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The constrained-routing and spectrum assignment (C-RSA) problem is a key issue when dimensioning and designing an optical network. Given an optical network G and a multiset of traffic demand K, it aims at determining for each traffic demand k ∈ K a path and an interval of contiguous slots while satisfying technological constraints and optimizing some linear objective function(s). In this paper, we introduce an integer linear programming formulation based on the so-called cut formulation for the C-RSA problem. We describe several valid inequalities for the associated polytope, and further give necessary and sufficient conditions under which these inequalities are facet defining. Based on these results, we develop a branch-and-cut algorithm to solve the problem.

Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by 2022, up from 194. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF] Exabytes per month in 2020 [START_REF]The Network Cisco's Technology News Site: Cisco Predicts More IP Traffic in the Next Five Years Than in the History of the Internet[END_REF]. Optical transport networks are then facing a serious challenge related to continuous growth in bandwidth capacity due to the growth of global communication services and networking: mobile internet network (e.g., 5th generation mobile network), cloud computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social networks) [START_REF] Cheng | Routing and Spectrum Assignment Algorithm based on Spectrum Fragment Assessment of Arriving Services[END_REF], etc... To sustain the network operators face this trend of increase in bandwidth, a new generation of optical transport network architecture called Spectrally Flexible Optical Networks (SFONs) (called also FlexGrid Optical Networks) has been introduced as promising technology because of their flexibility, scalability, efficiency, reliability, survivability [START_REF] Chatterjee | Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey[END_REF][9] compared with the traditional FixedGrid Optical Wavelength Division Multiplexing (WDM) [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF] [START_REF] Ramaswami | Multiwavelength lightwave networks for computer communication[END_REF]. In SFONs the optical spectrum is divided into small spectral units, called frequency slots as shown in Figure 1. They have the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T [START_REF] Amar | Performance assessment and modeling of flexible optical networks[END_REF]. The concept of slots was proposed initially by Jinno et al. in 2008 [38], and later explored by the same authors in 2010 [START_REF] Walkowiak | Elastic optical networks -a new approach for effective provisioning of cloud computing and content-oriented services[END_REF]. This can be seen as an improvement in resource utilization. We refer the reader to [START_REF] Lopez | Elastic Optical Networks: Architectures, Technologies, and Control[END_REF] for more information about the architectures, technologies, and control of SFONs. The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimensioning and designing of SFONs which is the main task for the development of this next generation of optical networks. It consists of assigning for each traffic demand, a physical optical path, and an interval of contiguous slots (called also channels) while optimizing some linear objective(s) and satisfying the following constraints [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]:

1. spectrum contiguity: an interval of contiguous slots should be allocated to each demand k with a width equal to the number of slots requested by demand k; 2. spectrum continuity: the interval of contiguous slots allocated to each traffic demand stills the same along the chosen path; 3. non-overlapping spectrum: the intervals of contiguous slots of demands whose paths are not edge-disjoints in the network cannot share any slot over the shared edges.

Related Works

Numerous research studies have been conducted on the RSA problem since its first appearance. The RSA is known to be an NP-hard problem [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF] [83], and is more complex than the historical Routing and Wavelength Assignment (RWA) problem [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF]. Various (mixed) integer linear programming (ILP) formulations and algorithms have been proposed to solve it. A detailed survey of spectrum management techniques for SFONs is presented in [START_REF] Talebi | Spectrum management techniques for elastic optical networks: A survey[END_REF] where authors classified variants of the RSA problem: offline RSA which has been initiated in [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF], and online or dynamic RSA which has been initiated in [START_REF] Wan | Dynamic Routing and Spectrum Assignment in Spectrum-Flexible Transparent Optical Networks[END_REF] and recently developed in [START_REF] Patel | On Efficient Candidate Path Selection for Dynamic Routing in Elastic Optical Networks[END_REF] and [START_REF] Zhou | Link State Aware Dynamic Routing and Spectrum Allocation Strategy in Elastic Optical Networks[END_REF], and an investigation of numerous aspects proposed in the tutorial [START_REF] Chatterjee | Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial[END_REF]. This work focuses on the offline RSA problem. There exist two classes of ILP formulations used to solve the RSA problem, called edge-path and edge-node formulations.

The ILP edge-path formulation is majorly used in the literature where variables are associated with all possible physical optical paths inducing a huge number of variables and constraints which grow exponentially and in parallel with the growth of the instance size: number of demands, the total number of slots, and topology size: number of links and nodes [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]. To the best of our knowledge, we observe that several papers which use the edge-path formulation as an ILP formulation to solve the RSA problem, use a set of precomputed-paths without guaranty of optimality e.g. in [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF], [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF], [START_REF] Klinkowski | Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF], and recently in [START_REF] Salameh | Routing With Intelligent Spectrum Assignment in Full-Duplex Cognitive Networks Under Varying Channel Conditions[END_REF]. On the other hand, column generation techniques have been used by Klinkowski et al. in [START_REF] Ruiz | Column generation algorithm for RSA problems in flexgrid optical networks[END_REF], Jaumard et al. in [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF], and recently by Enoch in [START_REF] Enoch | Nested Column Generation decomposition for solving the Routing and Spectrum Allocation problem in Elastic Optical Networks[END_REF] to solve the relaxation of the RSA taking into account all the possible paths for each traffic demand. To improve the LP bounds of the RSA relaxation, Klinkowsky et al. proposed in [START_REF] Klinkowski | Valid inequalities for the routing and spectrum allocation problem in elastic optical networks[END_REF] a valid inequality based on clique inequality separable using a branch-and-bound algorithm. On the other hand, Klinkowski et al. in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF] propose a branch-and-cut-and-price method based on an edge-path formulation for the RSA problem. Recently, Fayez et al. [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF], and Xuan et al. [START_REF] Xuan | New bi-level programming model for routing and spectrum assignment in elastic optical network[END_REF], they proposed a decomposition approach to solve the RSA separately (i.e., R+SA) based on a recursive algorithm and an ILP edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formulation has been introduced as an alternative for it. It holds a polynomial number of variables and constraints that grow only polynomially with the size of the instance. We found just a few works in the literature that use the edge-node formulation to solve the RSA problem e.g. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF].

On the other front, and due to the NP-Hardness of the C-RSA problem, we found that several heuristics [START_REF] Ding | Hybrid routing and spectrum assignment algorithms based on distance-adaptation combined coevolution and heuristics in elastic optical networks[END_REF], [START_REF] Mesquita | A Routing and Spectrum Assignment Heuristic for Elastic Optical Networks under Incremental Traffic[END_REF], [START_REF] Santos | Heuristics for Routing and Spectrum Allocation in Elastic Optical Path Networks[END_REF], and recently in [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF], and greedy algorithms [START_REF] Mahala | Spectrum assignment technique with first-random fit in elastic optical networks[END_REF], and metaheuristics as tabu search in [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF], simulated annealing in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF], genetic algorithms in [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF], [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF], [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF], ant colony algorithms in [START_REF] Lezama | Solving routing and spectrum allocation problems in flexgrid optical networks using precomputing strategies[END_REF] , and a hybrid meta-heuristic approach in [START_REF] Ruiz | A hybrid meta-heuristic approach for optimization of routing and spectrum assignment in Elastic Optical Network (EON)[END_REF], have been used to solve large sized instances of the RSA problem. Furthermore, some resseraches start using some artificial intelligence algorithms, see for example [START_REF] Liu | A Monte Carlo Based Routing and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] and [START_REF] Lohani | Routing, Modulation and Spectrum Assignment using an AI based Algorithm[END_REF], and some deep-learning algorithms [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF], and also machine-learning algorithms in [START_REF] Salani | Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic Optical Networks[END_REF], and recently in [START_REF] Zhang | Overview on routing and resource allocation based machine learning in optical networks[END_REF] and [START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF] to get more perefermonce. Selvakumar et al. gives a survey in [START_REF] Selvakumar | The Recent Contributions of Routing and Spectrum Assignment Algorithms in Elastic Optical Network (EON)[END_REF] in which they summarise the most contributions done for the RSA problem before 2019.

In this paper, we are interested in the resolution of a complex variant of the RSA problem, called the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the network should also satisfy the transmission-reach constraint for each traffic demand according to the actual service requirements. To the best of our knowledge a few related works on the RSA, to say the least, take into account this additional constraint such that the length of the chosen path for each traffic demand should not exceed a certain length (in kms). Recently, Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] and [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF] introduced a novel tractable ILP based on the cut formulation for the C-RSA problem with a polynomial number of variables and an exponential number of constraints separable in polynomial time using network flow algorithms. Computational results show that their cut formulation solves larger instances compared with those of Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF] and Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF]. It has been used also as a basic formulation in the study of Colares et al. in [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF], and also by Chouman et al. in [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] and [START_REF] Chouman | Assessing the Health of Flexgrid Optical Networks[END_REF] to show the impact of several objective functions on the optical network state. Bertero et al. in [START_REF] Bertero | Integer programming models for the routing and spectrum allocation problem[END_REF] give a comparative study between several edge-node formulations and introduce new ILP formulations adapted from the existing ILP formulations in the literature. Note that Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF] and Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF] did not take into account the transmission-reach constraint.

Our Contributions

However, so far the exact algorithms proposed in the literature could not solve large-sized instances.

We believe that a cutting-plane-based approach could be powerful for the problem. To the best of our knowledge, such an approach has not been yet considered. For that, the main aim of our work is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end, we aim to provide a deep polyhedral analysis of the C-RSA problem, and based on this, devise a branch-and-cut algorithm for solving the problem considering large-scale networks that are often used. Our contribution is then to introduce a new ILP formulation for the C-RSA problem which can be seen as an improved formulation for the one introduced by Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] and [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF]. We investigate the facial structure of the associated polytope. We further identify several classes of valid inequalities to obtain tighter LP bounds. Some of these inequalities are obtained by using conflict graphs related to the problem: clique inequalities, odd-hole, and lifted odd-hole inequalities.

We also use the Chvatal-Gomory procedure to generate larger classes of inequalities. We then give sufficient conditions under which these inequalities are facet defining. Based on these results, we develop a Branch-and-Cut (B&C) algorithm to solve the problem [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF].

Organization

Following the introduction, the rest of this paper is organized as follows. In Section [START_REF] Balas | Facets of the knapsack polytope[END_REF], we present the C-RSA problem (input and output). In Section (3), we provide the notation, then we introduce our ILP, called cut formulation based on the so-called cut inequalities. In Section (4), we thoroughly investigate the theoretical properties of the C-RSA problem by providing several valid inequalities. Furthermore, a detailed polyhedral investigation is given in Section [START_REF] Carlyle | Lagrangian relaxation and enumeration for solving constrained shortest-path problems[END_REF]. We close with a brief summary of results and future outlook.

The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V, E), which is specified by a set of nodes V , and a multiset4 E of links (optical-fibers). Each link e = ij ∈ E is associated with a length e ∈ R + (in kms), a cost c e ∈ R + such that each fiber-link e ∈ E is divided into s ∈ N + slots. Let S = {1, . . . , s} be an optical spectrum of available frequency slots with s ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz [START_REF] Jiang | An defragmentation scheme for extending the maximal unoccupied spectrum block in elastic optical networks[END_REF], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node 3 The C-RSA Integer Linear Programming Formulation

o k ∈ V , a destination node d k ∈ V \ {o k },
Let's us introduce some notations which will be useful throughout this paper. For any subset of nodes X ⊆ V with X = ∅, let δ(X) denote the set of edges having one extremity in X and the other one in X = V \ X which is called a cut. When X is a singleton (i.e., X = {v}), we use δ(v) instead of δ({v}) to denote the set of edges incidents with a node v ∈ V . The cardinality of a set K is denoted by |K|.

Here we introduce our integer linear programming formulation based on cut formulation for the C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]. For k ∈ K and e ∈ E, let x k e be a variable which takes 1 if demand k goes through the edge e and 0 if not, and for k ∈ K and s ∈ S, let z k s be a variable which takes 1 if slot s is the last-slot allocated for the routing of demand k and 0 if not. The contiguous slots s ∈ {s -w k + 1, ..., s} should be assigned to demand k whenever z k s = 1. Before introducing our ILP, we proceeded to some pre-processing techniques to determine some zero-one variables s.t. we are able to determine them in polynomial time using shortest-path and network flows algorithms as follows.

For each demand k and each node v, one can compute a shortest path between each of the pair of nodes (o k , v), (v, d k ). If the lengths of the (o k , d k )-paths formed by the shortest paths (o k , v) and (v, d k ) are both greater that lk then node v cannot be in a path routing demand k, and we then say that v is a forbidden node for demand k due to the transmission-reach constraint. Let V k 0 denote the set of forbidden nodes for demand k ∈ K. Note that using Dijkstra's algorithm, one can identify in polynomial time the forbidden nodes V k 0 for each demand k ∈ K. On the other hand and regarding the edges, for each demand k and each edge e = ij, one can compute a shortest path between each of the pair of nodes (o k , i), (j, d k ), (o k , j) and (i, d k ). If the lengths of the (o k , d k )-paths formed by e together with the shortest (o k , i) and (j, d k ) (resp. (o k , j) and (i, d k )) paths are both greater that lk then edge ij cannot be in a path routing demand k, and we then say that ij is a forbidden edge for demand k due to the transmission-reach constraint. Let E k t denote the set of forbidden edges due to the transmission-reach constraint for demand k ∈ K. Note that using Dijkstra's algorithm, one can identify in polynomial time the forbidden edges E k t for each demand k ∈ K. This allows us to create in polynomial time a proper topology G k for each demand k by deleting the forbidden nodes V k 0 and forbidden edges E k t from the original graph

G (i.e., G k = G(V \ V k 0 , E \ E k t )
). As a result, there may exist some forbidden-nodes due to the elementary-path constraint which means that all the (o k , d k )-paths passed through a node v are not elementary-paths. This can be done in polynomial time using Breadth First Search (BFS) algorithm of complexity O(|E \ E k 0 | + |V \ V k 0 |) for each demand k. Note that we did not take into account this case in our study. Table 1 below shows the set of forbidden edges E k 0 and forbidden nodes V k 0 for each demand k in K already given in Fig. 2(b). 1. Topology pre-processing for the set of demands K given in Fig. 2(b).

k o k → d k w k ¯ k V k 0 E k 0 1 a → c
Let δ G k (v) denote the set of edges incident with a node v for the demand k in G k . Let δ k (W ) denote a cut for demand k ∈ K in G k s.t. o k ∈ W and d k ∈ V \ W where W is a subset of nodes in V of G k . Let f be an edge in δ(W ) s.t. all the edges e ∈ δ(W ) \ {f } are forbidden for demand k. As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential edges can be determined in polynomial time using network flows as follows.

we create a proper topology

G k = G(V \ V k 0 , E \ E k t )
for the demand k 2. we fix a weight equals to 1 for all the edges e in E \ E k t for the demand k in G k 3. we calculate o k -d k min-cut which separates o k from d k . [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF]. if δ G k (W ) = {e} then the edge e is an essential edge for the demand k s.t. o k ∈ W and d k ∈ V \ W . We increase the weight of the edge e by 1. Go to (3). 5. if |δ G k (W )| > 1 then end of algorithm.

Let E k

1 denote the set of essential edges of demand k, and K e denote a subset of demands in K s.t. edge e is an essential edge for each demand k ∈ K e . In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there may exist edges that may be forbidden because of lack of resources for demand k. This is the case when, for instance, the residual capacity of the edge in question does not allow a demand to use this edge for its routing, i.e., w k > sk ∈Ke w k . Let E k c denote the set of forbidden edges for demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges E k c and forbidden nodes v in V with δ(v) ⊆ E k t , should also be deleted from the proper graph G k of demand k, which means that G k contains |E| \ |E k t | edges and |V | \ |{v ∈ V, δ(v) ⊆ E k t }| nodes. Let E k 0 = E k t denote the set of all forbidden edges for demand k that can be determined due to the transmission reach and resources constraints. As a result of the pre-processing stage, some non-compatibility between demands may appear due to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k with e = ij /

∈ E k 0 ∪ E k 1 ∪ E k 0 ∪ E k 1
, are said non-compatible demands because of lack of resources over the edge e if and only if the the residual capacity of the edge e does not allow to route the two demands k, k together through e, i.e., w k + w k > sk"∈Ke w k" .

Let K e c denote the set of pair of demands (k, k ) in K that are non-compatibles for the edge e. The C-RSA problem can hence be formulated as follows.

min k∈K e∈E l e x k e , (1) 
subject to e∈δ(X)

x k e ≥ 1, ∀k ∈ K, ∀X ⊆ V s.t.

|X ∩ {o k , d k }| = 1, (2) 
e∈E l e x k e ≤ ¯ k , ∀k ∈ K,

x k e = 0, ∀k ∈ K, ∀e ∈ E k 0 ,

x

k e = 1, ∀k ∈ K, ∀e ∈ E k 1 , (5) 
z k s = 0, ∀k ∈ K, ∀s ∈ {1, ..., w k -1},

s s=w k z k s ≥ 1, ∀k ∈ K, (6) 
x k e + x k e + min(s+w k -1,s)

s =s z k s + min(s+w k -1,s) s =s z k s ≤ 3, ∀(e, k, k , s) ∈ Q, ( 8 
) 0 ≤ x k e ≤ 1, ∀k ∈ K, ∀e ∈ E, (9) 
z k s ≥ 0, ∀k ∈ K, ∀s ∈ S, (10) 
x k e ∈ {0, 1}, ∀k ∈ K, ∀e ∈ E,

z k s ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S. (11) 
where Q denotes the set of all the quadruples (e, k, k , s) for all e ∈ E, k ∈ K, k ∈ K \ {k}, and s ∈ S with (k, k ) / ∈ K e c . Inequalities [START_REF] Balas | Facets of the knapsack polytope[END_REF] ensure that there is an (o k , d k )-path between o k and d k for each demand k, and guarantee that all the demands should be routed. They are called cut inequalities. By optimizing the objective function [START_REF] Amar | Performance assessment and modeling of flexible optical networks[END_REF], and given that the capacities of all edges are strictly positives, this ensures that there is exactly one (o k , d k )-path between o k and d k which will be selected as optimal path for each demand k. We suppose that we have sufficient capacity in the network so that all the demands can be routed. This means that we have at least one feasible solution for the problem. Inequalities (3) express the length limit on the routing paths which is called "the transmissionreach constraint". Equations [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF] ensure that the variables associated to the forbidden edges for demand k are always equal to 0, and those of the essential edges are always equal to 1 for demand k. Equations ( 6) express the fact that a demand k cannot use slot s ≤ w k -1 as the last-slot . The slots s ∈ {1, ..., w k -1} are called forbidden last-slots for demand k. Inequalities [START_REF] Chatterjee | Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey[END_REF] should normally be an equation form ensuring that exactly one slot s ∈ {w k , . . . , s} must be assigned to demand k as last-slot . Here we relax this constraint. By a choice of the objective function, the equality is guaranteed at the optimum (e.g. min k∈K s s=w k s.z k s or min k∈K s s=w k s.w k .z k s ). Inequalities [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] express the contiguity and non-overlapping constraints. Inequalities ( 9)- [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] are the trivial inequalities, and constraints (11)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF] are the integrality constraints. Note that the linear relaxation of the C-RSA can be solved in polynomial time given that inequalities (2) can be separated in polynomial time using network flows, see e.g. preflow algorithm of Goldberg and Tarjan introduced in [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] which can be run in O(|V \ V k 0 | 3 ) time for each demand k ∈ K.

Proposition 1. The formulation (2)-( 12) is valid for the C-RSA problem.

Proof. It is trivial given the definition of each constraint of the formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF] such that any feasible solution for this formulation is necessary a feasible solution for the C-RSA problem.

Valid Inequalities

An instance of the C-RSA is defined by a triplet (G, K, S). Let P (G, K, S) be the polytope, convex hull of the solutions for our cut formulation (1)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. In this section we provide several valid inequalities to obtain tighter LP bounds. Throughout our proofs, we take into account that x k e ≤ 1 for each demand k ∈ K and edge e ∈ E, and z k s ≥ 0 for each demand k ∈ K and slot s ∈ S. Note that a slot s ∈ S is assigned to a demand k ∈ K if and only if min(s,s+w k -1) s =s

z k s = 1.
In what follows, we present several valid inequalities for P (G, K, S). Note that some proof of validity necessitates more details that may generate an overrun of the number of authorized pages. Please feel free to contact the authors for more details about each proof. We start this section by introducing the classes of valid inequalities that can be found using Chvatal-Gomory procedures.

Edge-Slot-Assignment Inequalities

Proposition 2. Consider an edge e ∈ E with K e = ∅. Let s be a slot in S. Then, the inequality k"∈Ke min(s+w k" -1,s)

s"=s z k" s" ≤ 1, (13) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Based on the non-overlapping inequality [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] and using the Chvatal-Gomory procedure, we define the following inequality. s"=s

z k" s" ≤ 4, (14) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

The inequality [START_REF] Cplex | V12. 9: User's Manual for CPLEX[END_REF] can then be generalized for any subset of demand K ⊆ K under certain conditions.

Proposition 4. Consider an edge e ∈ E, and a slot s in S. Let K be a subset of demands of K with e / ∈ E k 0 for each demand k ∈ K, (k, k ) / ∈ K e c for each pair of demands (k, k ) in K, and k∈ K w k ≤ sk"∈Ke\ K w k" . Then, the inequality

k∈ K x k e + k ∈ K min(s+w k -1,s) s =s z k s ≤ | K| + 1, (15) 
is valid for P (G, K, S) 6 .

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

The inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] can be strengthened as follows. Based on the inequalities [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] and [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF], we strengthen the inequality [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] without modifying its right hand side as follows.

Proposition 5. Consider an edge e ∈ E. Let s be a slot in S. Consider a pair of demands k, k ∈ K with e / ∈ E k 0 ∩ E k 0 and (k, k ) / ∈ K e c . Then, the inequality

x k e + x k e + min(s+w k -1,s)

s =s z k s + min(s+w k -1,s) s =s z k s + k"∈Ke\{k,k } min(s+w k" -1,s) s =s z k" s ≤ 3, (16) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Let's us generalize the inequality [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for each edge e and all slot s ∈ S and any subset of demand K ⊆ K under certain conditions. Proposition 6. Consider an edge e ∈ E, and a slot s in S. Let K be a subset of demands of K with e / ∈ E k 0 for each demand k ∈ K, (k, k ) / ∈ K e c for each pair of demands (k, k ) in K, and k∈ K w k ≤ sk"∈Ke\ K w k" . Then, the inequality

k∈ K x k e + k∈ K min(s+w k -1,s) s =s z k s + k ∈Ke\ K min(s+w k -1,s) s"=s z k s" ≤ | K| + 1, (17) 
is valid for P (G, K, S).

Proof.

Edge-Interval-Cover Inequalities

Let's us now introduce some valid inequalities that can be seen as cover inequalities using some notions of cover related to our problem.

Definition 2. An interval I = [s i , s j ] represents a set of contiguous slots situated between the two slots s i and s j with j ≥ i + 1 and s j ≤ s.

Definition 3. For an interval of contiguous slots I = [s i , s j ], a subset of demands K ⊆ K is said a cover for the interval I = [s i , s j ] if and only if k∈ K w k > |I| and w k < |I| for each k ∈ K.

Definition 4. For an interval of contiguous slots I = [s i , s j ], a cover K is said a minimal cover if K \ {k} is not a cover for interval I = [s i , s j ] for each demand k ∈ K, i.e., k ∈ K\{k} w k ≤ |I| for each demand k ∈ K.

Based on these definitions, we introduce the following inequalities.

Proposition 7. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with j ≥ i + 1. Let K ⊆ K e be a minimal cover for interval I = [s i , s j ] over edge e with e / ∈ E k 0 for each demand k ∈ K . Then, the inequality

k∈K sj s=si+w k -1 z k s ≤ |K | -1, (18) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

The inequality [START_REF] Ding | Hybrid routing and spectrum assignment algorithms based on distance-adaptation combined coevolution and heuristics in elastic optical networks[END_REF] can be strengthened using an extention of each minimal cover K ⊂ K e for an interval I over edge e as follows.

Proposition 8. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s]. Let K ⊆ K e be a minimal cover for interval I = [s i , s j ] over edge e with e / ∈ E k 0 for each demand k ∈ K , and Ξ(K ) be a subset of demands in K e \ K s.t. Ξ(K ) = {k ∈ K e \ K s.t. w k ≥ w k ∀k ∈ K }. Then, the inequality

k∈K sj s=si+w k -1 z k s + k ∈Ξ(K ) sj s =si+w k -1 z k s ≤ |K | -1, (19) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Moreover, the inequality (18) can be strengthened using lifting procedures proposed by Nemhauser and Wolsey in [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF] without modifying its right-hand side.

Proposition 9. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with j ≥ i + 1. Let K be a subset of demands of K s.t.

- k∈ K w k ≥ |I| + 1, - k∈ K\{k } w k ≤ |I| for each k ∈ K, - k∈ K w k ≤ s - k ∈Ke\ K w k , -e / ∈ E k 0 for each demand k ∈ K, -K ≥ 3, -(k, k ) /
∈ K e c for each pair of demands (k, k ) in K.

Then, the inequality k∈

K x k e + k∈ K sj s=si+w k -1 z k s ≤ 2| K| -1, (20) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

As we did before for the inequality [START_REF] Ding | Hybrid routing and spectrum assignment algorithms based on distance-adaptation combined coevolution and heuristics in elastic optical networks[END_REF], the inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] can be strengthened by introducing the extended version of the minimal cover K for the interval I over edge e as follows.

Proposition 10. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with j ≥ i + 1. Let K be a subset of demands of K, and Ke be a subset of demands in K e \ K s.t.

- k∈ K w k ≥ |I| + 1, - k∈ K\{k } w k ≤ |I| for each k ∈ K, - k∈ K w k ≤ s - k ∈Ke\ K w k , -e / ∈ E k 0 for each demand k ∈ K, -K ≥ 3, -(k, k ) /
∈ K e c for each pair of demands (k, k ) in K, w k ≥ w k for each k ∈ K and each k ∈ Ke .

Then, the inequality k∈

K x k e + k∈ K sj s=si+w k -1 z k s + k ∈ Ke sj s =si+w k -1 z k s ≤ 2| K| -1, (21) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

More general, the inequality (20) can be strengthened using lifting procedures proposed by Nemhauser and Wolsey in [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF] without modifying its right-hand side.

Remark 1. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots with s i + 1 ≤ s j , s" be a slot in S, and K be a subset of demands in K satisfying the conditions of the two inequalities [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] and [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF]. We ensure that the inequality [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] can never dominate the inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF].

Edge-Interval-Clique Inequalities

In what follows, we need to introduce some notions of graph theory to provide some valid inequalities for P (G, K, S).

Definition 5. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1. Consider the conflict graph Ge I defined as follows. For each demand k ∈ K with w k ≤ |I| and e / ∈ E k 0 , consider a node v k in Ge I . Two nodes v k and v k are linked by an edge in

Ge I if w k + w k > |I| and (k, k ) / ∈ K e c
. This is equivalent to say that two linked nodes v k and v k means that the two demands k, k define a minimal cover for the interval I over edge e.

For an edge e ∈ E, the conflict graph Ge is a threshold graph with threshold value equals to t = sk"∈Ke w k" s. 

v k ∈C x k e + sj s=si+w k -1 z k s ≤ |C| + 1, (22) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Remark 2. Consider an edge e and an interval of contiguous slots I = [s i , s j ]. Let K be a subset of demands in K satisfying the conditions of validity of the inequalities [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] and [START_REF] Eppstein | Finding the k shortest paths[END_REF]. Then, the inequality ( 22) is dominated by the inequality (17) associated with slot s" = s i + min k∈ K w k + 1 if and only if |{s i + w k , ., s j }| ≤ w k for each demand k ∈ K.

Remark 3. Consider an edge e and an interval of contiguous slots I = [s i , s j ]. Let K be a subset of demands in K satisfying the conditions of validity of the inequalities [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] and [START_REF] Eppstein | Finding the k shortest paths[END_REF]. Then, the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] dominates the inequality (17) associated with each slot s" ∈ I if and only if

|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K and s" ∈ {s i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1}.
Moreover, the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] can be strengthened as follows.

Proposition 12. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots. Let C be a clique in the conflict graph Ge I with |C| ≥ 3, and

v k ∈C w k ≤ s -k ∈Ke\C w k . Let C e ⊆ K e \ C be a clique in the conflict graph Ge I s.t. w k + w k ≥ |I| + 1 for each v k ∈ C and v k ∈ C e . Then, the inequality v k ∈C x k e + v k ∈C sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s ≤ |C| + 1, (23) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Looking to the definition of the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF], we detected that there may exist some cases that we can face that are not covered by the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF]. For this, we provide the following inequality and its generalization. 

z k s + sj s =si+w k -1 z k s ≤ 1, (24) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information. 

if w k + w k > |I| and E k 1 ∩ E k 1 = ∅.
Proposition 14. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1, and C be a clique in the conflict graph GE I with |C| ≥ 3. Then, the inequality

v k ∈C sj s=si+w k -1 z k s ≤ 1, (25) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Interval-Odd-Hole Inequalities

Proposition 15. Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1, and H be an odd-hole H in the conflict graph GE I with |H| ≥ 5. Then, the inequality

v k ∈H sj s=si+w k -1 z k s ≤ |H| -1 2 , ( 26 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

The inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] can be strengthened without modifying its right-hand side by combining the inequality ( 25) and ( 26) as follows. 

v k ∈H sj s=si+w k -1 z k s + |H| -1 2 v k ∈C sj s =si+w k -1 z k s ≤ |H| -1 2 , ( 27 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Edge-Slot-Assignment-Clique Inequalities

Taking into account the non-overlapping inequalities (8), we define another conflict graph totally different compared with the conflict graphs introduced previously. 

