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Abstract. The constrained-routing and spectrum assignment (C-RSA) problem is a key
issue when dimensioning and designing an optical network. Given an optical network G
and a multiset of traffic demand K, it aims at determining for each traffic demand k ∈ K
a path and an interval of contiguous slots while satisfying technological constraints and
optimizing some linear objective function(s). In this paper, we first introduce an integer
linear programming formulation for the C-RSA problem. We further investigate the facial
structure of the associated polytope.

Keywords: Optical networks, constrained-routing, spectrum assignment, integer linear pro-
gramming, polyhedron, dimension, valid inequality, facet.

1 Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by 2022, up
from 194.4 Exabytes per month in 2020 [82]. Optical transport networks are then facing a serious
challenge related to continuous growth in bandwidth capacity due to the growth of global communi-
cation services and networking: mobile internet network (e.g., 5th generation mobile network), cloud
computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social
networks) [9], etc... To sustain the network operators face this trend of increase in bandwidth, a new
generation of optical transport network architecture called Spectrally Flexible Optical Networks
(SFONs) (called also FlexGrid Optical Networks) has been introduced as promising technology
because of their flexibility, scalability, efficiency, reliability, survivability [7][9] compared with the
traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[66][67]. In SFONs the
optical spectrum is divided into small spectral units, called frequency slots as shown in Figure 1.
They have the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T
[1]. This concept of slots was proposed firstly by Jinno et al. in 2008 [36], and later explored by the
same authors in 2010 [85]. This can be seen as an improvement in resource utilization. We refer the

Fig. 1. Slot concept illustration in SFONs [75].

reader to [42] for more information about the architectures, technologies, and control of SFONs.

? This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project
FLEXOPTIM.
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The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimensioning
and designing of SFONs which is the main task for the development of this next generation of
optical networks. It consists of assigning for each traffic demand, a physical optical path, and an
interval of contiguous slots (called also channels) while optimizing some linear objective(s) and
satisfying the following constraints [29]:

1. spectrum contiguity : an interval of contiguous slots should be allocated to each demand k with
a width equal to the number of slots requested by demand k;

2. spectrum continuity : the interval of contiguous slots allocated to each traffic demand stills the
same along the chosen path;

3. non-overlapping spectrum: the intervals of contiguous slots of demands whose paths are not
edge-disjoints in the network cannot share any slot over the shared edges.

1.1 Related Works

The RSA is known to be an NP-hard problem [78] [81], and more complex than the historical
Routing and Wavelength Assignment (RWA) problem [32]. Various integer linear programming
(ILP) formulations and algorithms have been proposed to solve it. A detailed survey of spectrum
management techniques for SFONs is presented in [81] where authors classified variants of the
RSA problem: offline RSA which has been initiated in [61], and online or dynamic RSA which has
been initiated in [86] and recently developed in [56] and [89], and an investigation of numerous
aspects proposed in the tutorial [6]. This work focuses on the offline RSA problem. There exist
two classes of ILP formulations used to solve the RSA problem, called edge-path and edge-node
formulations. The ILP edge-path formulation is majorly used in the literature where variables are
associated with all possible physical optical paths inducing an explosion of a number of variables
and constraints which grow exponentially and in parallel with the growth of the instance size:
number of demands, the total number of slots, and topology size: number of links and nodes [29].
To the best of our knowledge, we observe that several papers which use the edge-path formulation
as an ILP formulation to solve the RSA problem, use a set of precomputed-paths without guaranty
of optimality e.g. in [12], [61], [62], [84], [91], and recently in [73]. On the other hand, column gen-
eration techniques have been used by Klinkowski et al. in [71], Jaumard et al. in [34], and recently
by Enoch in [19] to solve the relaxation of the RSA taking into account all the possible paths for
each traffic demand. To improve the LP bounds of the RSA relaxation, Klinkowsky et al. proposed
in [63] a valid inequality based on clique inequality separable using a branch-and-bound algorithm.
On the other hand, Klinkowski et al. in [64] propose a branch-and-cut-and-price method based on
an edge-path formulation for the RSA problem. Recently, Fayez et al. [21], and Xuan et al. [87],
they proposed a decomposition approach to solve the RSA separately (i.e., R+SA) based on a
recursive algorithm and an ILP edge-path formulation.
To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formulation
has been introduced as an alternative for it. It holds a polynomial number of variables and con-
straints that grow only polynomially with the size of the instance. We found just a few works in
the literature that use the edge-node formulation to solve the RSA problem e.g. [4], [84], [91].
On the other front, and due to the NP-Hardness of the C-RSA problem, we found that several
heuristics [16],[49],[75], and recently in [33], and greedy algorithms [44], and metaheuristics as
tabu search in [25], simulated annealing in [64], genetic algorithms in [23], [31], [32], ant colony
algorithms in [39] , and a hybrid meta-heuristic approach in [70], have been used to solve large
sized instances of the RSA problem. Furthermore, some resseraches start using some artificial in-
telligence algorithms, see for example [40] and [41], and some deep-learning algorithms [8], and
also machine-learning algorithms in [74], and recently in [88] and [27] to get more perefermonce.
Selvakumar et al. gives a survey in [77] in which they summarise the most contributions done for
the RSA problem before 2019.
In this paper, we are interested in the resolution of a complex variant of the RSA problem, called
the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the
network should also satisfy the transmission-reach constraint for each traffic demand according to
the actual service requirements. To the best of our knowledge a few related works on the RSA, to
say the least, take into account this additional constraint such that the length of the chosen path for
each traffic demand should not exceed a certain length (in kms). Recently, Hadhbi et al. in [29] and
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[30] introduced a novel tractable ILP based on the cut formulation for the C-RSA problem with a
polynomial number of variables and an exponential number of constraints separable in polynomial
time using network flow algorithms. Computational results show that their cut formulation solves
larger instances compared with those of Velasco et al. in [84] and Cai et al. [4]. It has been used
also as a basic formulation in the study of Colares et al. in [15], and also by Chouman et al. in [10]
and [11] to show the impact of several objective functions on the on optical network state. Bertero
et al. in [3] give a comparative study between several edge-node formulations and introduce new
ILP formulations adapted from the existing ILP formulations in the literature. Note that Velasco
et al. in [84] and Cai et al. [4] did not take into account the transmission-reach constraint.

1.2 Our Contributions

However, so far the exact algorithms proposed in the literature could not solve large-sized instances.
We believe that a cutting-plane-based approach could be powerful for the problem. To the best
of our knowledge, such an approach has not been yet considered. For that, the main aim of our
work is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end,
we aim to provide a deep polyhedral analysis of the C-RSA problem, and based on this, devise a
branch-and-cut algorithm for solving the problem considering large-scale networks that are often
used. In this Part I of our works, our contribution is to introduce a new ILP formulation for the
C-RSA problem which can be seen as an improved formulation for the one introduced by Hadhbi
et al. in [29] and [30]. We further investigate the facial structure of the associated polytope.

1.3 Organization

Following the introduction, the rest of this paper is organized as follows. In Section (2), we present
the C-RSA problem (input and output). In Section (3), we provide the notation, then we introduce
our ILP, called cut formulation based on the so-called cut inequalities. Furthermore, an intial
polyhedral investigation is given in Section (4).

2 The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider
a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V,E),
which is specified by a set of nodes V , and a multiset 4 E of links (optical-fibers). Each link
e = ij ∈ E is associated with a length `e ∈ R+ (in kms), a cost ce ∈ R+ such that each fiber-link
e ∈ E is divided into s̄ ∈ N+ slots. Let S = {1, . . . , s̄} be an optical spectrum of available frequency
slots with s̄ ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz
[35], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node
ok ∈ V , a destination node dk ∈ V \{ok}, a slot-width wk ∈ Z+, and a transmission-reach ¯̀

k ∈ R+

(in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (ok,dk)-path pk
in G such that

∑
e∈E(pk) le ≤ l̄k, where E(pk) denotes the set of edges belong the path pk, and a

subset of contiguous frequency slots Sk ⊂ S of width equal to wk such that Sk ∩ Sk′ = ∅ for each
pair of demands k, k′ ∈ K (k 6= k′) with E(pk) ∩ E(pk′) 6= ∅ so the total length of the paths used
for routing the demands (i.e.,

∑
k∈K

∑
e∈E(pk) le) is minimized.

Figure 2 shows the set of established paths and spectrums for the set of demands {k1, k2, k3, k4}
(Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t. each
edge e is characterized by a triplet [le, ce, s̄], and optical spectrum S = {1, 2, 3, ..., 8, 9} with s̄ = 9.

4 We take into account the presence of parallel fibers such that two edges e, e′ which have the same
extremities i and j are independents.

5 We take into account that we can have several demands between the same origin-node and destination-
node.
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Fig. 2. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4}
defined in Table 2(b).

