this, we dlstlngulsh
two cases:

— without changing the paths established in S”?%: we derive a solution S°7 = (E®7, $57) from
the solution §”°° by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 8”5 (i.e., E}” = E”35 for each k € K), and the last—slots
assigned to the demands K \ {k} in §”5° remain the same in the solution S°7 i.e., S”37 = SP7
for each demand k' € K \ {k}, and S;7 = S7%° U {s'} for the demand k. The solutlon 857 is
feasible given that

e a feasible path E,§7 is assigned to each demand k € K (routing constraint),

e a set of last-slots SP7 is assigned to each demand k € K along each edge ¢’ € E}7 with
|S27] > 1 (contiguity and continuity constraints),

o {8 —wp+1,...,8tN{s” —wp +1,...,5"} = 0 for each k, k' € K and each s’ € S7 and
s” € ST with E}" N EY # 0, i.e., for each edge ¢/ € E and each slot s” € S we have
ZkeK’e,eE? [{s' € S77,s” € {s' —wy, +1,..., s’} <1 (non-overlapping constraint).

The corresponding incidence vector (x857, 2357) is belong to F' and then to FG? given that it

is composed by >, cpak +3200, 2k = = 2|K| — 1. We then obtain that

stnSE) + 0257;55 _ Mx857 + UZ557 _ stn55 + 0257;55 + Uf,
It follows that 0%, = 0 for demand k and a slot s’ € {wg, ..., 3} with ' & {s; + wx —1,..., s} if
ké¢K.

— with changing the paths established in S”%%: we construct a solution S’®7 derived from the
solution §”%° by adding the slot s’ as last-slot to the demand k& with modifying the - paths
assigned to a subset of demands K C K in 8% (i.e., E7 = E”25 for each k € K \ K, and
EST # B for each k € K) s.t.

e a new feasible path E}57 is assigned to each demand k € K (routing constraint),

e and {s —wg +1,. ’}ﬂ{s” —wp +1,...,8”} = 0 for each k € K and k' € K \ K and
each s € 725 and s” € 8720 with E7 ﬂE”‘Z? # (), i.e., for each edge ¢’ € F and each slot
s” €S we have Ykek,eeppt {5 € S”55,s” e{s’ —we+1, . S HAYhemieer {5 €
5795 87 € {s' —wy + 1,...,8'}| < 1 (non-overlapping constraint),

e and {s' —wy +1,..,8}N{s" —wp +1,...,8"} = 0 for each ¥ € K and s” € §72% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”%° assigned to the demand k in the solution 8”5%).

The last-slots assigned to the demands K\ {k} in 8”5° remain the same in 8’57, i.e., $73 = S}37
for each demand k' € K \ {k}, and SP" = S”25 U {s} for the demand k. The solutlon 8’57
clearly feasible given that
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e a feasible path E}>7 is assigned to each demand k € K (routing constraint),

e a set of last-slots S,’€57 is assigned to each demand k € K along each edge ¢’ € E,’f’7 with
|S;27] > 1 (contiguity and continuity constraints),

o {s'—wp+1,..,8}N{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S}°" and
s” € SP7 with E" N EST # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE,’F [{s" € 857, 5" € {s' —wy +1,...,8'}| <1 (non-overlapping constraint).

The corresponding incidence vector (:Usm, 28 /57) is belong to F' and then to ng given that it
is composed by >, cpak + 30 2k = 2|K| — 1. We have so

Sa755 57755 _ 8/57 8/57 _ 87755 37;55 k ]’% ’;‘:
Hx +o0z = ux +oz = ux +oz ‘o, — E E Mer + E E Mo
fgekeleEﬁis IEEIN(C”EELW

It follows that o = 0 for demand k and a slot s’ € {wy, ..., 3} with s’ ¢ {s; + wr —1,...,8;}
if k ¢ K given that p, = 0 for all the demand k € K and all edges ¢’ € E \ (Ef U E}) with
e#£e ifkekK.

The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., 5} of demand k with s’ ¢ {s; + wy — 1,...,s;} if k ¢ K s.t. we find

ok =0, for demand k and all slots s’ € {wg, ..., 5} with s' ¢ {s; +wx —1,...,8,} if k ¢ K.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

o =0, for all ¥ € K\ {k} and all slots s € {wy, ..., 5} with s & {s; +wp — 1, st ifk ¢ K.
Consequently, we conclude that
ok =0, for all k € K and all slots s € {wg, ..., 5} with s ¢ {s; +wp — 1,...,s;} if k ¢ K.