-k = k , -or {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ if k = k and (k, k ) / ∈ K e c .

The conflict graph Ge

S is not a perfect graph given that some nodes v k,s and v k ,s are linked even if the {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅, i.e., when k = k . Proposition 17. Consider an edge e ∈ E. Let C be a clique in the conflict graph Ge S with |C| ≥ 3, and k∈C w k ≤ sk ∈Ke\C w k . Then, the inequality

v k,s ∈C (x k e + z k s ) ≤ |C| + 1, (28) 
is valid for P (G, K, S) = {(x, z) ∈ P (G, K, S) :

s s=w k z k s = 1 for all k ∈ K}.
Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

This gives us an idea about new non-overlapping inequalities defined as follows.

Proposition 18. Consider an edge e, and a pair of demands k, k ∈ K with e / ∈ E k 0 ∪ E k 0 . Let s be a slot in {w k , ..., s}. Then, the inequality

x k e + x k e + z k s + min(s+w k -1,s) s"=s-w k +1 z k s" ≤ 3, ( 29 
)
is valid for P "(G, K, S) = {(x, z) ∈ P (G, K, S) : s s=w k z k s = 1 & s s=w k z k s = 1}.
Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information. 

w k + 1, ..., s} ∩ {s -w k + 1, s } for each pair of nodes (v k,s , v k ,s ) in C, -and [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I.
Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered by the inequalities ( 17) and [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF]. For this, we provide the following definition of a conflict graph and its associated inequality.

Definition 8. Let GE

S be a conflict graph defined as follows. For all slot s ∈ {w k , ..., s} and demand k ∈ K, consider a node v k,s in GE S . Two nodes v k,s and v k ,s are linked by an edge in GE

S iff E k 1 ∩ E k 1 = ∅ and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅.
Proposition 19. Let C be a clique in conflict graph GE S with |C| ≥ 3. Then, the inequality

v k,s ∈C z k s ≤ 1, ( 30 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Remark 6. The inequality (30) associated with a clique C, it is dominated by the inequality (25) associated with an interval I = [s i , s j ] and the subset of demands K if and only if [ min

v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I and w k + w k ≥ |I| + 1 for each (v k , v k ) ∈ C, and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.
Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Slot-Assignment-Odd-Hole Inequalities

Proposition 20. Let H be an odd-hole in the conflict graph GE S with |H| ≥ 5. Then, the inequality

v k,s ∈H z k s ≤ |H| -1 2 , ( 31 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Remark 7. The inequality [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] is dominated by the inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] if and only if there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with -[ min v k,s ∈H∪C (s -w k + 1), max v k,s ∈H∪C ] ⊂ I, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H.
The inequality (31) can be strengthened without modifying its right hand side by combining the inequality ( 31) and (30) as follows.

Proposition 21. Let H be an odd-hole, and C be a clique in the conflict graph GE S with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k,s , v k ,s ) are linked in GE S for all v k,s ∈ H and v k ,s ∈ C. Then, the inequality

v k,s ∈H z k s + |H| -1 2 v k ,s ∈C z k s ≤ |H| -1 2 , ( 32 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Remark 8. The inequality [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF] is dominated by the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] if and only if there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with -[ min v k,s ∈H∪C (s -w k + 1), max v k,s ∈H∪C ] ⊂ I, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H, -and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in C, -and w k + w k ≥ |I| + 1 for each v k ∈ H and v k ∈ C, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.

Non-Compatibility-Clique Inequalities

Let us now introduce some valid inequalities that are related to the routing sub-problem due to the transmission-reach constraint.

Definition 9. For a demand k, two edges e = ij / ∈ E k 0 ∩ E k 1 , e = lm / ∈ E k 0 ∩ E k
1 are said noncompatible edges if and only if the lengths of (o k , d k )-paths formed by e = ij and e = lm together are greater that lk .

Note that we are able to determine the non-compatible edges for each demand k in polynomial time using shortest-path algorithms.

Proposition 22. Consider an edge e ∈ E. Let (k, k ) be a pair of non-compatible demands for the edge e. Then, the inequality

x k e + x k e ≤ 1, (33) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Proposition 23. Consider a demand k ∈ K. Let (e, e ) be a pair of non-compatible edges for the demand k. Then, the inequality

x k e + x k e ≤ 1, (34) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Based on the inequalities [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF] and [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF], we introduce the following conflict graph. 

v k e ∈C x k e ≤ 1, (35) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Non-Compatibility-Odd-Hole Inequalities

Proposition 25. Let H be an odd-hole in the conflict graph GK E with |H| ≥ 3. Then, the inequality

v k e ∈H x k e ≤ |H| -1 2 , ( 36 
)
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

The inequality [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF] can be strengthened without modifying its right hand side by combining the inequality [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF] and [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF] as follows. x k e + |H| -1 2

v k e ∈C x k e ≤ |H| -1 2 , (37) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

On the other hand, let's us now provide some inequalities related to the capacity constraint.

Edge-Capacity-Cover Inequalities

Proposition 27. Consider an edge e in E. Then, the inequality

k∈K\Ke w k x k e ≤ s - k ∈Ke w k , (38) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Based on this, we introduce the following definitions.

Definition 11. For an edge e ∈ E, a subset of demands

C ⊆ K with e / ∈ E k 0 ∩ E k 1 For each demand k ∈ C, is said a cover for the edge e if k∈C w k > s - k ∈Ke w k . Definition 12. For an edge e in E, a cover C is said a minimal cover if C \ {k} is not a cover for all k ∈ C, i.e., k ∈C\{k} w k ≤ s - k"∈Ke w k" .
Proposition 28. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then, the inequality

k∈C x k e ≤ |C| -1, (39) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

We verified that the inequality (39) can be easily strengthened by using its extended format which we call extended minimal cover for an edge e as follows.

Proposition 29. Consider an edge e in E. Let C be a minimal cover in K for the edge e, and Ξ(C) be a subset of demands in K \C ∪K e where Ξ = {k ∈ K \C ∪K e : e / ∈ E k 0 and w k ≥ w k ∀k ∈ C}. Then, the inequality

k∈C x k e + k ∈Ξ(C) x k e ≤ |C| -1, (40) 
is valid for P (G, K, S).

Proof. See the detailed report in [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF] for more information.

Furthermore, the inequality (39) can have a more generalized strengthening format using lifting procedures proposed by Nemhauser and Wolsey in [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF].

In what follows, a solution of the C-RSA problem is given by two sets E k and S k for each demand k ∈ K where E k is a set of edges used for the routing of demand k which contains a path p k satisfying the continuity of (o k , d k )-path p k for the demand k (i.e., E(p k ) ⊆ E k ) such that e∈E k l e ≤ lk and E k 1 ⊆ E k , and S k is a set of slots which represent the set of last-slot selected for the demand k which forms a set of channels such that each channel contains w k contiguous slots. Figure 3 shows the routing solutions for a demand k that are feasible for our problem throughout our proofs. 

Facial Investigation

In this section, we investigate the facial structure of our polytope P (G, K, S) by characterizing when the valid inequalities already introduced in the Section (4), are facets defining for P (G, K, S). We refer the reader to the first part of our polyhedral study detailed in [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] (polytope dimension, and facial structure of the trivial inequalities).

Slot-Assignment-Clique Inequalities

Theorem 1. Consider a clique C in the conflict graph GE S . Then, the inequality (30) is facet defining for P (G, K, S) if and only if -C is a maximal clique in the conflict graph GE S , and there does not exist an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with • [ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I, • and w k + w k ≥ |I| + 1 for each (v k , v k ) ∈ C, • and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.

Proof. Neccessity.

If C is a not maximal clique in the conflict graph GE S , this means that the inequality (30) can be dominated by another inequality associated with a clique C s.t. C ⊂ C without changing its right hand side. Moreover, if there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with -[ min v k,s ∈C (s -w k + 1), max v k,s ∈C s] ⊂ I, -and w k + w k ≥ |I| + 1 for each (v k , v k ) ∈ C, -and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.
Then, the inequality ( 30) is dominated by the inequality [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF]. As a result, the inequality (30) cannot be facet defining for P (G, K, S).

Sufficiency. Let F GE S C
denote the face induced by the inequality [START_REF] Gurobi Optimization | Gurobi Optimizer Reference Manual[END_REF], which is given by

F GE S C = {(x, z) ∈ P (G, K, S) : v k,s ∈C z k s = 1}.
In order to prove that inequality v k,s ∈C z k s ≤ 1 is facet defining for P (G, K, S), we start checking that

F GE S C
is a proper face, and Obviously, S 1 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 1 , z S 1 ) is belong to P (G, K, S) and then to

F GE S C = P (G, K, S). We construct a solution S 1 = (E 1 , S 1 ) as below -a feasible path E 1 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 1 k is assigned to each demand k ∈ K along each edge e ∈ E 1 k with |S 1 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 1 k and s ∈ S 1 k with E 1 k ∩ E 1 k = ∅ (
F GE S C given that it is composed by v k,s ∈C z k s = 1. As a result, F GE S C
is not empty (i.e., F GE S C = ∅). Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ C, this means that there exists at least one feasible slot assignment S k for the demands We first show that µ k e = 0 for each edge e

k in C with s / ∈ S k for each v k,s ∈ C. This means that F GE S C = P (G, K, S). Let denote the inequality v k,s ∈C z k s ≤ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE S C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 )
. For that, we consider a solution S 1 = (E 1 , S 1 ) in which

-a feasible path E 1 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 1 k is assigned to each demand k ∈ K along each edge e ∈ E 1 k with |S 1 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 1 k and s" ∈ S 1 k with E 1 k ∩ E 1 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E

1 k |{s ∈ S 1 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and each s ∈ S 1 k and s" ∈ S 1 k with (E 1 k ∪ {e}) ∩ E 1 k = ∅ (non-
overlapping constraint taking into account the possibility of adding the edge e in the set of edges E 1 k selected to route the demand k in the solution S 1 ), the edge e is not non-compatible edge with the selected edges e ∈ E 

for all v k ,s ∈ C \ {v k,s }.
S 1 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 1 , z S 1 ) is belong to F and then to

F GE S C
given that it is composed by v k,s ∈C z k s = 1. Based on this, we derive a solution S 2 obtained from the solution S 1 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 1 which means that

E 2 k = E 1 k ∪ {e}.
The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 1 remain the same in the solution S 2 , i.e., S 2 k = S 1 k for each k ∈ K, and

E 2 k = E 1 k for each k ∈ K \ {k}. S 2 is clearly feasible given that -and a feasible path E 2 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 2 k is assigned to each demand k ∈ K along each edge e ∈ E 2 k with |S 2 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 2 k and s" ∈ S 2 k with E 2 k ∩ E 2 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 2

k |{s ∈ S 2 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).
The corresponding incidence vector (x S 2 , z S 2 ) is belong to F and then to

F GE S C
given that it is composed by v k,s ∈C z k s = 1. It follows that

µx S 1 + σz S 1 = µx S 2 + σz S 2 = µx S 1 + µ k e + σz S 1 .
As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with v k,s / ∈ C. Consider the demand k and a slot s in {w k , ..., s} with v k,s / ∈ C. For that, we consider a solution S" 1 = (E" 1 , S" 1 ) in which

-a feasible path E" 1 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S" 1 k is assigned to each demand k ∈ K along each edge e ∈ E" 1 k with |S" 1 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 1 k and s" ∈ S" 1 k with E" 1 k ∩ E" 1 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 1 k |{s ∈ S" 1 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S 1 k with E" 1 k ∩ E" 1 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 1 k assigned to the demand k in the solution S" 1 ),

and there is one pair of demand k and slot s from the clique C (i.e., v k,s ∈ C s.t. the demand k selects the slot s as last-slot in the solution S" 1 , i.e., s ∈ S" 1 k for a node v k,s ∈ C, and s / ∈ S"

1 k for all v k ,s ∈ C \ {v k,s }.
S" 1 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 1 , z S" 1 ) is belong to F and then to

F GE S C
given that it is composed by v k,s ∈C z k s = 1. Based on this, we distinguish two cases:

without changing the paths established in S" 1 : we derive a solution S 3 = (E 3 , S 3 ) from the solution S" 1 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 1 (i.e., E 3 k = E" 1 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 1 remain the same in the solution S 3 i.e., S" given that it is composed by v k,s ∈C z k s = 1. We then obtain that

1 k = S 3 k for each demand k ∈ K \ {k}, and S 3 k = S" 1 k ∪ {s } for the demand k. The solution S 3 is feasible given that • a feasible path E 3 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 3 k is assigned to each demand k ∈ K along each edge e ∈ E 3 k with |S 3 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 3 k and s" ∈ S 3 k with E 3 k ∩ E 3 k = ∅, i.e.,
µx S" 1 + σz S" 1 = µx S 3 + σz S 3 = µx S" 1 + σz S" 1 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ C. with changing the paths established in S" 1 : we construct a solution S 3 derived from the solution S" 1 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 1 (i.e., E 3 k = E" 1 k for each k ∈ K \ K, and

E 3 k = E" 1 k for each k ∈ K) s.t. • a new feasible path E 3
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 1 k and s" ∈ S" 1 k with E 3 k ∩ E" 1 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e∈E 3

k |{s ∈ S" 1 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e∈E" 1 k |{s ∈ S" 1 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),
• and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 1 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 1 k assigned to the demand k in the solution S" 1 ). The last-slots assigned to the demands K \ {k} in S" 1 remain the same in S 3 , i.e., S"

1 k = S 3 k for each demand k ∈ K \ {k}, and S 3 k = S" 1 k ∪ {s} for the demand k. The solution S 3 is clearly feasible given that • a feasible path E 3 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 3 k is assigned to each demand k ∈ K along each edge e ∈ E 3 k with |S 3 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 3 k and s" ∈ S 3 k with E 3 k ∩ E 3 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 3 k |{s ∈ S 3 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 3 , z S 3 ) is belong to F and then to

F GE S C
given that it is composed by v k,s ∈C z k s = 1. We have so

µx S" 1 + σz S" 1 = µx S 3 + σz S 3 = µx S" 1 + σz S" 1 + σ k s - k∈ K e∈E" 1 k µ k e + k∈ K e ∈E 3 k µ k e .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ C given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ). given that it is composed by v k,s ∈C z k s = 1. We have so

µx S1 + σz S1 = µx S 4 + σz S 4 = µx S1 + σz S1 + σ k s -σ k s + σ k s - k∈ K e∈ Ẽ1 k µx S1 + k∈ K e∈E 4 k µx S 4 .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ C given that σ k s = 0 for v k,s / ∈ C, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ). Given that the pair (v k,s , v k ,s ) are chosen arbitrary in the clique C, we iterate the same procedure for all pairs (v k,s , v k ,s ) s.t. we find

σ k s = σ k s , for all pairs (v k,s , v k ,s ) ∈ C.
Consequently, we obtain that σ k s = ρ for all pairs v k,s ∈ C. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. [START_REF] Lezama | Solving routing and spectrum allocation problems in flexgrid optical networks using precomputing strategies[END_REF] We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 γ k,e 2 , if e ∈ E k 1 0, otherwise
and for each k ∈ K and s ∈ S [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF] induced by the clique C for the interval I is dominated by the inequality [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF] induced by the clique C for the interval I . Hence, the inequality (25) cannot be facet defining for P (G, K, S).

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if v k,s ∈ C, 0, if v k,s / ∈ C. As a result (µ, σ) = v k,s ∈C ρβ k s + γQ.
Sufficiency. Let F GE I C
denote the face induced by the inequality [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF], which is given by

F GE I C = {(x, z) ∈ P (G, K, S) : v k ∈C sj s=si+w k -1 z k s = 1}.
In order to prove that inequality = P (G, K, S). We construct a solution S 5 = (E 5 , S 5 ) as below a feasible path E 5 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 5 k is assigned to each demand k ∈ K along each edge e ∈ E Obviously, S 5 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 5 , z S 5 ) is belong to P (G, K, S) and then to

v k ∈C sj s=si+w k -1 z k s ≤
F GE I C
given that it is composed by

v k ∈C sj s=si+w k -1 z k s = 1. As a result, F GE I C
is not empty (i.e., F GE I C = ∅). Furthermore, given that s ∈ {s i + w k -1, ..., s j } for each v k ∈ C, this means that there exists at least one feasible slot assignment S k for the demands k in C with s / ∈ {s i + w k -1, ..., s j } for each s ∈ S k and each v k ∈ C. This means that We first show that µ k e = 0 for each edge e

F GE I C = P (G, K, S). We denote the inequality v k ∈C sj s=si+w k -1 z k s ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE I C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 )
. For that, we consider a solution S 5 = (E 5 , S 5 ) in which a feasible path E 5 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 5 k is assigned to each demand k ∈ K along each edge e ∈ E 5 k with |S 5 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S S 5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 5 , z S 5 ) is belong to F and then to

F GE I C given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1.
Based on this, we derive a solution S 6 obtained from the solution S 5 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 5 which means that E 6 k = E 5 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 5 remain the same in the solution S 6 , i.e., S 6 k = S 5 k for each k ∈ K, and E 6 k = E 5 k for each k ∈ K \ {k}. S 6 is clearly feasible given that and a feasible path E 6 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 6 k is assigned to each demand k ∈ K along each edge e ∈ E 

} if v k ∈ C.
For that, we consider a solution S" 5 = (E" 5 , S" 5 ) in which a feasible path E" 5 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 5 k is assigned to each demand k ∈ K along each edge e ∈ E" 5 k with |S" 5 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 5 k and s" ∈ S" 5 k with E" 5 k ∩ E" 5 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 5 k |{s ∈ S" 5 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 5 k with E" 5 k ∩ E" 5 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 5 k assigned to the demand k in the solution S" 5 ), and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S" 5 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S" 5 k for a node v k ∈ C, and for each s ∈ S" 5 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }.

S" 5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 5 , z S" 5 ) is belong to F and then to

F GE I C given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1.
Based on this, we distinguish two cases:

without changing the paths established in S" 5 : we derive a solution S 7 = (E 7 , S 7 ) from the solution S" 5 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 5 (i.e., E 7 k = E" 5 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 5 remain the same in the solution S 7 i.e., S" 

F GE I C given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1.
We then obtain that µx S" 5 + σz S" 5 = µx S 7 + σz S 7 = µx S" 5 + σz S" 5 + σ k s .

It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ C.
with changing the paths established in S" 5 : we construct a solution S 7 derived from the solution S" 5 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 5 (i.e., E 7 k = E" 5 k for each k ∈ K \ K, and

E 7 k = E" 5 k for each k ∈ K) s.t. • a new feasible path E 7
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 5 k and s" ∈ S" k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 5 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 5 k assigned to the demand k in the solution S" 5 ). The last-slots assigned to the demands K \ {k} in S" 5 remain the same in S 7 , i.e., S" 

F GE I C given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1.
We then obtain that

µx S5 + σz S5 = µx S 8 + σz S 8 = µx S5 + σz S5 + σ k s -σ k s + σ k s .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ∈ C and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with v k ∈ C. with changing the paths established in S5 : we construct a solution S 8 derived from the solution S5 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S5 (i.e., E 8 k = Ẽ5 k for each k ∈ K \ K, and E 8 k = Ẽ5 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S5 remain the same in S 8 , i.e., S5 

F GE I C given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1. We have so µx S5 + σz S5 = µx S 8 + σz S 8 = µx S5 + σz S5 + σ k s -σ k s + σ k s - k∈ K e∈ Ẽ5 k µx S5 + k∈ K e∈E 8 k µx S 8 .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ∈ C and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with v k ∈ C, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).

Given that the pair (v k , v k ) are chosen arbitrary in the clique C, we iterate the same procedure for all pairs (v k , v k ) s.t. we find

σ k s = σ k s , for all pairs (v k , v k ) ∈ C
with s ∈ {s i + w k -1, ..., s j } and s ∈ {s i + w k -1, ..., s j }. We re-do the same procedure for each two slots s, s ∈ {s i + w k -1, ..., s j } for each demand k ∈ K with v k ∈ C s.t.

σ k s = σ k s , for all v k ∈ C and s, s ∈ {s i + w k -1, ..., s j }.
Consequently, we obtain that σ k s = ρ for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 42 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , 0, otherwise,
and for each k ∈ K and s ∈ S

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if v k ∈ C and s ∈ {s i + w k -1, ..., s j }, 0, otherwise. As a result (µ, σ) = v k ∈C sj s=si+w k -1 ρβ k s + γQ.

Interval-Odd-Hole Inequalities

Theorem 3. Let H be an odd-hole in the conflict graph GE I with |H| ≥ 5. Then, the inequality (26) is facet defining for P (G, K, S) if and only if

-for each node v k / ∈ H in GE I , there exists a node v k ∈ H s.t. the induced graph GE I ((H \{v k })∪ {v k }) does not contain an odd-hole H = (H \ {v k }) ∪ {v k }, -and there does not exist a node v k / ∈ H in GE I s.t. v k is
linked with all nodes v k ∈ H, and there does not exist an interval I of contiguous slots with I ⊂ I s.t. H defines also an odd-hole in the associated conflict graph GE I . Proof. Neccessity. We distinguish the following cases:

-if for a node v k / ∈ H in GE I , there exists a node v k ∈ H s.t. the induced graph GE I ((H \ {v k }) ∪ {v k }) contains an odd-hole H = (H \ {v k }) ∪ {v k }.
This implies that the inequality ( 26) can be dominated by doing some lifting procedures using the following valid inequalities

v k ∈H sj s =si+w k -1 z k s ≤ |H| -1 2 , v k ∈H sj s =si+w k -1 z k s ≤ |H| -1 2 , as follows sj s =si+w k -1 z k s + sj s =si+w k -1 z k s + 2 v k" ∈H\{k,k } sj s"=si+w k" -1 z k" s" ≤ |H| -1.
By adding the sum sj s =si+w k -1 z k s to the previous inequality, we obtain

sj s =si+w k -1 z k s + 2 sj s =si+w k -1 z k s + 2 v k" ∈H\{k,k } sj s"=si+w k" -1 z k" s" ≤ |H| -1 + sj s =si+w k -1 z k s .
We know that

sj s =si+w k -1 z k s ≤ 1, it follows that sj s =si+w k -1 z k s + 2 sj s =si+w k -1 z k s + 2 v k" ∈H\{k,k } sj s"=si+w k" -1 z k" s" ≤ |H|.
By dividing the last inequality by 2, we obtain that

sj s =si+w k -1 1 2 z k s + sj s =si+w k -1 z k s + v k" ∈H\{k,k } sj s"=si+w k" -1 z k" s" ≤ |H| 2 .
Given that

H = (H \ {k}) ∪ {k } s.t. |H | = |H|, and |H| is an odd number which implies that |H| 2 = |H|-1 2 . As a result sj s =si+w k -1 1 2 z k s + v k ∈H sj s"=si+w k -1 z k s" ≤ |H | -1 2 .
That which was to be demonstrated.

-if there exists a node v k ∈ H in GE I s.t. v k is linked with all nodes v k ∈ H.
As a result, the inequality ( 26) is dominated by the following inequality

v k ∈H sj s =si+w k -1 z k s + |H| -1 2 sj s =si+w k -1 z k s ≤ |H| -1 2 .
if there exists an interval I of contiguous slots with I ⊂ I s.t. H defines also an odd-hole in the associated conflict graph GE I . This implies that the inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] induced by the odd-hole H for the interval I is dominated by the inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] induced by the same odd-hole H for the interval I given that {s i + w k -1, ..., s j } ⊂ I for each k ∈ H. As a result, the inequality ( 26) is not facet defining for P (G, K, S).

If no one of these two cases, the inequality (26) can never be dominated by another inequality without changing its right-hand side. Sufficiency. Let F GE I H denote the face induced by the inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF], which is given by

F GE I H = {(x, z) ∈ P (G, K, S) : v k ∈H sj s=si+w k -1 z k s = |H| -1 2 }.
In order to prove that inequality

v k ∈H sj s=si+w k -1 z k s ≤ |H|-1 2 is facet defining for P (G, K, S),
we start checking that

F GE I H
is a proper face, and

F GE I H = P (G, K, S).
We construct a solution S 9 = (E 9 , S 9 ) as below

-a feasible path E 9 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 9 k is assigned to each demand k ∈ K along each edge e ∈ E 9 k with |S 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 9 k and s ∈ S 9 k with E 9 k ∩ E 9 k = ∅ (non-overlapping constraint), -and there is |H|-1 2 demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S 9 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 9 k for each node v k ∈ H, and for each s ∈ S 9 k for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }.
Obviously, S 9 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation ( 2)-( 12). Moreover, the corresponding incidence vector (x S 9 , z S 9 ) is belong to P (G, K, S) and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 . As a result, F GE I H is not empty (i.e., F GE I H = ∅).
Furthermore, given that s ∈ {s i + w k -1, ..., s j } for each v k ∈ H, this means that there exists at least one feasible slot assignment S k for the demands k in H with s / ∈ {s i + w k -1, ..., s j } for each s ∈ S k and each v k ∈ H. This means that

F GE I H = P (G, K, S). We denote the inequality v k ∈H sj s=si+w k -1 z k s ≤ |H|-1 2 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE I H ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β)
+ γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H, -and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ), -and σ k s are equivalents for all v k ∈ H and all s ∈ {s i + w k -1, ..., s j }. We first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 )
. For that, we consider a solution S 9 = (E 9 , S 9 ) in which

-a feasible path E 9 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 9 k is assigned to each demand k ∈ K along each edge e ∈ E 9 k with |S 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 9 k and s" ∈ S 9 k with E 9 k ∩ E 9 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 9

k |{s ∈ S 9
k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e ∈ E 9 k of demand k in the solution S 9 , i.e., e ∈E 9 k l e + l e ≤ lk . As a result, E 9 k ∪ {e} is a feasible path for the demand k, and there is |H|-1 2 demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S 9 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 9 k for each node v k ∈ H, and for each s ∈ S 9 k for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }.

S 9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 9 , z S 9 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
Based on this, we derive a solution S 10 obtained from the solution S 9 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 9 which means that E 10 k = E 9 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 9 remain the same in the solution S 10 , i.e., S 10 k = S 9 k for each k ∈ K, and

E 10 k = E 9 k for each k ∈ K \ {k}. S 10 is clearly feasible given that -and a feasible path E 10 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 10 k is assigned to each demand k ∈ K along each edge e ∈ E 10 k with |S 10 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 10
k and s" ∈ S 10

k with E 10 k ∩ E 10 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈E 10 k |{s ∈ S 10 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).
The corresponding incidence vector (x S 10 , z S 10 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 . It follows that µx S 9 + σz S 9 = µx S 10 + σz S 10 = µx S 9 + µ k e + σz S 9 .
As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand

k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}).
We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ H.
For that, we consider a solution S" 9 = (E" 9 , S" 9 ) in which

-a feasible path E" 9 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S" 9 k is assigned to each demand k ∈ K along each edge e ∈ E" 9 k with |S" 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 9
k and s" ∈ S" 9 k with E" 9 k ∩ E" 9 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈E" 9 k |{s ∈ S" 9 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 9
k with E" 9 k ∩ E" 9 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 9 k assigned to the demand k in the solution S" 9 ), and there is |H|-1 2 demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S" 9 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S" 9 k for each node v k ∈ H, and for each s ∈ S" 9 k for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }.