3 The C-RSA Integer Linear Programming Formulation

Let’s us introduce some notations which will be useful throughout this paper to formulate some
constraints. For any subset of nodes X ⊆ V with X 6= ∅, let δ(X) denote the set of edges having
one extremity in X and the other one in X̄ = V \X which is called a cut. When X is a singleton
(i.e., X = {v}), we use δ(v) instead of δ({v}) to denote the set of edges incidents with a node
v ∈ V . The cardinality of a set K is denoted by |K|.
Here we introduce our integer linear programming formulation based on cut formulation for the
C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi et al. in
[29]. For k ∈ K and e ∈ E, let xke be a variable which takes 1 if demand k goes through the edge
e and 0 if not, and for k ∈ K and s ∈ S, let zks be a variable which takes 1 if slot s is the last-slot
allocated for the routing of demand k and 0 if not. The contiguous slots s′ ∈ {s − wk + 1, ..., s}
should be assigned to demand k whenever zks = 1.
Before introducing our ILP, we proceeded to some pre-processing techniques to determine some
zero-one variables s.t. we are able to determine them in polynomial time using shortest-path and
network flows algorithms as follows.
For each demand k and each node v, one can compute a shortest path between each of the pair
of nodes (ok, v), (v, dk). If the lengths of the (ok, dk)−paths formed by the shortest paths (ok, v)
and (v, dk) are both greater that l̄k then node v cannot be in a path routing demand k, and we
then say that v is a forbidden node for demand k due to the transmission-reach constraint. Let
V k0 denote the set of forbidden nodes for demand k ∈ K. Note that using Dijkstra’s algorithm,
one can identify in polynomial time the forbidden nodes V k0 for each demand k ∈ K. On the
other hand and regarding the edges, for each demand k and each edge e = ij, one can compute
a shortest path between each of the pair of nodes (ok, i), (j, dk), (ok, j) and (i, dk). If the lengths
of the (ok, dk)−paths formed by e together with the shortest (ok, i) and (j, dk) (resp. (ok, j) and
(i, dk)) paths are both greater that l̄k then edge ij cannot be in a path routing demand k, and we
then say that ij is a forbidden edge for demand k due to the transmission-reach constraint. Let
Ekt denote the set of forbidden edges due to the transmission-reach constraint for demand k ∈ K.
Note that using Dijkstra’s algorithm, one can identify in polynomial time the forbidden edges Ekt
for each demand k ∈ K. This allows us to create in polynomial time a proper topology Gk for each
demand k by deleting the forbidden nodes V k0 and forbidden edges Ekt from the original graph
G (i.e., Gk = G(V \ V k0 , E \ Ekt )). As a result, there may exist some forbidden-nodes due to the



On the Facial Structure of the C-RSA Polyhedron 5

elementary-path constraint which means that all the (ok, dk)−paths passed through a node v are
not elementary-paths. This can be done in polynomial time using Breadth First Search (BFS)
algorithm of complexity O(|E \Ek0 |+ |V \ V k0 |) for each demand k. Note that we did not take into
account this case in our study. Table 1 below shows the set of forbidden edges Ek0 and forbidden
nodes V k0 for each demand k in K already given in Fig. 2(b).

k ok → dk wk
¯̀
k V k

0 Ek
0

1 a → c 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
2 a → d 1 4 {g} {cg, dg, df}
3 b → f 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
4 b → e 1 4 {g} {cg, dg, df}

Table 1. Topology pre-processing for the set of demands K given in Fig. 2(b).

Let δGk
(v) denote the set of edges incident with a node v for the demand k in Gk. Let δk(W )

denote a cut for demand k ∈ K in Gk s.t. ok ∈W and dk ∈ V \W where W is a subset of nodes in
V of Gk. Let f be an edge in δ(W ) s.t. all the edges e ∈ δ(W ) \ {f} are forbidden for demand k.
As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential
edges can be determined in polynomial time using network flows as follows.

1. we create a proper topology Gk = G(V \ V k0 , E \ Ekt ) for the demand k

2. we fix a weight equals to 1 for all the edges e in E \ Ekt for the demand k in Gk

3. we calculate ok − dk min-cut which separates ok from dk.

4. if δGk
(W ) = {e} then the edge e is an essential edge for the demand k s.t. ok ∈ W and

dk ∈ V \W . We increase the weight of the edge e by 1. Go to (3).

5. if |δGk
(W )| > 1 then end of algorithm.

Let Ek1 denote the set of essential edges of demand k, and Ke denote a subset of demands in K
s.t. edge e is an essential edge for each demand k ∈ Ke.
In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there
may exist edges that may be forbidden because of lack of resources for demand k. This is the case
when, for instance, the residual capacity of the edge in question does not allow a demand to use
this edge for its routing, i.e., wk > s̄ −

∑
k′∈Ke

wk′ . Let Ekc denote the set of forbidden edges for

demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges Ekc and forbidden
nodes v in V with δ(v) ⊆ Ekt , should also be deleted from the proper graph Gk of demand k, which
means that Gk contains |E| \ |Ekt | edges and |V | \ |{v ∈ V, δ(v) ⊆ Ekt }| nodes. Let Ek0 = Ekt denote
the set of all forbidden edges for demand k that can be determined due to the transmission reach
and resources constraints.
As a result of the pre-processing stage, some non-compatibility between demands may appear due
to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k′ with e = ij /∈ Ek0 ∪ Ek1 ∪ Ek
′

0 ∪ Ek
′

1 , are
said non-compatible demands because of lack of resources over the edge e if and only if the the
residual capacity of the edge e does not allow to route the two demands k, k′ together through e,
i.e., wk + wk′ > s̄−

∑
k”∈Ke

wk”.

Let Ke
c denote the set of pair of demands (k, k′) in K that are non-compatibles for the edge e.

The C-RSA problem can hence be formulated as follows.

min
∑
k∈K

∑
e∈E

lex
k
e , (1)
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subject to ∑
e∈δ(X)

xke ≥ 1,∀k ∈ K,∀X ⊆ V s.t. |X ∩ {ok, dk}| = 1, (2)

∑
e∈E

lex
k
e ≤ ¯̀

k,∀k ∈ K, (3)

xke = 0,∀k ∈ K, ∀e ∈ Ek0 , (4)

xke = 1,∀k ∈ K, ∀e ∈ Ek1 , (5)

zks = 0,∀k ∈ K,∀s ∈ {1, ..., wk − 1}, (6)

s̄∑
s=wk

zks ≥ 1,∀k ∈ K, (7)

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 3,∀(e, k, k′, s) ∈ Q, (8)

0 ≤ xke ≤ 1,∀k ∈ K,∀e ∈ E, (9)

zks ≥ 0,∀k ∈ K, ∀s ∈ S, (10)

xke ∈ {0, 1},∀k ∈ K,∀e ∈ E, (11)

zks ∈ {0, 1},∀k ∈ K,∀s ∈ S. (12)

where Q denotes the set of all the quadruples (e, k, k′, s) for all e ∈ E, k ∈ K, k′ ∈ K, and s ∈ S
with (k, k′) /∈ Ke

c .
Inequalities (2) ensure that there is an (ok, dk)-path between ok and dk for each demand k, and
guarantee that all the demands should be routed. They are called cut inequalities. By optimizing
the objective function (1), and given that the capacities of all edges are strictly positives, this
ensures that there is exactly one (ok, dk)-path between ok and dk which will be selected as optimal
path for each demand k. We suppose that we have sufficient capacity in the network so that all the
demands can be routed. This means that we have at least one feasible solution for the problem.
Inequalities (3) express the length limit on the routing paths which is called ”the transmission-
reach constraint”. Equations (4) ensure that the variables associated to the forbidden edges for
demand k are always equal to 0, and those of the essential edges are always equal to 1 for demand
k. Equations (6) express the fact that a demand k cannot use slot s ≤ wk − 1 as the last-slot .
The slots s ∈ {1, ..., wk − 1} are called forbidden last-slots for demand k. Inequalities (7) should
normally be an equation form ensuring that exactly one slot s ∈ {wk, . . . , s̄} must be assigned to
demand k as last-slot . Here we relax this constraint. By a choice of the objective function, the
equality is guaranteed at the optimum (e.g. min

∑
k∈K

∑s̄
s=wk

s.zks or min
∑
k∈K

∑s̄
s=wk

s.wk.z
k
s ).

Inequalities (8) express the contiguity and non-overlapping constraints. Inequalities (9)-(10) are
the trivial inequalities, and constraints (11)-(12) are the integrality constraints.
Note that the linear relaxation of the C-RSA can be solved in polynomial time given that inequal-
ities (2) can be separated in polynomial time using network flows, see e.g. preflow algorithm of
Goldberg and Tarjan introduced in [24] which can be run in O(|V \ V k0 |3) time for each demand
k ∈ K.

Proposition 1. The formulation (2)-(12) is valid for the C-RSA problem.

Proof. It is trivial given the definition of each constraint of the formulation (2)-(12) such that any
feasible solution for this formulation is necessary a feasible solution for the C-RSA problem.

Let P (G,K,S) be the polytope, convex hull of the solutions for the cut formulation (2)-(12).

4 Polyhedral Analysis

In this section we discuss the facial structure of the C-RSA.
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4.1 Polyhedron P (G,K, S) Dimension

In what follows, we describe some structural properties. These will be used for determining the
dimension of P (G,K,S).

Proposition 2. The follows equation system (13) is of full rank
xke = 0, for all k ∈ K and e ∈ Ek0 ,
xke = 1, for all k ∈ K and e ∈ Ek1 ,
zks = 0, for all k ∈ K and s ∈ {1, ..., wk − 1}.

(13)

The rank of system (13) is given by

r =
∑
k∈K

(|Ek0 |+ |Ek1 |+ (wk − 1)).

Let Q denote a matrix associated with the system (13) which contains r lines linear independents.
We distinguish 4 blocks of lines in Q as below

– block Q1 corresponds to the equations xke = 0 for all k ∈ K and all e ∈ Ek0 ,
– block Q2 corresponds to the equations xke = 1 for all k ∈ K and all e ∈ Ek1 ,
– block Q3 corresponds to the equations zks = 0 for all k ∈ K and all s ∈ {1, ..., wk − 1}.