Let prove that o for all k € K andall s € {si+wr —1,...,s;} are equivalents. Consider a demand
k' and aslot s’ € {s;+wy —1,...,s;} with k¥’ € K. For that, we consider a solution %% = (E5°, §5%)
in which

— a feasible path E?° is assigned to each demand k € K (routing constraint),

— aset of last-slots S2° is assigned to each demand k € K along each edge ¢’ € EJ® with [S2| > 1
(contiguity and continuity constraints),

—{s —wp +1,..,8} N {s” —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S?° and
§” € S with EP N EY # 0, ie., for each edge ¢ € E and each slot s” € S we have
ZkeK,e/eE,is [{s' € §7° 5" € {s' —wy + 1,...,5'}| <1 (non-overlapping constraint),

— and {s—wp+1,...,8}N{s' —wp +1,...,5'} = 0 for each k € K and s € SP° with EX° N EP? # )
(non-overlapping constraint taking into account the possibility of adding the slot s’ in the set
of last-slots SP? assigned to the demand &’ in the solution S°%),

— and there is |K| — 1 demands from the minimal cover K denoted by Ksg which are covered
by the interval I (i.e., if k € K5g means that the demand k selects a slot s as last-slot in the
solution 8% with s € {s; +wy, —1,...,5;}, i.e., s € SP° for each k € Ksg/, and for each s’ € S
for all k' € K\ Ksg we have 8" ¢ {s; +wp — 1,...,5;},

— and all the demands in K pass through the edge e in the solution §55, ie, e € E25 for each
keK.

S5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xgss, ngs) is belong to F and then to Ffﬁ

given that it is composed by Y-, cpak +30 2k = 2|K| — 1. Based on this, we distinguish
two cases:
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— without changing the paths established in S: we derive a solution S°® = (E°3, $58) from the
solution S% by adding the slot s’ as last-slot to the demand k without modifying the paths
assigned to the demands K in S (ie., EP® = E55 for each k € K), and also the last-slots
assigned to the demands K \ {k, k"} m 805 remain the same in 8%, i.e., S3¥ = S2% for each
demand k” € K\ {k,k'}, and SpP = S3? U{s'} for the demand £’, and modlfymg the last-slots
assigned to the demand k£ by adding a new last-slot s and removing the last slot s € 5”;25
with s € {s; + wy + 1,...,5;} and 5 ¢ {s; + wx + 1,...,s;} for the demand k with k € K s.t.
S8 = (S \ {s})) U {5} st. {§—wi +1,...,5)N{s —wp +1,....s'} = 0 for each k¥’ € K and
s’ € SP% with EP® N Eé’g # (). The solution S5 is feasible given that

e a feasible path E}® is assigned to each demand k € K (routing constraint),

e a set of last—slots 558 is assigned to each demand k € K along each edge €' € E,?S with
|S78 > 1 (Contiguity and continuity constraints),

o (' —wp+1,..,8N{s" —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S}® and
s7 € Sp¥ with ER® N ERP # 0, ie., for each edge ¢’ € E and each slot s” € S we have
Yrer,ercry {5 € Sp8s” € {s' —wy +1,...,5'} <1 (non-overlapping constraint).

The corresponding incidence vector (z 858,2358) is belong to F' and then to FG? given that it
is composed by Y, cpak + 3200, 2k = = 2|K| — 1. We then obtain that

S55 K k k

5-50
+oy —0, +0;5.

nx + O’ZSOO = /JZL’SO + O'ZSJ = u:ﬂsss +oz
It follows that o = o% for demand &’ and a slot s’ € {wy,...,5} with & € K and s €
{si+wp +1,...,5;} given that o& =0 for 5 ¢ {s; +wy, — 1,...,5;} with k € K.
— with changing the paths established in $°: we construct a solution S"® derived from the
solution S% by B

e with modifying the paths assigned to a subset of demands K C K in §° (i.e., E{® = EJ°
for each k € K \ K, and E}?® # E for each k € K),

e and the last-slots assigned to the demands K\ {k,k'} in 8% remain the same in §’°8, i.e.,
S92 = 5158 for each demand k” € K \ {k, &'},

e and adding the slot s’ as last-slot to the demand &/, i.e., S{3% = S U {s'} for the demand
K,

e and selecting a demand k from K55 which allocates a last slot s € 525 with s € {s; +wi +
1,...,5;} in the solution S°® (non-overlapping constraint taking into account the possibility
of addmg the slot s’ in the set of last-slots S;Z, assigned to the demand %’ in the solution
855 ,

° and) modifying the last-slots assigned to the demand k by adding a new last-slot § and
removing the last slot s € SP° with s € {s;+wy+1,...,s;} and 5 ¢ {s;+wg+1, ..., 5;} for the
demand k with k € K s.t. S8 = (SP\{s})U{3} s.t. {5—wp+1, ..., 83N {s' —wp +1,...,s'} =
( for each k¥’ € K and s’ € 5’58 with EP8 N E58 # 0.