S" 9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 9 , z S" 9 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S" 9 : we derive a solution S 11 = (E 11 , S 11 ) from the solution S" 9 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 9 (i.e., E 11 k = E" 9 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 9 remain the same in the solution S 11 i.e., S" 9 k = S 11 k for each demand k ∈ K \ {k}, and S 11 k = S" 9 k ∪ {s } for the demand k. The solution S 11 is feasible given that 

• a feasible path E 11 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 11 k is assigned to each demand k ∈ K along each edge e ∈ E 11 k with |S 11 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K
F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
We then obtain that

µx S" 9 + σz S" 9 = µx S 11 + σz S 11 = µx S" 9 + σz S" 9 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H.
with changing the paths established in S" 9 : we construct a solution S 11 derived from the solution S" 9 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 9 (i.e., E

11 k = E" 9 k for each k ∈ K \ K, and E 11 k = E" 9 k for each k ∈ K) s.t. • a new feasible path E 11 k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 9 k and s" ∈ S" 9 k with E 11 k ∩ E" 9 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e∈E 11

k |{s ∈ S" 9 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e∈E" 9 k |{s ∈ S" 9
k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 9 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 9 k assigned to the demand k in the solution S" 9 ). The last-slots assigned to the demands K \{k} in S" 9 remain the same in S 11 , i.e., S" 

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
We have so

µx S" 9 + σz S" 9 = µx S 11 + σz S 11 = µx S" 9 + σz S" 9 + σ k s - k∈ K e∈E" 9 k µ k e + k∈ K e ∈E 11 k µ k e .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ).
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H s.t.

we find

σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H.
Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k ∈ H.
Let prove that σ k s for all v k ∈ H and all s ∈ {s i + w k -1, ..., s j } are equivalents. Consider a demand k with v k ∈ H and a slot s ∈ {s i + w k -1, ..., s j }. For that, we consider a solution 

S 12 = (E 12 , S 12 ) in which -a feasible path E 12 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 12 k is assigned to each demand k ∈ K along each edge e ∈ E 12 k with |S 12 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 12 k and s" ∈ S 12 k with E 12 k ∩ E 12 k = ∅, i.e.,
for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }.
S 12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 12 , z S 12 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S 12 : we derive a solution S 13 from the solution S 12 as belows • without changing the established paths for the demands K in the solution S 12 , i.e., E 13 k = E 12 k for each demand k ∈ K, • remove the last-slot s totally covered by the interval I and which has been selected by a demand k i ∈ {v k1 , ..., v kr } in the solution S 12 (i.e., s ∈ S 12 ki and s ∈ {s i + w ki + 1, ..., s j }) s.t. each pair of nodes (v k , v kj ) are not linked in the odd-hole H with j = i, • and select a new last-slot s / ∈ {s i + w ki + 1, ..., s j } for the demand

k i i.e., S 13 ki = (S 12 ki \ {s}) ∪ {s } s.t. {s -w ki -1, ..., s } ∩ {s -w k + 1, ..., s} = ∅ for each k ∈ K and s ∈ S 12 k with E 13
k ∩ E 13 ki = ∅, • and add the slot s to the set of last-slots S 12 k assigned to the demand k in the solution S 12 , i.e., S 13 k = S 12 k ∪ {s }, • without changing the set of last-slots assigned to the demands

K \ {k , k i }, i.e., S 13 k = S 12 k for each demand K \ {k , k i }. The solution S 13 is clearly feasible given that • a feasible path E 13 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 13 k is assigned to each demand k ∈ K along each edge e ∈ E 13 k with |S 13 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 13
k and s" ∈ S 13 k with E 13 k ∩ E 13 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 13 k |{s ∈ S 13 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 13 , z S 13 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 .
We have so

µx S 12 + σz S 12 = µx S 13 + σz S 13 = µx S 12 + σz S 12 + σ k s + σ ki s -σ ki s .
This implies that σ ki s = σ k s for v ki , v k ∈ H given that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k + 1, ..., s j } if v k ∈ H.
with changing the paths established in S 12 : we construct a feasible solution S 13 derived from the solution S 12 as belows • without changing the established paths for the demands K \ K in the solution S 12 , i.e., E 13 k = E 12 k for each demand k ∈ K \ K, • and with changing the established paths for the demands K in the solution S 12 to a new paths E 13 k for each k ∈ K s.t. {s" -w k" -1, ..., s"} ∩ {s -w k + 1, ..., s} = ∅ for each k" ∈ K and s" ∈ S 12 k" and s ∈ S 12 k with E 13 k ∩ E 13 ki = ∅, • remove the last-slot s totally covered by the interval I and which has been selected by a demand k i ∈ {v k1 , ..., v kr } in the solution S 12 (i.e., s ∈ S 12 ki and s ∈ {s i + w ki + 1, ..., s j }) s.t. each pair of nodes (v k , v kj ) are not linked in the odd-hole H with j = i, • and select a new last-slot s / ∈ {s i + w ki + 1, ..., s j } for the demand

k i i.e., S 13 ki = (S 12 ki \ {s}) ∪ {s } s.t. {s -w ki -1, ..., s } ∩ {s -w k + 1, ..., s} = ∅ for each k ∈ K and s ∈ S 12 k with E 13
k ∩ E 13 ki = ∅, • and add the slot s to the set of last-slots S 12 k assigned to the demand k in the solution S 12 , i.e., S 13 k = S 12 k ∪ {s }, • and without changing the set of last-slots assigned to the demands

K \ {k , k i }, i.e., S 13 k = S 12 k for each demand K \ {k , k i }. The solution S 13 is clearly feasible given that • a feasible path E 13 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 13 k is assigned to each demand k ∈ K along each edge e ∈ E 13 k with |S 13 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 13 k and s" ∈ S 13 k with E 13 k ∩ E 13 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 13 k |{s ∈ S 13 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 13 , z S 13 ) is belong to F and then to

F GE I H given that it is composed by v k ∈H sj s=si+w k -1 z k s = |H|-1 2 . It follows that µx S 12 + σz S 12 = µx S 13 + σz S 13 = µx S 12 + σz S 12 + σ k s + σ ki s -σ ki s - k∈ K e∈E(pk) µ k e + k∈ K e ∈E(p k ) µ k e .
This implies that σ ki s = σ k s for v ki , v k ∈ H given that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k + 1, ..., s j } if v k ∈ H, and µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ). Given that the pair (v k , v k ) are chosen arbitrary in the odd-hole H, we iterate the same procedure for all pairs (v k , v k ) s.t. we find

σ k s = σ k s , for all pairs (v k , v k ) ∈ H.
Consequently, we obtain that σ k s = ρ for all v k ∈ H and all s ∈ {s i + w k -1, ..., s j }. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is

σ k s = γ k,s 3 
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 43 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , 0, otherwise,
and for each k ∈ K and s ∈ S -Note that if there exists a node

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1}, ρ, if v k ∈ H and s ∈ {s i + w k -1, ..., s j }, 0, otherwise. As a result (µ, σ) = v k ∈H sj s=si+w k -1 ρβ k s + γQ.
-for each node v k" in GE I with v k" / ∈ H ∪ C and C ∪ {v k" } is a clique in GE I , there exists a subset of nodes H ⊆ H of size |H|-1 2 s.t. H ∪ {v k" } is stable in GE I , -
v k" / ∈ H ∪ C in GE I s.t. v k"
is linked with all nodes v k ∈ H and all nodes v k ∈ C. This implies that the inequality ( 27) is dominated by the following inequality

v k ∈H sj s=si+w k -1 z k s + |H| -1 2 v k ∈C sj s =si+w k -1 z k s + |H| -1 2 sj s =si+w k" -1 z k" s ≤ |H| -1 2 .
if there exists an interval I of contiguous slots with I ⊂ I s.t. H and C define also an odd-hole and its connected clique in the associated conflict graph GE I . This implies that the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] induced by the odd-hole H and clique C for the interval I is dominated by the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] induced by the same odd-hole H and clique C for the interval I given that

{s i + w k -1, ..., s j } ⊂ I for each k ∈ H.
If these cases are not verified, we ensure that the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] can never be dominated by another inequality without modifying its right hand side. Otherwise, the inequality ( 27) is not facet defining for P (G, K, S). Sufficiency. Let F GE I H,C denote the face induced by the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF], which is given by

F GE I H,C = {(x, z) ∈ P (G, K, S) : v k ∈H sj s=si+w k -1 z k s + |H| -1 2 v k ∈C sj s =si+w k -1 z k s = |H| -1 2 }.
In order to prove that inequality

v k ∈H sj s=si+w k -1 z k s + |H|-1 2 v k ∈C sj s =si+w k -1 z k s ≤ |H|-1 2
is facet defining for P (G, K, S), we start checking that

F GE I H,C is a proper face, and 
F GE I H,C = P (G, K, S).
We construct a solution S 13 = (E 13 , S 13 ) as below a feasible path E 13 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 13 k is assigned to each demand k ∈ K along each edge e ∈ E 13 k with |S 13 k | ≥ 1 (contiguity and continuity constraints), -{s -

w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 13 k and s ∈ S 13 k with E 13 k ∩ E 13 k = ∅ (non-overlapping constraint), -and there is |H|-1 2
demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S 13 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 13 k for each node v k ∈ H, and for each s ∈ S 13 k for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }, and no demand from the clique C selects a last-slot s in the interval I in the solution S 13 , i.e., for each k ∈ C and each s ∈ S 13 k we have s /

∈ {s i + w k + 1, ..., s j }.
Obviously, S 13 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation ( 2)-( 12). Moreover, the corresponding incidence vector (x S 13 , z S 13 ) is belong to P (G, K, S) and then to

F GE I H,C given that it is composed by v k ∈H sj s=si+w k -1 z k s + |H|-1 2 v k ∈C sj s =si+w k -1 z k s = |H|-1 2 . As a result, F GE I H,C is not empty (i.e., F GE I H,C = ∅).
Furthermore, given that s ∈ {s i + w k -1, ..., s j } for each v k ∈ H, this means that there exists at least one feasible slot assignment S k for the demands k in H with s / ∈ {s i + w k -1, ..., s j } for each s ∈ S k and each v k ∈ H. This means that

F GE I H,C = P (G, K, S). We denote the inequality v k ∈H sj s=si+w k -1 z k s ≤ |H|-1 2 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE I H,C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β)
+ γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ H ∪ C as we did in the proof of theorem 3, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) as we did in the proof of theorem 3, and σ k s are equivalents for all v k ∈ H and all s ∈ {s i + w k -1, ..., s j } as we did in the proof of theorem 3, s.t. the solutions S 49 -S 14 still feasible for

F GE I H,C given that it is composed by v k ∈H sj s=si+w k -1 z k s + |H|-1 2 v k ∈C sj s =si+w k -1 z k s = |H|-1 2 .
We should prove now that σ k s are equivalents for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }. For that, we consider a node v k ∈ C and a slot s ∈ {s i + w k -1, ..., s j }. For that, we consider a solution S 15 = (E 15 , S 15 ) in which a feasible path E 15 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 15 k is assigned to each demand k ∈ K along each edge e ∈ E S 15 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 15 , z S 15 ) is belong to F and then to

F GE I H,C
given that it is composed by

v k ∈H sj s=si+w k -1 z k s + |H|-1 2 v k ∈C sj s =si+w k -1 z k s = |H|-1 2 .
Based on this, we construct a solution S 16 derived from the solution S 15 as belows without changing the established paths for the demands K in the solution S 15 

= S 15 k for each demand K \ {k , k i }.
The solution S 16 is clearly feasible given that a feasible path E 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 16 k is assigned to each demand k ∈ K along each edge e ∈ E 16 k with |S 16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 16 k and s" ∈ S 16 k with E The corresponding incidence vector (x S 16 , z S 16 ) is belong to F and then to

F GE I H,C given that it is composed by v k ∈H sj s=si+w k -1 z k s + |H|-1 2 v k ∈C sj s =si+w k -1 z k s = |H|-1 2 .
We have so

µx S 15 + σz S 15 = µx S 16 + σz S 16 = µx S 15 + σz S 15 + σ k s + r i=1 σ ki s i - r i=1 σ ki si .
This implies that r i=1 σ ki si = σ k s for v k ∈ H given that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k + 1, ..., s j } if v k ∈ H ∪ C.
Given that the v k and s ∈ {s i + w k + 1, ..., s j } are chosen arbitrary in the clique C, we iterate the same procedure for all pairs v k ∈ C and all s ∈ {s i + w k + 1, ..., s j } s.t. we find

σ k s = ρ |H| -1 2 , for all v k ∈ C and s ∈ {s i + w k + 1, ..., s j }.
As a result,

σ k s = σ k s , for all (v k , v k ) ∈ C and s ∈ {s i + w k + 1, ..., s j } and s ∈ {s i + w k + 1, ..., s j }.
Consequently, we obtain that σ k s = ρ |H|-1 2 for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }. Furthermore, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s

3
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. (44) 
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 , γ k,e
2 , if e ∈ E k 1 , 0, otherwise, and for each k ∈ K and s ∈ S 

σ k s =              γ k,s 3 , if s ∈ {1, ..., w k -1}, ρ, if v k ∈ H and s ∈ {s i + w k -1, ..., s j }, ρ |H| -1 2 , if v k ∈ C and s ∈ {s i + w k -1, ..., s j }, 0, otherwise. As a result (µ, σ) = v k ∈H sj s=si+w k -1 ρβ k s + |H| -1 2 v k ∈C sj s =si+w k -1 ρβ k s + γQ.
I = [s i , s j ] ⊂ [1, s] with • [ min v k,s ∈H (s -w k + 1), max v k,s ∈H ] ⊂ I,
• and

w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H, • and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H.
Proof. Neccessity. We distinguish the following cases:

if for a node v k ,s / ∈ H in GE S , there exists a node v k,s ∈ H s.t. the induced graph GE S (H \ {v k,s } ∪ {v k ,s }) contains an odd-hole H = (H \ {v k,s }) ∪ {v k ,s }. This implies that the inequality (31) can be dominated using some technics of lifting based on the following two

inequalities v k,s ∈H z k s ≤ |H|-1 2 , and v k ,s ∈H z k s ≤ |H |-1 2 .
if there exists a node v k ,s / ∈ H in GE S s.t. v k ,s is linked with all nodes v k,s ∈ H. This implies that the inequality (31) can be dominated by the following valid inequality

v k,s ∈H z k s + |H| -1 2 z k s ≤ |H| -1 2 .
if there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with • [ min v k,s ∈H (s -w k + 1), max v k,s ∈H ] ⊂ I,
• and

w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H,
• and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H. This implies that the inequality ( 31) is dominated by the inequality [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF].

If no one of these cases is verified, the inequality (31) can never be dominated by another inequality without changing its right hand side. Otherwise, the inequality (31) cannot be facet defining for

P (G, K, S). Sufficiency. Let F GE S H
denote the face induced by the inequality [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF], which is given by

F GE S H = {(x, z) ∈ P (G, K, S) : v k,s ∈H z k s = |H| -1 2 }.
In order to prove that inequality = P (G, K, S). We construct a solution S 16 = (E 16 , S 16 ) as below a feasible path E 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 16 k is assigned to each demand k ∈ K along each edge e ∈ E 16 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 16 , z S 16 ) is belong to P (G, K, S) and then to

v k,s ∈H z k s ≤ |H|-
F GE S H given that it is composed by v k,s ∈H z k s = |H|-1 2 . As a result, F GE S H
is not empty (i.e., F GE S H = ∅). Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ H, this means that there exists at least one feasible slot assignment S k for the demands k in H with s / ∈ S k for each v k,s ∈ H. This means that As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

F GE S H = P (G, K, S). Let denote the inequality v k,s ∈H z k s ≤ |H|-1 2 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE S H ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with v k,s / ∈ H. Consider the demand k and a slot s in {w k , ..., s} with v k,s / ∈ H. For that, we consider a solution S" 16 = (E" 16 , S" 16 ) in which a feasible path E" 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 16 k is assigned to each demand k ∈ K along each edge e ∈ E" 16 k with |S" 16 k | ≥ 1 (contiguity and continuity constraints),

-{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 16 k and s" ∈ S" 16 k with E" 16 k ∩ E" 16 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 16 k |{s ∈ S" 16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 16 k with E" 16 k ∩ E" 16 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 16 k assigned to the demand k in the solution S" 16 ), and there is one pair of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S" 16 , i.e., s ∈ S" 16 k for a node v k,s ∈ H, and s / ∈ S" 16 k for all v k ,s ∈ H \ {v k,s }.

S" 16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 16 , z S" 16 ) is belong to F and then to

F GE S H given that it is composed by v k,s ∈H z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S" 16 : we derive a solution S 18 = (E 18 , S 18 ) from the solution S" 16 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 16 (i.e., E 18 k = E" 16 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 16 remain the same in the solution S 18 i.e., S" It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ H. with changing the paths established in S" 16 : we construct a solution S 18 derived from the solution S" 16 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 16 (i.e., E 18 k = E" 16 k for each k ∈ K \ K, and

E 18 k = E" 16 k for each k ∈ K) s.t. • a new feasible path E 18
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 16 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 16 k assigned to the demand k in the solution S" 16 ). The last-slots assigned to the demands K \{k} in S" 16 remain the same in S 18 , i.e., S" 

+ σz S16 + σ k s -σ k s + σ k s - k∈ K e∈ Ẽ16 k µx S16 + k∈ K e∈E 19 k µx S 19 . It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ H given that σ k s = 0 for v k,s / ∈ H, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 )
. For that, we consider a solution S 20 = (E 20 , S 20 ) in which • and there is |H|-1 2 pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S 20 denoted by H20 , i.e., s ∈ S 20 k for each v k,s ∈ H20 , and s / ∈ S 20 k for all v k ,s ∈ H \ H20 . S 20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 20 , z S 20 ) is belong to F and then to

• a feasible path E 20 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 20
F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
Based on this, we derive a solution S 21 obtained from the solution S 20 by adding an unused edge e ∈ E\(E k 0 ∪E k 1 ) for the routing of demand k in K in the solution S 20 

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 . It follows that µx S 20 + σz S 20 = µx S 21 + σz S 21 = µx S 20 + µ k e + σz S 20 .
As a result, µ k e = 0 for demand k and an edge e.

Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C. Consider the demand k and a slot s in {w k , ..., s} with v k,s / ∈ H ∪ C. For that, we consider a solution S" 20 = (E" 20 , S" 20 ) in which a feasible path E" 20 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 20 k is assigned to each demand k ∈ K along each edge e ∈ E" 20 k with |S" 20 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 20 k and s" ∈ S" 20 k with E" 20 k ∩ E" 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 20 k |{s ∈ S" 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 20 k with E" 20 k ∩ E" 20 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 20 k assigned to the demand k in the solution S" 20 ), and there is one pair of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S" 20 , i.e., s ∈ S" 20 k for a node v k,s ∈ H, and s / ∈ S" 20 k for all v k ,s ∈ H \ {v k,s }. S" 20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 20 , z S" 20 ) is belong to F and then to

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S" 20 : we derive a solution S 22 = (E 22 , S 22 ) from the solution S" 20 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 20 (i.e., E 22 k = E" 20 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 20 remain the same in the solution S 22 i.e., S" 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 20 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 20 k assigned to the demand k in the solution S" 20 ). The last-slots assigned to the demands K \{k} in S" 20 

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
We have so

µx S" 20 + σz S" 20 = µx S 22 + σz S 22 = µx S" 20 + σz S" 20 + σ k s - k∈ K e∈E" 20 k µ k e + k∈ K e ∈E 22 k µ k e .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C given that µ k e = 0 for all the demand k ∈ K and all edges e

∈ E \ (E k 0 ∪ E k 1 ).
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with v k,s / ∈ H ∪ C s.t. we find

σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with v k ,s / ∈ H ∪ C..

Consequently, we conclude that

σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C.

Let's prove that σ k s for all v k,s ∈ H are equivalents. Consider a node v k ,s in H. For that, we consider a solution S20 = ( Ẽ20 , S20 ) in which a feasible path Ẽ20

k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S20

k is assigned to each demand k ∈ K along each edge e ∈ Ẽ20 k with | S20 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S20 k and s" ∈ S20 k with Ẽ20 k ∩ Ẽ20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k for all v k ,s ∈ H \ H 20 . S20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S20 , z S20 ) is belong to F and then to

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S20 : we derive a solution S 23 = (E 23 , S 23 ) from the solution S20 by • without modifying the paths assigned to the demands K in S20 (i.e.,

E 23 k = Ẽ20 k for each k ∈ K),
• and the last-slots assigned to the demands K \ {k, k } in S20 remain the same in S 23 , i.e., S20 

k" = S 23 k" for each demand k" ∈ K \ {k, k }, where k is a demand with v k,s ∈ H 20 and s ∈ S20 k s.t. v k ,s is not linked with any node v k",s" ∈ H 20 \ {v k,
F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
We then obtain that

µx S20 + σz S20 = µx S 23 + σz S 23 = µx S20 + σz S20 + σ k s -σ k s + σ k s .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ H given that σ k s = 0 for v k,s / ∈ H ∪ C. Given that the pair (v k,s , v k ,s ) are chosen arbitrary in the odd-hole H, we iterate the same procedure for all pairs (v k,s , v k ,s ) s.t. we find

σ k s = σ k s , for all pairs (v k,s , v k ,s ) ∈ H.
Consequently, we obtain that σ k s = ρ for all pairs v k,s ∈ H. with changing the paths established in S20 : we construct a solution S 23 derived from the solution S20 by • modifying the paths assigned to a subset of demands K ⊂ K in S20 (i.e., E 23 k = Ẽ20 k for each k ∈ K \ K, and

E 23 k = Ẽ20 k for each k ∈ K),
• and the last-slots assigned to the demands K \ {k, k } in S20 remain the same in S 23 , i.e., S20 k" = S 23 k" for each demand k" ∈ K \ {k, k }, where k is a demand with v k,s ∈ H20 and s ∈ S20 k s.t. v k ,s is not linked with any node v k",s" ∈ H20 \ {v k,s }, • and adding the slot s as last-slot to the demand k , i.e., S 

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
We have so

µx S20 + σz S20 = µx S 23 + σz S 23 = µx S20 + σz S20 + σ k s -σ k s + σ k s - k∈ K e∈ Ẽ20 k µx S20 + k∈ K e∈E 23 k µx S 23 .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ H given that σ k s = 0 for v k,s / ∈ H ∪ C, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ). On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is

µ k e = γ k,e 2 
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s

3
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 45 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 γ k,e 2 , if e ∈ E k 1 0, otherwise
and for each k ∈ K and s ∈ S Then, the inequality (32) is facet defining for P (G, K, S) iff

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if v k,s ∈ H, 0, if v k,s / ∈ H. As a result (µ, σ) = v k,
-for each node v k",s" in GE S with v k",s" / ∈ H ∪ C and C ∪ {v k",s" } is a clique in GE S , there exists a subset of nodes H ⊆ H of size |H|-1 2 s.t. H ∪ {v k",s" } is stable in GE S ,
and there does not exist an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with • [ min v k,s ∈H∪C (s -w k + 1), max v k,s ∈H∪C ] ⊂ I,
• and Proof. Neccessity. We distinguish the following cases:

w k + w k ≥ |I| + 1 for each (v k , v k ) linked
if there exists a node v k",s" / ∈ H ∪ C in GE S s.t. v k",s" is linked with all nodes v k,s ∈ H and also with all nodes v k ,s ∈ C. This implies that the inequality (32) can be dominated by the following valid inequality

v k,s ∈H z k s + |H| -1 2 v k ,s ∈C z k s + |H| -1 2 z k" s" ≤ |H| -1 2 .
if there exists an interval of contiguous slots

I = [s i , s j ] ⊂ [1, s] with • [ min v k,s ∈H∪C (s -w k + 1), max v k,s ∈H∪C ] ⊂ I,
• and

w k + w k ≥ |I| + 1 for each (v k , v k ) linked in H, • and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in C, • and w k + w k ≥ |I| + 1 for each v k ∈ H and v k ∈ C, • and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H,
• and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C. This implies that the inequality [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF] is dominated by the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF].

If no one of these cases is verified, the inequality [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] can never be dominated by another inequality without changing its right hand side. Otherwise, the inequality (32) cannot be facet defining for P (G, K, S).

Sufficiency.

Let F GE S H,C denote the face induced by the inequality [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF], which is given by

F GE S H,C = {(x, z) ∈ P (G, K, S) : v k,s ∈H z k s + |H| -1 2 v k ,s ∈C z k s = |H| -1 2 }.
In order to prove that inequality H,C = P (G, K, S). We construct a solution S 24 = (E 24 , S 24 ) as below a feasible path E 24 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 24 k is assigned to each demand k ∈ K along each edge e ∈ E 24 k with |S 24 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 24 k and s ∈ S 24

v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s ≤ |H|-
k with E 24 k ∩ E 24 k = ∅ (non-overlapping constraint), and there is |H|-1 2 pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S 24 denoted by H24 , i.e., s ∈ S 24 k for each v k,s ∈ H24 , and s / ∈ S 24 k for all v k ,s ∈ H \ H24 .

Obviously, S 24 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation ( 2)-( 12). Moreover, the corresponding incidence vector (x S 24 , z S 24 ) is belong to P (G, K, S) and then to 

F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 . As a result, F GE S H,C is not empty (i.e., F
= (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
) s.t. (µ, σ) = ρ(α, β) + γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C as done in the proof of theorem 5, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) as done in the proof of theorem 5, and σ k s are equivalents for all v k,s ∈ H as done in the proof of theorem 5,

given that the solutions S 16 -S 23 still feasible given that their corresponding incidence vectors are belong to P (G, K, S) and then to

F GE S H,C given that they are composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
In what follows, we prove that σ k s are equivalents for all v k ,s ∈ C. To do so, we consider a node v S 25 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 25 , z S 25 ) is belong to F and then to F

G E S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
Based on this, we distinguish two cases:

without changing the paths established in S 25 : we derive a solution S 26 from the solution S 25 by • without modifying the paths assigned to the demands K in S 25 (i.e.,

E 26 k = E 25 k for each k ∈ K),
• and the last-slots assigned to the demands K \ ({k ∈ K with v k,s ∈ H25 } ∪ {k }) in S 25 remain the same in S 26 , i.e., S 25 k" = S 26 k" for each demand k"

∈ K \ ({k ∈ K with v k,s ∈ H25 } ∪ {k }),
• and adding the slot s as last-slot to the demand k , i.e., S 26 k = S 25 k ∪ {s } with v k ,s ∈ C, • and modifying the last-slots assigned to each demand k ∈ { k ∈ K with v k,s ∈ H25 } by adding a new last-slot sk and removing the last slot 

s k ∈ S 25 k with v k,s k ∈ H and v k,s k / ∈ H ∪ C s.t. S 26 k = (S 25 k \ {s k }) ∪ {s k } for each demand k ∈ { k ∈ K with v k,s ∈ H25 } s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 26 k with E 26 k ∩ E 26 k = ∅.
F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
We have so

µx S 25 + σz S 25 = µx S 26 + σz S 26 = µx S 25 + σz S 25 + σ k s - (k,s k )∈ H25 σ k s k + k∈{ k∈K with vk ,s ∈ H25} σ k sk . It follows that σ k s = (k,s k )∈ H25 σ k s k for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ C given that σ k sk = 0 for v k,s k / ∈ H ∪ C. As a result, σ k s = ρ |H|-1 2
given that σ k s are equivalents for all v k,s ∈ H. This means that σ 

s k ∈ S 25 k with v k,s k ∈ H and v k,s k / ∈ H ∪ C s.t. S 26 k = (S 25 k \ {s k }) ∪ {s k } for each demand k ∈ { k ∈ K with v k,s ∈ H25 } s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 26 k with E 26 k ∩ E 26 k = ∅.
F GE S H,C given that it is composed by v k,s ∈H z k s + |H|-1 2 v k ,s ∈C z k s = |H|-1 2 .
We have so

µx S 25 + σz S 25 = µx S 26 + σz S 26 = µx S 25 + σz S 25 + σ k s - (k,s k )∈ H25 σ k s k + k∈{ k∈K with vk ,s ∈ H25} σ k sk + k∈ K e∈E 26 k µ k e - k∈ K e∈E 25 k µ k e .
It follows that

σ k s = (k,s k )∈ H25 σ k s k for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ C given that σ k sk = 0 for v k,s k / ∈ H ∪ C, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ). As a result, σ k s = ρ |H|-1 2
given that σ k s are equivalent for all v k,s ∈ H.

Given that the pair v k ,s is chosen arbitrary in the clique C, we iterate the same procedure for all v k ,s ∈ C. Consequently, we obtain that

σ k s = ρ |H|-1 2
for all v k ,s ∈ C. Furthermore, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is

σ k s = γ k,s 3 
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 46 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 , γ k,e
2 , if e ∈ E k 1 , 0, otherwise, and for each k ∈ K and s ∈ S

σ k s =              γ k,s 3 , if s ∈ {1, ..., w k -1}, ρ, if v k,s ∈ H, ρ |H| -1 2 , if v k,s ∈ C, 0, otherwise. As a result (µ, σ) = v k,s ∈H ρβ k s + |H| -1 2 v k ,s ∈C ρβ k s + γQ.
Let N (v) denote the set of neighbors of node v in a given graph.

Theorem 7. Consider an interval of contiguous slots I = [s i , s j ], and a pair of demands k, k

∈ K with (v k , v k ) in G E I .
Then, the inequality (24) is facet defining for P (G, K, S) if and only if

N (v k ) ∩ N (v k ) = ∅ in the conflict graph GE I .
Proof. Neccessity.

We distinguish two cases: 24) is dominated by the inequality [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF] induced by the clique C. Hence, the inequality ( 24) is not facet defining for P (G, K, S).

-if N (v k ) ∩ N (v k ) = ∅ in
if there exists an interval of contiguous slots I in [1, s] 

s.t. I ⊂ I with • w k + w k ≥ |I |, • w k ≤ |I | and 2w k ≥ |I | + 1, • w k ≤ |I | and 2w k ≥ |I | + 1.
This means that the inequality [START_REF] Ford | Maximal flow through a network[END_REF] induced by the two demands k, k for the interval I is dominated by the inequality [START_REF] Ford | Maximal flow through a network[END_REF] induced by the same demands for the interval I .

Sufficiency.

We use the same proof of the theorem 2 for a clique C = {v k , v k } in the conflict graph GE I .

Non-Compatibility-Clique Inequalities

Theorem 8. Consider a clique C in the conflict graph GK E . Then, the inequality (35) is facet defining for P (G, K, S) if and only if C is a maximal clique in the conflict graph GK E .

Proof. It is trivial given that the inequality [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF] can never be dominated by another inequality without changing its right-hand side.

Let

F GK E C
denote the face induced by the inequality [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF], which is given by

F GK E C = {(x, z) ∈ P (G, K, S) : v k,e ∈C
x k e = 1}.