Note that the 4 blocks of the matrix Q are independants.
A solution of the C-RSA problem is given by two sets Ek and Sk for each demand k ∈ K where Ek
is a set of edges used for the routing of demand k which contains a path pk satisfying the continuity
of (ok, dk)-path pk for the demand k (i.e., E(pk) ⊆ Ek) such that

∑
e∈Ek

le ≤ l̄k and Ek1 ⊆ Ek,
and Sk is a set of slots which represent the set of last-slot selected for the demand k which forms
a set of channels such that each channel contains wk contiguous slots.
Figure 3 shows the routing solutions for a demand k that are feasible for our problem throughout
our proofs.

Fig. 3. A set of edges Ek for a demand k containing an (ok, dk)-path Pk together with: isolated-edge,
islated-cycle, two isolated-edges, and linked-cycle.

Proposition 3. Consider an equation µx + σz = λ of P (G,K,S). The C-RSA equation system
(13) defines a minimal equation system for P (G,K,S). As a consequence, we obtain that for each
demand k

– σks = 0 for all slots s ∈ {wk, ..., s̄},
– σks = 0 for all s ∈ {wk, ..., s̄},
– µke = 0 for all e ∈ E \ (Ek0 ∪ Ek1 ),

and µx+ σz = λ of P (G,K,S) is a linear combination of equation system (13).
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Proof. To prove that µx + σz is a linear combination of equations system (13), it is sufficient to

prove that for each demand k ∈ K, there exists γk1 ∈ R|Ek
0 |, γk2 ∈ R|Ek

1 |, γk3 ∈ Rwk−1 (given that
the matrix Q has 3 blocks) s.t. (µ, σ) = γQ.
Let xS and zS denote the incidence vector of a solution S of the C-RSA problem.
Let us show that σks = 0 for all k ∈ K and all s ∈ {wk, ..., s̄}. Consider a demand k and a slot s in
{wk, ..., s̄}. To do so, we consider a solution S0 = (E0, S0) in which

– a feasible path E0
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S0
k is assigned to each demand k ∈ K along each edge e ∈ E0

k with |S0
k| ≥ 1

(contiguity and continuity constraints),
– {s′−wk + 1, ..., s′}∩{s”−wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S0

k and s” ∈ S0
k′

with E0
k ∩ E0

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have
∑
k∈K,e∈E0

k
|{s′ ∈

S0
k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk +1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S0
k′ with E0

k ∩E0
k′ 6= ∅

(non-overlapping constraint taking into account the possibility of adding the slot s in the set
of last-slots S0

k assigned to the demand k in the solution S0).

S0 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

0

, zS
0

) belongs to P (G,K,S). Based on
this, we derive a solution S1 = (E1, S1) from the solution S0 by adding the slot s as last-slot to
the demand k without modifying the paths assigned to the demands K in S0 (i.e., E1

k = E0
1 for

each k ∈ K), and the last-slots assigned to the demands K \ {k} in S0 remain the same in the
solution S1 i.e., S0

k′ = S1
k′ for each demand k′ ∈ K \ {k}, and S1

k = S0
k ∪ {s} for the demand k.

The solution S1 is feasible given that

– a feasible path E1
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S1
k is assigned to each demand k ∈ K along each edge e ∈ E1

k with |S1
k| ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S1

k and s′ ∈ S1
k′

with E1
k ∩ E1

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have
∑
k∈K,e∈E1

k
|{s ∈

S1
k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
1

, zS
1

) belongs to P (G,K,S). We then obtain that

µxS
0

+ σzS
0

= µxS
1

+ σzS
1

= µxS
0

+ σzS
0

+ σks .

It follows that σks = 0 for demand k and a slot s ∈ {wk, ..., s̄}. The slot s is chosen arbitrarily for
the demand k, we iterate the same procedure for all feasible slots in {wk, ..., s̄} of demand k s.t.
we find

σks = 0, for demand k and all slots s ∈ {wk, ..., s̄}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s = 0, for all k′ ∈ K \ {k} and all slots s ∈ {wk′ , ..., s̄}

Consequently, we conclude that

σks = 0, for all k ∈ K and all slots s ∈ {wk, ..., s̄}

Next we will show that µke = 0 for all the demands k ∈ K and all e ∈ E \ (Ek0 ∪ Ek1 ). Consider a
demand k ∈ K and an edge e ∈ E \ (Ek0 ∪Ek1 ). For that, we consider a solution S ′0 = (E′0, S′0) in
which

– a feasible path E′0k is assigned to each demand k ∈ K (routing constraint),
– a set of last-slots S′0k is assigned to each demand k ∈ K along each edge e ∈ E′0k with |S′0k | ≥ 1

(contiguity and continuity constraints),
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– {s′−wk +1, ..., s′}∩{s”−wk′ +1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′0k and s” ∈ S′0k′
with E′0k ∩ E′0k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have

∑
k∈K,e∈E′0

k
|{s′ ∈

S′0k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k′ ∈ K and s ∈ S′0k and s′ ∈ S′0k′ with

(E′0k ∪{e})∩E′0k′ 6= ∅ (non-overlapping constraint taking into account the possibility of adding
the edge e in the set of edges E′0k selected to route the demand k in the solution S ′0),

– and the edge e is not non-compatible edge with the selected edges e ∈ E′0k of demand k in the
solution S ′0, i.e.,

∑
e′∈E′0

k
le′ + le ≤ l̄k. As a result, E′0k ∪ {e} is a feasible path for the demand

k.

S ′0 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′0
, zS

′0
) belongs to P (G,K,S). Based on

this, we distinguish two cases:

– without changing the spectrum assignment established in S ′0: we derive a solution S2 obtained
from the solution S ′0 by adding an unused edge e ∈ E \ (Ek0 ∪ Ek1 ) for the routing of demand
k in K in the solution S ′0 which means that E2

k = E′0k ∪ {e}. The last-slots assigned to the
demands K, and paths assigned the set of demands K \ {k} in S ′0 remain the same in the
solution S2, i.e., S2

k = S′0k for each k ∈ K, and E2
k′ = E′0k′ for each k′ ∈ K \ {k}. S2 is clearly

feasible given that
• and a feasible path E2

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S2

k is assigned to each demand k ∈ K along each edge e ∈ E2
k with

|S2
k| ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S2
k and

s′ ∈ S2
k′ with E2

k ∩ E2
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E2
k
|{s ∈ S2

k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint),

• and
∑
e′∈E2

k\{e}
le′ + le ≤ l̄k.

The corresponding incidence vector (xS
2

, zS
2

) is belong to P (G,K,S). It follows that

µxS
′0

+ σzS
′0

= µxS
2

+ σzS
2

= µxS
′0

+ µke + σzS
′0
.

As a result, µke = 0 for demand k and an edge e.
– with changing the spectrum assignment established in S ′0: let S ′2 be a solution obtained from

the solution S ′0 by adding an unused edge e ∈ E \ (Ek0 ∪ Ek1 ) for the routing of demand k in
K in the solution S ′0 which means that E′2k = E′0k ∪ {e}, and removing slot s selected for the
demand k in S ′0 and replaced it by a new slot s′ ∈ {wk, ...,S} (i.e., S′2k = (S′0k \ {s})∪ {s′} s.t.
{s′−wk + 1, ..., s′}∩{s”−wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S′0k′ with E′2k ∩E′0k′ 6= ∅.
The last-slots and paths assigned the set of demands K \ {k} in S ′0 remain the same in the
solution S ′2, i.e., S′2k′ = S′0k′ and E′2k′ = E′0k′ for each k′ ∈ K \ {k}. S ′2 is clearly feasible given
that
• and a feasible path E′2k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′2k is assigned to each demand k ∈ K along each edge e ∈ E′2k with
|S′2k | ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S′2k and
s′ ∈ S′2k′ with E′2k ∩ E′2k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E′2

k
|{s ∈ S′2k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
′2
, zS

′2
) is belong to P (G,K,S). It follows that

µxS
′0

+ σzS
′0

= µxS
′2

+ σzS
′2

= µxS
′0

+ µke + σzS
′0
− σks + σks′

which gives that µke = 0 for demand k and an edge e given that σks = 0 for all k ∈ K and all
s ∈ {wk, ..., s̄}.

As e is chosen arbitrarily for the demand k with e /∈ Ek0 ∪ Ek1 , we iterate the same procedure for
all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). We conclude that for the demand k

µke = 0, for all e ∈ E \ (Ek0 ∪ Ek1 ).
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Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µke = 0, for all k ∈ K and all e ∈ E \ (Ek0 ∪ Ek1 ).

Therefore all the equations of the polytope P (G,K,S) are given only in terms of the variables xke

with e ∈ Ek0 ∪ Ek1 and zks with s ∈ {1, ..., wk}. Let Qk =

Q1
k

Q2
k

Q3
k

 be the submatrix of matrix Q

associated to the equations (4) and (5) and involving variables xke for all e ∈ Ek0 ∪Ek1 and variables
zks with s ∈ {1, ..., wk} for demand k. Note that a forbidden edge can never be an essential edge at
the same time. Otherwise, the problem is infeasible. We want to show that µk = γk1Q

1
k +γk2Q

2
k and

σk = γk3Q
k
3 . For that, we first ensure that all the edges e ∈ Ek0 for each demand k are independants

s.t. for each demand k ∈ K we have∑
e∈Ek

0

µke =
∑
e∈Ek

0

γk,e1 →
∑
e∈Ek

0

(µke − γ
k,e
1 ) = 0.