The solution S"® is clearly fea51b1e given that

e a feasible path F}>® is assigned to each demand k € K (routing constraint),

e a set of last-slots S,’€58 is assigned to each demand k € K along each edge ¢’ € E;>® with
|S;58] > 1 (contiguity and continuity constraints),

o {s' —wp+1,....stN{s" —wp +1,..,87} =0 for each k,k’ € K and each s’ € S;°® and
s” € S8 w1th E’58 N ES® # 0, ie., for each edge ¢ € E and each slot s” € S we have
ZkeK’e reBs [{s" € 9}58, s” e{s —wp+1,...,5} <1 (non-overlapping constraint).

The corresponding incidence vector (xs,s)g S lSB) is belong to F' and then to F g; given that it
is composed by Y, cpak + 300, L, 2= = 2|K| — 1. We have so

5755 555 k

355 /58 /58 355 /
nx + 025 :uats + 025 :uacs +oz —&—Uf, _U§+U§

DD ED DD SN2

kEK e’€EYP keK e’ €E;38

It follows that % = oF for demand k" and a slot s" € {wg,...,5} with &’ € K and s €
{si +wp +1,.. 7} glventhat ok =0for 5§ ¢ {si+wp—1,...s;} with k € K, and p¥, = 0 for
allkEKandalle € E\ (Ef UE’“) with ¢’ # e if k € K.
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Given that the pair (k,k’) are chosen arbitrary in the minimal cover K, we iterate the same
procedure for all pairs (k, k') s.t. we find

o% = ok for all pairs (k,k') € K

with s € {s; +wr —1,...,s;} and " € {s; + wpr — 1, ..., s;}. We re-do the same procedure for each
two slots s, 8" € {s; +wi — 1, ..., s;} for each demand k € K with k € K s.t.

of = ok forall k € K and s,5" € {s; +wy — 1,..., 55 }.

Let us prove now that p* for all k € K with k € K are equivalents. For that, we consider a solution
8% = (B9, 5%9) defined as below

— a feasible path E}Y is assigned to each demand k € K (routing constraint),

— aset of last-slots S7? is assigned to each demand k € K along each edge ¢’ € EP? with [S7%] > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € S}° and s’ € S7?
with E N EY) # () (non-overlapping constraint),

— and there is one demand k from the minimal cover K (i.e., k € K s.t. the demand k pass
through the edge e in the solution S°?, ie., e € E} 59 for a node ke K, and e ¢ E,‘;’? for all
K e K\ {k),

— and all the demands in K are covered by the interval I in the solution S%, i.e., {si + w +

851N ST # 0 for each k € K.

Obviously, 8% is a feasible solution for the problem given that it satisfies all the constraints of

our cut formulation (2)-(12). Moreover, the corresponding incidence vector (xssg, 25™) is belong

to P(G, K,S,K,I,e) and then to F i given that it is composed by >, cg b +> 0, L, 2k =
2|K| — 1. ~ N L s
Consider now a node k' in K s.t. e ¢ E}). For that, we consider a solution 8% = (E®?,5%9) in
which

— a feasible path E?? is assigned to each demand k € K (routing constraint),

— aset of last-slots S7° is assigned to each demand k € K along each edge e € E}? with |SP?| > 1
(contiguity and continuity constraints), ~

—{s' —wp + 1,8} N {s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S} and
s’ € 5';29 with EZQ N EZ? # (), i.e., for each edge ¢ € E and each slot s” € S we have
ZkeK,eeEg" {s' € 57°,8” € {s' —wy + 1,...,5'}| <1 (non-overlapping constraint),

—and {s—wy+1,...,s}N{s'—wp +1,. '}—@foreachkeKandséSsgwithEsgﬁE # 0,

— and there is |K | — 1 demands from the minimal cover K that use the edge e denoted by Ksg
(i.e.if k& € K59 means that the demand k pass through the edge e in the solution 559, ie.,
ee E59 for each k € K5g, and e ¢ Ei’? for all k' € K Ksg,

— and all the demands in K are covered by the interval I in the solution 5597 ie, {s; + wp +
581 NS #£( for each k € K.