In order to prove that inequality v k,e ∈C x k e ≤ 1 is facet defining for P (G, K, S), we start checking that F Obviously, S 28 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-( 12). Moreover, the corresponding incidence vector (x S 28 , z = P (G, K, S). Let denote the inequality v k,e ∈C x k e ≤ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that

F GK E C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }.
We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. 28 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 28 , z S 28 ) is belong to F and then to

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
F GK E C
given that it is composed by v k,e ∈C x k e = 1. Based on this, we derive a solution S 29 obtained from the solution S 28 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 28 which means that E 29 k = E 28 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 28 remain the same in the solution S 29 

∪ E k 1 ) with v k,e / ∈ C.
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider the demand k and a slot s in {w k , ..., s}, and a solution S" 28 = (E" 28 , S" 28 ) in which a feasible path E" 28 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 28 k is assigned to each demand k ∈ K along each edge e ∈ E" 28 k with |S" 28 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 28 k and s" ∈ S" 28 k with E" 28 k ∩ E" 28 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 28 k |{s ∈ S" 28 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 28 k with E" 28 k ∩ E" 28 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 28 k assigned to the demand k in the solution S" 28 ), and there is one pair of demand k and edge e from the clique C (i.e., v k,e ∈ C s.t. the demand k selects the edge e for its routing in the solution S" 28 , i.e., e ∈ E" 28 k for a node v k,e ∈ C, and e / ∈ E" 28 k for all v k ,e ∈ C \ {v k,e }.

S" 28 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 28 , z S" 28 ) is belong to F and then to

F GK E C
given that it is composed by v k,e ∈C x k e = 1. Based on this, we distinguish the following cases:

without changing the paths established in S" 28 : we derive a solution S 30 = (E 30 , S 30 ) from the solution S" 28 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 28 (i.e., E 30 k = E" 28 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 28 remain the same in the solution S 30 i.e., S" 28 k = S 30 k for each demand k ∈ K \ {k}, and S 30 k = S" 28 k ∪ {s } for the demand k. The solution S 30 is feasible given that • a feasible path E 30 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 30 k is assigned to each demand k ∈ K along each edge e ∈ E 30 k with |S 30 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 30 k and s" ∈ S 30 k with E 30 k ∩ E 30 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 30 k |{s ∈ S 30 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 30 , z S 30 ) is belong to F and then to

F GK E C
given that it is composed by v k,e ∈C x k e = 1. We then obtain that µx S" 28 + σz S" 28 = µx S 30 + σz S 30 = µx S" 28 + σz S" 28 + σ k s .

It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}. with changing the paths established in S" 28 : we construct a solution S 30 derived from the solution S" 28 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 28 (i.e., E 30 k = E" 28 k for each k ∈ K \ K, and

E 30 k = E" 28 k for each k ∈ K) s.t. • a new feasible path E 30
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 28 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 28 k assigned to the demand k in the solution S" 28 ). The last-slots assigned to the demands K \{k} in S" 28 µ k e" .

It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ C given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k,e" / ∈ C, and σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}.

Given that the pair (v k,e , v k ,e ) are chosen arbitrary in the clique C, we iterate the same procedure for all pairs (v k,e , v k ,e ) s.t. we find µ k e = µ k e , for all pairs (v k,e , v k ,e ) ∈ C.

Consequently, we obtain that µ k e = ρ for all v k,e ∈ C. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}.

We conclude that for each k ∈ K and e ∈ E • and |{s i + w k -1, ..., s j }| ≥ w k for each demand k with v k ∈ C. Then, the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] can never be dominated by another inequality without changing its right hand side. Otherwise, if there exists a demand k ∈ K e \ C with w k + w k > |I| and w k ≤ |I| and 2w k > |I|, this implies that the inequality is dominated by [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF]. Moreover, if |{s i + w k -1, ..., s j }| < w k for each demand k with v k ∈ C, then the inequality ( 22) is then dominated by the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] for a set of demands K = {k ∈ K s.t. v k ∈ C} and slot s = s i + min k∈C w k + 1 over edge e. Hence, the inequality ( 22) is not facet defining for P (G, K, S).

µ k e =            γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , ρ, if v k,e ∈ C,
if there exists an interval I of contiguous slots with I ⊂ I s.t. C defines also a clique in the associated conflict graph Ge I . This implies that the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] induced by the clique C for the interval I is dominated by the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] induced by the same clique C for the interval I given that {s i + w k -1, ..., s j } ⊂ I for each k ∈ C. As a result, the inequality ( 22) is not facet defining for P (G, K, S).

Sufficiency.

Let F Ge I C denote the face induced by the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF], which is given by

F Ge I C = {(x, z) ∈ P (G, K, S) : v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1}.
In order to prove that inequality v k ∈C x k e + sj s=si+w k -1 z k s ≤ |C| + 1 is facet defining for P (G, K, S), we start checking that F Obviously, S 32 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 32 , z S 32 ) is belong to P (G, K, S) and then to F We denote the inequality v k ∈C x k e + sj s=si+w k -1 z k s ≤ |C| + 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that S 32 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 32 , z S 32 ) is belong to F and then to F for each k ∈ K \ {k}. S 33 is clearly feasible given that and a feasible path E 33 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 33 k is assigned to each demand k ∈ K along each edge e ∈ E 33 k with |S 33 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 

F Ge I C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
+ w k -1, ..., s j } if v k / ∈ C.
For that, we consider a solution S" 32 = (E" 32 , S" 32 ) in which a feasible path E" 32 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 32 k is assigned to each demand k ∈ K along each edge e ∈ E" 32 k with |S" 32 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 32 k and s" ∈ S" 32 k with E" 32 k ∩ E" 32 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 32 k |{s ∈ S" 32 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 32 k with E" 32 k ∩ E" 32 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 32 k assigned to the demand k in the solution S" 32 ), and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S" 32 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S" 32 k for a node v k ∈ C, and for each s ∈ S" 32 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in C pass through the edge e in the solution S" 32 , i.e., e ∈ E" 32 k for each k ∈ C. S" 32 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 32 , z S" 32 ) is belong to F and then to F

Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = 1. Based on this,
without changing the paths established in S" 32 : we derive a solution S 34 = (E 34 , S 34 ) from the solution S" 32 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 32 (i.e., E 34 k = E" 32 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 32 remain the same in the solution S 34 i.e., S" • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 32 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 32 k assigned to the demand k in the solution S" 32 ). The last-slots assigned to the demands K \{k} in S" 32 

+ w k -1, ..., s j } if v k / ∈ C.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k / ∈ C.
Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k / ∈ C.
Let prove that σ k s for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j } are equivalents. Consider a demand k and a slot s ∈ {s i + w k -1, ..., s j } with v k ∈ C. For that, we consider a solution S32 = ( Ẽ32 , S32 ) in which

-a feasible path Ẽ32 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S32 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ32 k with | S32 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S32 k and s" ∈ S32 k with Ẽ32 k ∩ Ẽ32 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈ Ẽ32 k |{s ∈ S32 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S32 k with Ẽ32 k ∩ Ẽ32 k = ∅ (non-
overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S32 k assigned to the demand k in the solution S32 ), and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S32 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S32 k for a node v k ∈ C, and for each s ∈ S32 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in C pass through the edge e in the solution S32 , i.e., e ∈ Ẽ32 k for each k ∈ C.

S32 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-( 12). Hence, the corresponding incidence vector (x S32 , z S32 ) is belong to F and then to F

Ge I C
given that it is composed by 

v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1.

= Ẽ32

k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S32 remain the same in S 35 

F Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1. We have so µx S32 + σz S32 = µx S 35 + σz S 35 = µx S32 + σz S32 + σ k s -σ k s + σ k s - k∈ K e ∈ Ẽ32 k µ k e + k∈ K e ∈E 35 k µ k e .
It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ∈ C and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with v k ∈ C, and µ k e = 0 for all k ∈ K and all e ∈ E \ (

E k 0 ∪ E k 1 ) with e = e if k ∈ C.
Given that the pair (v k , v k ) are chosen arbitrary in the clique C, we iterate the same procedure for all pairs (v k , v k ) s.t. we find

σ k s = σ k s , for all pairs (v k , v k ) ∈ C
with s ∈ {s i + w k -1, ..., s j } and s ∈ {s i + w k -1, ..., s j }. We re-do the same procedure for each two slots s, s ∈ {s i + w k -1, ..., s j } for each demand k ∈ K with v k ∈ C s.t.

σ k s = σ k s , for all v k ∈ C and s, s ∈ {s i + w k -1, ..., s j }.
Let us prove now that µ k e for all k ∈ K with v k ∈ C are equivalents. For that, we consider a solution S 36 = (E 36 , S 36 ) defined as below a feasible path E 36 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 36 k is assigned to each demand k ∈ K along each edge e ∈ E 2)-( 12). Moreover, the corresponding incidence vector (x S 36 , z S 36 ) is belong to P (G, K, S) and then to

F Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1. Consider now a node v k in C s.t. e / ∈ E 36 k .
For that, we consider a solution S36 = ( Ẽ36 , S36 ) in which 12). Hence, the corresponding incidence vector (x S36 , z S36 ) is belong to F and then to F

-a feasible path Ẽ36 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S36 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ36 k with | S36 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S36 k and s" ∈ S36 k with Ẽ36 k ∩ Ẽ36 k = ∅, i.
Ge I C
given that it is composed by

v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1.
Based on this, we derive a solution S" 37 = (E" 37 , S" 37 ) from the solution S36 by the paths assigned to the demands K \ {k, k } in S36 remain the same in S" 37 (i.e., E" 37 k" = Ẽ36

k"

for each k" ∈ K \ {k, k }), without modifying the last-slots assigned to the demands K in S36 , i.e., S36 k = S" 37 k for each demand k ∈ K, modifying the path assigned to the demand k in S36 from Ẽ36 k to a path E" k with E" 37 k" ∩ E" 37 k = ∅. The solution S" 37 is feasible given that a feasible path E" 37 k is assigned to each demand k ∈ K (routing constraint),

a set of last-slots S" 37 k is assigned to each demand k ∈ K along each edge e ∈ E" 37 k with |S" 37 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 37 k and s" ∈ S" 37 k with E" 37 k ∩ E" 37 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 37 k |{s ∈ S" 37 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (x S" 37 , z S" 37 ) is belong to F and then to F 

Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1.
∪ E k 1 ) with v k ∈ C given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k / ∈ C.
Given that the pair (v k , v k ) are chosen arbitrary in the clique C, we iterate the same procedure for all pairs (v k , v k ) s.t. we find

µ k e = µ k e , for all pairs (v k , v k ) ∈ C.
Furthermore, let prove that all σ k s and µ k e are equivalents for all k ∈ C and s ∈ {s i + w k -1, ..., s j }. For that, we consider for each demand k with v k ∈ C, a solution S 38 = (E 38 , S 38 ) derived from the solution S36 as below the paths assigned to the demands K \ {k } in S36 remain the same in S 38 (i.e., E 38 k" = Ẽ36 k" for each k" ∈ K \ {k }), without modifying the last-slots assigned to the demands K \ {k} in S36 , i.e., S36

k" = S 38 k" for each demand k" ∈ K \ {k}, modifying the set of last-slots assigned to the demand k in S36 from S36

k to S 38 k s.t. S 38 k ∩ {s i + w k -1, ..., s j } = ∅.
Hence, there are |C| -1 demands from C that are covered by the interval I (i.e., all the demands in C \ {k }), and two demands {k, k } from C that use the edge e in the solution S 38 . The solution S 38 is then feasible given that a feasible path E 38 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 38 k is assigned to each demand k ∈ K along each edge e ∈ E 

∩ {e}| + |S 38 k ∩ {s i + w k -1, ..., s j }| = |C| + 1.
The corresponding incidence vector (x S 38 , z S 38 ) is belong to F and then to F

Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1.
We then obtain that

µx S36 + σz S36 = µx S 38 + σz S 38 = µx S36 + σz S36 + µ k e -σ k s + e"∈E 38 k \{e} µ k e" - e"∈ Ẽ36 k µ k e" .
It follows that µ k e = σ k s for demand k and slot s ∈ {s i + w k -1, ..., s j } given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e = e" if v k ∈ C. Moreover, by doing the same thing over all slots s ∈ {s i + w k -1, ..., s j }, we found that

µ k e = σ k s , for all s ∈ {s i + w k -1, ..., s j }.
Given that k is chosen arbitrarily in C, we iterate the same procedure for all k ∈ C to show that µ k e = σ k s , for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }.

Based on this, and given that all µ k e are equivalents for all v k ∈ C, and that σ k s are equivalents for all v k ∈ C and s ∈ {s i + w k -1, ..., s j }, we obtain that µ k e = σ k s , for all k, k ∈ C and all s ∈ {s i + w k -1, ..., s j }.

Consequently, we conclude that µ k e = σ k s = ρ, for all k, k ∈ C and all s ∈ {s i + w k -1, ..., s j }.

On the other hand, we ensure that all e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e ∈E k 0 µ k e = e ∈E k 0 γ k,e 1 → e ∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e ∈E k 1 µ k e = e ∈E k 1 γ k,e 2 → e ∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
Furthermore, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 48 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k ∈ C and e = e,

0, otherwise,

and for each k ∈ K and s ∈ S 23) is not facet defining for P (G, K, S).

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if v k ∈ C and s ∈ {s i + w k -1, ..., s j }, 0, otherwise. As a result (µ, σ) = v k ∈C ρα k e + sj s=si+w k -1 ρβ k s + γQ.
Sufficiency. Let F Ge I C
denote the face induced by the inequality [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF], which is given by

F Ge I C = {(x, z) ∈ P (G, K, S) : v k ∈C x k e + sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s = |C| + 1}.
We denote the inequality

v k ∈C x k e + sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s ≤ |C| + 1 by αx + βz ≤ λ.
Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S).

Suppose that

F Ge I C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }.
We use the same proof of the facial structure done for the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF] in the proof of theorem ?? to prove that inequality

v k ∈C x k e + sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s ≤ |C| + 1 is facet defining for P (G, K, S). We first prove that F Ge I C
is a proper face based on the solution S 32 defined in the proof of theorem ?? which stills feasible s.t. its corresponding incidence vector (x S 32 , z S 32 ) is belong to F and then to F

Ge I C given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s = |C| + 1.
Furthermore, and based on the solutions S 32 to S 38 with corresponding incidence vector (x S 32 , z S 32 ) to (x S 38 , z S 38 ) are belong to F and then to F

Ge I C
given that it is composed by

v k ∈C x k e + sj s=si+w k -1 z k s + v k ∈Ce sj s =si+w k -1 z k s = |C| + 1, we showed that there ex- ists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / andσ k s are equivalents for all v k ∈ C ∪ C e and all s ∈ {s i + w k -1, ..., s j }, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if v k ∈ C, and all µ k e are equivalents for the set of demands in C, and σ k s and µ k e are equivalents for all v k ∈ C and all v k ∈ C ∪C e and all s ∈ {s i +w k -1, ..., s j }. At the end, we found that for each k ∈ K and e ∈ E

∈ {s i + w k -1, ..., s j } if v k ∈ C ∪ C e ,
µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k ∈ C and e = e,

0, otherwise,

and for each k ∈ K and s ∈ S

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if v k ∈ C ∪ C e and s ∈ {s i + w k -1, ..., s j }, 0, otherwise. As a result (µ, σ) = v k ∈C ρα k e + v k ∈C sj s=si+w k -1 ρβ k s + v k ∈Ce sj s =si+w k -1
ρβ k s + γQ.

Edge-Slot-Assignment Inequalities

Theorem 11. Consider an edge e ∈ E, and a slot s ∈ S. Let K be a subset of demands in K with |C| ≥ 3, and k∈ K w k ≤ sk ∈Ke\ K w k . Then, the inequality (15) is facet defining for P (G, K, S) iff K e \ K = ∅, and there does not exist an interval of contiguous slots I = [s i , s j ] s.t.

-

|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K, -and s ∈ {s i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1}, -and w k + w k ≥ |I| + 1 for each k, k ∈ K, -and 2w k ≥ |I| + 1 for each k ∈ K.

Proof. Neccessity.

If K e \ K = ∅, then the inequality ( 15) is dominated by the inequality [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] without changing its right hand side. Moreover, if there exists an interval of contiguous slots I = [s i , s j ] s.t.

-|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K, -and s ∈ {s i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1}, -and w k + w k ≥ |I| + 1 for each k, k ∈ K, -and 2w k ≥ |I| + 1 for each k ∈ K.
Then the inequality ( 15) is dominated by the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF]. Hence, the inequality (15) is not facet defining for P (G, K, S).

Sufficiency.

Let F e,s K denote the face induced by the inequality [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF], which is given by

F e,s K = {(x, z) ∈ P (G, K, S) : k∈ K x k e + min(s+w k -1,s) s =s z k s = | K| + 1}.
In order to prove that inequality k∈

K x k e + min(s+w k -1,s) s =s z k s ≤ | K| + 1 is facet defining for P (G, K, S), we start checking that F e,s
K is a proper face, and F e,s K = P (G, K, S). We construct a solution S 39 = (E 39 , S 39 ) as below a feasible path E 39 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 39 k is assigned to each demand k ∈ K along each edge e ∈ E 39 k with |S 39 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 39 k and s ∈ S 39 k with E 39 k ∩ E 39 k = ∅ (non-overlapping constraint), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S 39 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S 39 k for a demand k ∈ K, and for each s ∈ S 39 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S 39 , i.e., e ∈ E 39 k for each k ∈ K.

Obviously, S 39 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 39 , z S 39 ) is belong to P (G, K, S) and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. As a result, F e,s K is not empty (i.e., F e,s K = ∅). Furthermore, given that s ∈ S, this means that there exists at least one feasible slot assignment S k for each demands k in K with S k ∩ {s, ..., s + w k -1} = ∅. Hence, F e,s K = P (G, K, S). We denote the inequality k∈ K x k e + min(s+w k -1,s) s =s z k s ≤ | K| + 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F e,s K ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ

= (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β)
+ γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K, and σ k s are equivalents for all k ∈ K and all s ∈ {s, ..., s + w k -1}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K, and all µ k e are equivalents for the set of demands in K, and σ k s and µ k e are equivalents for all k ∈ K and all s ∈ {s, ..., s + w k -1}. We first show that µ k e = 0 for each edge e

∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with e = e if k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1
) with e = e if k ∈ K. For that, we consider a solution S 39 = (E 39 , S 39 ) in which a feasible path E 39 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S |{s ∈ S 39 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S 39 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S 39 k for a demand k ∈ K, and for each s ∈ S 39 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and the edge e is not non-compatible edge with the selected edges e" ∈ E 39 k of demand k in the solution S 39 , i.e., e"∈E 39 k l e" + l e ≤ lk . As a result, E 39 k ∪ {e } is a feasible path for the demand k, and all the demands in K pass through the edge e in the solution S 39 , i.e., e ∈ E 39 k for each k ∈ K. S 39 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 39 , z S 39 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
Based on this, we derive a solution S 40 obtained from the solution S 39 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 39 which means that E 40 k = E 39 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 39 The corresponding incidence vector (x S 40 , z S 40 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1. It follows that µx S 39 + σz S 39 = µx S 40 + σz S 40 = µx S 39 + µ k e + σz S 39 .
As a result, µ k e = 0 for demand k and an edge e . As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and e = e if k ∈ K, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e }) with e = e" if k ∈ K. We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K. For that, we consider a solution S" 39 = (E" 39 , S" 39 ) in which a feasible path E" 39 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 39 k is assigned to each demand k ∈ K along each edge e ∈ E" 39 k with |S" 39 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 39 k and s" ∈ S" 39 k with E" 39 k ∩ E" 39 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 39 k |{s ∈ S" 39 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 39 k with E" 39 k ∩ E" 39 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 39 k assigned to the demand k in the solution S" 39 ), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S" 39 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S" 39 k for a demand k ∈ K, and for each s ∈ S" 39 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S" 39 , i.e., e ∈ E" 39 k for each k ∈ K.

S" 39 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 39 , z S" 39 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. Based on this, we distinguish two cases:

without changing the paths established in S" 39 : we derive a solution S 41 = (E 41 , S 41 ) from the solution S" 39 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 39 (i.e., E 41 k = E" 39 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 39 remain the same in the solution S 41 i.e., S" 39 k = S 41 k for each demand k ∈ K \ {k}, and S 41 k = S" 39 k ∪ {s } for the demand k. The solution S 41 is feasible given that

• a feasible path E 41 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 41 k is assigned to each demand k ∈ K along each edge e ∈ E 41 k with |S 41 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 41
k and s" ∈ S 41 k with E 41 k ∩ E 41 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 41 k |{s ∈ S 41 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 41 , z S 41 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
We then obtain that µx S" 39 + σz S" 39 = µx S 41 + σz S 41 = µx S" 39 + σz S" 39 + σ k s .

It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K.
with changing the paths established in S" 39 : we construct a solution S 41 derived from the solution S" 39 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 39 (i.e., E 41 k = E" 39 k for each k ∈ K \ K, and

E 41 k = E" 39 k for each k ∈ K) s.t. • a new feasible path E 41
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 39 k and s" ∈ S" 39 k with E 41 k ∩ E" 39 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e ∈E 41 k |{s ∈ S" 39 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e ∈E" 39 k |{s ∈ S" 39 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 39 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 39 k assigned to the demand k in the solution S" 39 ). The last-slots assigned to the demands K \{k} in S" 39 |{s ∈ S 41 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 41 , z S 41 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1. We have so µx S" 39 + σz S" 39 = µx S 41 + σz S 41 = µx S" 39 + σz S" 39 + σ k s - k∈ K e ∈E" 39 k µ k e + k∈ K e"∈E 41 k µ k e" .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K given that µ k e = 0 for all the demand k ∈ K and all edges e

∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with s / ∈ {s, ..., s + w k -1} if k ∈ K s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K.
Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K.
Let prove that σ k s for all k ∈ K and all s ∈ {s, ..., s + w k -1} are equivalents. Consider a demand k and a slot s ∈ {s, ..., s + w k -1} with k ∈ K. For that, we consider a solution S39 = ( Ẽ39 , S39 ) in which

-a feasible path Ẽ39 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S39 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ39 k with | S39 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S39 k and s" ∈ S39 k with Ẽ39 k ∩ Ẽ39 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈ Ẽ39 k |{s ∈ S39 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),
and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S" 39 k with Ẽ39 k ∩ Ẽ39 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 39 k assigned to the demand k in the solution S" 39 ), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S39 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S39 k for a demand k ∈ K, and for each s ∈ S39 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S39 , i.e., e ∈ Ẽ39 k for each k ∈ K. S39 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S39 , z S39 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
Based on this, we distinguish two cases:

without changing the paths established in S39 : we derive a solution S 42 = (E 42 , S 42 ) from the solution S39 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S39 (i.e., E 42 k = Ẽ39 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S39 remain the same in S 42 , i.e., S39

k" = S 42 k" for each demand k" ∈ K \ {k, k }, and S 42 k = S39 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S39 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with k ∈ K s.t.

S 42 k = ( S39 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 42 k with E 42 k ∩ E 42 k = ∅. The solution S 42 is feasible given that • a feasible path E 42 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 42 k is assigned to each demand k ∈ K along each edge e ∈ E 42 k with |S 42 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 42
k and s" ∈ S 42 k with E 42 k ∩ E 42 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 42 k |{s ∈ S 42 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 42 , z S 42 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. We then obtain that

µx S39 + σz S39 = µx S 42 + σz S 42 = µx S39 + σz S39 + σ k s" -σ k s + σ k s .
It follows that σ k s" = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s, ..., s + w k -1} given that σ k s = 0 for s / ∈ {s, ..., s + w k -1} with k ∈ K. with changing the paths established in S39 : we construct a solution S 42 derived from the solution S39 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S39 (i.e., E 42 k = Ẽ39 k for each k ∈ K \ K, and

E 42 k = Ẽ39
k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S39 remain the same in S 42 , i.e., S39

k" = S 42 k" for each demand k" ∈ K \ {k, k }, and

S 42 k = S39
k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S39 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with k ∈ K s.t. The corresponding incidence vector (x S 42 , z S 42 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. We have so

S 42 k = ( S39 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 42 k with E 42 k ∩ E 42 k = ∅. The solution S 42 is clearly feasible given that • a feasible path E 42 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S
µx S39 + σz S39 = µx S 42 + σz S 42 = µx S39 + σz S39 + σ k s" -σ k s + σ k s - k∈ K e ∈ Ẽ39 k µ k e + k∈ K e ∈E 42 k µ k e .
It follows that σ k s" = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s, ..., s + w k -1} given that σ k s = 0 for s / ∈ {s, ..., s + w k -1} with k ∈ K, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K. Given that the pair (k, k ) are chosen arbitrary in the set of demands K, we iterate the same procedure for all pairs (k, k ) s.t. we find

σ k s = σ k s"
, for all pairs (k, k ) ∈ K with s ∈ {s, ..., s + w k -1} and s ∈ {s, ..., s + w k -1}. We re-do the same procedure for each two slots s, s ∈ {s, ..., s + w k -1} for each demand k ∈ K with k ∈ K s.t.

σ k s = σ k s"
, for all k ∈ K and s, s ∈ {s, ..., s + w k -1}.

Let us prove now that µ k e for all k ∈ K with k ∈ K are equivalents. For that, we consider a solution S 43 = (E 43 , S 43 ) defined as below

-a feasible path E 43 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 43 k is assigned to each demand k ∈ K along each edge e ∈ E 43 k with |S 43 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 43 k and s ∈ S 43 k with E 43 k ∩ E 43 k = ∅ (non-overlapping constraint),
and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k pass through the edge e in the solution S 43 , i.e., e ∈ E 43 k for a demand k ∈ K, and e / ∈ E 43 k for all k ∈ K \ {k}, and all the demands in K share the slot s over the edge e in the solution S 43 , i.e., {s i + w k + 1, ..., s j } ∩ S 43 k = ∅ for each k ∈ K. Obviously, S 43 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 43 , z S 43 ) is belong to P (G, K, S) and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1. Consider now a demand k in K s.t. e / ∈ E 43 k .
For that, we consider a solution S43 = ( Ẽ43 , S43 ) in which

-a feasible path Ẽ43 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S43 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ43 k with | S43 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S43 k and s" ∈ S43 k with Ẽ43 k ∩ Ẽ43 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈ Ẽ43 k |{s ∈ S43 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S 43 k with Ẽ43 k ∩ Ẽ43 k = ∅,
and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k pass through the edge e in the solution S43 , i.e., e ∈ Ẽ43 k for a demand k ∈ K, and e / ∈ Ẽ43 k for all k ∈ K \ {k}, and all the demands in K share the slot s over the edge e in the solution S43 , i.e., {s, ..., s + w k -1} ∩ S43 k = ∅ for each k ∈ K. S43 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S43 , z S43 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
Based on this, we derive a solution S" 44 = (E" 44 , S" 44 ) from the solution S43 by for each k" ∈ K \ {k, k }), without modifying the last-slots assigned to the demands K in S43 , i.e., S43 k = S" 44 k for each demand k ∈ K, modifying the path assigned to the demand k in S43 from Ẽ43 k to a path E" 44 k passed through the edge e (i.e., e ∈ E" 44 k ) with k ∈ K s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S43 k and each s ∈ S43 k with Ẽ43 k ∩ E" 44 k = ∅, modifying the path assigned to the demand k in S43 with e ∈ Ẽ43 k and k ∈ K from Ẽ43 k to a path E" 44 k without passing through the edge e (i.e., e / ∈ E" 44 k ) and {s -w k + 1, ..., s} ∩ {s -w k" + 1, ..., s } = ∅ for each k" ∈ K \ {k, k } and each s ∈ S43 k and each s ∈ S43 k" with Ẽ43

k" ∩ E" 44 k = ∅, and {s - 44 is feasible given that a feasible path E" 44 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 44 k is assigned to each demand k ∈ K along each edge e ∈ E" 44 k with |S" 44 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 44 k and s" ∈ S" 44 k with E" 44 k ∩ E" 44 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 44 k |{s ∈ S" 44 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each s ∈ S43 k and each s ∈ S43 k with E" 44 k" ∩ E" 44 k = ∅. The solution S"
The corresponding incidence vector (x S" 44 , z S" 44 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
We then obtain that

µx S43 + σz S43 = µx S 44 + σz S 44 = µx S43 + σz S43 + µ k e -µ k e + e"∈E" 44 k \{e} µ k e" - e"∈ Ẽ43 k µ k e" + e"∈E" 44 k µ k e" - e"∈ Ẽ43 k \{e} µ k e" .
It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ K given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with k ∈ K. Given that the pair (k, k ) are chosen arbitrary in the set of demands K, we iterate the same procedure for all pairs (k, k ) s.t. we find

µ k e = µ k e , for all pairs (k, k ) ∈ K.
Furthermore, let prove that all σ k s and µ k e are equivalents for all k ∈ K and s ∈ {s, ..., s + w k -1}. For that, we consider for each demand k with k ∈ K, a solution S 45 = (E 45 , S 45 ) derived from the solution S43 as below the paths assigned to the demands K \ {k } in S43 remain the same in S 45 (i.e., E 45 k" = Ẽ43 k" for each k" ∈ K \ {k }), without modifying the last-slots assigned to the demands K \ {k} in S43 , i.e., S43

k" = S 45 k" for each demand k" ∈ K \ {k}, modifying the set of last-slots assigned to the demand

k in S43 from S43 k to S 45 k s.t. S 45 k ∩ {s, ..., s + w k -1} = ∅.
Hence, there are | K|-1 demands from K that share the slot s over the edge e (i.e., all the demands in K \ {k }), and two demands {k, k } from K that use the edge e in the solution S 45 . The solution S 45 is then feasible given that a feasible path E 45 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 45 k is assigned to each demand k ∈ K along each edge e ∈ E 45 k with |S 45 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 45 k and s" ∈ S 45 k with E 

-1}| = | K| + 1.
The corresponding incidence vector (x S 45 , z S 45 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. We then obtain that

µx S43 + σz S43 = µx S 45 + σz S 45 = µx S43 + σz S43 + µ k e -σ k s + e"∈E 45 k \{e} µ k e" - e"∈ Ẽ43 k µ k e" .
It follows that µ k e = σ k s for demand k and slot s ∈ {s, ..., s + w k -1} given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e = e" if k ∈ K. Moreover, by doing the same thing over all slots s ∈ {s, ..., s + w k -1}, we found that

µ k e = σ k s , for all s ∈ {s, ..., s + w k -1}.
Given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K to show that µ k e = σ k s , for all k ∈ K and all s ∈ {s, ..., s + w k -1}.