The only solution of this system is µke = γk,e1 for each e ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e1 , for all k ∈ K and all e ∈ Ek0 ,

We re-do the same thing for the edges e ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e∈Ek
1

µke =
∑
e∈Ek

1

γk,e2 →
∑
e∈Ek

1

(µke − γ
k,e
2 ) = 0

The only solution of this system is µke = γk,e2 for each e ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e2 , for all k ∈ K and all e ∈ Ek1 ,

On the other hand, note that the slots s ∈ {1, ..., wk − 1} for each demand k are independants s.t.
for each demand k ∈ K, we have

wk−1∑
s=1

σks =

wk−1∑
s=1

γk,s3 →
wk−1∑
s=1

(σks − γ
k,s
3 ) = 0

The only solution of this system is σks = γk,s3 for each s ∈ {1, ..., wk − 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks = γk,s3 , for all k ∈ K and all s ∈ {1, ..., wk − 1}. (14)

We conclude at the end that for each k ∈ K and e ∈ E

µke =


γk,e1 , if e ∈ Ek0
γk,e2 , if e ∈ Ek1

0, otherwise

yielding

µk = γk1Q
1
k + γk2Q

2
k for each k ∈ K.

Moreover, for each k ∈ K and s ∈ S

σks =

{
γk,s3 , if s ∈ {1, ..., wk − 1}

0, otherwise

i.e., σk = γk3Q
3
k.

As a result (µ, σ) = γQ with γ = (γ1, γ2, γ3) which ends our proof.
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Theorem 1. The dimension of P (G,K,S) is given by

dim(P (G,K,S)) = |K| ∗ (|E|+ |S|)− r.

Proof. Given the rank of the C-RSA equation system (13) and the proposition (3).

4.2 Facets

In this section, we investigate the facial structure of our polytope P (G,K,S) by characterizing
when the basic inequalities (2)-(12) of our cut formulation are facets defining for P (G,K,S).

Theorem 2. Consider a demand k ∈ K, and an edge e ∈ E \ (Ek0 , E
k
1 ). Then, the inequality

xke ≥ 0 is facet defining for P (G,K,S).

Proof. Let’s us denote F ke the face induced by the inequality xke ≥ 0, which is given by

F ke = {(x, z) ∈ P (G,K,S) : xke = 0}.

In order to prove that the inequality xke ≥ 0 is facet defining for P (G,K,S), we start checking
that F ke is a proper face which means that it is not empty, and F ke 6= P (G,K,S). We construct a
solution S3 = (E3, S3) as below

– a feasible path E3
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S3
k is assigned to each demand k ∈ K along each edge e′ ∈ E3

k with |S3
k| ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S3

k and s′ ∈ S3
k′

with E3
k ∩ E3

k′ 6= ∅ (non-overlapping constraint),
– and the edge e is not chosen to route the demand k in the solution S3, i.e., e /∈ E3

k.

Obviously, S3 is feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

3

, zS
3

) is belong to
P (G,K,S) and then to F ke given that it is composed by xke = 0. As a result, F ke is not empty
(F ke 6= ∅). Furthermore, given that e ∈ E \ (Ek0 ∪ Ek1 ) for the demand k, this means that there
exists at least one feasible path Ek for the demand k passed through the edge e which means that
F ke 6= P (G,K,S).
On another hand, we know that all the solutions of F ke are in P (G,K,S) which means that they
verify the equations system (13) s.t. the new equations system (15) associated with F ke is written
as below


xke = 0, s.t. k and e are chosen arbitrarily

xke = 0, for all k ∈ K and all e ∈ Ek0
xke = 1, for all k ∈ K and all e ∈ Ek1

zks = 0, for all k ∈ K and all s ∈ {1, ..., wk − 1}.

(15)

Given that the e ∈ E \ (Ek0 ∪ Ek1 ), the system (15) shows that the equation xke = 0 is not a result
of equations of system (13) which means that the equation xke = 0 is not redundant in the system
(15). As a result, the system is of full rank. As a result, the dimension of the face F ke is equal to

dim(F ke ) = |K| ∗ (|E| + |S|) − rank(Q′) = |K| ∗ (|E| + |S|) − (1 + r) = dim(P (G,K,S)) − 1,

where Q′ is the matrix associated with the equation system (15). As a result, the face F ke is
facet defining for P (G,K,S). Furthermore, we strengthened our proof as follows using a technique
called ”proof by maximality”. We denote the inequality xke ≥ 0 by αx+ βz ≤ λ. Let µx+ σz ≤ τ
be a valid inequality that is facet defining F of P (G,K,S). Suppose that F ke ⊂ F = {(x, z) ∈
P (G,K,S) : µx + σz = τ}. We show that there exist ρ ∈ R and γ with γ = (γ1, γ2, γ3) ( with

γ1 ∈ R
∑

k∈K |E
k
0 |, γ2 ∈ R

∑
k∈K |E

k
1 |, γ3 ∈ R

∑
k∈K(wk−1)) s.t. (µ, σ) = ρ(α, β)+γQ. We will show that
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– µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}),
– and µk

′

e′ = 0 for all demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),
– and σks = 0 for all demands k ∈ K and all slots s ∈ {wk, ..., s̄}.

First, let’s show that σks = 0 for all k ∈ K and all s ∈ {wk, ..., s̄}. Consider a demand k and a slot
s in {wk, ..., s̄}. Based on this, we consider a solution S ′3 = (E′3, S′3) in which

– a feasible path E′3k is assigned to each demand k ∈ K (routing constraint),
– a set of last-slots S′3k is assigned to each demand k ∈ K along each edge e′ ∈ E′3k with |S′3k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′3k and
s” ∈ S′3k′ with E′3k ∩ E′3k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E′3

k
|{s′ ∈ S′3k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk+1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S3
k′ with E′3k ∩E′3k′ 6= ∅

(non-overlapping constraint taking into account the possibility of adding the slot s in the set
of last-slots S′3k assigned to the demand k in the solution S ′3),

– and the edge e is not chosen to route the demand k in the solution S ′3, i.e., e /∈ E′3k .

S ′3 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′3
, zS

′3
) is belong to F and then to F ke

given that it is also composed by xke = 0. Based on this, we derive a solution S4 = (E4, S4) from
the solution S ′3 by adding the slot s as last-slot to the demand k without modifying the paths
assigned to the demands K in S ′3 (i.e., E4

k = E′31 for each k ∈ K), and the last-slots assigned to
the demands K \ {k} in S ′3 remain the same in the solution S4 i.e., S′3k′ = S4

k′ for each demand
k′ ∈ K \ {k}, and S4

k = S′3k ∪ {s} for the demand k. The solution S4 is feasible given that

– a feasible path E4
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S4
k is assigned to each demand k ∈ K along each edge e′ ∈ E4

k with |S4
k| ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S4

k and s′ ∈ S4
k′

with E4
k ∩ E4

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have
∑
k∈K,e′∈E4

k
|{s ∈

S4
k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint),

– and the edge e is not chosen to route the demand k in the solution S4, i.e., e /∈ E4
k.

The corresponding incidence vector (xS
4

, zS
4

) is belong to F and then to F ke given that it is also
composed by xke = 0. We then obtain that

µxS
′3

+ σzS
′3

= µxS
4

+ σzS
4

= µxS
′3

+ σzS
′3

+ σks .

It follows that σks = 0 for demand k and a slot s ∈ {wk, ..., s̄}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wk, ..., s̄} of demand k s.t. we find

σks = 0, for demand k and all slots s ∈ {wk, ..., s̄}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s = 0, for all k′ ∈ K \ {k} and all slots s ∈ {wk′ , ..., s̄}

Consequently, we conclude that

σks = 0, for all k ∈ K and all slots s ∈ {wk, ..., s̄}

Next, we will show that µke′ = 0 for all the demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪Ek
′

1 ), and
µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). Consider the demand k ∈ K and an
edge e′ ∈ E \ (Ek0 ∪Ek1 ∪{e}) chosen arbitrarily. For that, we consider a solution S”3 = (E”3, S”3)
in which
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– a feasible path E”3
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”3
k is assigned to each demand k ∈ K along each edge e′ ∈ E”3

k with
|S”3

k| ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”3

k and
s” ∈ S”3

k′ with E”3
k ∩ E”3

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E”3

k
|{s′ ∈ S”3

k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k′ ∈ K and s ∈ S”3
k and s′ ∈ S”3

k′

with (E”3
k ∪{e′})∩E”3

k′ 6= ∅ (non-overlapping constraint taking into account the possibility of
adding the edge e′ in the set of edges E”3

k selected to route the demand k in the solution S”3),
– and the edge e is not chosen to route the demand k in the solution S”3, i.e., e /∈ E”3

k.

S”3 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”3

, zS”3

) is belong to F and then to F ke
given that it is also composed by xke = 0. Based on this, we distinguish two cases:

– without changing the spectrum assignment established in S”3: we derive a solution S5 obtained
from the solution S”3 by adding an unused edge e′ ∈ E \ (Ek0 ∪Ek1 ) for the routing of demand
k in K in the solution S3 which means that E5

k = E”3
k ∪ {e′}. The last-slots assigned to the

demands K, and paths assigned the set of demands K \ {k} in S”3 remain the same in the
solution S5, i.e., S5

k = S”3
k for each k ∈ K, and E5

k′ = E”3
k′ for each k′ ∈ K \ {k}. S5 is clearly

feasible given that
• and a feasible path E5

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S5

k is assigned to each demand k ∈ K along each edge e′ ∈ E5
k with

|S5
k| ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S5
k and

s′ ∈ S5
k′ with E5

k ∩ E5
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E5
k
|{s ∈ S5

k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint),

• and the edge e is not chosen to route the demand k in the solution S5, i.e., e /∈ E5
k.