859 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xssg, 25" is belong to F and then to FGI

given that it is composed by 3, g2 + 320 zF = 2|K| — 1. Based on this, we derwe a

solution 8760 = (E760, §760) from the solution S by

— the paths assigned to the demands K \ {k, &'} in S° remain the same in §”%° (i.e., E”$0 = E%?
for each k7 € K\ {k,k'}),

— without modifying the last-slots assigned to the demands K in 8%, i.e., 5',‘29 = 5790 for each
demand k € K,

— modifying the path assigned to the demand & in 8% from EZ? to a path E”%? passed through
the edge e (i.e., e € E?9) with k' € K s.t. {s —wy, + 1,.. s}ﬂ{s’—wk/ +1,..,8} =0 for
each k € K and each s’ € S’Z and each s € 559 with E59 NE"S 10,
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— selecting a demand k in K59 which use the edge e in the solution S5, ~ ~

— modifying the path assigned to the selected demand k in S with e € E}? and k € K from
E? to a path E7$° without passing through the edge e (i.e., e ¢ E”Ngo) and {s—wy + 1,.., skN
{s/ —wp» +1,...,8'} = 0 for each k” € K \ {k,k’} and each s € S} and each s’ € Si? with
ERNE #£0,and {s —wy +1,...,s} N{s’ —wp +1,...,8'} = 0 for each s € S} and each
s’ € 5P with E”$2 N E790 £ ().

The solution S7%° is feasible given that

— a feasible path E”20 is assigned to each demand k € K (routing constraint),

— a set of last-slots S7% is assigned to each demand k € K along each edge e € E”% with
|5799 > 1 (contiguity and continuity constraints),

—{s —wp+1,..,8tN{s" —wp +1,...,8"} = 0 for each k, k' € K and each s’ € S”¢° and
s” € 5799 with E”$° N E”%) £ 0, i.e., for each edge e € F and each slot s” € S we have
ZkeK,eeE,,go {s' € 579 s” € {s' —wy + 1,...,s'}| <1 (non-overlapping constraint).

87760 , 257760)

The corresponding incidence vector (x is belong to F' and then to ng given that it is

Sj

composed by Y, cpak +30 k= 2| K| — 1. We then obtain that

359 359 60 60 359 359 ’
,ux‘s +02° :u:r‘s +02° :u:r‘s +02° +u’; —,u}(f

D DR DT S S T

e”EE”i?\{e} eneE"'v;rc,/g eweEng e’ EEZQ\{G}

It follows that u* = u* for demand &’ and a edge ¢’ € E \ (E§ U E}') with vy € K given that
pk, =0forall k € K and all &’ € E\ (Ef U EF) with k ¢ K.

Given that the pair (k,k’) are chosen arbitrary in the minimal cover K, we iterate the same
procedure for all pairs (k, k') s.t. we find

pk = p¥ for all pairs (k, k') € K.

Furthermore, let prove that all 0¥ and p* are equivalents for all k € K and s € {s; +wy, —1, ..., s}
For that, we consider for each demand k" with &’ € K, a solution S = (E®!, S%!) derived from
the solution $°° as below

— the paths assigned to the demands K \ {k'} in §% remain the same in S (i.e., ES} = ED? for
each k7 € K\ {K'}),
— without modifying the last-slots assigned to the demands K \ {k} in S%, i.e., S22 = S9! for
each demand k” € K \ {k}, ~ ~
— modifying the set of last-slots assigned to the demand &” in $* from S}? to S9! s.t. S8} N {s; +
Wg' — 1, ...,Sj} = @
Hence, there are \f( | — 1 demands from K that are covered by the interval T (i.e., all the demands

in C'\ {k'}), and all the demands in K use the edge e in the solution S%'. The solution S is then
feasible given that

— a feasible path E%! is assigned to each demand k € K (routing constraint),

— a set of last-slots Sgl is assigned to each demand k € K along each edge e € E,?l with \521| >1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s € SP' and
s” € S} with EXt n ES! # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeEgl [{s" € 891, s” € {s' —wy, +1,...,s'} <1 (non-overlapping constraint),

—and Y, g BP0 {e} +SP N {si +wp — 1,8 = 2|K| — 1.

The corresponding incidence vector (xsm,zsm) is belong to F' and then to F' ;j given that it is
composed by gk + 30 1 2F =2|K|— 1. We then obtain that

R A S SRV I ST

e"eB%\{e} B

359 359 61 61 359 5
/wcs +02° :;wc‘s +02° :/wss +02°
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It follows that %" = ¢ for demand &’ and slot s € {s; + wy — 1, ..., 5;} given that u%, = 0 for all
k€ K and all e’ € E\ (E} U E¥) with e # ¢” if k € K. Moreover, by doing the same thing over
all slots s € {s; +wpr — 1,..., s;}, we found that

’;, = Uf/,for all s € {s; +wp —1,..., 8}
Given that &’ is chosen arbitrarily in K , we iterate the same procedure for all k € K to show that

pk = ok for all k € K and all s € {s; +wy — 1, S5

Based on this, and given that all ;& are equivalents for all k € K, and that o¥ are equivalents for
all k€ K and s € {s; + wir — 1,...,5;}, we obtain that

pk = O'f/, for all k, k' € K and all s € {s; +wp — 1, ..., 5;}.