Based on this, and given that all µ k e are equivalents for all k ∈ K, and that σ k s are equivalents for all k ∈ K and s ∈ {s, ..., s + w k -1}, we obtain that µ k e = σ k s , for all k, k ∈ K and all s ∈ {s, ..., s + w k -1}.

Consequently, we conclude that

µ k e = σ k s = ρ, for all k, k ∈ K and all s ∈ {s, ..., s + w k -1}.
On the other hand, we ensure that all e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e ∈E k 0 µ k e = e ∈E k 0 γ k,e 1 → e ∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e ∈E k 1 µ k e = e ∈E k 1 γ k,e 2 → e ∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is

µ k e = γ k,e 2 
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
Furthermore, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. (49) 
We conclude that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k ∈ K and e = e,
0, otherwise, and for each k ∈ K and s ∈ S Then the inequality [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF] is dominated by the inequality [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF] for for a clique C = K and clique C e = K e \ K in the conflict graph Ge I . As result, the inequality ( 17) is not facet defining for P (G, K, S).

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if k ∈ K
i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1}, -and w k + w k ≥ |I| + 1 for each k, k ∈ K, -and w k + w k ≥ |I| + 1 for each k ∈ K and each k ∈ K e \ K, -and 2w k ≥ |I| + 1 for each k ∈ K, -and 2w k ≥ |I| + 1 for each k ∈ K e \ K.

Sufficiency.

Let's us denote F e,s K the face induced by the inequality [START_REF] Diarassouba | On the Facial Structure of the Constrained-Routing and Spectrum Assignment Polyhedron: Part I[END_REF], which is given by

F e,s K = {(x, z) ∈ P (G, K, S) : k∈ K x k e + k∈ K min(s+w k -1,s) s =s z k s + Ke\ K min(s+w k -1,s) s =s z k s = | K| + 1}.
We denote the inequality

k∈ K x k e + k∈ K min(s+w k -1,s) s =s z k s + Ke\ K min(s+w k -1,s) s =s
z k s ≤ | K| + 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F e,s K ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t.

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
) s.t. (µ, σ) = ρ(α, β) + γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K ∪ K e ,
and σ k s are equivalents for all k ∈ K ∪ K e and all s ∈ {s, ..., s + w k -1}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K, and all µ k e are equivalents for the set of demands in K, and σ k s and µ k e are equivalents for all k ∈ K and all k ∈ K ∪ K e and all s ∈ {s, ..., s + w k -1}. We re-do the same technique of proof already detailed to prove that the inequality (15) is facet defining for P (G, K, S) s.t. the solutions S 39 -S 46 still feasible for F e,s K given that their incidence vector are composed by k∈ K x k e + k∈ K min(s+w k -1,s) s =s

z k s + Ke\ K min(s+w k -1,s) s =s z k s ≤ | K|+ 1.
We conclude at the end that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k
1 , ρ, if k ∈ K and e = e, 0, otherwise, and for each k ∈ K and s ∈ S If no one of these cases is verified, the inequality (36) can never be dominated by another inequality without changing its right hand side. Otherwise, the inequality (36) is not facet defining for P (G, K, S).

σ k s =      γ k,s 3 , if s ∈ {1, ..., w k -1} ρ, if k ∈ K ∪ K e and

Sufficiency.

Let

F GK E H
denote the face induced by the inequality [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF], which is given by

F GK E H = {(x, z) ∈ P (G, K, S) : v k,e ∈H
x k e = |H| -1 2 }.

In order to prove that inequality v k,e ∈H x k e = |H|- Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider the demand k and a slot s in {w k , ..., s}. For that, we consider a solution S" 47 = (E" 47 , S" 47 ) in which a feasible path E" 47 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 47 k is assigned to each demand k ∈ K along each edge e ∈ E" 47 k with |S" 47 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 47 k and s" ∈ S" 47 k with E" 47 k ∩ E" 47 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 47 k |{s ∈ S" 47 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 47 k with E" 47 k ∩ E" 47 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 47 k assigned to the demand k in the solution S" 47 ), and there is |H|-1 2 pairs of demand-edge (k, e) from the odd-hole H denoted by H" 47 (i.e., v k,e ∈ H" 47 s.t. the demand k selects the edge e for its routing in the solution S" 47 , i.e., e ∈ E" 47 k for each node v k,e ∈ H" 47 , and e / ∈ E" 47 k for all v k ,e ∈ H \ H" 47 . S" 47 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 47 , z S" 47 ) is belong to F and then to

F GK E H ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
F GK E H
given that it is composed by v k,e ∈H x k e = |H|-1 2 . Based on this, we distinguish two cases: without changing the paths established in S" 47 : we derive a solution S 49 = (E 49 , S 49 ) from the solution S" 47 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 47 (i.e., E 49 k = E" 47 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 47 with changing the paths established in S" 47 : we construct a solution S 49 derived from the solution S" 47 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 47 47 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 47 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 47 k assigned to the demand k in the solution S" 47 ). The last-slots assigned to the demands K \{k} in S" 47 for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands K \ K in S47 , i.e., S47 k = S 50 k for each demand k ∈ K \ K. The solution S 50 is clearly feasible given that

• a feasible path E Consequently, we obtain that µ k e = ρ for all v k,e ∈ H. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}.

We conclude that for each k ∈ K and e ∈ E As a result, the inequality (37) is not facet defining for P (G, K, S).

µ k e =            γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , ρ, if v k,e ∈ H,

Sufficiency.

Let F GK E H,C denote the face induced by the inequality [START_REF] Jiang | An defragmentation scheme for extending the maximal unoccupied spectrum block in elastic optical networks[END_REF], which is given by

F GK E H,C = {(x, z) ∈ P (G, K, S) : v k,e ∈H
x k e +

|H| -1 2

v k ,e ∈C

x k e = |H| -1 2 }.

In order to prove that inequality k for all v k ,e ∈ H \ H52 . Obviously, S 52 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 52 , z S 52 ) is belong to P (G, K, S) and then to F 

= (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
) s.t. (µ, σ) = ρ(α, β) + γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} as done in the proof of theorem 13, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ H ∪ C as done in the proof of theorem 13, and µ k e are equivalent for all v k,e ∈ H as done in the proof of theorem 13, given that the solutions defined in the proof of theorem k ∩ E 54 k = ∅. The paths assigned to the demands K \ (K( H52) ∪ {k }) in S 52 remain the same in S 54 (i.e., E 54 k" = Ẽ 52 k" for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands K in S 52 , i.e., S e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k,e" / ∈ H ∪ C, and σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. As a result, µ k e = ρ |H|-1 2 . Given that the pair v k ,e is chosen arbitrary in the clique C, we iterate the same procedure for all pairs v k ,e ∈ C s.t. we find

µ k e = ρ |H| -1 2 , for all pairs v k ,e ∈ C.
As a result, all µ k e ∈ C are equivalents s.t.

µ k e = µ k" e" = ρ |H| -1 2 , for all pairs v k ,e , v k",e" ∈ C
On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2

for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 
, for all k ∈ K and all s ∈ {1, ..., w k -1}.

We conclude that for each k ∈ K and e ∈ E 

µ k e =                    γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , ρ, if v k,e ∈ H, ρ |H| -1 2 , if v k,e ∈ C, 0 
≥ i + 1. Let K be a subset of demands of K s.t. - k∈ K w k ≥ |I| + 1, - k∈ K\{k } w k ≤ |I| for each k ∈ K, - k∈ K w k ≤ s - k ∈Ke\ K w k , -e / ∈ E k 0 for each demand k ∈ K, -K ≥ 3, -(k, k ) / ∈ K e c for each pair of demands (k, k ) in K.
Then, the inequality (20) is facet defining for the polytope P (G, K, S, K, I, e) iff there does not exist an interval of contiguous slots I in [1, s] with I ⊂ I s.t. K defines a minimal cover for the interval I , where P (G, K, S, K, I, e) = {(x, z) ∈ P (G, K, S) :

k ∈Ke\ K sj s =si+w k -1 z k s = 0}.
Proof. Necessity If there exists an interval of contiguous slots I in [1, s] with I ⊂ I s.t. K defines a minimal cover for the interval I . This means that {s i +w k -1, ..., s j } ⊂ I . As a result, the inequality (20) induced by the minimal cover K for the interval I, it is dominated by another inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF] induced by the same minimal cover K for the interval I . Hence, the inequality (20) cannot be facet defining for the polytope P (G, K, S, K, I, e). Sufficiency.

Let F Ge I K denote the face induced by the inequality [START_REF] Dumitrescu | Algorithms for the weight constrained shortest path problem[END_REF], which is given by

F Ge I K = {(x, z) ∈ P (G, K, S, K, I, e) : k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1}.
In order to prove that inequality k∈ K x k e + sj s=si+w k -1 z k s ≤ 2| K| -1 is facet defining for P (G, K, S, K, I, e), we start checking that F Obviously, S 55 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 55 , z S 55 ) is belong to P (G, K, S, K, I, e) and then to F

Ge I K given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1. As a result, F Ge I K is not empty (i.e., F Ge I K = ∅).
Furthermore, given that s ∈ {s i + w k -1, ..., s j } for each k ∈ K, this means that there exists at least one feasible slot assignment S k for the demands k in K with s / ∈ {s i + w k -1, ..., s j } for each s ∈ S k and each k ∈ K. This means that F Ge I K = P (G, K, S, K, I, e). We denote the inequality k∈ K x k e + sj s=si+w k -1 z k s ≤ 2| K| -1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S, K, I, e). Suppose that F Ge I K ⊂ F = {(x, z) ∈ P (G, K, S, K, I, e) : µx + σz = τ }. We show that there exists ρ ∈ R and γ 

= (γ 1 , γ 2 , γ 3 ) (s.t. γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
∪ E k 1 ∪ {e }) with e = e" if k ∈ K. We conclude that for the demand k µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.

Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ K. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ K. For that, we consider a solution S" 55 = (E" 55 , S" 55 ) in which a feasible path E" 55 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 55 k is assigned to each demand k ∈ K along each edge e ∈ E" 55 k with |S" 55 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 55 k and s" ∈ S" 55 k with E" 55 k ∩ E" 55 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 55 k |{s ∈ S" 55 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 55 k with E" 55 k ∩ E" 55 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 55 k assigned to the demand k in the solution S" 55 ), and there is | K| -1 demands from the minimal cover K denoted by K" 55 which are covered by the interval I (i.e., if k ∈ K" 55 means that the demand k selects a slot s as last-slot in the solution S" 55 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S" 55 k for each k ∈ K" 55 , and for each s ∈ S" 55 k for all k ∈ K \ K" 55 we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in K pass through the edge e in the solution S" 55 , i.e., e ∈ E" 55 k for each k ∈ K.

S" 55 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 55 , z S" 55 ) is belong to F and then to F

Ge I K given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1.
Based on this, we distinguish two cases:

without changing the paths established in S" 55 : we derive a solution S 57 = (E 57 , S 57 ) from the solution S" 55 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 55 (i.e., E 57 k = E" 55 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 55 55 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 55 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 55 k assigned to the demand k in the solution S" 55 ). The last-slots assigned to the demands K \{k} in S" 55 

+ w k -1, ..., s j } if k / ∈ K.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if k / ∈ K.
Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ K.

Let prove that σ k s for all k ∈ K and all s ∈ {s i + w k -1, ..., s j } are equivalents. Consider a demand k and a slot s ∈ {s i +w k -1, ..., s j } with k ∈ K. For that, we consider a solution S55 = ( Ẽ55 , S55 ) in which k assigned to the demand k in the solution S55 ), and there is | K| -1 demands from the minimal cover K denoted by K58 which are covered by the interval I (i.e., if k ∈ K58 means that the demand k selects a slot s as last-slot in the solution S55 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S55 k for each k ∈ K58 , and for each s ∈ S55 k for all k ∈ K \ K58 we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in K pass through the edge e in the solution S55 , i.e., e ∈ Ẽ55 k for each k ∈ K. S55 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S55 , z S55 ) is belong to F and then to F

Ge I K given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1.
Based on this, we distinguish two cases:

without changing the paths established in S55 : we derive a solution S 58 = (E 58 , S 58 ) from the solution S55 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S55 (i.e., E 58 k = Ẽ55 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S55 remain the same in S 58 , i.e., S55 It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with k ∈ K, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.

Given that the pair (k, k ) are chosen arbitrary in the minimal cover K, we iterate the same procedure for all pairs (k, k ) s.t. we find σ k s = σ k s , for all pairs (k, k ) ∈ K with s ∈ {s i + w k -1, ..., s j } and s ∈ {s i + w k -1, ..., s j }. We re-do the same procedure for each two slots s, s ∈ {s i + w k -1, ..., s j } for each demand k ∈ K with k ∈ K s.t.

σ k s = σ k s , for all k ∈ K and s, s ∈ {s i + w k -1, ..., s j }.

Let us prove now that µ k e for all k ∈ K with k ∈ K are equivalents. For that, we consider a solution S 59 = (E 59 , S 59 ) defined as below a feasible path E 59 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S Obviously, S 59 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-( 12). Moreover, the corresponding incidence vector (x S 59 , z S 59 ) is belong to P (G, K, S, K, I, e) and then to F k with Ẽ59 k ∩ Ẽ59 k = ∅, and there is | K| -1 demands from the minimal cover K that use the edge e denoted by K59 (i.e.,if k ∈ K59 means that the demand k pass through the edge e in the solution S59 , i.e., e ∈ Ẽ59 k for each k ∈ K59 , and e / ∈ Ẽ59 k for all k ∈ K K59 , and all the demands in K are covered by the interval I in the solution S59 , i.e., {s i + w k + 1, ..., s j } ∩ S59 k = ∅ for each k ∈ K. S59 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S59 , z S59 ) is belong to F and then to F

Ge I K
given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1. Based on this, we derive a solution S" 60 = (E" 60 , S" 60 ) from the solution S59 by the paths assigned to the demands K \ {k, k } in S59 remain the same in S" 60 (i.e., E" 60 k" = Ẽ59

k"

for each k" ∈ K \ {k, k }), without modifying the last-slots assigned to the demands K in S59 , i.e., S59 k = S" 60 k for each demand k ∈ K, modifying the path assigned to the demand k in S59 from Ẽ59 k to a path E" k with E" 60 k" ∩ E" 60 k = ∅. The solution S" 60 is feasible given that a feasible path E" 60 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 60 k is assigned to each demand k ∈ K along each edge e ∈ E" 60 k with |S" 60 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 60 k and s" ∈ S" 60 k with E" µ k e" .

It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ K given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with k / ∈ K. Given that the pair (k, k ) are chosen arbitrary in the minimal cover K, we iterate the same procedure for all pairs (k, k ) s.t. we find µ k e = µ k e , for all pairs (k, k ) ∈ K.

Furthermore, let prove that all σ k s and µ k e are equivalents for all k ∈ K and s ∈ {s i + w k -1, ..., s j }. For that, we consider for each demand k with k ∈ K, a solution S 61 = (E 61 , S 61 ) derived from the solution S59 as below the paths assigned to the demands K \ {k } in S59 remain the same in S 61 (i.e., E 61 k" = Ẽ59 k" for each k" ∈ K \ {k }), without modifying the last-slots assigned to the demands K \ {k} in S59 , i.e., S59

k" = S 61 k" for each demand k" ∈ K \ {k}, modifying the set of last-slots assigned to the demand k in S59 from S59 k to S 61 k s.t. S 61 k ∩ {s i + w k -1, ..., s j } = ∅.

Hence, there are | K| -1 demands from K that are covered by the interval I (i.e., all the demands in C \ {k }), and all the demands in K use the edge e in the solution S 61 It follows that µ k e = σ k s for demand k and slot s ∈ {s i + w k -1, ..., s j } given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e = e" if k ∈ K. Moreover, by doing the same thing over all slots s ∈ {s i + w k -1, ..., s j }, we found that µ k e = σ k s , for all s ∈ {s i + w k -1, ..., s j }.

Given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K to show that µ k e = σ k s , for all k ∈ K and all s ∈ {s i + w k -1, ..., s j }.

Based on this, and given that all µ k e are equivalents for all k ∈ K, and that σ k s are equivalents for all k ∈ K and s ∈ {s i + w k -1, ..., s j }, we obtain that µ k e = σ k s , for all k, k ∈ K and all s ∈ {s i + w k -1, ..., s j }.

Consequently, we conclude that µ k e = σ k s = ρ, for all k, k ∈ K and all s ∈ {s i + w k -1, ..., s j }.

On the other hand, we ensure that all e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 , Furthermore, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that x k e = 0}.

Proof. Let F e C denote the face induced by the inequality [START_REF] Eppstein | Finding the k shortest paths[END_REF], which is given by Obviously, S 63 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 63 , z S 63 ) is belong to P (G, K, S, C, e) and then to F e C given that it is composed by k∈C x k e = |C| -1. As a result, F e C is not empty (i.e., F e C = ∅). Furthermore, given that e ∈ E \ (E k 0 ∪ E k 1 ) for each k ∈ C, this means that there exists at least one feasible routing E k for each demand k in C with e / ∈ E k . This means that F e C = P (G, K, S, C, Ξ(C), e). We denote the inequality k∈C x k e ≤ |C| -1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S, C, e). Suppose that F e C ⊂ F = {(x, z) ∈ P (G, K, S, C, e) : µx + σz = τ }. We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider the demand k and a slot s in {w k , ..., s}. For that, we consider a solution S" 63 = (E" 63 , S" 63 ) in which a feasible path E" 63 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 63 k is assigned to each demand k ∈ K along each edge e ∈ E" 63 k with |S" 63 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 63 k and s" ∈ S" 63 k with E" 63 k ∩ E" 63 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 63 k |{s ∈ S" 63 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 63 k with E" 63 k ∩ E" 63 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 63 k assigned to the demand k in the solution S" 63 ), and there is |C| -1 demands from the cover C which pass through the edge e in the solution S" 63 denoted by C" 63 (i.e., if k ∈ C" 63 means that the demand k selects the edge e for its routing in the solution S" 63 , i.e., e ∈ E" 63 k for each demand k ∈ C" 63 , e" / ∈ E" 63 k" for all k" ∈ C \ C" 63 .

S" 63 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 63 , z S" 63 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| + 1. Based on this, we distinguish two cases:

without changing the paths established in S" 63 : we derive a solution S 65 = (E 65 , S 65 ) from the solution S" 63 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 63 (i.e., E 65 k = E" 63 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 63 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 63 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 63 k assigned to the demand k in the solution S" 63 ). The last-slots assigned to the demands K \{k} in S" 63 The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s}.

Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s}.

Let us prove now that µ k e for all k ∈ K with k ∈ C are equivalents. For that, we consider a demand k in C s.t. e / ∈ E 63 k . For that, we consider a solution S 66 = (E 66 , S 66 ) from the solution S 63 by selecting a demand k from C 63 s.t. the demand k used the edge e for its routing in the solution S 63 , the paths assigned to the demands K \ {k, k } in S 63 remain the same in S 66 (i.e., E 66 k" = E 63 k"

for each k" ∈ K \ {k, k }), without modifying the last-slots assigned to the demands K in S 63 , i.e., S 63 k = S 66 k for each demand k ∈ K, modifying the path assigned to the demand k in S 63 The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 , Furthermore, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that 

Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We introduced integer linear programming based on cut formulation for the problem. We investigated the facial structure of the associated polyhedron, and derived valid inequalities that are facet defining under sufficient conditions. Based on these results, we develop a Branch-and-Cut algorithm to solve the problem [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF]. The valid inequalities are shown to be efficient and allow improving the effectiveness of our B&C algorithm [START_REF] Diarassouba | Valid Inequalities and Branch-and-Cut Algorithm for the Constrained-Routing and Spectrum Assignment Problem[END_REF].

Fig. 1 .

 1 Fig. 1. Slot concept illustration in SFONs [77].

  a slot-width w k ∈ Z + , and a transmission-reach ¯ k ∈ R + (in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (o k ,d k )-path p k in G such that e∈E(p k ) l e ≤ lk , where E(p k ) denotes the set of edges belong the path p k , and a subset of contiguous frequency slots S k ⊂ S of width equal to w k such that S k ∩ S k = ∅ for each pair of demands k, k ∈ K (k = k ) with E(p k ) ∩ E(p k ) = ∅ so the total length of the paths used for routing the demands (i.e., k∈K e∈E(p k ) l e ) is minimized. Figure 2 shows the set of established paths and spectrums for the set of demands {k 1 , k 2 , k 3 , k 4 } (Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t. each edge e is characterized by a triplet [l e , c e , s], and optical spectrum S = {1, 2, 3, ..., 8, 9} with s = 9.

Fig. 2 .

 2 Fig. 2. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4} defined in Table 2(b).

Proposition 3 .

 3 Consider an edge e ∈ E. Let s be a slot in S. Consider a triplet of demands k, k , k" ∈ K with e / ∈ E k 0 ∩ E k 0 ∩ E k" 0 . Then, the inequalityx k e + x k e + x k" e + min(s+w k -1,s)

Remark 4 .

 4 The inequality[START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF] is a particular case of inequality[START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF] for a clique C = {v k,s } ∪ {v k ,s ∈ Ge c s.t. {s -w k + 1, ..., s } ∩ {s -w k + 1, ..., s} = ∅}. Remark 5.The inequality (28) associated with a clique C over edge e, it is dominated by the inequality[START_REF] Eppstein | Finding the k shortest paths[END_REF] associated with an interval I = [s i , s j ] and the subset of demands K over edge e iff s ∈ {s -

Fig. 3 .

 3 Fig. 3. A set of edges E k for a demand k containing an (o k , d k )-path P k together with: isolated-edge, islated-cycle, two isolated-edges, and linked-cycle.

1 k

 1 non-overlapping constraint), and there is one pair of demand k and slot s from the clique C (i.e., v k,s ∈ C s.t. the demand k selects the slot s as last-slot in the solution S 1 , i.e., s ∈ S 1 k for a node v k,s ∈ C, and s / ∈ S for all v k ,s ∈ C \ {v k,s }.

  and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ C, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ), and σ k s are equivalents for all v k,s ∈ C.

9 k = S 11 k 11 k with E 11 k ∩ E 11 k=

 111111 for each demand k ∈ K \ {k}, and S 11 k = S" 9 k ∪ {s} for the demand k. The solution S 11 is clearly feasible given that • a feasible path E 11 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 11 k is assigned to each demand k ∈ K along each edge e ∈ E 11 k with |S 11 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 11 k and s" ∈ S ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 11 k |{s ∈ S 11k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 11 , z S 11 ) is belong to F and then to

Theorem 4 .

 4 Let H be an odd-hole, and C be a clique in the conflict graph GE I with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k , v k ) are linked in GE I for all v k ∈ H and v k ∈ C. Then, the inequality (27) is facet defining for P (G, K, S) if and only if

  and there does not exist an interval I of contiguous slots with I ⊂ I s.t. H and C define also an odd-hole and its connected clique in the associated conflict graph GE I . Proof. Neccessity.

k

  is assigned to each demand k ∈ K along each edge e ∈ E 20 k with |S 20 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 20 k and s" ∈ S 20 k with E 20 k ∩ E 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 20 k |{s ∈ S 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • the edge e is not non-compatible edge with the selected edges e ∈ E 20 k of demand k in the solution S 20 , i.e., e ∈E 20 k l e + l e ≤ lk . As a result, E 20 k ∪ {e} is a feasible path for the demand k,

S 22 k

 22 remain the same in S 22 , i.e., S" 20 k = for each demand k ∈ K \ {k}, and S 22 k = S" 20 k ∪ {s} for the demand k. The solution S 22 is clearly feasible given that • a feasible path E 22 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 22 k is assigned to each demand k ∈ K along each edge e ∈ E 22 k with |S 22 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 22 k and s" ∈ S 22 k with E 22 k ∩ E 22 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 22 k |{s ∈ S 22 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 22 , z S 22 ) is belong to F and then to

1 2

 1 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S20 k with Ẽ20 k ∩ Ẽ20 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S20 k assigned to the demand k in the solution S20 ), and there is |H|-pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S20 denoted by H 20 , i.e., s ∈ S 20 k for each v k,s ∈ H 20 , and s / ∈ S 20

  s }, • and adding the slot s as last-slot to the demand k , i.e., S 23 k = S20 k ∪ {s } for the demand k , • and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S 20 k with v k,s ∈ H and v k,s / ∈ H ∪ C s.t. S 23 k = ( S20 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 23 k with E 23 k ∩ E 23 k = ∅. The solution S 23 is feasible given that • a feasible path E 23 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 23 k is assigned to each demand k ∈ K along each edge e ∈ E 23 k with |S 23 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 23 k and s" ∈ S 23 k with E 23 k ∩ E 23 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 23 k |{s ∈ S 23 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 23 , z S 23 ) is belong to F and then to

  23 k = S20 k ∪ {s } for the demand k , • and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S20 k with v k,s ∈ H and v k,s / ∈ H ∪ C s.t. S 23 k = ( S20 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 23 k with E 23 k ∩ E 23 k = ∅. The solution S 23 is clearly feasible given that • a feasible path E 23 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 23 k is assigned to each demand k ∈ K along each edge e ∈ E 23 k with |S 23 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 23 k and s" ∈ S 23 k with E 23 k ∩ E 23 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 23 k |{s ∈ S 23 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 23 , z S 23 ) is belong to F and then to

  in H, • and w k + w k ≥ |I| + 1 for each (v k , v k ) linked in C, • and w k + w k ≥ |I| + 1 for each v k ∈ H and v k ∈ C, • and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ H, • and 2w k ≥ |I| + 1 and w k ≤ |I| for each v k ∈ C.

2 v 1 2

 21 = ∅). Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ H, this means that there exists at least one feasible slot assignment S k for the demands kin H with s / ∈ S k for each v k,s ∈ H. This means that F GE S H,C = P (G, K, S). Let denote the inequality v k,s ∈H z k s + |H|-1 k ,s ∈C z k s ≤ |H|-by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GE S H,C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ

  k s ∈ C, and a solution S 25 = (E 25 , S 25 ) in which a feasible path E 25 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 25 k is assigned to each demand k ∈ K along each edge e ∈ E 25 k with |S 25 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 25 k and s" ∈ S 25 k with E 25 k ∩ E 25 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 25 k |{s ∈ S 25 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 25 k with E 25 k ∩ E 25 k = ∅, and there is |H|-1 2 pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S 25 denoted by H 25 , i.e., s ∈ S 25 k for each v k,s ∈ H 25 , and s / ∈ S 25 k for all v k ,s ∈ H \ H 25 .

E 25 k

 25 k s = σ k s for all pairs (v k,s , v k ,s ) in C. with changing the paths established in S 25 : we construct a solution S 26 derived from the solution S 25 by • with modifying the paths assigned to a subset of demands K ⊂ K in S 25 (i.e., E 26 k = for each k ∈ K \ K, and E 26 k = E 25 k for each k ∈ K), • and the last-slots assigned to the demands K \ ({k ∈ K with v k,s ∈ H25 } ∪ {k }) in S 25 remain the same in S 26 , i.e., S 25 k" = S 26 k" for each demand k" ∈ K \ ({k ∈ K with v k,s ∈ H25 } ∪ {k }), • and adding the slot s as last-slot to the demand k , i.e., S 26 k = S 25 k ∪ {s } with v k ,s ∈ C, • and modifying the last-slots assigned to each demand k ∈ { k ∈ K with v k,s ∈ H25 } by adding a new last-slot sk and removing the last slot

=

  P (G, K, S). We construct a solution S 28 = (E 28 , S28 ) as below a feasible path E28 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 28 k is assigned to each demand k ∈ K along each edge e ∈ E 28 k with |S 28 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 28 k and s ∈ S 28 k with E 28 k ∩ E 28 k = ∅ (non-overlapping constraint), and there is one pair of demand k and edge e from the clique C (i.e., v k,e ∈ C s.t. the demand k selects the edge e for its routing in the solution S 28 , i.e., e ∈ E 28 k for a node v k,e ∈ C, and e / ∈ E 28 k for all v k ,e ∈ C \ {v k,e }.