The corresponding incidence vector (xS
5

, zS
5

) is belong to F and then to F ke given that it is
also composed by xke = 0. It follows that

µxS”3

+ σzS”3

= µxS
5

+ σzS
5

= µxS”3

+ µke′ + σzS”3

.

As a result, µke′ = 0 for demand k and an edge e′.
– with changing the spectrum assignment established in S”3: let S ′5 be a solution obtained from

the solution S”3 by adding an unused edge e′ ∈ E \ (Ek0 ∪Ek1 ) for the routing of demand k in
K in the solution S”3 which means that E′5k = E”3

k ∪{e′}, and removing slot s selected for the
demand k in S”3 and replaced it by a new slot s′ ∈ {wk, ...,S} (i.e., S′5k = (S”3

k \{s})∪{s′} s.t.
{s′−wk+1, ..., s′}∩{s”−wk′ +1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S”3

k′ with E′5k ∩E”3
k′ 6= ∅.

The last-slots and paths assigned the set of demands K \ {k} in S”3 remain the same in the
solution S ′5, i.e., S′5k′ = S”3

k′ and E′5k′ = E”3
k′ for each k′ ∈ K \ {k}. S ′5 is clearly feasible given

that
• and a feasible path E′5k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′5k is assigned to each demand k ∈ K along each edge e′ ∈ E′5k with
|S′5k | ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S′5k and
s′ ∈ S′5k′ with E′5k ∩ E′5k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E′5

k
|{s ∈ S′5k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint),

• and the edge e is not chosen to route the demand k in the solution S ′5, i.e., e /∈ E′5k .

The corresponding incidence vector (xS
′5
, zS

′5
) is belong to F and then to F ke given that it is

also composed by xke = 0. It follows that

µxS”3

+ σzS”3

= µxS
′5

+ σzS
′5

= µxS”3

+ µke′ + σzS”3

− σks + σks′

which gives that µke′ = 0 for demand k and an edge e′ given that σks = 0 for all k ∈ K and all
s ∈ {wk, ..., s̄}.
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As e′ is chosen arbitrarily for the demand k with e′ /∈ Ek0 ∪Ek1 ∪{e}, we iterate the same procedure
for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). We conclude that for the demand k

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e′ ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µk
′

e′ = 0, for all k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}).

We ensure that all the edges e′ ∈ Ek0 for each demand k are independants s.t. for each demand
k ∈ K we have ∑

e′∈Ek
0

µke′ =
∑
e′∈Ek

0

γk,e
′

1 →
∑
e′∈Ek

0

(µke′ − γ
k,e′

1 ) = 0.

The only solution of this system is µke′ = γk,e
′

1 for each e′ ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

1 , for all k ∈ K and all e′ ∈ Ek0 ,

We re-do the same thing for the edges e′ ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e′∈Ek
1

µke′ =
∑
e′∈Ek

1

γk,e
′

2 →
∑
e′∈Ek

1

(µke′ − γ
k,e′

2 ) = 0

The only solution of this system is µke′ = γk,e
′

2 for each e′ ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

2 , for all k ∈ K and all e′ ∈ Ek1 ,

On the other hand, all the slots s ∈ {1, ..., wk − 1} for each demand k are independants s.t. for
each demand k ∈ K, we have

wk−1∑
s=1

σks =

wk−1∑
s=1

γk,s3 →
wk−1∑
s=1

(σks − γ
k,s
3 ) = 0

The only solution of this system is σks = γk,s3 for each s ∈ {1, ..., wk − 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks = γk,s3 , for all k ∈ K and all s ∈ {1, ..., wk − 1}. (16)

We conclude that for each k′ ∈ K and e′ ∈ E

µk
′

e′ =


γk

′,e′

1 , if e′ ∈ Ek0 ,

γk
′,e′

2 , if e′ ∈ Ek1 ,
ρ, if k′ = k and e′ = e,

0, otherwise,

and for each k ∈ K and s ∈ S

σks =

{
γk,s3 , if s ∈ {1, ..., wk − 1},

0, otherwise.

As a result (µ, σ) = ραke + γQ which ends our proof.
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Theorem 3. Consider a demand k ∈ K, and a slot s ∈ {wk, .., s̄}. Then, the inequality zks ≥ 0 is
facet defining for P (G,K,S).

Proof. Let F ks denote the face induced by inequality zks ≥ 0, which is given by

F ks = {(x, z) ∈ P (G,K,S) : zks = 0}.

In order to prove that inequality zks ≥ 0 is facet defining for P (G,K,S), we start checking that F ks
is a proper face, and F ks 6= P (G,K,S). We construct a solution S6 = (E6, S6) as below

– a feasible path E6
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S6
k is assigned to each demand k ∈ K along each edge e′ ∈ E6

k with |S6
k| ≥ 1

(contiguity and continuity constraints),
– {s′−wk + 1, ..., s′}∩{s”−wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S6

k and s” ∈ S6
k′

with E6
k ∩ E6

k′ 6= ∅ (non-overlapping constraint),
– and the slot s is not chosen to route the demand k in the solution S6, i.e., s /∈ S6

k.

Obviously, S6 is feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

6

, zS
6

) is belong to F
and then to F ks given that it is composed by zks = 0. As a result, F ks is not empty (F ks 6= ∅).
Furthermore, given that s ∈ {wk, ..., s̄} for the demand k, this means that there exists at least one
feasible solution for the problem in which s ∈ Sk for the demand k. As a result, F ks 6= P (G,K,S).
On another hand, we know that all the solutions of F ks are in P (G,K,S) which means that they
verify the equations system (13) s.t. the new equations system (17) associated with F ks is written
as below


zks = 0, s.t. k and s are chosen arbitrarily

xke = 0, for all k ∈ K and all e ∈ Ek0
xke = 1, for all k ∈ K and all e ∈ Ek1

zks = 0, for all k ∈ K and all s ∈ {1, ..., wk − 1}.

(17)

The equation zks = 0 is not result of equations of system (13) which means that the equation zks = 0
is not redundant in the system (17). As a result, the system (17) is of full rank. As a result, the
dimension of the face F ks is equal to

dim(F ks ) = |K| ∗ (|E|+ |S|)− rank(Q”) = |K| ∗ (|E|+ |S|)− (1 + r) = dim(P (G,K,S))− 1,

where Q” denotes the matrix associated with the equation system (17). As a result, the face F ks
is facet defining for P (G,K,S). Furthermore, we strengthen our proof as follows. We denote the
inequality zks ≥ 0 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F
of P (G,K,S). Suppose that F ks ⊂ F = {(x, z) ∈ P (G,K,S) : µx + σz = τ}. We show that there

exist ρ ∈ R and γ with γ = (γ1, γ2, ..., γ4) (γ1 ∈ R
∑

k∈K |E
k
0 |, γ2 ∈ R

∑
k∈K |E

k
1 |, γ3 ∈ R

∑
k∈K(wk−1))

s.t. (µ, σ) = ρ(α, β) + γQ, and that

– σks′ = 0 for demand k and all slots s′ ∈ {wk, ..., s̄} \ {s},
– and σk

′

s′ = 0 for all demands k′ ∈ K \ {k} and all slots s′ ∈ {wk′ , ..., s̄},
– and µke = 0 for all demands k ∈ K and all edges e ∈ E \ (Ek0 ∪ Ek1 ).

First, let’s us show that µke = 0 for all the demands k ∈ K and all edges e ∈ E\(Ek0 ∪Ek1 ). Consider
a demand k ∈ K and an edge e ∈ E \ (Ek0 ∪Ek1 ). For that, we consider a solution S ′6 = (E′6, S′6)
in which

– a feasible path E′6k is assigned to each demand k ∈ K (routing constraint),
– a set of last-slots S′6k is assigned to each demand k ∈ K along each edge e ∈ E′6k with |S′6k | ≥ 1

(contiguity and continuity constraints),
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– {s′−wk +1, ..., s′}∩{s”−wk′ +1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′6k and s” ∈ S′6k′
with E′6k ∩ E′6k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have

∑
k∈K,e∈E′6

k
|{s′ ∈

S′6k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),
– and {s′ − wk + 1, ..., s′} ∩ {s”− wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s′ ∈ S′6k and s” ∈ S′6k′

with (E′6k ∪ {e}) ∩ E′6k′ 6= ∅ (non-overlapping constraint taking into account the possibility of
adding the edge e in the set of edges E′6k selected to route the demand k in the solution S ′6),

– the edge e is not non-compatible edge with the selected edges e ∈ E′6k of demand k in the
solution S ′6, i.e.,

∑
e′∈E′6

k
le′ + le ≤ l̄k. As a result, E′6k ∪ {e} is a feasible path for the demand

k,
– and the slot s is not chosen to route the demand k in the solution S”6, i.e., s /∈ S”6

k.

S ′6 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′6
, zS

′6
) is belong to F and then to F ks given

that it is composed by zks = 0. Based on this, we derive a solution S7 obtained from the solution
S ′6 by adding an unused edge e ∈ E\(Ek0 ∪Ek1 ) for the routing of demand k in K in the solution S6

which means that E7
k = E′6k ∪ {e}. The last-slots assigned to the demands K, and paths assigned

the set of demands K \{k} in S ′6 remain the same in the solution S7, i.e., S7
k = S′6k for each k ∈ K,

and E7
k′ = E′6k′ for each k′ ∈ K \ {k}. S7 is clearly feasible given that

– and a feasible path E7
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S7
k is assigned to each demand k ∈ K along each edge e ∈ E7

k with |S7
k| ≥ 1

(contiguity and continuity constraints),
– {s′−wk + 1, ..., s′}∩{s”−wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S7

k and s” ∈ S7
k′

with E7
k ∩ E7

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have
∑
k∈K,e∈E7

k
|{s′ ∈

S7
k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and the slot s is not chosen to route the demand k in the solution S7, i.e., s /∈ S7
k.