Consequently, we conclude that
pk =o¥ =p, forall k,k' € K and all s € {s; +wp — 1,..., 5, }.

On the other hand, we ensure that all ¢’ € E§ for each demand k are independants s.t. for each
demand k € K we have

; ke’ ke’
dome= Y n = Y (b -m)=0.

e'eBf e'eBk e'eBk

The only solution of this system is u¥ = ’yf " for cach ¢’ € Ef for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

k=A% for all k € K and all ¢ € EF,

We re-do the same thing for the edges ¢’ € EF for each demand k which are independants s.t. for
each demand k € K we have

o= = Y (- =0

e'€EY e'€EEY e'€EEY

The only solution of this system is u¥ = ’yg’el for each ¢’ € EF for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We conclude that

=+ forall k € K and all ¢ € EF,

Furthermore, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for each
demand k € K, we have

wkfl wkfl wkfl

k k,s 2 : k kysy _
E Os = 2:73 - (05_73 )_0
s=1 s=1 s=1

The only solution of this system is o% = 'yg)f’s for each s € {1,...,w, — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all ¥’ € K \ {k}. We then get that

oF =~4F% forall ke K and all s € {1,...,w; — 1}. (52)
We conclude that for each ¥’ € K and ¢’ € F
'yf/’e/, if ' € EY,
fygl’el, if ¢ € E¥,
p, if ' € Kand ¢ =e,

0, otherwise,

K _
Her =
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and for each k € K and s € S

S i s e {1, .., wp — 1}
Uf ={pifke K and s € {si+wr—1,...,8;}

0, otherwise.

5j

As aresult (u,0) = Z polk + Z pBe + Q.

keK s=s;+wr—1

5.10 Edge-Capacity-Cover Inequalities

Theorem 16. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then, the
inequality (39) is facet defining for the polytope P(G, K,S, C,e) where

P(G,K.S,Ce) ={(z,2) e P(G,K,S): Y =0}
k'e K\(CUK.)

Proof. Let F& denote the face induced by the inequality (22), which is given by

F¢={(z,2) € P(G,K,S,Cye): Y _aF =|C|—1}.
keC

In order to prove that inequality >, - x% <|C| -1 is facet defining for P(G, K, S, C, e), we start
checking that F§ is a proper face, and F§ # P(G, K, S, C,e).
We construct a solution §% = (E%3,5%3) as below

— a feasible path Eg?’ is assigned to each demand k € K (routing constraint),

— aset of last-slots SP? is assigned to each demand k € K along each edge ¢’ € EJ? with [SP3| > 1
(contiguity and continuity constraints),

—{s—wp+1,...,s}N{s —wp +1,....,8'} =0 for each k,k’ € K and each s € S and s’ € S}
with EF3 N ES? # () (non-overlapping constraint),

— and there is |C| — 1 demands from the cover C' which pass through the edge e in the solution
8% denoted by Cgs3 (i.e., if k € Cg3 means that the demand & selects the edge e for its routing
in the solution 8%, i.e., e € E®3 for each demand k € Cgs, €’ ¢ ES for all k' € C'\ Ce3.

Obviously, 893 is a feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2)-(12). Moreover, the corresponding incidence vector (z5°,25”) is belong
to P(G, K,S,C,e) and then to F§ given that it is composed by » ;. 2% = |C| — 1. As a result,
F¢ is not empty (i.e., F& # 0). Furthermore, given that e € E \ (E§ U EY) for each k € C, this
means that there exists at least one feasible routing Ej, for each demand k in C with e ¢ Fj. This
means that F& # P(G, K,S,C,=(C),e).

We denote the inequality >, . #¥ < |C|—1 by az+ B8z < A. Let pz+o02z < 7 be a valid inequality
that is facet defining F' of P(G, K, S, C,e). Suppose that F& C F = {(z,2) € P(G,K,S,C,e) :
px 4+ oz = 7). We show that there exists p € R and v = (y1,72,73) (s.t. 71 € R&rex |E§|,72 €
R kex ‘Ef‘,’}% e REvex (k=) st (u,0) = p(a, B) +vQ, and that

— 0% =0 for all demands k € K and all slots s € {wy, ..., 5},
— and pf, =0 for all demands k € K and all edges e € E\ (E§ U EY) with e £ ¢’ if k € C,
and all ¥ are equivalents for the set of demands in C.