0

  , otherwise, and for each k ∈ K and s ∈ Sσ k s = γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise. As a result (µ, σ) = v k,e ∈Cρα k e + γQ.
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 69 Edge-Interval-Clique Inequalities Theorem Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots. Let C be a clique in the conflict graph Ge I with |C| ≥ 3, and k∈C w k ≤ sk ∈Ke\C w k . Then, the inequality (22) is facet defining for P (G, K, S) iff there does not exist a demand k ∈ K e \ C with w k + w k > |I| and w k ≤ |I| and 2w k > |I|, and |{s i + w k -1, ..., s j }| ≥ w k for each demand k with v k ∈ C, and there does not exist an interval I of contiguous slots with I ⊂ I s.t. C defines also a clique in the associated conflict graph Ge I . Proof. Neccessity. It is trivial given that if • there does not exist a demand k ∈ K e \C with w k +w k > |I| and w k ≤ |I| and 2w k > |I|,

GeIC

  is a proper face, and F Ge I C = P (G, K, S). We construct a solution S 32 = (E 32 , S 32 ) as belowa feasible path E 32 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 32 k is assigned to each demand k ∈ K along each edge e ∈ E 32 k with |S 32 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ Kand each s ∈ S 32 k and s ∈ S 32 k with E 32 k ∩ E 32 k = ∅ (non-overlapping constraint), and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S 32 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 32 k for a node v k ∈ C, and for each s ∈ S 32 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in C pass through the edge e in the solution S 32 , i.e., e ∈ E 32 k for each k ∈ C.

GeIC

  given that it is composed by v k ∈C x k e + sj s=si+w k -1 z k s = 1. As a result, F Ge I C is not empty (i.e., F Ge I C = ∅). Furthermore, given that s ∈ {s i + w k -1, ..., s j } for each v k ∈ C, this means that there exists at least one feasible slot assignment S k for the demands k in C with s / ∈ {s i + w k -1, ..., s j } for each s ∈ S k and each v k ∈ C. This means that F Ge I C = P (G, K, S).

  is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1. Based on this, we derive a solution S 33 obtained from the solution S 32 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 32 which means that E 33 k = E 32 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 32 remain the same in the solution S 33 , i.e., S 33 k = S 32 k for each k ∈ K, and E 33 k = E 32 k

  , i.e., S32 k" = S 35 k" for each demand k" ∈ K \ {k, k }, and S 35 k = S32 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S32 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with v k ∈ C s.t. S 35 k = ( S32 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 35 k with E 35 k ∩ E 35 k = ∅. The solution S 35 is clearly feasible given that • a feasible path E 35 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 35 k is assigned to each demand k ∈ K along each edge e ∈ E 35 k with |S 35 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 35 k and s" ∈ S 35 k with E 35 k ∩ E 35 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 35 k |{s ∈ S 35 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 35 , z S 35 ) is belong to F and then to

  e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ36 k |{s ∈ S36 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 36 k with Ẽ36 k ∩ Ẽ36 k = ∅, and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k pass through the edge e in the solution S36 , i.e., e ∈ Ẽ36 k for a node v k ∈ C, and e / ∈ Ẽ36 k for all v k ∈ C \ {v k }, and all the demands in C are covered by the interval I in the solution S36 , i.e., {s i + w k + 1, ..., s j } ∩ S36 k = ∅ for each k ∈ C. S36 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(

Theorem 10 .

 10 Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots. Let C be a clique in the conflict graph Ge I with |C| ≥ 3, and v k ∈C w k ≤ sk ∈Ke\C w k . Let C e ⊆ K e \C be a clique in the conflict graph Ge I s.t. w k + w k ≥ |I| + 1 for each v k ∈ C and v k ∈ C e . Then, the inequality (23) is facet defining for P (G, K, S) if and only if there does not exist a demand k" ∈ K e \ C e with w k + w k" ≥ |I| + 1 for each v k ∈ C, and w k + w k" ≥ |I| + 1 for each v k ∈ C e . and |{s i + w k -1, ..., s j }| ≥ w k for each demand k with v k ∈ C ∪ C e . Proof. Neccessity. -If there exists a demand k" ∈ K e \ C e with w k + w k" ≥ |I| + 1 for each v k ∈ C, and w k + w k" ≥ |I|+1 for each v k ∈ C e . Then, the inequality (23) is dominated by its lifted with C e = C e ∪{k"}. Moreover, if |{s i +w k -1, ..., s j }| < w k for each demand k with v k ∈ C ∪C e , then the inequality (23) is then dominated by the inequality (17) for a set of demands K = {k ∈ K s.t. v k ∈ C} and slot s = s i + min k∈C∪Ce w k + 1 over edge e. As a result, the inequality (23) is not facet defining for P (G, K, S). if there exists an interval I of contiguous slots with I ⊂ I s.t. C ∪ C e defines also a clique in the associated conflict graph Ge I . This implies that the inequality (23) induced by the clique C ∪ C e for the interval I is dominated by the inequality (23) induced by the same clique C ∪ C e for the interval I given that {s i + w k -1, ..., s j } ⊂ I for each k ∈ C ∪ C e . As a result, the inequality (

39

 39 

k

  is assigned to each demand k ∈ K along each edge e ∈ E 39 k with |S 39 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 39 k and s" ∈ S 39 k with E 39 k ∩ E 39 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 39 k

  remain the same in the solution S 40 , i.e., S 40 k = S 39 k for each k ∈ K, and E 40 k = E 39 k for each k ∈ K \ {k}. S 40 is clearly feasible given that and a feasible path E 40 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 40 k is assigned to each demand k ∈ K along each edge e ∈ E 40 k with |S 40 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 40 k and s" ∈ S 40 k with E 40 k ∩ E 40 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 40 k |{s ∈ S 40 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

S 41 k

 41 remain the same in S 41 , i.e., S" 39 k = for each demand k ∈ K \ {k}, and S 41 k = S" 39 k ∪ {s} for the demand k. The solution S 41 is clearly feasible given that • a feasible path E 41 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 41 k is assigned to each demand k ∈ K along each edge e ∈ E 41 k with |S 41 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 41 k and s" ∈ S 41 k with E 41 k ∩ E 41 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 41 k

42 k

 42 is assigned to each demand k ∈ K along each edge e ∈ E 42 k with |S 42 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 42 k and s" ∈ S 42 k with E 42 k ∩ E 42 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 42 k |{s ∈ S 42 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  Proof. Neccessity.If there exists an interval of contiguous slots I = [s i , s j ] s.t.-|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K, and s ∈ {s i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1}, and w k + w k ≥ |I| + 1 for each k, k ∈ K, and w k + w k ≥ |I| + 1 for each k ∈ K and each k ∈ K e \ K,and 2w k ≥ |I| + 1 for each k ∈ K, and 2w k ≥ |I| + 1 for each k ∈ K e \ K.

  and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ H, and µ k e are equivalent for all v k,e ∈ H. We first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with v k,e / ∈ H. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 47 = (E 47 , S 47 ) in which a feasible path E 47 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 47 k is assigned to each demand k ∈ K along each edge e ∈ E 47 k with |S 47 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 47 k and s" ∈ S 47 k with E 47 k ∩ E 47 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

50 k

 50 is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 50 k is assigned to each demand k ∈ K along each edge e ∈ E 50 k with |S 50 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 50 k and s" ∈ S 50 k with E 50 k ∩ E 50 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have
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 211 v k,e ∈H x k e + |H|-1 k ,e ∈C x k e = |H|-is facet defining for P (G, K, S), we start checking that F GK E H,C is a proper face, and F GK E H,C = P (G, K, S). We construct a solution S 52 = (E 52 , S 52 ) as below a feasible path E 52 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 52 k is assigned to each demand k ∈ K along each edge e ∈ E 52 k with |S 52 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 52 k and s ∈ S 52 k with E 52 k ∩ E 52 k = ∅ (non-overlapping constraint), and there is |H|-pairs of demands edges (k, e) from the odd-hole H denoted by H52 (i.e., v k,e ∈ H52 s.t. the demand k selects the edge e for its routing in the solution S 52 , i.e., e ∈ E 52 k for each node v k,e ∈ H52, and e / ∈ E 52

2 v 2 v 1 2

 221 given that it is composed by v k,e ∈H x k e + |H|-1 k ,e ∈C x k e = |H|-1 2 . As a result, F GK E H,C is not empty (i.e., F GK E H,C = ∅). Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ H, this means that there exists at least one feasible slot assignment S k for the demands k in H with s / ∈ S k for each v k,s ∈ H. This means that FGK E H,C = P (G, K, S). Let denote the inequality v k,e ∈H x k e + |H|-1 k ,e ∈C x k e ≤ |H|-by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F GK E H,C ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ

GeIK

  is a proper face, and F Ge I K = P (G, K, S, K, I, e). We construct a solution S 55 = (E 55 , S 55 ) as below a feasible path E 55 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 55 k is assigned to each demand k ∈ K along each edge e ∈ E 55 k with |S 55 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 55 k and s ∈ S 55 k with E 55 k ∩ E 55 k = ∅ (non-overlapping constraint), and there is | K| -1 demands from the minimal cover K denoted by K55 which are covered by the interval I (i.e., if k ∈ K55 means that the demand k selects a slot s as last-slot in the solution S 55 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 55 k for each k ∈ K55 , and for each s ∈ S 55 k for all k ∈ K \ K55 we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in K pass through the edge e in the solution S 55 , i.e., e ∈ E 55 k for each k ∈ K.

-

  a feasible path Ẽ55 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S55 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ55 k with | S55 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S55 k and s" ∈ S55 k with Ẽ55 k ∩ Ẽ55 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈ Ẽ55 k |{s ∈ S55 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S55 k with Ẽ55 k ∩ Ẽ55 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S55

k 58 k with E 58 k ∩ E 58 k=

 5858 is assigned to each demand k ∈ K along each edge e ∈ E 58 k with |S 58 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 58 k and s" ∈ S ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 58 k |{s ∈ S 58 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 58 , z S 58 ) is belong to F and then to F Ge I K given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1. We have so µx

59 k

 59 is assigned to each demand k ∈ K along each edge e ∈ E 59 k with |S 59 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 59 k and s ∈ S 59 k with E 59 k ∩ E 59 k = ∅ (non-overlapping constraint), and there is one demand k from the minimal cover K (i.e., k ∈ K s.t. the demand k pass through the edge e in the solution S 59 , i.e., e ∈ E 59 k for a node k ∈ K, and e / ∈ E 59 k for all k ∈ K \ {k}, and all the demands in K are covered by the interval I in the solution S 59 , i.e., {s i + w k + 1, ..., s j } ∩ S 59 k = ∅ for each k ∈ K.

GeIK

  given that it is composed by k∈K x k e + sj s=si+w k -1 z k s = 2| K| -1. Consider now a node k in K s.t. e / ∈ E 59 k .For that, we consider a solution S59 = ( Ẽ59 , S59 ) in which a feasible path Ẽ59k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S59k is assigned to each demand k ∈ K along each edge e ∈ Ẽ59 k with | S59 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S59 k and s" ∈ S59 k with Ẽ59 k ∩ Ẽ59 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ59 k |{s ∈ S59 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S59 

K

  . The solution S 61 is then feasible given that a feasible path E61 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S61 k is assigned to each demand k ∈ K along each edge e ∈ E 61 k with |S 61 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ Kand each s ∈ S 61 k and s" ∈ S 61 k with E 61 k ∩ E 61 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 61 k |{s ∈ S 61 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and k∈ K |E 61 k ∩ {e}| + |S 61 k ∩ {s i + w k -1, ..., s j }| = 2| K| -1. The corresponding incidence vector (x S 61 , z S 61 ) is belong to F and then to F Ge I given that it is composed by k∈ K x k e + sj s=si+w k -1 z k s = 2| K| -1. We then obtain that µx S59 + σz S59 = µx S 61 + σz S 61 = µx S59 + σz S59 + µ k e -σ k s + e"∈E 61 k \{e} µ k e"e"∈ Ẽ59 k µ k e" .

µ k e = γ k,e 1 ,

 1 for all k ∈ K and all e ∈ E k 0 ,We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

σ k s = γ k,s 3 , 1 , 2 , 3 , 16 .

 312316 for all k ∈ K and all s ∈ {1, ..., w k -1}.[START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF] We conclude that for each k ∈ K and e ∈ if e ∈ E k 0 , γ k ,e if e ∈ E k 1 , ρ, if k ∈ K and e = e, 0, otherwise, and for each k ∈ K and s ∈ S if s ∈ {1, ..., w k -1} ρ, if k ∈ K and s ∈ {s i + w k -1, ..., s j }, 0, otherwise.As a result (µ, σ) Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then, the inequality (39) is facet defining for the polytope P (G, K, S, C, e) where P (G, K, S, C, e) = {(x, z) ∈ P (G, K, S) :k ∈K\(C∪Ke)

  F e C = {(x, z) ∈ P (G, K, S, C, e) : k∈C x k e = |C| -1}. In order to prove that inequality k∈C x k e ≤ |C| -1 is facet defining for P (G, K, S, C, e), we start checking that F e C is a proper face, and F e C = P (G, K, S, C, e). We construct a solution S 63 = (E 63 , S 63 ) as below a feasible path E 63 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 63 k is assigned to each demand k ∈ K along each edge e ∈ E 63 k with |S 63 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 63 k and s ∈ S 63 k with E 63 k ∩ E 63 k = ∅ (non-overlapping constraint), and there is |C| -1 demands from the cover C which pass through the edge e in the solution S 63 denoted by C 63 (i.e., if k ∈ C 63 means that the demand k selects the edge e for its routing in the solution S 63 , i.e., e ∈ E 63 k for each demand k ∈ C 63 , e / ∈ E 63 k for all k ∈ C \ C 63 .

63 k and s" ∈ S 63 k with E 63 k ∩ E 63 k=

 63636363 ) s.t. (µ, σ) = ρ(α, β) + γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C, and all µ k e are equivalents for the set of demands in C. We first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with e = e if k ∈ C. For that, we consider a solution S 63 = (E 63 , S 63 ) in which a feasible path E 63 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 63 k is assigned to each demand k ∈ K along each edge e ∈ E63 k with |S 63 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 63 k |{s ∈ S 63 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e" ∈ E 63 k of demand k in the solution S 63 , i.e., e"∈E 63 k l e" + l e ≤ lk . As a result, E 63 k ∪ {e } is a feasible path for the demand k, and there is |C| -1 demands from the cover C which pass through the edge e in the solution S 63 denoted by C 63 (i.e., if k ∈ C 63 means that the demand k selects the edge e for its routing in the solution S 63 , i.e., e ∈ E 63 k for each demand k ∈ C 63 , e / ∈ E 63 k for all k ∈ C \ C 63 . S 63 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S 63 , z S 63 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| + 1. Based on this, we derive a solution S 64 obtained from the solution S 63 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 63 which means that E 64 k = E 63 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 63 remain the same in the solution S 64 , i.e., S 64 k = S 63 k for each k ∈ K, and E 64 k = E 63 k for each k ∈ K \ {k}. S 64 is clearly feasible given that and a feasible path E 64 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 64 k is assigned to each demand k ∈ K along each edge e ∈ E 64 k with |S 64 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 64 k and s" ∈ S 64 k with E 64 k ∩ E 64 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 64 k |{s ∈ S 64 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 64 , z S 64 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| + 1. It follows that µx S 63 + σz S 63 = µx S 64 + σz S 64 = µx S 63 + µ k e + σz S 63 . As a result, µ k e = 0 for demand k and an edge e . As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and e = e if k ∈ C, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e }) with e = e" if k ∈ C. We conclude that for the demand k µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.

S 65 k

 65 remain the same in the solution S 65 i.e., S" 63 k = for each demand k ∈ K \ {k}, and S 65 k = S" 63 k ∪ {s } for the demand k. The solution S 65 is feasible given that • a feasible path E 65 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 65 k is assigned to each demand k ∈ K along each edge e ∈ E 65 k with |S 65 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 65 k and s" ∈ S 65 k with E 65 k ∩ E 65 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

  : we construct a solution S 65 derived from the solution S" 63 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S"63 (i.e., E 65 k = E" 63 k for each k ∈ K \ K, and E 65 k = E" 63 k for each k ∈ K) s.t. • a new feasible path E 65k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 63 k and s" ∈ S" 63 k with E 65 k ∩ E" 63 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e ∈E 65 k |{s ∈ S" 63 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e ∈E" 63 k |{s ∈ S" 63

65 k with E 65 k ∩ E 65 k=

 6565 remain the same in S 65 , i.e., S" 63 k = S 65 k for each demand k ∈ K \ {k}, and S 65 k = S" 63 k ∪ {s} for the demand k. The solution S 65 is clearly feasible given that • a feasible path E 65 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 65 k is assigned to each demand k ∈ K along each edge e ∈ E 65 k with |S 65 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 65 k and s" ∈ S ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we havek∈K,e ∈E 65 k |{s ∈ S 65 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 65 , z S 65 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| + 1. We have so µx S" 63 + σz S" 63 = µx S 65 + σz S 65 = µx S" 63 + σz S" 63 + σ k s -k∈ K e ∈E" 63 k µ k e + k∈ K e"∈E 65 k µ k e" . It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ C given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.

  It follows that µ k e = µ k e for demand k and a edge e∈ E \ (E k 0 ∪ E k 1 ) with v k ∈ C given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with k / ∈ C.Given that the pair (k, k ) are chosen arbitrary in the cover C, we iterate the same procedure for all pairs (k, k ) s.t. we findµ k e = µ k e , for all pairs (k, k ) ∈ C.Consequently, we conclude thatµ k e = ρ, for all k ∈ C.On the other hand, we ensure that all e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

σ k s = γ k,s 3 , 1 , 2 ,k s = γ k,s 3 ,

 3123 for all k ∈ K and all s ∈ {1, ..., w k -1}.[START_REF] Nemhauser | A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing[END_REF] We conclude that for each k ∈ K and e ∈ if e ∈ E k 0 , γ k ,e if e ∈ E k 1 , ρ, if k ∈ C and e = e, 0, otherwise, and for each k ∈ K and s ∈ Sσ if s ∈ {1, ..., w k -1} 0, otherwise.As a result (µ, σ) = k∈C ρα k e + γQ.

  2 4 {e, d, g} {cg, dg, de, df, cd, ef } 2 a → d 1 4 {g} {cg, dg, df } 3 b → f 2 4 {e, d, g} {cg, dg, de, df, cd, ef } 4 b → e 1 4 {g} {cg, dg, df } Table

  s.t. all two nodes v k and v k are linked by an edge if and only if wv k + wv k > t which is equivalent to the conflict graph Ge .

t. for eachnode v k with e / ∈ E k 0 ∪ E k 1 , we associate a positive weight wv k = w k Proposition 11. Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots. Let C be a clique in the conflict graph Ge I with |C| ≥ 3, and v k ∈C w k ≤ sk ∈Ke\C w k . Then, the inequality

  Proposition 16. Consider an interval of contiguous slots I = [s i , s j ] ⊆ S with s i ≤ s j -1. Let H be an odd-hole H in the conflict graph GE I , and C be a clique in the conflict graph GE I with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k , v k ) are linked in GE

I for all v k ∈ H and v k ∈ C. Then, the inequality

  Proposition 26. Let H be an odd-hole in the conflict graph GK E , and C be a clique in the conflict graph GK

	E with
	-|H| ≥ 5,
	-and |C| ≥ 3,
	-and H ∩ C = ∅,
	-and the nodes (v k e , v k e ) are linked in GK E for all v k e ∈ H and v k e ∈ C.
	Then, the inequality
	v k e ∈H

  1 k of demand k in the solution S 1 , i.e., e ∈E 1 k l e + l e ≤ lk . As a result, E 1 k ∪ {e} is a feasible path for the demand k, and there is one pair of demand k and slot s from the clique C (i.e., v k,s ∈ C s.t. the demand k selects the slot s as last-slot in the solution S 1 , i.e., s ∈ S 1 k for a node v k,s ∈ C, and s / ∈ S 1

	k

  The corresponding incidence vector (x S 3 , z S 3 ) is belong to F and then to F

	GE

for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈E 3 k |{s ∈ S 3 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). S C

  The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with v k,s / ∈ C s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with v k,s / ∈ C.Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such thatσ k s = 0,for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with v k ,s / ∈ C.. , for all k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ C. and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S1 k with Ẽ1 k ∩ Ẽ1 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S1 k assigned to the demand k in the solution S1 ), and there is one pair of demand k and slot s from the clique C (i.e., v k,s ∈ C s.t. the demand k selects the slot s as last-slot in the solution S1 , i.e., s ∈ S" 1

	-with changing the path established in S1 : we construct a solution S 4 derived from the solution
	S1 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a
	subset of demands K ⊂ K in S1 (i.e., E 4 k = Ẽ1 k for each k ∈ K \ K, and E 4 k = Ẽ1 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S1 remain the same in
	S 4 , i.e., S1 k" = S 4 k" for each demand k" ∈ K \ {k, k }, and S 4 k = S1 k ∪ {s } for the demand
	k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and
	Consequently, we conclude that σ k s = 0Let's prove that σ k s for all v k,s ∈ C are equivalents. Consider a node v k ,s in C s.t. s / ∈ S 1 k . For that, we consider a solution S1 = ( Ẽ1 , S1 ) in which -a set of last-slots S1 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ1 k | ≥ 1 k with | S1 k is assigned to each demand k ∈ K (routing constraint), -a feasible path Ẽ1 removing the last slot s ∈ S1 k with v k,s ∈ C and v k,s / ∈ C s.t. S 4 k = ( S1 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 4 k with E 4 k ∩ E 4 k = ∅. The solution S 4 is clearly feasible given that • a feasible path E 4 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 4 k is assigned to each demand k ∈ K along each edge e ∈ E 4 k with |S 4 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 4 k and s" ∈ S 4 k with E 4 k ∩ E 4 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 4 |{s ∈ S 4 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). k The corresponding incidence vector (x S 4 , z S 4 ) is belong to F and then to F GE
	(contiguity and continuity constraints),					
	-{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S1 k and s" ∈ S1 k with Ẽ1 k ∩ Ẽ1 |{s ∈ k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ1 k S1 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),
										k for a node v k,s ∈ C, and s" / ∈ S" 1 k
	for all v k ,s" ∈ C \ {v k,s }.								
	S1 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
	(2)-(12). Hence, the corresponding incidence vector (x given that it is composed by v k,s ∈C z k s = 1. Based on this, S1 , z	S1 ) is belong to F and then to F	GE S C
	-without changing the path established in S1 : we derive a solution S 4 = (E 4 , S 4 ) from the
	solution S1 by adding the slot s as last-slot to the demand k without modifying the paths
	assigned to the demands K in S1 (i.e., E 4 k = Ẽ1 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S1 remain the same in S 4 , i.e., S1 k" = S 4 k" for each demand k" ∈ K \ {k, k }, and S 4 k = S1 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S 1 k with v k,s ∈ C and v k,s / ∈ C s.t. S 4 k = ( S1 k \{s})∪{s} for the demand k s.t. {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S 4 k with E 4 k ∩ E 4 k = ∅. The solution S 4 is feasible given that
	• a feasible path E 4 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 4 k is assigned to each demand k ∈ K along each edge e ∈ E 4 k with |S 4 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 4 k and s" ∈ S 4 k with E 4 k ∩ E 4 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 4 k |{s ∈ S 4 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).
	The corresponding incidence vector (x S 4 , z S 4 ) is belong to F and then to F C GE S composed by v k,s ∈C z k s = 1. We then obtain that	given that it is
	µx	S1	+ σz	S1	= µx S 4	+ σz S 4	= µx	S1	+ σz	S1	+ σ k s -σ k s + σ k s .
	It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ C given that σ k s = 0 for v k,s / ∈ C.

S

C

  Let I = [s i , s j ] be an interval of contiguous slots in [1, s] with s i ≤ s j -1, and C be a clique in the conflict graph GE I with |C| ≥ 3. Then, the inequality (25) is facet defining for P (G, K, S) if and only if -C is a maximal clique in the conflict graph GE I , and there does not exist an interval of contiguous slots I in [1, s] s.t. I ⊂ I with • w k + w k ≥ |I | for each k, k ∈ C, • w k ≤ |I | and 2w k ≥ |I | + 1 for each k ∈ C.

	5.2 Interval-Clique Inequalities
	Theorem 2. Proof. Neccessity.
	We distinguish two cases
	-if there exists a clique C that contains all the demands k ∈ C. Then, the inequality (25)
	induced by the clique C is dominated by another inequality (25) induced by the clique C .
	Hence, the inequality (25) cannot be facet defining for P (G, K, S).
	-if there exists an interval of contiguous slots I in [1, s] s.t. I ⊂ I with
	• w k + w k ≥ |I | for each k, k ∈ C,
	• w k ≤ |I | and 2w k ≥ |I | + 1 for each k ∈ C.
	This means that the inequality

  -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 5 k and s ∈ S 5 and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S 5 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 5 k for a node v k ∈ C, and for each s ∈ S 5 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }.

	with E 5 k ∩ E 5 k = ∅ (non-overlapping constraint),	k
		5 k with |S 5 k | ≥ 1
	(contiguity and continuity constraints),	

  are equivalents for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }.

	and that
	-σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if
	v k ∈ C,
	-and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ),
	-and σ k s

  and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S 5 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 5 k for a node v k ∈ C, and for each s ∈ S 5 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }.

	5 k and s" ∈ S 5 k |{s ∈ k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 5 k ∩ E 5 with E 5 k S 5 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),
	-the edge e is not non-compatible edge with the selected edges e ∈ E 5 k of demand k in the solution S 5 , i.e., e ∈E 5 k l e + l e ≤ lk . As a result, E 5 k ∪ {e} is a feasible path for the demand
	k,

  -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 6 k and s" ∈ S 6 ∈ K and all s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j

	The corresponding incidence vector (x S 6 , z S 6 ) is belong to F and then to F C GE I composed by v k ∈C sj s=si+w k -1 z k s = 1. It follows that	given that it is
	µx S 5	+ σz S 5	= µx S 6	+ σz S 6	= µx S 5	+ µ k e + σz S 5	.
	As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k
		µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).	
	Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k}
	and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that		
	µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).	
	Let's us show that σ k s = 0 for all k					
								6 k with |S 6 k | ≥ 1
	(contiguity and continuity constraints),				
	with E 6 k ∩ E 6 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 6 k S 6 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).	k |{s ∈

  S 7 , z S 7 ) is belong to F and then to F ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s /∈ {s i + w k -1, ..., s j } if v k ∈ C. ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C.Let prove that σ k s for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j } are equivalents. Consider a demand k and a slot s ∈ {s i + w k -1, ..., s j } with v k ∈ C, and a solution S5 = ( Ẽ5 , S5 ) in which and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S5-and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S5 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S5 k for a node v k ∈ C, and for each s ∈ S5 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j }. ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S5 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with v k ∈ C s.t. S 8 , z S 8 ) is belong to F and then to

	S5 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
	(2)-(12). Hence, the corresponding incidence vector (x given that it is composed by v k ∈C sj s=si+w k -1 z k s = 1. Based on this, S5 , z S5 ) is belong to F and then to F	GE I C
	-without changing the paths established in S5 : we derive a solution S 8 = (E 8 , S 8 ) from the
	solution S5 by adding the slot s as last-slot to the demand k without modifying the paths
	5 k ∪ {s} for the demand k. The solution S 7 is k k = S" 5 for each demand k ∈ K \ {k}, and S 7 k = S 7 assigned to the demands K in S5 (i.e., E 8 k = Ẽ5 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S5 remain the same in S 8 , i.e., S5 k" = S 8 k" for each demand k" ∈ K \ {k, k }, and S 8 k = S5
	clearly feasible given that • a feasible path E 7 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 7 k is assigned to each demand k ∈ K along each edge e ∈ E 7 k with |S 7 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 7 k and s" ∈ S 7 k with E 7 k ∩ E 7 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 7 k |{s ∈ S 7 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x GE I C given that it is composed by v k ∈C sj S 8 k = ( S5 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 8 k with E 8 k ∩ E 8 k = ∅. The solution S 8 is feasible given that • a feasible path E 8 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 8 k is assigned to each demand k ∈ K along each edge e ∈ E 8 k with |S 8 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 8 k and s" ∈ S 8 k with E 8 k ∩ E 8 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 8 |{s ∈ S 8 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). k s=si+w k -1 z k s = 1. We have so The corresponding incidence vector (x
	µx S" 5	+ σz S" 5	= µx S 7	+ σz S 7	= µx S" 5	+ σz S" 5	+ σ k s -	µ k e +	µ k e .
							k∈ K e∈E" 5 k	k∈ K e ∈E 7 k	
	It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ).
	The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
	slots in {w k , ..., s} of demand k with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C s.t. we find	
	σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C.
	Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k
	in K \ {k} such that							
	σ k s = 0, for all k Consequently, we conclude that					
	σ k s = 0, for all k -a feasible path Ẽ5 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S5 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ5 k with | S5 k | ≥ 1
	(contiguity and continuity constraints),				
	-{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S5 k and s" ∈ S5 k with Ẽ5 k ∩ Ẽ5 |{s ∈ k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ5 k S5 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), k with Ẽ5 k ∩ Ẽ5 k = ∅
	(non-overlapping constraint taking into account the possibility of adding the slot s in the set
	of last-slots S5 k assigned to the demand k in the solution S5 ),		

k

  and each s ∈ S 11 k and s" ∈ S11 k with E 11 }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 11 , z S 11 ) is belong to F and then to

k ∩ E 11 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 11 k |{s ∈ S 11 k , s" ∈ {s -w k + 1, ..., s

  and {s -w k +1, ..., s }∩{s"-w k +1, ..., s"} = ∅ for each k ∈ K and s" ∈ S 12 k with E 12 k ∩E 12 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S 12 k assigned to the demand k in the solution S 12 ), and there is |H|-1 2 demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S 12 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 12 k for each node v k ∈ H, and for each s ∈ S 12 k

for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 12 k |{s ∈ S 12 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),

  demands H from the odd-hole H (i.e., v k ∈ H ⊂ H s.t. the demand k selects a slot s as last-slot in the solution S 15 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S15 k for each node v k ∈ H, and for each s ∈ S15 k for all v k ∈ H \ H we have s / ∈ {s i + w k -1, ..., s j }.