The corresponding incidence vector (xS
7

, zS
7

) is belong to F and then to F ks given that it is
composed by zks = 0. It follows that

µxS
′6

+ σzS
′6

= µxS
7

+ σzS
7

= µxS
′6

+ µke + σzS
′6
.

As a result, µke = 0 for demand k and an edge e.
As e is chosen arbitrarily for the demand k with e /∈ Ek0 ∪ Ek1 , we iterate the same procedure for
all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). We conclude that for the demand k

µke = 0, for all e ∈ E \ (Ek0 ∪ Ek1 ).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µke = 0, for all k ∈ K and all e ∈ E \ (Ek0 ∪ Ek1 ).

Next, we will show that, σk
′

s′ = 0 for all k′ ∈ K \ {k} and all s′ ∈ {wk′ , ..., s̄}, and σks′ = 0 for all
slots s′ ∈ {wk, ..., s̄} − {s}. Consider the demand k and a slot s′ in {wk, ..., s̄} \ {s}. For that, we
consider a solution S”6 = (E”6, S”6) in which

– a feasible path E”6
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”6
k is assigned to each demand k ∈ K along each edge e ∈ E”6

k with |S”6
k| ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”6

k and
s” ∈ S”6

k′ with E”6
k ∩ E”6

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E”6

k
|{s′ ∈ S”6

k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S”6
k′ with

E”6
k ∩ E”6

k′ 6= ∅ (non-overlapping constraint taking into account the possibility of adding the
slot s′ in the set of last-slots S”6

k assigned to the demand k in the solution S”6),
– and the slot s is not chosen to route the demand k in the solution S”6, i.e., s /∈ S”6

k.
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S”6 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”6

, zS”6

) is belong to F and then to F ks
given that it is composed by zks = 0. Based on this, we distinguish two cases:

– without changing the paths established in S”6 : we derive a solution S8 = (E8, S8) from the
solution S”6 by adding the slot s′ as last-slot to the demand k without modifying the paths
assigned to the demands K in S”6 (i.e., E8

k = E”6
k for each k ∈ K), and the last-slots assigned

to the demands K \ {k} in S”6 remain the same in the solution S8 i.e., S”6
k′ = S8

k′ for each
demand k′ ∈ K \ {k}, and S8

k = S”6
k ∪ {s′} for the demand k. The solution S8 is feasible given

that

• a feasible path E8
k is assigned to each demand k ∈ K (routing constraint),

• a set of last-slots S8
k is assigned to each demand k ∈ K along each edge e ∈ E8

k with
|S8
k| ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S8
k and

s” ∈ S8
k′ with E8

k ∩ E8
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E8
k
|{s′ ∈ S8

k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and the slot s is not chosen to route the demand k in the solution S8, i.e., s /∈ S8
k.

The corresponding incidence vector (xS
8

, zS
8

) is belong to F and then to F ks given that it is
composed by zks = 0. We then obtain that

µxS”6

+ σzS”6

= µxS
8

+ σzS
8

= µxS”6

+ σzS”6

+ σks′ .

It follows that σks′ = 0 for demand k and a slot s′ ∈ {wk, ..., s̄} \ {s}.
– with changing the path established in S”6: we construct a solution S ′8 derived from the solution
S”6 by adding the slot s′ as last-slot to the demand k with modifying the paths assigned to a
subset of demands K̃ ⊂ K in S”6 (i.e., E′8k = E”6

k for each k ∈ K \ K̃, and E′8k 6= E”6
k for each

k ∈ K̃) s.t.

• a new feasible path E′8k is assigned to each demand k ∈ K̃ (routing constraint),

• and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k ∈ K̃ and k′ ∈ K \ K̃ and
each s′ ∈ S”6

k and s” ∈ S”6
k′ with E′8k ∩ E”6

k′ 6= ∅, i.e., for each edge e ∈ E and each slot
s” ∈ S we have

∑
k∈K̃,e∈E′8

k
|{s′ ∈ S”6

k, s” ∈ {s′ − wk + 1, ..., s′}| +
∑
k∈K\K̃,e∈E”6

k
|{s′ ∈

S”6
k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K̃ and s” ∈ S”6
k” (non-

overlapping constraint taking into account the possibility of adding the slot s′ in the set of
last-slots S”6

k assigned to the demand k in the solution S”6),
• and the slot s is not chosen to route the demand k in the solution S ′8, i.e., s /∈ S′8k .

The last-slots assigned to the demands K \ {k} in S”6 remain the same in S ′8, i.e., S”6
k′ = S′8k′

for each demand k′ ∈ K \ {k}, and S′8k = S”6
k ∪ {s} for the demand k. The solution S ′8 is

clearly feasible given that

• a feasible path E′8k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′8k is assigned to each demand k ∈ K along each edge e ∈ E′8k with
|S′8k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′8k and
s” ∈ S′8k′ with E′8k ∩ E′8k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E′8

k
|{s′ ∈ S′8k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and the slot s is not chosen to route the demand k in the solution S ′8, i.e., s /∈ S′8k .

The corresponding incidence vector (xS
′8
, zS

′8
) is belong to F and then to F ks given that it is

composed by zks = 0. We have so

µxS”6

+ σzS”6

= µxS
′8

+ σzS
′8

= µxS”6

+ σzS”6

+ σks′ −
∑
k̃∈K̃

∑
e∈E”6

k

µk̃e +
∑
k̃∈K̃

∑
e′∈E′8

k

µk̃e′ .

It follows that σks′ = 0 for demand k and a slot s′ ∈ {wk, ..., s̄} \ {s} given that µke = 0 for all
the demand k ∈ K and all edges e ∈ E \ (Ek0 ∪ Ek1 ).
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The slot s′ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wk, ..., s̄} \ {s} of demand k s.t. we find

σks′ = 0, for demand k and all slots s′ ∈ {wk, ..., s̄} \ {s}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s′ = 0, for all k′ ∈ K \ {k} and all slots s′ ∈ {wk′ , ..., s̄}

Consequently, we conclude that

σk
′

s′ = 0, for all k′ ∈ K and all slots s′ ∈ {wk, ..., s̄} with s 6= s′ if k = k′.

On the other hand, we ensure that all the edges e ∈ Ek0 for each demand k are independants s.t.
for each demand k ∈ K we have∑

e∈Ek
0

µke =
∑
e∈Ek

0

γk,e1 →
∑
e∈Ek

0

(µke − γ
k,e
1 ) = 0.

The only solution of this system is µke = γk,e1 for each e ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e1 , for all k ∈ K and all e ∈ Ek0 ,

We re-do the same thing for the edges e ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e∈Ek
1

µke =
∑
e∈Ek

1

γk,e2 →
∑
e∈Ek

1

(µke − γ
k,e
2 ) = 0

The only solution of this system is µke = γk,e2 for each e ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e2 , for all k ∈ K and all e ∈ Ek1 ,

On the other hand, all the slots s′ ∈ {1, ..., wk − 1} for each demand k are independants s.t. for
each demand k ∈ K, we have

wk−1∑
s′=1

σks′ =

wk−1∑
s′=1

γk,s
′

3 →
wk−1∑
s′=1

(σks′ − γ
k,s′

3 ) = 0

The only solution of this system is σks′ = γk,s
′

3 for each s′ ∈ {1, ..., wk − 1} for the demand k. As k
is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks′ = γk,s
′

3 , for all k ∈ K and all s′ ∈ {1, ..., wk − 1}. (18)

We conclude that for each k ∈ K and e ∈ E

µke =


γk,e1 , if e ∈ Ek0 ,

γk,e2 , if e′ ∈ Ek1 ,
0, otherwise,

and for each k′ ∈ K and s′ ∈ S

σk
′

s′ =


γk

′,s′

3 , if s′ ∈ {1, ..., wk′ − 1},
0, if s′ ∈ {wk′ , ..., s̄} and k′ 6= k,

0, if s′ ∈ {wk′ , ..., s̄} \ {s} and k′ = k,

ρ, if s′ = s and k′ = k.

As a result (µ, σ) = ρβks + γQ which ends our strengthening of proof.
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Definition 2. For a demand k, two edges e = ij /∈ Ek0 ∩ Ek1 , e′ = lm /∈ Ek0 ∩ Ek1 are said non-
compatible edges iff the lengths of (ok, dk)-paths formed by e = ij and e′ = lm together are greater
that l̄k.

Note that we are able to determine the non-compatible edges for each demand k in polynomial
time using shortest-path algorithms by verifying if the length of the following (ok, dk)-paths

– (ok, dk)-path formed by e and e′ together with the shortest (ok, i), (j, l) and (m, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok, i), (j,m) and (l, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok, j), (i, l) and (m, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok, j), (i,m) and (l, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok, l), (m, i) and (j, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok, l), (m, j) and (i, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok,m), (l, i) and (j, dk) paths,
– (ok, dk)-path formed by e and e′ together with the shortest (ok,m), (l, j) and (i, dk) paths,

are greater that l̄k.