We first show that u¥ = 0 for each edge ¢’ € E\ (E§ U EY) for each demand k € K with e # ¢’ if
k € C. For that, we consider a solution 8’03 = (E’®3,5’63) in which

— a feasible path E,’€63 is assigned to each demand k € K (routing constraint),

— and a set of last-slots S,’f?’ is assigned to each demand k € K along each edge ¢’ € E,’C63 with

|5783] > 1 (contiguity and continuity constraints),
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—and {s' —wr +1,....8}N{s” —wp + 1,...,8"} = 0 for each k,k' € K and each s’ € 953
and s” € S8 with E;5 N ES3 # 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e/eE,’f3 [{s" € 9;83,s" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint),

— the edge ¢’ is not non-compatible edge with the selected edges e” € E%3 of demand k in the
solution S’%3, i.e., Ee,,eE’?g lew + 1o < l. As a result, E;% U {e’} is a feasible path for the
demand k,

— and there is |C| — 1 demands from the cover C' which pass through the edge e in the solution
8’63 denoted by C, (i.e., if k € Cf; means that the demand k selects the edge e for its routing
in the solution 8'%3, i.e., e € E}®3 for each demand k € C§g, € ¢ ES3 for all k' € C'\ C§s.

8’63 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (z5,25"") is belong to F and then to F¢
given that it is composed by Y, .- 2% = |C| + 1. Based on this, we derive a solution $%* obtained
from the solution 8% by adding an unused edge ¢’ € E\ (E} U E¥) for the routing of demand k in
K in the solution §% which means that ES* = E}53 U {€’}. The last-slots assigned to the demands
K, and paths assigned the set of demands K \ {k} in &6 remain the same in the solution S%*,
ie., S94 = 5/ for each k € K, and ES} = E83 for each k' € K \ {k}. 85 is clearly feasible given
that

— and a feasible path E24 is assigned to each demand k € K (routing constraint),

— and a set of last-slots S$* is assigned to each demand k € K along each edge ¢/ € E9* with
|S84| > 1 (contiguity and continuity constraints),

—and {s' —wi +1,....8}N{s" —wp +1,....,8"} = 0 for each k,k’ € K and each s’ € S
and s” € SO with E%* N ES} £ (), i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e'eEg‘* [{s" € S%4 5" € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

x8647

. . . 64
The corresponding incidence vector ( 257

composed by >, . a¥ = |C| + 1. It follows that

is belong to F' and then to F§ given that it is

S/G S/G

st/af, Tos 3 _ ,ijSM I 0_2864 — 3 n /,ng, i O_Zslsa.

As a result, ,u’g, = 0 for demand k and an edge ¢’.

As ¢’ is chosen arbitrarily for the demand k with e ¢ E¥ U E¥ and e # ¢’ if k € C, we iterate the
same procedure for all e € E\ (EY U EF U {€'}) with e # €” if k € C. We conclude that for the

demand k
pk =0, forall ¢ € B\ (ES UEY) with e # ¢’ if k € C.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all &' € K\ {k}
and all ¢’ € E'\ (E¥ U E¥). We conclude at the end that

pk, =0, forallk € K and all ¢ € E\ (E¥ UE¥) with e £ ¢ if k € C.

Let’s us show that ¥ = 0 for all K € K and all s € {wy, ..., 3}. Consider the demand k and a slot
s’ in {wg, ..., 3}. For that, we consider a solution §”%% = (E”%3,5763) in which

— a feasible path E”$? is assigned to each demand k € K (routing constraint),

— a set of last-slots S”g?’ is assigned to each demand k € K along each edge ¢’ € E”gg with
|57¢3] > 1 (contiguity and continuity constraints),

—{s' —wp+1,.,8tN{s” —wp +1,...,5"} = 0 for each k, k' € K and each s’ € 57 and
s7 € §79% with B3 N E”$ +# 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e'eE“g?’ {s' € 5793 5" € {s' —wjy + 1,...,8'}| <1 (non-overlapping constraint),

—and {s' —wp +1,...,8} N{s" —wp + 1,...,8"} = 0 for each k¥’ € K and s” € S”¢ with
E”3 N E"$ #( (non-overlapping constraint taking into account the possibility of adding the
slot s’ in the set of last-slots S” 23 assigned to the demand k in the solution &§”%3),

— and there is |C| — 1 demands from the cover C' which pass through the edge e in the solution
8763 denoted by C7g3 (i.e., if k € C”63 means that the demand k selects the edge e for its
routing in the solution §7%%, ie., e € E”%3 for each demand k € C”g3, €’ ¢ E”%3 for all
kK’ € C\C”G;;.
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8763 is clearly feasible for the problem given that it satisfies allﬁghe constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (x5, 25"") is belong to F and then to F&
given that it is composed by >, -~ 2% = |C| + 1. Based on this, we distinguish two cases:

— without changing the paths established in §”%: we derive a solution §%° = (E%5,8%%) from
the solution §”% by adding the slot s’ as last-slot to the demand k without modifying the
paths assigned to the demands K in 875 (i.e., ES® = E”$3 for each k € K), and the last-slots
assigned to the demands K \ {k} in §”%% remain the same in the solution S i.e., $7¢3 = SF?
for each demand k' € K \ {k}, and SP® = S7%3 U {s'} for the demand k. The solution S% is
feasible given that

e a feasible path E%° is assigned to each demand k € K (routing constraint),

e a set of last-slots SS° is assigned to each demand k € K along each edge ¢’ € E9® with
|S95| > 1 (contiguity and continuity constraints),

o {s'—wp+1,..,8}N{s” —wp +1,...,8"} = 0 for each k,k’ € K and each s’ € S¢° and
s” € S with B N ESY # 0, ie., for each edge ¢’ € E and each slot s” € S we have
ZkEK,e’eEg5 [{s’' € 895, 5" € {s’ —wy, +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (:1736572565) is belong to F' and then to F§ given that it is

composed by >, .~ z¥ = |C| + 1. We then obtain that

»63 763 65
JIS 4 O'ZS S

M = ,ux865 + oz = ,uxS”GB + 025”63 + Uf,.

It follows that 0¥, = 0 for demand k and a slot s’ € {wy, ..., 5} with s’ & {s; +wj, — 1, ..., s;} if
k¢C.

— with changing the paths established in S”%3: we construct a solution S’%° derived from the
solution S”%% by adding the slot s’ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K C K in §”% (i.e., E{% = E”$ for each k € K \ K, and
ES5 £ E”$ for each k € K) s.t.

e a new feasible path E,’f5 is assigned to each demand k € K (routing constraint),

o and {s' —wp +1,....,5}N{s” —wp +1,...,5"} = 0 for each k € K and k¥’ € K \ K and
each s’ € §7%3 and s” € S”$? with E;S5 NE”%3 #£ (), i.e., for each edge €’ € E and each slot
§” € S we have Zkef(,e'eE,;“ {s' € 873,87 € {s' —wp+1,...,s'} —|—Zk€K\I~<7e/€E”23 {s' €
5793 57 € {s' —wp + 1,...,8'}| <1 (non-overlapping constraint),

e and {s' —wip +1,...,8}N{s” —wp +1,...,8"} = 0 for each k¥’ € K and s” € S7%% (non-
overlapping constraint taking into account the possibility of adding the slot s’ in the set of
last-slots S”%% assigned to the demand k in the solution &”%%).

The last-slots assigned to the demands K\ {k} in 8”5 remain the same in 8%, i.e., $7$? = §;5°
for each demand k' € K \ {k}, and $;%° = 5793 U {s} for the demand k. The solution &% is
clearly feasible given that

e a feasible path F}%° is assigned to each demand k € K (routing constraint),

e a set of last-slots ;% is assigned to each demand k € K along each edge ¢’ € E;%° with
|5;5%] > 1 (contiguity and continuity constraints),

o {8 —wp+1,..,8}N{s" —wp +1,....,8"} = 0 for each k, k' € K and each s’ € $;5° and
s” € S8 with E/S° N ES® +# 0, i.e., for each edge ¢’ € E and each slot s” € S we have
ZkeK,e’eE,'ff’ [{s’ € 9;5°,s” € {s' —wy, +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (x‘s/%,zsleﬁ) is belong to F' and then to F§ given that it
is composed by Y-, . z¥ = |C| 4 1. We have so

S”63 57763 8/65 8/65 87763 57;63 k ]’% E,
Hx +o0z = px +oz = ux +oz ‘o, — E E Mer + E E JCH
I;ER'E’EE”iS ]}ERE”EE;CGS

It follows that o = 0 for demand k and a slot s’ € {wy, ..., 3} with s’ ¢ {s; + wr —1,...,s;}
if k ¢ C given that u* = 0 for all the demand k € K and all edges ¢’ € E \ (E} U EF) with
ete ifkeC.
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The slot s’ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wy, ..., 5} of demand k s.t. we find

ok =0, for demand k and all slots s" € {wy, ..., 5}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands &’
in K\ {k} such that

o¥ =0, for all ¥’ € K \ {k} and all slots s € {wy, ..., 5}.
Consequently, we conclude that
0% =0, for all k € K and all slots s € {wy, ..., 5}.