	E 15 k ∩ E 15 k = ∅, -and there is |H|-1 2	k with

15 

k with |S

15 

k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S

15 

k and s" ∈ S

15 

k with E 15 k ∩ E 15 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 15 k |{s ∈ S 15 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S 15

  , i.e., E 16 k = E 15 k for each demand k ∈ K, remove all the last-slots si totally covered by the interval I and which has been selected by each demand k i ∈ {v k1 , ..., v kr } in the solution S 15 (i.e., s ∈ S 15 ki and s ∈ {s i + w ki + 1, ..., s j }) for each k i ∈ {v k1 , ..., v kr }, and select a new last-slot s i / ∈ {sand add the slot s to the set of last-slots S 15 k assigned to the demand k in the solution S 15 , i.e., S 16 k = S 15 k ∪ {s }, without changing the set of last-slots assigned to the demands K \ {k , k i }, i.e., S 16 k

i + w ki + 1, ..., s j } for each k i ∈ {v k1 , ..., v kr } i.e., S 16 ki = (S 15 ki \ {s i }) ∪ {s i } s.t. {s i -w ki -1, ..., s i } ∩ {s -w k + 1, ..., s} = ∅ for each k ∈ K and s ∈ S 15 k with E 16 k ∩ E 16 ki = ∅ for each k i ∈ {v k1 , ..., v kr },

  \ {v k,s }) ∪ {v k ,s }) does not contain an odd-hole, and there does not exist a node v k ,s / ∈ H in GE S s.t. v k ,s is linked with all nodes v k,s ∈ H, and there does not exist an interval of contiguous slots

	5.4 Slot-Assignment-Odd-Hole Inequalities
	Theorem 5. Let H be an odd-hole in the conflict graph GE S with |H| ≥ 5. Then, the inequality
	(31) is facet defining for P (G, K, S) iff
	-for each node v k ,s / ∈ H in GE

S , there exists a node v k,s ∈ H s.t. the induced graph GE S ((H

  pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S 16 denoted by H16 , i.e., s ∈ S16 k for each v k,s ∈ H16 , and s / ∈ S 16 k for all v k ,s ∈ H \ H16 . Obviously, S

	16 k with |S 16 k | ≥ 1
	(contiguity and continuity constraints),
	-{s -w

k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 16 k and s ∈ S 16 k with E 16 k ∩ E 16 k = ∅ (non-overlapping constraint), and there is |H|-1 2

  We first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 16 = (E 16 , S16 ) in which a feasible path E16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 16 k is assigned to each demand k ∈ K along each edge e ∈ E 16 -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 16 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e" ∈ E 16 k of demand k in the solution S 16 , i.e., e"∈E 16 k l e" + l e ≤ lk . As a result, E 16 k ∪ {e } is a feasible path for the demand k, and there is |H|-1 2 pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S 16 denoted by H16 , i.e., s ∈ S 16 k for each v k,s ∈ H16 , and s / ∈ S 16 k for all v k ,s ∈ H \ H16 . S 16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S 16 , z S 16 ) is belong to F and then to F it is composed byv k,s ∈H z k s = |H|-1 2 .Based on this, we derive a solution S 17 obtained from the solution S 16 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S16 which means that E 17 k = E 16 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 16 remain the same in the solution S 17 , i.e., S17 The corresponding incidence vector (x S 17 , z S 17 ) is belong to F and then to F

	|S 16 k | ≥ 1 (contiguity and continuity constraints),			k	with
	and k , s" GE k with E 16 k ∩ E 16 k∈K,e∈E 16 s" ∈ S 16 k k |{s ∈ S 16
	s" ∈ S 17 k	with E 17 k ∩ E 17					k	and
								GE S H given that it
	is composed by v k,s ∈H z k s = |H|-1 2 . It follows that		
		µx S 16	+ σz S 16	= µx S 17	+ σz S 17	= µx S 16	+ µ k e + σz S 16	.

and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ H, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ), and σ k s are equivalents for all v k,s ∈ H. k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have S H given that k = S 16 k for each k ∈ K, and E 17 k = E 16 k for each k ∈ K \ {k}. S 17 is clearly feasible given that and a feasible path E 17 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 17 k is assigned to each demand k ∈ K along each edge e ∈ E 17 k with |S 17 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 17 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 17 k |{s ∈ S 17 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  The corresponding incidence vector (x S 18 , z S 18 ) is belong to F and then to F It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ H given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ). The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with v k,s / ∈ H s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with v k,s / ∈ H. Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k • and the last-slots assigned to the demands K \ {k, k } in S16 remain the same in S 19 , i.e., S16 k" = S 19 k" for each demand k" ∈ K \ {k, k }, where k is a demand with v k,s ∈ H 16 and s ∈ S16 k s.t. v k ,s is not linked with any node v k",s" ∈ H 16 \ {v k,s }, • and adding the slot s as last-slot to the demand k , i.e., S 19 k = S16 The solution S 19 is feasible given that • a feasible path E 19 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 19 k is assigned to each demand k ∈ K along each edge e ∈ E 19 k with |S 19 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 19 k and s" ∈ S 19 k with E 19 k ∩ E 19 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 19 , z S 19 ) is belong to F and then to F It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with v k ,s ∈ H given that σ k s = 0 for v k,s / ∈ H. with changing the paths established in S16 : we construct a solution S 19 derived from the solution S16 by • modifying the paths assigned to a subset of demands K ⊂ K in S16 (i.e., E 19 k = Ẽ16 k for each k ∈ K \ K, and E 19 k = Ẽ16 k for each k ∈ K), • and the last-slots assigned to the demands K \ {k, k } in S16 remain the same in S 19 , i.e., S16 The corresponding incidence vector (x S 19 , z S 19 ) is belong to F and then to F

												GE S H given that it
	is composed by v k,s ∈H z k s = |H|-1 2 . We have so
	µx S" 16	+ σz S" 16	= µx S 18	+ σz S 18	= µx S" 16	+ σz S" 16	+ σ k s -	µ k e +	µ k e .
												k∈ K e∈E" 16 k	k∈ K e ∈E 18 k
	k∈K,e∈E 19 k	|{s ∈ S 19 k , s" GE S H	given that it
	is composed by v k,s ∈H z k s = |H|-1 2 . We then obtain that
			µx	S16	+ σz	S16	= µx S 19	+ σz S 19	= µx	S16	+ σz	S16	+ σ k s -σ k s + σ k s .
	s" ∈ S 19 k	with E 19 k ∩ E 19			k	and
												GE S H given that it
	is composed by v k,s ∈H z k s = |H|-1 2 . We have so	16 .
	S16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S16 , z µx S16 + σz S16 = µx S 19 + σz S 19 = µx S16
	16 k = S 18 k k ∪ {s} for the demand k. The solution S 18 is k = S" 16 for each demand k ∈ K \ {k}, and S 18
	clearly feasible given that					
	• a feasible path E 18 k is assigned to each demand k ∈ K (routing constraint),
	• a set of last-slots S 18 k |S 18	is assigned to each demand k ∈ K along each edge e ∈ E 18 k	with

k | ≥ 1 (contiguity and continuity constraints),

• {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 18 k and s" ∈ S 18 k with E 18 k ∩ E 18 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 18 k |{s ∈ S 18 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with v k ,s / ∈ H.. Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ H. Let's prove that σ k s for all v k,s ∈ H are equivalents. Consider a node v k ,s in H. For that, we consider a solution S16 = ( Ẽ16 , S16 ) in which a feasible path Ẽ16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S16 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ16 k with | S16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S16 k and s" ∈ S16 k with Ẽ16 k ∩ Ẽ16 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ16 k |{s ∈ S16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S16 k with Ẽ16 k ∩ Ẽ16 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S16 k assigned to the demand k in the solution Ẽ16 k ), and there is |H|-1 2 pairs of demand k and slot s from the odd-hole H (i.e., v k,s ∈ H s.t. the demand k selects the slot s as last-slot in the solution S16 denoted by H 16 , i.e., s ∈ S 16 k for each v k,s ∈ H 16 , and s / ∈ S 16 k for all v k ,s ∈ H \ H S16 ) is belong to F and then to F GE S H given that it is composed by v k,s ∈H z k s = |H|-1 2 . Based on this, we distinguish two cases: without changing the paths established in S16 : we derive a solution S 19 = (E 19 , S 19 ) from the solution S16 by • without modifying the paths assigned to the demands K in S16 (i.e., E 19 k = Ẽ16 k for each k ∈ K), k ∪ {s } for the demand k , • and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S 16 k with v k,s ∈ H and v k,s / ∈ H s.t. S 19 k = ( S16 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 19 k with E 19 k ∩ E 19 k = ∅. k" = S 19 k" for each demand k" ∈ K \ {k, k }, where k is a demand with v k,s ∈ H16 and s ∈ S16 k s.t. v k ,s is not linked with any node v k",s" ∈ H16 \ {v k,s }, • and adding the slot s as last-slot to the demand k , i.e., S 19 k = S16 k ∪ {s } for the demand k , • and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S16 k with v k,s ∈ H and v k,s / ∈ H s.t. S 19 k = ( S16 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 19 k with E 19 k ∩ E 19 k = ∅. The solution S 19 is clearly feasible given that • a feasible path E 19 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 19

k is assigned to each demand k ∈ K along each edge e ∈ E 19 k with |S 19 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 19 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 19 k |{s ∈ S 19 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  which means that E 21 k = E 20 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 20 remain the same in the solution S 21 , i.e., S 21 k = S 20 k for each k ∈ K, and E 21 k = E 20 k for each k ∈ K \ {k}. S 21 is clearly feasible given that • and a feasible path E 21 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 21 k is assigned to each demand k ∈ K along each edge e ∈ E 21 k with |S 21 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 21 k and s" ∈ S 21 k with E 21 k ∩ E 21 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have The corresponding incidence vector (x S 21 , z S 21 ) is belong to F and then to

	k∈K,e∈E 21

k |{s ∈ S 21

k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S22 k and s" ∈ S22 k with E 22 k ∩ E 22 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 22 k |{s ∈ S 22 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 22 , z S 22 ) is belong to F and then to F It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with v k,s / ∈ H ∪ C. with changing the paths established in S" 20 : we construct a solution S 22 derived from the solution S" 20 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 20 (i.e., E 22 k = E" 20 k for each k ∈ K \ K, and E 22 k = E" 20 k for each k ∈ K) s.t. • a new feasible path E 22 k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 20 k and s" ∈ S" 20 k with E 22 k ∩ E" 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e∈E 22

								GE S H,C given that it
	is composed by v k,s ∈H z k s + |H|-1 2	v k ,s ∈C z k s = |H|-1 2 . We then obtain that
	µx S" 20	+ σz S" 20	= µx S 22	+ σz S 22	= µx S" 20	+ σz S" 20	+ σ k s .
								20 k = S 22

k for each demand k ∈ K \ {k}, and S 22 k = S"

20 k ∪ {s } for the demand k. The solution S 22 is feasible given that • a feasible path E 22 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 22 k is assigned to each demand k ∈ K along each edge e ∈ E 22 k with |S 22 k | ≥ 1 (contiguity and continuity constraints), k |{s ∈ S" 20 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e∈E" 20 k |{s ∈ S"

  Theorem 6. Let H be an odd-hole, and C be a clique in the conflict graph GE

	ρβ k s + γQ.
	s ∈H

S with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k,s , v k ,s ) are linked in GE S for all v k,s ∈ H and v k ,s ∈ C.

  The solution S 26 is clearly feasible given that• a feasible path E 26 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 26k is assigned to each demand k ∈ K along each edge e ∈ E 26 k with |S26 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S26 k and s" ∈ S26 k with E26 The corresponding incidence vector (x S 26 , z S 26 ) is belong to F and then to

k ∩ E 26 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 26 k |{s ∈ S 26 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 26 = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 26 k |{s ∈ S 26 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 26 , z S 26 ) is belong to F and then to

	s" ∈ S 26 k	with E 26 k ∩ E 26 k	k	and

The solution S 26 is clearly feasible given that • a feasible path E 26 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 26 k is assigned to each demand k ∈ K along each edge e ∈ E 26 k with |S 26 k | ≥ 1 (contiguity and continuity constraints),

  the conflict graph GE I , this means that there exists a clique C in the conflict graph GE

I of cardinality equals to |C| ≥ 3 with k, k ∈ C. As a result, the inequality (

  S 28 ) is belong to P (G, K, S) and then to F Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ C, this means that there exists at least one feasible slot assignment S k for the demands k in C with s / ∈ S k for each v k,s ∈ C. This means that F

		GK E C	given that it is composed by v k,e ∈C x k e = 1. As a result, F	GK E C	is
	not empty (i.e., F	GK		
			GK	

E C = ∅). E C

  and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ C, and µ k e are equivalent for all v k,e ∈ C. We first show that µ k e = 0 for each edge e∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with v k,e / ∈ C. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 28 = (E 28 , S 28 ) in which a feasible path E28 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 28 k is assigned to each demand k ∈ K along each edge e ∈ E 28 -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S28 

	|S 28 k | ≥ 1 (contiguity and continuity constraints),	k	with
	s" ∈ S 28 k	with E 28 k ∩ E 28	k	and

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 28 k |{s ∈ S 28 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e ∈ E 28 k of demand k in the solution S 28 , i.e., e ∈E 28 k l e +l e ≤ lk . As a result, E 28 k ∪ {e} is a feasible path for the demand k, and there is one pair of demand k and edge e from the clique C (i.e., v k,e ∈ C s.t. the demand k selects the edge e for its routing in the solution S 28 , i.e., e ∈ E 9 k for a node v k,e ∈ C, and e / ∈ E 9 k for all v k ,e ∈ C \ {v k,e }. S

  a set of last-slots S 29 k is assigned to each demand k ∈ K along each edge e ∈ E29 k with |S 29 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S29 Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e / ∈ C. We conclude at the end that µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0

	s" ∈ S 29 k with E 29 k ∩ E 29						k and
	The corresponding incidence vector (x S 29 , z S 29 ) is belong to F and then to F C GK E composed by v k,e ∈C x k e = 1. It follows that	given that it is
	µx S 28	+ σz S 28	= µx S 29	+ σz S 29	= µx S 28	+ µ k e + σz S 28	.

, i.e., S 29 k = S 28 k for each k ∈ K, and E 29 k = E 28 k for each k ∈ K \ {k}. S 29 is clearly feasible given that and a feasible path E 29 k is assigned to each demand k ∈ K (routing constraint), k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 29 k |{s ∈ S 29 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). As a result, µ k e = 0 for demand k and an edge e with v k,e / ∈ C. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and v k,e / ∈ C, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}) with v k,e / ∈ C. We conclude that for the demand k µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ C.

  remain the same in S30 , i.e., S" 28 k = S 30 k for each demand k ∈ K \ {k}, and S 30 k = S" 28 k ∪ {s} for the demand k. The solution S 30 is clearly feasible given that• a feasible path E 30 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 30 k is assigned to each demand k ∈ K along each edge e ∈ E 30 + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 30 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 30 , z S 30 ) is belong to F and then to F (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S28 -and there is one pair of demand k and edge e from the clique C (i.e., v k,e ∈ C s.t. the demand k selects the edge e for its routing in the solution S28 , i.e., e ∈ Ẽ28 • modifying the path assigned to the demand k in S28 with e ∈ Ẽ28 k and v k,e ∈ C from Ẽ28 k to a path E 31 k without passing through any edge e" ∈ E \ (E k 0 ∪ E k 1 ) s.t. v k ,e and v k,e" linked in C and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S28 k with Ẽ28 k ∩ E 31 k = ∅. The paths assigned to the demands K \ {k, k } in S28 remain the same in S 31 (i.e., E 31 k" = Ẽ28 The solution S 31 is feasible given that • a feasible path E 31k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S31 k is assigned to each demand k ∈ K along each edge e ∈ E 31 k with |S31 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S31 k and s" ∈ S31 k with E 31 k ∩ E 31 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 31 , z S 31 ) is belong to F and then to F • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S31 The corresponding incidence vector (x S 31 , z S 31 ) is belong to F and then to F

												k"
	for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands
	K in S28 , i.e., S28										
	|S 30 k | ≥ 1 (contiguity and continuity constraints),				k	with
	and given that • {s -w k k s" ∈ S 30 k with E 30 k ∩ E 30 k∈K,e∈E 30 k |{s ∈ S 30 k , s" GK E C it is composed by v k,e ∈C x k e = 1. We have so µx S" 28 + σz S" 28 = µx S 30 + σz S 30 = µx S" 28 + σz S" 28 + σ k s -µ k e + µ k e . k∈K,e∈E 31 k |{s ∈ S 31 k , s" GK E given that it C is composed by v k,e ∈C x k e = 1. We then obtain that
	µx	S28	+ σz	S28	= µx S 31	+ σz S 31	= µx	S28	+ σz	k∈ K e∈E" 28 k S28 + µ k e -µ k e	k∈ K e ∈E 30 k
	It follows that σ k	+			µ k e" -	µ k e" +	µ k e" -	µ k e" .
			e"∈E 31 k \{e }	e"∈ Ẽ28 k	e"∈E 31 k		e"∈ Ẽ28 k \{e}
	It follows that µ k e = µ k							
	linked in C,										
	• modifying the last-slots assigned to some demands K ⊂ K from S28 k to S 31 k for each k ∈	K
	while satisfying non-overlapping constraint.				
	The paths assigned to the demands K \ {k, k } in S28 remain the same in S 31 (i.e., E 31 k" = Ẽ28
	we consider a solution S28 = ( Ẽ28 , S28 ) in which					∈ E 28 k . For that,
	-a feasible path Ẽ28									
	s" ∈ S28 k with Ẽ28 s" ∈ S 31 k with E 31 k ∩ E 31							k and and k
	it is composed by v k,e ∈C x k e = 1. We have so					GK E C	given that
	e" / ∈ Ẽ28 k for all v k ,e" ∈ C \ {v k,e }. S28 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S28 , z GK E µx S28 + σz S28 = µx S 31 + σz S 31 = µx S28 + σz S28 + µ k e -µ k e + k∈ K s ∈S 31 k σ k s -s∈ S28 s k σ k S28 ) is belong to F and then to F C e"∈E 31 k \{e } e"∈ Ẽ28 k k e"∈E 31 given that it is composed by v k,e ∈C x k e = 1. Based on this, we distinguish two cases: + µ k e" -µ k e" + µ k e" -

k

= ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have s = 0 for demand k and a slot s ∈ {w k , ..., s} given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ C.

The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with v k,s / ∈ C s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with v k,s / ∈ C. Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with v k ,s / ∈ C.. Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with v k,s / ∈ C. Let's prove that µ k e for all v k,e are equivalents. Consider a node v k ,e in C s.t. e / k is assigned to each

demand k ∈ K (routing constraint), a set of last-slots S28 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ28 k with | S28 k | ≥ 1 k ∩ Ẽ28 k = ∅, i.

e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ28 k |{s ∈ S28 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), k for a node v k,e ∈ C, and without changing the spectrum assignment established in S28 : we derive a solution S 31 = (E 31 , S 31 ) from the solution S28 by • modifying the path assigned to the demand k in S28 from Ẽ28 k to a path E 31 k passed through the edge e with v k ,e ∈ C, k = S 31 k for each demand k ∈ K. e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ C given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k,e" / ∈ C. with changing the spectrum assignment established in S28 : we construct a solution S 31 derived from the solution S28 by • modifying the path assigned to the demand k in S28 from Ẽ28 k to a path E 31 k passed through the edge e with v k ,e ∈ C, • modifying the path assigned to the demand k in S28 with e ∈ Ẽ28 k and v k,e ∈ C from Ẽ28 k to a path E 31 k without passing through any edge e" ∈ E \ (E k 0 ∪ E k 1 ) s.t. v k ,e and v k,e" k" for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands K \ K in S28 , i.e., S28 k = S 31 k for each demand k ∈ K \ K. The solution S 31 is clearly feasible given that • a feasible path E 31 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 31 k is assigned to each demand k ∈ K along each edge e ∈ E 31 k with |S 31 k | ≥ 1 (contiguity and continuity constraints), k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 31 k |{s ∈ S 31 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

e"∈ Ẽ28 k \{e}

  and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k ∈ C, and σ k s are equivalents for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if v k ∈ C, and all µ k e are equivalents for the set of demands in C, and σ k s and µ k e are equivalents for all v k ∈ C and all s ∈ {s i + w k -1, ..., s j }. We first show that µ k e = 0 for each edge e∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with e = e if k ∈ C. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.For that, we consider a solution S 32 = (E 32 , S 32 ) in which a feasible path E32 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 32 k is assigned to each demand k ∈ K along each edge e ∈ E 32 and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 32 the edge e is not non-compatible edge with the selected edges e" ∈ E 32 k of demand k in the solution S 32 , i.e., e"∈E 32 and all the demands in C pass through the edge e in the solution S 32 , i.e., e ∈ E32 

	|S 32 k | ≥ 1 (contiguity and continuity constraints),	k	with
	and s" ∈ S 32 k	with E 32 k ∩ E 32		k
		k	for each
	k ∈ C.		

k

= ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 32 k |{s ∈ S 32 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), k l e" + l e ≤ lk . As a result, E 32 k ∪ {e } is a feasible path for the demand k, and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k selects a slot s as last-slot in the solution S 32 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 32 k for a node v k ∈ C, and for each s ∈ S 32 k for all v k ∈ C \ {v k } we have s / ∈ {s i + w k -1, ..., s j },

  The corresponding incidence vector (x S 33 , z S 33 ) is belong to F and then to F Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end thatµ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if v k / ∈ C. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s i

							33
	and s" ∈ S 33 k with E 33 k ∩ E 33					k
	composed by v k ∈C x k e +	sj s=si+w k -1 z k s = |C| + 1. It follows that	Ge I C given that it is
	µx S 32	+ σz S 32	= µx S 33	+ σz S 33	= µx S 32	+ µ k e + σz S 32	.
	As a result, µ k e = 0 for demand k and an edge e .			

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 33 k |{s ∈ S 33 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and e = e if k ∈ C, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e }) with e = e" if k ∈ C. We conclude that for the demand k µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C.

  The corresponding incidence vector (x S 34 , z S 34 ) is belong to F and then to F It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /∈ {s i + w k -1, ..., s j } if v k / ∈ C.with changing the paths established in S" 32 : we construct a solution S 34 derived from the solution S" 32 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 32 (i.e., E 34

								32 k = S 34
	is composed by v k ∈C x k e +	sj s=si+w k -1 z k s = |C| + 1. We then obtain that	Ge I C given that it
	µx S" 32	+ σz S" 32	= µx S 34	+ σz S 34	= µx S" 32	+ σz S" 32	+ σ k s .
	k k is assigned to each demand k ∈ K (routing constraint), = E" 32 k for each k ∈ K \ K, and k for each k ∈ K) s.t. k = E" 32 E 34 • a new feasible path E 34
	• and {s -w						

k for each demand k ∈ K \ {k}, and S 34 k = S" 32 k ∪ {s } for the demand k. The solution S 34 is feasible given that • a feasible path E 34 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 34 k is assigned to each demand k ∈ K along each edge e ∈ E 34 k with |S 34 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 34 k and s" ∈ S 34 k with E 34 k ∩ E 34 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 34 k |{s ∈ S 34 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 32 k and s" ∈ S" 32 k with E 34 k ∩ E" 32 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e ∈E 34 k |{s ∈ S" 32 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e ∈E" 32 k |{s ∈ S" 32 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),

  remain the same in S34 , i.e., S" 32 k = S 34 k for each demand k ∈ K \ {k}, and S 34 k = S" 32 k ∪ {s} for the demand k. The solution S 34 is clearly feasible given that• a feasible path E 34 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 34 k is assigned to each demand k ∈ K along each edge e ∈ E 34 • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 34 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 34 , z S 34 ) is belong to F and then to F The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with s / ∈ {s

	|S 34 k | ≥ 1 (contiguity and continuity constraints),		k	with
	and C given that it k k , s" Ge k ∩ E 34 with E 34 k∈K,e ∈E 34 s" ∈ S 34 k k |{s ∈ S 34 I is composed by v k ∈C x k e + sj s=si+w k -1 z k s = |C| + 1. We have so
	µx S" 32	+ σz S" 32	= µx S 34	+ σz S 34	= µx S" 32	+ σz S" 32	+ σ k s -	µ k e +	µ k e" .
							k∈ K e ∈E" 32 k	k∈ K e"∈E 34 k

k

= ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /

∈ {s i + w k -1, ..., s j } if v k / ∈ C given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ C. i + w k -1, ..., s j } if v k / ∈ C s.t.

we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s / ∈ {s i

  Based on this,without changing the paths established in S32 : we derive a solution S 35 = (E 35 , S35 ) from the solution S32 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S32 (i.e., E 35 k = Ẽ32 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S32 remain the same in S35 , i.e., S32 k" = S 35 k" for each demand k" ∈ K \ {k, k }, and S 35 k = S32 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S32 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with v k ∈ C s.t. S 35 k = ( S32 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 35 k with E 35 k ∩ E 35 k = ∅. The solution S 35 is feasible given that • a feasible path E 35 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 35 k is assigned to each demand k ∈ K along each edge e ∈ E 35 k with |S 35 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 35 k and s" ∈ S 35 k with E 35 k ∩ E 35 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 35 , z S 35 ) is belong to F and then to F

	k∈K,e ∈E 35 k is composed by v k ∈C x k |{s ∈ S 35 k , s" Ge I C given that it e + sj s=si+w k -1 z k s = |C| + 1. We then obtain that
	µx	S32	+ σz	S32	= µx S 35	+ σz S 35	= µx	S32	+ σz	S32	+ σ k s -σ k s + σ k s .
	It follows that σ k s = σ k								

s for demand k and a slot s ∈ {w k , ..., s} with v k ∈ C and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with v k ∈ C. with changing the paths established in S32 : we construct a solution S 35 derived from the solution S32 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S32 (i.e., E 35 k = Ẽ32 k for each k ∈ K \ K, and E 35 k

  36 k with |S 36 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 36 k and s ∈ S 36 k with E 36 k ∩ E 36 k = ∅ (non-overlapping constraint), and there is one demand k from the clique C (i.e., v k ∈ C s.t. the demand k pass through the edge e in the solution S 36 , i.e., e ∈ E 36 k for a node v k ∈ C, and e / ∈ E 36 k for all v k ∈ C \ {v k }, and all the demands in C are covered by the interval I in the solution S 36 , i.e., {s i + w k + 1, ..., s j } ∩ S 36 k = ∅ for each k ∈ C. Obviously, S 36 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (

  37 k passed through the edge e (i.e., e ∈ E" 37 k ) with v k ∈ C s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S36

	k and each s ∈ S36 k with Ẽ36 k ∩ E" 37 k = ∅, -modifying the path assigned to the demand k in S36 with e ∈ Ẽ36 k and v k ∈ C from Ẽ36 k to a path E" 37 k without passing through the edge e (i.e., e / ∈ E" 37 k ) and {s -w k + 1, ..., s} ∩ {s -w k" + 1, ..., s } = ∅ for each k" ∈ K \ {k, k } and each s ∈ S36 k and each s ∈ S36 k" with Ẽ36 k" ∩ E" 37

k = ∅, and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each s ∈ S36 k and each s ∈ S36

  38 k with |S38 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 38 and v k ∈C |E 38 k

	s" ∈ S 38 k with E 38 k ∩ E 38	k and

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 38 k |{s ∈ S 38 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),

  and k∈ K |E 45 k ∩ {e}| + |S 45 k ∩ {s, ..., s + w k

45 

k ∩ E

45 

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 45 k |{s ∈ S 45 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),

  and s ∈ {s, ..., s + w k -1}, 0, otherwise.Theorem 12. Consider an edge e ∈ E, and a slot s ∈ S. Let K be a subset of demands in K with | K| ≥ 3, and k∈ K w k ≤ sk ∈Ke\ K w k . Then, the inequality (17) is facet defining for P (G, K, S) if and only if there does not exist an interval of contiguous slots I = [s i , s j ] s.t.-|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K, and s ∈ {s

				min(s+w k -1,s)	
	As a result (µ, σ) =	k∈	K ρα k e +	s =s	ρβ k s + γQ.

  s ∈ {s, ..., s + w k -1}, 0, otherwise. Let H be an odd-hole in the conflict graph GK E with |H| ≥ 5. Then, the inequality (36) is facet defining for P (G, K, S) if and only if for each v k ,e / ∈ H, there exists a node v k,e ∈ H s.t. the induced graph GK E (H \ {v k,e } ∪ {v k ,e }) does not contain an odd-hole H = (H \ {v k,e }) ∪ {v k ,e }, and there does not exist a node v k ,e / ∈ H s.t. all the nodes v k,e in H are linked with this node v k ,e in the conflict graph GK E . Proof. Neccessity. We distinguish the following cases: if for a node v k ,e / ∈ H in GK E , there exists a node v k,e ∈ H s.t. the induced graph GK E (H \ {v k,e } ∪ {v k ,e }) contains an odd-hole H = (H \ {v k,e }) ∪ {v k ,e }. This implies that the inequality (36) can be dominated using some technics of lifting based on the following two inequalities v k,e ∈H x k e ≤ |H|-1 2 , and v k ,e ∈H x k e ≤ |H |-1 s.t. v k ,e is linked with all nodes v k,e ∈ H. This implies that the inequality (36) can be dominated by the following valid inequality

	As a result (µ, σ) =	k∈	K ρα k e +	k∈	K min(s+w k -1,s) s =s	ρβ k s +	k∈Ke\	s =s K min(s+w k -1,s)	ρβ k s + γQ.
	5.8 Non-Compatibility-Odd-Hole Inequalities
	Theorem 13. 2	.
	-if there exists a node v k ,e / ∈ H in GE			
					v k,e ∈H	x k e +	|H| -1 2	x k e ≤	|H| -1 2	.