Proposition 4. Consider a demand k ∈ K. Let (e, e′) be a pair of non-compatible edges for the
demand k. Then, the inequality

xke + xke′ ≤ 1, (19)

is valid for P (G,K,S).

Proof. It is trivial due to the transmission-reach constraint and given the definition of non-
compatible edges for the demand k.

Based on the definition of a non-compatible demands for an edge e, we introduce the following
inequality.

Proposition 5. Consider an edge e ∈ E. Let (k, k′) be a pair of non-compatible demands for the
edge e with e /∈ Ek0 ∪ Ek1 ∪ Ek

′

0 ∪ Ek
′

1 . Then, the inequality

xke + xk
′

e ≤ 1, (20)

is valid for P (G,K,S).

Proof. It is trivial given the definition of non-compatible demands for the edge e.

Based on the inequalities (20) and (19), we introduce the following conflict graph .

Definition 3. Let G̃KE be a conflict graph defined as follows. For each demand k and edge e /∈
Ek0 ∪ Ek1 , consider a node vke in G̃KE . Two nodes vke and vk

′

e′ are linked by an edge in G̃KE

– if k = k′: e and e′ are non compatible edges for demand k.
– if k 6= k′: k and k′ are non compatible demands for edge e.

Theorem 4. Consider a demand k ∈ K, and an edge e ∈ E \ (Ek0 ∪ Ek1 ). Then, the inequality
xke ≤ 1 is facet defining for P (G,K,S) if and only if N(vk,e) = ∅ in G̃KE .

Proof. Neccessity.
For demand k and an edge e ∈ E \ (Ek0 ∪ Ek1 ), if N(vk,e) 6= ∅ in G̃KE , the inequality xke ≤ 1 is
dominated by the inequality (20) or (19) s.t. there exists at least one clique of cardinality at least
equals to 2 in the conflict graph G̃ES that contains the node vk,e. As a result, the inequality xke ≤ 1
is not facet defining for P (G,K,S).
Sufficiency.
Let F ′ke denote the face induced by inequality xke ≤ 1, which is given by

F ′ke = {(x, z) ∈ P (G,K,S) : xke = 1}.

In order to prove that inequality xke ≤ 1 is facet defining for P (G,K,S), we start checking that
F ′ke is a proper face, and F ′ke 6= P (G,K,S). We construct a solution S9 = (E9, S9) as below
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– a feasible path E9
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S9
k is assigned to each demand k ∈ K along each edge e′ ∈ E9

k with |S9
k| ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S9

k and s′ ∈ S9
k′

with E9
k ∩ E9

k′ 6= ∅ (non-overlapping constraint),
– and the edge e is chosen to route the demand k in the solution S9, i.e., e ∈ E9

k.

Obviously, S9 is feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

9

, zS
9

) is belong to
P (G,K,S) and then to F ′ke given that it is composed by xke = 1. As a result, F ′ke is not empty
(F ′ke 6= ∅). Furthermore, given that e ∈ E \ (Ek0 ∪ Ek1 ) for the demand k, this means that there
exists at least one feasible path Ek for the demand k passed through the edge e which means that
F ′ke 6= P (G,K,S).
On another hand, we know that all the solutions of F ′ke are in P (G,K,S) which means that they
verify the equations system (13) s.t. the new equations system (21) associated with F ′ke is written
as below


xke = 1, s.t. k and e are chosen arbitrarily

xke = 0, for all k ∈ K and all e ∈ Ek0
xke = 1, for all k ∈ K and all e ∈ Ek1

zks = 0, for all k ∈ K and all s ∈ {1, ..., wk − 1}.

(21)

Given that the e ∈ E \ (Ek0 ∪ Ek1 ), the system (21) shows that the equation xke = 1 is not a result
of equations of system (13) which means that the equation xke = 1 is not redundant in the system
(21). As a result, the system is of full rank. As a result, the dimension of the face F ′ke is equal to

dim(F ′ke ) = |K| ∗ (|E|+ |S|)− rank(Q̃′) = |K| ∗ (|E|+ |S|)− (1 + r) = dim(P (G,K,S))− 1,

where Q̃′ is the matrix associated with the equation system (21). As a result, the face F ′ke is
facet defining for P (G,K,S). Furthermore, we strengthened our proof as follows. We denote the
inequality xke ≤ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of
P (G,K,S). Suppose that F ′ke ⊂ F = {(x, z) ∈ P (G,K,S) : µx+σz = τ}. We show that there exist

ρ ∈ R and γ with γ = (γ1, γ2, γ3) ( with γ1 ∈ R
∑

k∈K |E
k
0 |, γ2 ∈ R

∑
k∈K |E

k
1 |, γ3 ∈ R

∑
k∈K(wk−1)) s.t.

(µ, σ) = ρ(α, β) + γQ. We will show that

– µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}),
– and µk

′

e′ = 0 for all demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),
– and σks = 0 for all demands k ∈ K and all slots s ∈ {wk, ..., s̄}.

First, let’s show that σks = 0 for all k ∈ K and all s ∈ {wk, ..., s̄}. Consider a demand k and a slot
s in {wk, ..., s̄}. To do so, we consider a solution S ′9 = (E′9, S′9) in which

– a feasible path E′9k is assigned to each demand k ∈ K (routing constraint),
– a set of last-slots S′9k is assigned to each demand k ∈ K along each edge e′ ∈ E′9k with |S′9k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′9k and
s” ∈ S′9k′ with E′9k ∩ E′9k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E′9

k
|{s′ ∈ S′9k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk+1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S′9k′ with E′9k ∩E′9k′ 6= ∅
(non-overlapping constraint taking into account the possibility of adding the slot s in the set
of last-slots S′9k assigned to the demand k in the solution S ′9),

– and the edge e is chosen to route the demand k in the solution S ′9, i.e., e ∈ E′9k .

S ′9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′9
, zS

′9
) is belong to P (G,K,S). Based on
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this, we derive a solution S10 = (E10, S10) from the solution S ′9 by adding the slot s as last-slot
to the demand k without modifying the paths assigned to the demands K in S ′9 (i.e., E10

k = E′91
for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S ′9 remain the same in the
solution S10 i.e., S′9k′ = S10

k′ for each demand k′ ∈ K \ {k}, and S10
k = S′9k ∪ {s} for the demand k.

The solution S10 is feasible given that

– a feasible path E10
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S10
k is assigned to each demand k ∈ K along each edge e′ ∈ E10

k with |S10
k | ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S10

k and
s′ ∈ S10

k′ with E10
k ∩ E10

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E10

k
|{s ∈ S10

k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
10

, zS
10

) is belong to F and then to F ′ke given that it is also
composed by xke = 1. We then obtain that

µxS
′9

+ σzS
′9

= µxS
10

+ σzS
10

= µxS
′9

+ σzS
′9

+ σks .

It follows that σks = 0 for demand k and a slot s ∈ {wk, ..., s̄}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wk, ..., s̄} of demand k s.t. we find

σks = 0, for demand k and all slots s ∈ {wk, ..., s̄}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s = 0, for all k′ ∈ K \ {k} and all slots s ∈ {wk′ , ..., s̄}

Consequently, we conclude that

σks = 0, for all k ∈ K and all slots s ∈ {wk, ..., s̄}

Next, we will show that µke′ = 0 for all the demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪Ek
′

1 ), and
µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). Consider the demand k ∈ K and an
edge e′ ∈ E \ (Ek0 ∪Ek1 ∪{e}) chosen arbitrarily. For that, we consider a solution S”9 = (E”9, S”9)
in which

– a feasible path E”9
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”9
k is assigned to each demand k ∈ K along each edge e′ ∈ E”9

k with
|S”9

k| ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”9

k and
s” ∈ S”9

k′ with E”9
k ∩ E”9

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E”9

k
|{s′ ∈ S”9

k, s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– the edge e′ is not non-compatible edge with the selected edges e” ∈ E”9
k of demand k in the

solution S”9, i.e.,
∑
e”∈E”9

k
le” + le′ ≤ l̄k. As a result, E”9

k ∪ {e′} is a feasible path for the

demand k,
– and the edge e is chosen to route the demand k in the solution S”9, i.e., e ∈ E”9

k.

S”9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”9

, zS”9

) is belong to F and then to F ′ke
given that it is also composed by xke = 1. Based on this, we distinguish two cases:

– without changing the spectrum assignment established in S”9: we derive a solution S11 obtained
from the solution S”9 by adding an unused edge e′ ∈ E \ (Ek0 ∪Ek1 ) for the routing of demand
k in K in the solution S9 which means that E”2

k = E”9
k ∪ {e′}. The last-slots assigned to the

demands K, and paths assigned the set of demands K \ {k} in S”9 remain the same in the
solution S11, i.e., S”2

k = S”9
k for each k ∈ K, and E”2

k′ = E”9
k′ for each k′ ∈ K \ {k}. S11 is

clearly feasible given that
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• and a feasible path E”2
k is assigned to each demand k ∈ K (routing constraint),

• a set of last-slots S”2
k is assigned to each demand k ∈ K along each edge e′ ∈ E”2

k with
|S”2

k| ≥ 1 (contiguity and continuity constraints),
• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S”2

k and
s′ ∈ S”2

k′ with E”2
k ∩ E”2

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E”2

k
|{s ∈ S”2

k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
11

, zS
11

) is belong to F and then to F ′ke given that it is
also composed by xke = 1. It follows that

µxS”9

+ σzS”9

= µxS
11

+ σzS
11

= µxS”9

+ µke′ + σzS”9

.