Let us prove now that u¥ for all k € K with k € C are equivalents. For that, we consider a demand
k' in C s.t. e ¢ ES?. For that, we consider a solution S = (E%, §5¢) from the solution S% by

— selecting a demand k from Cgs s.t. the demand k used the edge e for its routing in the solution
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— the paths assigned to the demands K \ {k, '} in 8% remain the same in S (i.e., E%¢ = E3
for each k7 € K\ {k,k'}),

— without modifying the last-slots assigned to the demands K in 8%, i.e., S§3 = S% for each
demand k € K,

— modifying the path assigned to the demand k' in S from Ef? to a path EPY passed through
the edge e (i.e., e € EPS) with &' € C s.t. {s—wp +1,...,s} N{s' —wyp +1,..., '} = 0 for each
k € K and each s’ € S5} and each s € S8 with E$3 N ESS £ (),

— modifying the path assigned to the demand k in S% with e € ES3 and k € C from EP to a
path E96 without passing through the edge e (i.e., e ¢ ESS) and {s—wp+1,...,s}N{s' —wp> +
1,..,s'} =0 for each k” € K \ {k,k'} and each s € S§3 and each s’ € SP? with ES3 N B # 0,
and {s —wy +1,...,s} N{s' —wp + 1,...,s'} = 0 for each s € S8 and each s’ € S} with
ESS A ES5 £ .

The solution S is feasible given that

— a feasible path E% is assigned to each demand k € K (routing constraint),

— a set of last-slots SSG is assigned to each demand k € K along each edge e € E,?G with \526| >1
(contiguity and continuity constraints),

—{s —wp +1,..,8tN{s" —wp +1,..,8"} = 0 for each k,k’ € K and each s’ € S and
s” € S99 with ES N B # 0, ie., for each edge e € E and each slot s” € S we have
ZkeK,eeEgG [{s" € 896 5" € {s' —wy +1,...,s'}| <1 (non-overlapping constraint).

The corresponding incidence vector (33‘96672'566) is belong to F' and then to F§ given that it is

composed by >, . a¥ = |C| — 1. We then obtain that

63 63 66 66 63 63 ’
uxs +025 = uxs +025 = u:z:s +025" + ,uf - ulg
K’ K’ k k
+ E Her — E Her + E Her — E e -
e’ €Ef\{e} e’ €ES} e’ eEge e’ eE\{e}

It follows that p* = p¥ for demand &’ and a edge ¢’ € E \ (Ef U EF) with v € C given that
pk, =0 forall k € K and all e” € E\ (E¥ U EY) with k ¢ C.

Given that the pair (k, k') are chosen arbitrary in the cover C, we iterate the same procedure for
all pairs (k, k') s.t. we find

pk = ,uf/, for all pairs (k, k') € C.
Consequently, we conclude that

pk = p, forall k € C.
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On the other hand, we ensure that all ¢/ € E} for each demand k are independants s.t. for each
demand k € K we have

ke’ ke’
STopki= >0 = > (k- =0
e'eBf e'eBk e'eBk
The only solution of this system is u% = ¥ " for each ¢’ € Ek for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k' € K \ {k}. We conclude that

F =5 forall k € K and all ¢ € EF,

We re-do the same thing for the edges ¢/ € EF for each demand k which are independants s.t. for
each demand k € K we have

> oub= w3 (k- =0

e'€EY e'€EEY e'€EEY

The only solution of this system is u¥ = ’y§ ' for each ¢’ € EY for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all ¥ € K \ {k}. We conclude that

i =5 forall k € K and all ¢ € EF,

Furthermore, all the slots s € {1,...,w; — 1} for each demand k are independants s.t. for each
demand k € K, we have

wkfl wkfl wkfl

k k,s E : k kysy _
E Os = E:’YS - (05_73 )_0
s=1 s=1 s=1

The only solution of this system is o% = vg’s for each s € {1,...,w; — 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k¥’ € K \ {k}. We then get that

oF =48 forall ke K and all s € {1,...,wy — 1}. (53)
We conclude that for each k¥’ € K and ¢/ € F
'yf/’e/, if ¢’ € EY,
75’6l, if ¢ € B,
p, if K € C and ' =e,

0, otherwise,

K _
Her =

and for each k € K and s € S

O—S .
0, otherwise.

‘L {v?iifs €1, wp—1}

As aresult (u,0) = Z pak +4Q.
keC

6 Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We intro-
duced integer linear programming based on cut formulation for the problem. We investigated the
facial structure of the associated polyhedron, and derived valid inequalities that are facet defining
under sufficient conditions. Based on these results, we develop a Branch-and-Cut algorithm to
solve the problem [16]. The valid inequalities are shown to be efficient and allow improving the
effectiveness of our B&C algorithm [16].
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