S

  K, S). We construct a solution S 47 = (E 47 , S47 ) as below a feasible path E47 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S47 k is assigned to each demand k ∈ K along each edge e ∈ E 47 k with |S 47 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 47 k and s ∈ S 47 pairs of demands edges (k, e) from the odd-hole H denoted by H 47 (i.e., v k,e ∈ H 47 s.t. the demand k selects the edge e for its routing in the solution S 47 , i.e., e ∈ E 47 k for each node v k,e ∈ H 47 , and e / ∈ E 47 k for all v k ,e ∈ H \ H 47 .Obviously, S 47 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-(12). Moreover, the corresponding incidence vector (x S 47 , z S 47 ) is belong to P (G, K, S) and then to F Furthermore, given that s ∈ {w k , ..., s} for each v k,s ∈ H, this means that there exists at least one feasible slot assignment S k for the demands k in H with s / ∈ S k for each v k,s ∈ H. This means that F by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that

				2	1	is facet defining for P (G, K, S), we start
	checking that F with E 47 k ∩ E 47 GK E H k = ∅ (non-overlapping constraint), is a proper face, and F GK E H = P (G, k
	-and there is |H|-1 2	
		GK E H	given that it is composed by v k,e ∈H x k e = |H|-1 2 . As a result, F H GK E
	is not empty (i.e., F	GK	
			GK E H	= P (G, K, S).
	Let denote the inequality	v k,e ∈H x k e ≤ |H|-1 2

E H = ∅).

  ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e ∈ E 47 k of demand k in the solution S47 , i.e., e ∈E 47 k l e +l e ≤ lk . As a result, E 47 k ∪ {e} is a feasible path for the demand k, and there is |H|-1 2 pairs of demand-edge (k, e) from the odd-hole H denoted by H 47 (i.e., v k,e ∈ H 47 s.t. the demand k selects the edge e for its routing in the solution S 47 , i.e., e ∈ E 47 k for each node v k,e ∈ H 47 , and e / ∈ E 47 k for all v k ,e ∈ H \ H 47 . S 47 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S 47 , z S 47 ) is belong to F and then to F Based on this, we derive a solution S 48 obtained from the solution S 47 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 47 which means that E 48 k = E 47 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 47 remain the same in the solution S 48 , i.e., S 48 k = S 47 k for each k ∈ K, and E 48 k = E 47 k for each k ∈ K \ {k}. S 48 is clearly feasible given that and a feasible path E 48 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 48 k is assigned to each demand k ∈ K along each edge e ∈ E 48 k with |S 48 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 48 k and s" ∈ S 48 k with E 48 k ∩ E 48 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 48 k |{s ∈ S 48 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 48 , z S 48 ) is belong to F and then to F Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e / ∈ H. We conclude at the end that

	k∈K,e∈E 47 k given that it is composed by v k,e ∈H x k |{s ∈ S 47 k , s" GK E H e = |H|-1 E H given that it is composed by v k,e ∈H x k e = |H|-1 2 . It follows that µx S 47 + σz S 47 = µx S 48 + σz S 48 = µx S 47 + µ k e + σz S 47 . As a result, µ k e = 0 for demand k and an edge e with v k,e / ∈ H. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and v k,e / ∈ H, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}) with v k,e / ∈ H. We conclude that for the demand k µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ H. 2 . GK µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ H.

  remain the same in the solution S 49 i.e., S" 47 k = S 49 k for each demand k ∈ K \ {k}, and S 49 k = S" 47 k ∪ {s } for the demand k. The solution S 49 is feasible given that • a feasible path E 49 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 49 k is assigned to each demand k ∈ K along each edge e ∈ E 49 k with |S 49k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 49 S 49 , z S 49 ) is belong to F and then to F

	k and k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k ∩ E 49 k with E 49 s" ∈ S 49 k∈K,e∈E 49 |{s ∈ S 49 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). k The corresponding incidence vector (x GK E H given that it
	is composed by v k,e ∈H x k e = |H|-1 2 . We then obtain that		
	µx S" 47	+ σz S" 47	= µx S 49	+ σz S 49	= µx S" 47	+ σz S" 47	+ σ k s .
	It follows that σ k						

s = 0 for demand k and a slot s ∈ {w k , ..., s}.

  (i.e., E 49 k = E"47 k for each k ∈ K \ K, andE 49 k = E" 47 k for each k ∈ K) s.t. • a new feasible path E 49k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 47 k and s" ∈ S" 47 k with E 49 k ∩ E" 47 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e∈E[START_REF] Margot | Exploiting orbits in symmetric ilp[END_REF] 

	k	|{s ∈ S" 47 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e∈E" 47 k	|{s ∈
	S"		

  remain the same in S49 , i.e., S" 47 k = S 49 k for each demand k ∈ K \ {k}, and S 49 k = S" 47 k ∪ {s} for the demand k. The solution S 49 is clearly feasible given that• a feasible path E 49 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 49 k is assigned to each demand k ∈ K along each edge e ∈ E 49 • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 49 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 49 , z S 49 ) is belong to F and then to F The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with v k,s / ∈ H s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with v k,s / ∈ H.Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with v k ,s / ∈ H.. , for all k ∈ K and all slots s ∈ {w k , ...,s} with v k,s / ∈ H. -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S47 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 47 k with Ẽ47 k ∩ Ẽ47 k = ∅, and there is |H|-1 2pairs of demand-edge (k, e) from the odd-hole H denoted by H47 (i.e., v k,e ∈ H47 s.t. the demand k selects the edge e for its routing in the solution S47 , i.e., e ∈ Ẽ47 k for each node v k,e ∈ H47 , and e" / ∈ Ẽ47 k for all v k ,e" ∈ H \ H47 .S47 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation(2)-(12). Hence, the corresponding incidence vector (x S47 , z S47 ) is belong to F and then to Fgiven that it is composed by v k,e ∈H x k e = |H|-1 2 . Based on this, we distinguish two cases:without changing the spectrum assignment established in S47 : we derive a solution S 50 = (E 50 , S 50 ) from the solution S47 by • modifying the path assigned to the demand k in S47 from Ẽ47 k to a path E 50 k passed through the edge e with v k ,e ∈ H, • and selecting a pair of demand-edge (k, e) from the set of pairs of demand-edge in H47 s.t. v k ,e is not linked with any node v k",e" in H47 \ {v k,e }, • modifying the path assigned to the demand k in S47 with e ∈ Ẽ47 k and v k,e ∈ H from Ẽ47 k to a path E 50 k without passing through any edge e" ∈ E \ (E k 0 ∪ E k 1 ) s.t. v k ,e and v k,e" linked in H and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S47 k with Ẽ47 k ∩ E 50 k = ∅. The paths assigned to the demands K \ {k, k } in S47 remain the same in S 50 (i.e., E 50 k" = Ẽ47 k" for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands K in S47 , i.e., S47 k = S 50 k for each demand k ∈ K. The solution S 50 is feasible given that • a feasible path E 50 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 50 k is assigned to each demand k ∈ K along each edge e ∈ E 50 k with |S 50 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 50 k and s" ∈ S 50 k with E 50 k ∩ E 50 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 50 , z S 50 ) is belong to F and then to F with v k ,e ∈ H, • and selecting a pair of demand-edge (k, e) from the set of pairs of demand-edge in H 47 s.t. v k ,e is not linked with any node v k",e" in H 47 \ {v k,e }, • modifying the path assigned to the demand k in S47 with e ∈ Ẽ47 k and v k,e ∈ H from Ẽ47

	k k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have with k | ≥ 1 (contiguity and continuity constraints), |S 49 and s" ∈ S 49 k with E 49 k ∩ E 49 k k∈K,e∈E 49 k |{s ∈ S 49 k , s" GK E H given that it is composed by v k,e ∈H x k e = |H|-1 2 . We have so µx S" 47 + σz S" 47 = µx S 49 + σz S 49 = µx S" 47 + σz S" 47 + σ k s -k∈ K e∈E" 47 k µ k e + k∈ K e ∈E 49 k µ k e . It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with v k,e / ∈ H. Consequently, we conclude that σ k s = 0Let's prove that µ k e for all v k,e are equivalents. Consider a node v k ,e in H s.t. e / ∈ E 47 k . For that, we consider a solution S47 = ( Ẽ47 , S47 ) in which -a feasible path Ẽ47 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S47 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ47 k with | S47 k | ≥ 1 (contiguity and continuity constraints), k and s" ∈ S47 k with Ẽ47 k ∩ Ẽ47 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ47 k |{s ∈ S47 E H k∈K,e∈E 50 k |{s ∈ S 50 k , s" GK E H given that it is composed by v k,e ∈H x k e = |H|-1 2 . We then obtain that µx S47 + σz S47 = µx S 50 + σz S 50 = µx S47 + σz S47 + µ k e -µ k e + e"∈E 50 k \{e } µ k e" -e"∈ Ẽ47 k µ k e" + e"∈E 50 k µ k e" -e"∈ Ẽ47 k \{e} µ k e" . It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ H given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k,e" / ∈ H. -with changing the spectrum assignment established in S47 : we construct a solution S 50 derived from the solution S47 by • modifying the path assigned to the demand k in S47 from Ẽ47 k to a path E 50 k passed through the edge e k to a path E 50 k without passing through any edge e" ∈ E \ (E k 0 ∪ E k 1 ) s.t. v k ,e and v k,e" linked in H, • modifying the last-slots assigned to some demands K ⊂ K from S47 k to S 50 k for each k ∈ K while satisfying non-overlapping constraint. k , s" GK The paths assigned to the demands K \ {k, k } in S47 remain the same in S 50 (i.e., E 50 k" = Ẽ47 k"

  ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).The corresponding incidence vector (x S 50 , z S 50 ) is belong to F and then to F ∈ {w k , ..., s}.Given that the pair (v k,e , v k ,e ) are chosen arbitrary in the odd-hole H, we iterate the same procedure for all pairs (v k,e , v k ,e ) s.t. we find µ k e = µ k e , for all pairs (v k,e , v k ,e ) ∈ H.

	k∈K,e∈E 50 k it is composed by v k,e ∈H x k |{s ∈ S 50 e = |H|-1 2 . We have so µx S47 + σz S47 = µx S 50 + σz S 50 = µx S47 + σz S47 + e"∈E 50 k \{e } µ k e" -e"∈ Ẽ47 + µ k e -µ k e + k µ k e" + e"∈E 50 k∈ K s ∈S 50 k k µ k e" -e"∈ Ẽ47 E H σ k s -k \{e} given that s∈ S47 k σ k s µ k e" . It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ H given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with v k,e" / ∈ H, and σ k s = 0 for all k ∈ K k , s" GK and all s

  Theorem 14. Let H be an odd-hole, and C be a clique in the conflict graph GK E with -|H| ≥ 5, and |C| ≥ 3, and H ∩ C = ∅, and the nodes (v k,e , v k ,e ) are linked in GK E for all v k,e ∈ H and v k ,e ∈ C. Then, the inequality (37) is facet defining for P (G, K, S) if and only if for each node v k",e" in GK E with v k",e" / ∈ H ∪ C and C ∪ {v k",e" } is a clique in GK E , there exists a subset of nodes H ⊆ H of size |H|-1 2 s.t. H ∪ {v k",e" } is stable in GK E . Proof. Neccessity. If there exists a node v k",e" / ∈ H ∪ C in GK E s.t. v k",e" is linked with all nodes v k,e ∈ H and also with all nodes v k ,e ∈ C. This implies that the inequality (37) can be dominated by the following valid inequality

	and for each k ∈ K and s ∈ S						
				σ k s =	γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise.
	As a result (µ, σ) =	ρα k e + γQ.					
	v k,e ∈H								
	v k,e ∈H	x k e +	|H| -1 2	v k ,e ∈C	x k e +	|H| -1 2	x k" e" ≤	|H| -1 2	.
						0, otherwise,	

  [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF], their corresponding incidence vector are belong to P (G, K, S) and then to F Let us prove now that µ k e are equivalent for all v k ,e ∈ C. For this, we consider a node v k ,e in C s.t. e / ∈ E 52 k . For that, we consider a solution S 52 = ( Ẽ 52 , S 52 ) in which a feasible path Ẽ 52 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 52 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ 52 -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 52 and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S52 k with Ẽ 52 k ∩ Ẽ 52 k = ∅, and there is |H|-1 2 pairs of demand-edge (k, e) from the odd-hole H denoted by H52 (i.e., v k,e ∈ H52 s.t. the demand k selects the edge e for its routing in the solution S 52 , i.e., e ∈ Ẽ 52 k for each node v k,e ∈ H52, and e" / ∈ Ẽ 52 k for all v k ,e" ∈ H \ H52 . S 52 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-[START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 52 , z S 52 ) is belong to F and then to F without changing the paths established in S 52 : we derive a solution S 54 = (E 54 , S 54 ) from the solution S 52 by • modifying the path assigned to the demand k in S 52 from Ẽ 52 k to a path E 54 k passed through the edge e with v k ,e ∈ C, • modifying the path assigned to each demand k with v k,e ∈ H52 in S 52 with e ∈ Ẽ 52 {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S 52

				GK E H,C given that they are composed by v k,e ∈H x k e +
	|H|-1 2	v k ,e ∈C x k e = |H|-1 2 .
	| S 52 k | ≥ 1 (contiguity and continuity constraints),	k	with
	s" ∈ S 52 k k∈K,e∈ Ẽ 52 with Ẽ 52 k ∩ Ẽ 52 k k |{s ∈ S 52	and = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k
				GK E H,C given
	that it is composed by v k,e ∈H x k e + |H|-1 2 two cases:	e = |H|-1 2 . Based on this, we distinguish v k ,e ∈C x k
		v k,e ∈ H from Ẽ 52 k	and 0 ∪ E k k k without passing through any edge e" ∈ E \ (E k to a path E 54 1 )
		s.t. k Ẽ 52	with

k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),

  52 k = S54 k for each demand k ∈ K. The solution S54 is feasible given that• a feasible path E 54 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S54 k is assigned to each demand k ∈ K along each edge e ∈ E 54 k with |S 54 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 54 k and s" ∈ S 54 k with E 54 k ∩ E 54 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 54 , z S 54 ) is belong to F and then to F It follows that µ k e = v k,e ∈ H52 µ k e for demand k and a edge e ∈ E \(E k 0 ∪E k 1 ) with v k ,e ∈ H given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0∪ E k 1 ) with v k,e" / ∈ H ∪ C. As a result, µ k e = ρ |H|-1 2 .with changing the paths established in S 52 : we construct a solution S 54 derived from the solution S 52 by • modifying the path assigned to the demand k in S 52 from Ẽ 52 e with v k ,e ∈ C,• and modifying the path assigned to each demand k with v k,e ∈ H52 in S 52 with e ∈ Ẽ52 The paths assigned to the demands K \ (K(H52) ∪ {k }) in S 52 remain the same in S 54 (i.e., E 54 k" = Ẽ 52 k" for each k" ∈ K \ {k, k }), and also without modifying the last-slots assigned to the demands K \ K in S52 , i.e., S 52 k = S 54 k for each demand k ∈ K \ K. The solution S 54 is clearly feasible given that• a feasible path E 54 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 54 k is assigned to each demand k ∈ K along each edge e ∈ E 54 • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S54 The corresponding incidence vector (x S 54 , z S 54 ) is belong to F and then to F

															k	to a path E 54 k	passed
	through the edge k and v k,e ∈ H from Ẽ 52 k to a path E 54 k without passing through any edge e" ∈ E \(E k 0 ∪E k 1 ), • modifying the last-slots assigned to some demands K ⊂ K from S 52 k to S 54 k for each k ∈ K
		while satisfying non-overlapping constraint.
		|S 54 k ≥ 1 (contiguity and continuity constraints),	k	with
		s" ∈ S 54 k	with E 54 k ∩ E 54				k	and
															GK E H,C given that
	it is composed by v k,e ∈H x k e + |H|-1 2	v k ,e ∈C x k e = |H|-1 2 . We have so
	µx	S 52	+ σz	S 52		= µx S 54	+ σz S 54	= µx	S 52	+ σz	S 52	+ µ k e -	µ k e +	σ k s -	σ k s
															v k,e ∈H52	k∈ K s ∈S 54 k	s∈ S 52 k
											+			µ k e" -	µ k e" +	µ k e" -	µ k e" .
												e"∈E 54 k \{e }	e"∈ Ẽ 52 k	e"∈E 54 k	k∈K(H52 ) e"∈ Ẽ 52 k
	It follows that µ k							
			k∈K,e∈E 54 k	|{s ∈ S 54 k , s" GK E H,C given that it
	is composed by v k,e ∈H x k e + |H|-1 2	v k ,e ∈C x k e = |H|-1 2 . We then obtain that
				µx	S 52	+ σz	S 52	= µx S 54	+ σz S 54	= µx	S 52	+ σz	S 52	+ µ k e -	µ k e
															v k,e ∈ H52
							+			µ k e" -			µ k e" +	µ k e" -	µ k e" .
								e"∈E 54 k \{e }		e"∈ Ẽ 52 k	e"∈E 54 k	k∈K( H52 ) e"∈ Ẽ 52 k

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 54 k |{s ∈ S 54 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). e = v k,e ∈H52 µ k e for demand k and a edge e ∈ E \(E k 0 ∪E k 1 ) with v k ,e ∈ C given that µ k

  Consider an edge e ∈ E. Let I = [s i , s j ] be an interval of contiguous slots in[1, s] with j

			σ k s =	γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise.
	As a result (µ, σ) =	v k,e ∈H	ρα k e +	v k ,e ∈C	ρ	|H| -1 2	α k e + γQ.
	5.9 Edge-Interval-Cover Inequalities
	Theorem 15.						

, otherwise, and for each k ∈ K and s ∈ S

  and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k ∈ K, and σ kWe first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with e = e if k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K. For that, we consider a solution S 55 = (E 55 , S55 ) in which a feasible path E55 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 55 k is assigned to each demand k ∈ K along each edge e ∈ E 55 and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 55 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e" ∈ E 55 k of demand k in the solution S 55 , i.e., e"∈E 55 k l e" + l e ≤ lk . As a result, E 55 k ∪ {e } is a feasible path for the demand k, and there is | K| -1 demands from the minimal cover K denoted by K 55 which are covered by the interval I (i.e., if k ∈ K 55 means that the demand k selects a slot s as last-slot in the solution S 55 with s ∈ {s i + w k -1, ..., s j }, i.e., s ∈ S 55 k for each k ∈ K 55 , and for each s ∈ S 55 k for all k ∈ K \ K 55 we have s / ∈ {s i + w k -1, ..., s j }, and all the demands in K pass through the edge e in the solution S 55 , i.e., e ∈ E 55S55 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S 55 , z S 55 ) is belong to F and then to F Based on this, we derive a solution S 56 obtained from the solution S 55 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S55 which means that E 56 k = E 55 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 55 remain the same in the solution S 56 , i.e., S 56 k = S55 56 is clearly feasible given that and a feasible path E 56 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S56 k is assigned to each demand k ∈ K along each edge e ∈ E 56 k with |S56 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S56 As a result, µ k e = 0 for demand k and an edge e . As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and e = e if k ∈ K, we iterate the same procedure for all e ∈ E \ (E k 0

	|S 55 k | ≥ 1 (contiguity and continuity constraints),		k	with
	k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have for each k , s" k with E 55 k ∩ E 55 k |{s ∈ S 55 and s" ∈ S 55 k k∈K,e ∈E 55 k k ∈ K.
								Ge I
								K
	given that it is composed by k∈ K x k e +				
	and s" ∈ S 56 k with E 56 k ∩ E 56						k
							Ge I K given that it is
	composed by k∈ K x k e +	sj s=si+w k -1 z k s = 2| K| -1. It follows that	
	µx S 55	+ σz S 55	= µx S 56	+ σz S 56	= µx S 55	+ µ k e + σz S 55	.

s are equivalents for all k ∈ K and all s ∈ {s i + w k -1, ..., s j }, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K, and all µ k e are equivalents for the set of demands in K, and σ k s and µ k e are equivalents for all k ∈ K and all s ∈ {s i + w k -1, ..., s j }.

sj s=si+w k -1 z k s = 2| K| -1.

k for each k ∈ K, and E 56 k = E 55 k for each k ∈ K \ {k}. S k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 56 k |{s ∈ S 56 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (x S 56 , z S 56 ) is belong to F and then to F

  remain the same in the solution S 57 i.e., S" 55 k = S57 The solution S57 is feasible given that• a feasible path E 57 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S57 k is assigned to each demand k ∈ K along each edge e ∈ E 57 k with |S57 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S57 The corresponding incidence vector (x S 57 , z S 57 ) is belong to F and then to F with changing the paths established in S"55 : we construct a solution S 57 derived from the solution S" 55 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S"55 (i.e., E 57 k = E"55 k for each k ∈ K \ K, andE 57 k = E" 55 k for each k ∈ K) s.t. • a new feasible path E 57k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 55 k and s" ∈ S" 55 k with E 57 k ∩ E" 55 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e ∈E 57

	s" ∈ S 57 k with E 57 k ∩ E 57						k and
								Ge I K given that it
	is composed by k∈ K x k e +	sj s=si+w k -1 z k s = 2| K| -1. We then obtain that
	µx S" 55	+ σz S" 55	= µx S 57	+ σz S 57	= µx S" 55	+ σz S" 55	+ σ k s .
	It follows that σ k						
			k	|{s ∈ S" 55 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e ∈E" 55 k	|{s ∈
	S"						

k for each demand k ∈ K \ {k}, and S 57 k = S" 55 k ∪ {s } for the demand k. k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 57 k |{s ∈ S 57 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ K.

  remain the same in S 57 , i.e., S" 55 k = S57 The solution S 57 is clearly feasible given that• a feasible path E 57 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 57 k is assigned to each demand k ∈ K along each edge e ∈ E 57 k with |S 57k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 57 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).The corresponding incidence vector (x S 57 , z S 57 ) is belong to F and then to F It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s /∈ {s i + w k -1, ..., s j } if k / ∈ K given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with s / ∈ {s i + w k -1, ..., s j } if k / ∈ K s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s / ∈ {s i

	and K given that it k k , s" Ge k ∩ E 57 with E 57 k∈K,e ∈E 57 s" ∈ S 57 k k |{s ∈ S 57 I
	is composed by k∈ K x k e +	sj s=si+w k -1 z k s = 2| K| -1. We have so	
	µx S" 55	+ σz S" 55	= µx S 57	+ σz S 57	= µx S" 55	+ σz S" 55	+ σ k s -	µ k e +	µ k e" .
								k∈ K e ∈E" 55 k	k∈ K e"∈E 57 k

k for each demand k ∈ K \ {k}, and S 57 k = S" 55 k ∪ {s} for the demand k. k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

  k" = S 58 k" for each demand k" ∈ K \ {k, k }, and S 58 k = S55 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S55 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with k ∈ K s.t. S 58 k = ( S55 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 58 k with E 58 k ∩ E 58 k = ∅. The solution S 58 is feasible given that • a feasible path E 58 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 58 k is assigned to each demand k ∈ K along each edge e ∈ E 58 k with |S 58 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 58 k and s" ∈ S 58 k with E 58 k ∩ E 58 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 58 , z S 58 ) is belong to F and then to F It follows that σ k s = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s i + w k + 1, ..., s j } given that σ k s = 0 for s / ∈ {s i + w k -1, ..., s j } with k ∈ K. with changing the paths established in S55 : we construct a solution S 58 derived from the solution S55 by • with modifying the paths assigned to a subset of demands K ⊂ K in S55 (i.e., E 58 k = Ẽ55 • and the last-slots assigned to the demands K \ {k, k } in S55 remain the same in S 58 , i.e., S55k" = S 58 k" for each demand k" ∈ K \ {k, k }, • and adding the slot s as last-slot to the demand k , i.e., S 58 k = S55 k ∪ {s } for the demand k ,• and selecting a demand k from K55 which allocates a last slot s ∈ S55 k with s ∈ {s i + w k + 1, ..., s j } in the solution S55 (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S55 k assigned to the demand k in the solution S55 ),• and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S55 k with s ∈ {s i +w k +1, ..., s j } and s / ∈ {s i +w k +1, ..., s j } for the demand k with k ∈ K s.t. S58 The solution S 58 is clearly feasible given that • a feasible path E58 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S58 

	k∈K,e ∈E 58 k	|{s ∈ S 58 k , s" Ge I K given that it
	is composed by k∈ K x k e +	sj s=si+w k -1 z k s = 2| K| -1. We then obtain that
	µx	S55	+ σz	S55	= µx S 58	+ σz S 58	= µx	S55	+ σz	S55	+ σ k s -σ k s + σ k s .

k for each k ∈ K \ K, and E 58 k = Ẽ55 k for each k ∈ K), k = ( S55 k \{s})∪{s} s.t. {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S 58 k with E 58 k ∩ E 58 k = ∅.

  60 k passed through the edge e (i.e., e ∈ E"60 selecting a demand k in K59 which use the edge e in the solution S 59 , modifying the path assigned to the selected demand k in S59 with e ∈ Ẽ59 k and k ∈ K from Ẽ59 k to a path E" 60 k without passing through the edge e (i.e., e / ∈ E" 60 k ) and {s -w k + 1, ..., s} ∩ {s -w k" + 1, ..., s } = ∅ for each k" ∈ K \ {k, k } and each s ∈ S59 k and each s ∈ S59 k" with Ẽ59 k" ∩ E" 60 k = ∅, and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each s ∈ S59 k and each s ∈ S59

k ) with k ∈ K s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S59 k and each s ∈ S59 k with Ẽ59 k ∩ E" 60 k = ∅,

  60 k ∩ E"60 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 60 k |{s ∈ S" 60 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).The corresponding incidence vector (x S" 60 , z S" 60 ) is belong to F and then to F

											Ge I K given that it is
	composed by k∈ K x k e +	sj s=si+w k -1 z k s = 2| K| -1. We then obtain that
	µx	S59	+ σz	S59	= µx S 60	+ σz S 60	= µx	S59	+ σz	S59	+ µ k e -µ k e
	+			µ k e" -	µ k e" +		µ k e" -		
	e"∈E" 60 k \{e}	e"∈ Ẽ59 k	e"∈E" 60 k			

e"∈ Ẽ59

k \{e}

  k∈K,e ∈E 65 k |{s ∈ S 65 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 65 , z S 65 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| + 1. We then obtain that µx S" 63 + σz S" 63 = µx S 65 + σz S 65 = µx S" 63 + σz S" 63 + σ k s . It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s i + w k -1, ..., s j } if k / ∈ C. with changing the paths established in S" 63

  from E 63 k to a path E 66 k passed through the edge e (i.e., e ∈ E 66 k ) with k ∈ C s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S 63 k and each s ∈ S 63 k with E 63 k ∩ E 66 k = ∅, modifying the path assigned to the demand k in S 63 with e ∈ E 63 k and k ∈ C from E 63 k to a path E 66 k without passing through the edge e (i.e., e / ∈ E 66 k ) and {s -w k + 1, ..., s} ∩ {s -w k" + 1, ..., s } = ∅ for each k" ∈ K \ {k, k } and each s ∈ S 63 k and each s ∈ S 63 k" with E 63 k" ∩ E 66 k = ∅, and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each s ∈ S 63 k and each s ∈ S 63 k with E 66 k" ∩ E 66 k = ∅. The solution S 66 is feasible given that a feasible path E 66 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 66 k is assigned to each demand k ∈ K along each edge e ∈ E 66 k with |S 66 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 66 k and s" ∈ S 66 k with E 66 k ∩ E 66 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 66 k |{s ∈ S 66 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 66 , z S 66 ) is belong to F and then to F e C given that it is composed by k∈C x k e = |C| -1. We then obtain that µx S 63 + σz S 63 = µx S 66 + σz S 66 = µx S 63 + σz S 63

			+ µ k e -µ k e
	+	µ k e" -	µ k e" +
	e"∈E 66 k \{e}	e"∈E 63 k	e"∈E 66

We take into account the presence of parallel fibers such that two edges e, e which have the same extremities i and j are independents.

We take into account that we can have several demands between the same origin-node and destinationnode.
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