As a result, µke′ = 0 for demand k and an edge e′.
– with changing the spectrum assignment established in S”9: let S ′11 be a solution obtained from

the solution S”9 by adding an unused edge e′ ∈ E\(Ek0∪Ek1 ) for the routing of demand k in K in
the solution S”9 which means that E′11

k = E”9
k∪{e} s.t. {s−wk+1, ..., s}∩{s”−wk′+1, ..., s”} =

∅ for each k′ ∈ K \ {k} and s” ∈ S”9
k′ with E′11

k ∩ E”9
k′ 6= ∅. The last-slots assigned to the

demands K, and paths assigned the set of demands K \ {k} in S”9 remain the same in the
solution S ′11, i.e., S′11

k = S”9
k for each k ∈ K, and E′11

k′ = E”9
k′ for each k′ ∈ K \ {k}. S ′11 is

clearly feasible given that
• and a feasible path E′11

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′11

k is assigned to each demand k ∈ K along each edge e′ ∈ E′11
k with

|S′11
k | ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S′11
k and

s′ ∈ S′11
k′ with E′11

k ∩ E′11
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′11
k
|{s ∈ S′11

k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
′11
, zS

′11
) is belong to F and then to F ′ke given that it

is also composed by xke = 1. It follows that

µxS”9

+ σzS”9

= µxS
′11

+ σzS
′11

= µxS”9

+ µke′ + σzS”9

.

Hence, µke′ = 0 for demand k and an edge e′.

As e′ is chosen arbitrarily for the demand k with e′ /∈ Ek0 ∪Ek1 ∪{e}, we iterate the same procedure
for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). We conclude that for the demand k

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e′ ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µk
′

e′ = 0, for all k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}).

We ensure that all the edges e′ ∈ Ek0 for each demand k are independants s.t. for each demand
k ∈ K we have ∑

e′∈Ek
0

µke′ =
∑
e′∈Ek

0

γk,e
′

1 →
∑
e′∈Ek

0

(µke′ − γ
k,e′

1 ) = 0.

The only solution of this system is µke′ = γk,e
′

1 for each e′ ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

1 , for all k ∈ K and all e′ ∈ Ek0 ,

We re-do the same thing for the edges e′ ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e′∈Ek
1

µke′ =
∑
e′∈Ek

1

γk,e
′

2 →
∑
e′∈Ek

1

(µke′ − γ
k,e′

2 ) = 0
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The only solution of this system is µke′ = γk,e
′

2 for each e′ ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

2 , for all k ∈ K and all e′ ∈ Ek1 ,

On the other hand, all the slots s ∈ {1, ..., wk − 1} for each demand k are independants s.t. for
each demand k ∈ K, we have

wk−1∑
s=1

σks =

wk−1∑
s=1

γk,s3 →
wk−1∑
s=1

(σks − γ
k,s
3 ) = 0

The only solution of this system is σks = γk,s3 for each s ∈ {1, ..., wk − 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks = γk,s3 , for all k ∈ K and all s ∈ {1, ..., wk − 1}. (22)

We conclude that for each k′ ∈ K and e′ ∈ E

µk
′

e′ =


γk

′,e′

1 , if e′ ∈ Ek0 ,

γk
′,e′

2 , if e′ ∈ Ek1 ,
ρ, if k′ = k and e′ = e,

0, otherwise,

and for each k ∈ K and s ∈ S

σks =

{
γk,s3 , if s ∈ {1, ..., wk − 1},

0, otherwise.

As a result (µ, σ) = ραke + γQ which ends our proof.

Theorem 5. Consider a demand k and a subset of node X ⊂ V, with |X ∩ {ok, dk}| = 1 and
X ∩ V k0 = ∅. Then, the inequality (2),

∑
e∈δ(X) x

k
e ≥ 1, is facet defining for P (G,K,S) if and only

if δ(X) 6⊂ Ek1 .

Proof. Let F kX denote the face induced by inequality
∑

e∈(δ(X)\Ek
0 )

xke ≥ 1, which is given by

F kX = {(x, z) ∈ P (G,K,S) :
∑

e∈(δ(X)\Ek
0 )

xke = 1}

Let X = {ok}. In order to prove that inequality
∑

e∈(δ(X)\Ek
0 )

xke ≥ 1 is facet defining for P (G,K,S),

we start checking that F kX is a proper face which means that it is not empty, and F kX 6= P (G,K,S).
We construct a solution S12 = (E12, S12) as below

– a feasible path E12
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S12
k is assigned to each demand k ∈ K along each edge e′ ∈ E12

k with |S12
k | ≥ 1

(contiguity and continuity constraints),
– {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S12

k and s′ ∈ S12
k′

with E12
k ∩ E12

k′ 6= ∅ (non-overlapping constraint),
– and one edge e from (δ(X) \ Ek0 ) is chosen to route the demand k in the solution S12, i.e.,
|(δ(X) \ Ek0 ) ∩ E12

k | = 1.

Obviously, S12 is feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

12

, zS
12

) is belong to
P (G,K,S) and then to F kX given that it is composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. As a result, F kX is
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not empty (F kX 6= ∅). Furthermore, given that e ∈ E \ (Ek0 ∪ Ek1 ) for the demand k, this means
that there exists at least one feasible path Ek for the demand k passed through the edge e which
means that F kX 6= P (G,K,S).
Let denote the inequality

∑
e∈(δ(X)\Ek

0 ) x
k
e ≥ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality

that is facet defining F of P (G,K,S). Suppose that F kX ⊂ F = {(x, z) ∈ P (G,K,S) : µx + σz =

τ}. We show that there exist ρ ∈ R and γ with γ = (γ1, γ2, γ3) ( with γ1 ∈ R
∑

k∈K |E
k
0 |, γ2 ∈

R
∑

k∈K |E
k
1 |, γ3 ∈ R

∑
k∈K(wk−1)) s.t. (µ, σ) = ρ(α, β) + γQ. We will show that

– µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )),

– and µk
′

e′ = 0 for all demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),
– and σks = 0 for all demands k ∈ K and all slots s ∈ {wk, ..., s̄},
– and that µke are equivalent for all e ∈ (δ(X) \ Ek0 ).

First, let’s show that σks = 0 for all k ∈ K and all s ∈ {wk, ..., s̄}. Consider a demand k and a slot
s in {wk, ..., s̄}. For that, we consider a solution S ′12 = (E′12, S′12) in which

– a feasible path E′12
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S′12
k is assigned to each demand k ∈ K along each edge e′ ∈ E′12

k with
|S′12
k | ≥ 1 (contiguity and continuity constraints),

– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′12
k and

s” ∈ S′12
k′ with E′12

k ∩ E′12
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′12
k
|{s′ ∈ S′12

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk+1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S′12
k′ with E′12

k ∩E′12
k′ 6= ∅

(non-overlapping constraint taking into account the possibility of adding the slot s in the set
of last-slots S′12

k assigned to the demand k in the solution S ′12),
– and one edge e from (δ(X) \ Ek0 ) is chosen to route the demand k in the solution S ′12, i.e.,
|(δ(X) \ Ek0 ) ∩ E′12

k | = 1.

S ′12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′12
, zS

′12
) is belong to P (G,K,S). Based on

this, we derive a solution S13 = (E13, S13) from the solution S ′12 by adding the slot s as last-slot
to the demand k without modifying the paths assigned to the demands K in S ′12 (i.e., E13

k = E′12
1

for each k ∈ K), and the last-slots assigned to the demands K \{k} in S ′12 remain the same in the
solution S13 i.e., S′12

k′ = S13
k′ for each demand k′ ∈ K \ {k}, and S13

k = S′12
k ∪ {s} for the demand

k. The solution S13 is feasible given that

– a feasible path E13
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S13
k is assigned to each demand k ∈ K along each edge e′ ∈ E13

k with |S13
k | ≥ 1

(contiguity and continuity constraints),
– {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S13

k and
s′ ∈ S13

k′ with E13
k ∩ E13

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E13

k
|{s ∈ S13

k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
13

, zS
13

) is belong to F and then to F kX given that it is also
composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. We then obtain that

µxS
′12

+ σzS
′12

= µxS
13

+ σzS
13

= µxS
′12

+ σzS
′12

+ σks .

It follows that σks = 0 for demand k and a slot s ∈ {wk, ..., s̄}.
The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wk, ..., s̄} of demand k s.t. we find

σks = 0, for demand k and all slots s ∈ {wk, ..., s̄}

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s = 0, for all k′ ∈ K \ {k} and all slots s ∈ {wk′ , ..., s̄}
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Consequently, we conclude that

σks = 0, for all k ∈ K and all slots s ∈ {wk, ..., s̄}

Next, we will show that µke′ = 0 for all the demands k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪Ek
′

1 ), and
µke′ = 0 for the demand k and all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )). Consider the demand k ∈ K
and an edge e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )) chosen arbitrarily. For that, we consider a solution
S”12 = (E”12, S”12) in which

– a feasible path E”12
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”12
k is assigned to each demand k ∈ K along each edge e′ ∈ E”12

k with
|S”12

k | ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”12

k and
s” ∈ S”12

k′ with E”12
k ∩ E”12

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E”12

k
|{s′ ∈ S”12

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– the edge e′ is not non-compatible edge with the selected edges e” ∈ E”12
k of demand k in the

solution S”12, i.e.,
∑
e”∈E”12

k
le” + le′ ≤ l̄k. As a result, E”12

k ∪ {e′} is a feasible path for the

demand k,
– and one edge e from (δ(X) \ Ek0 ) is chosen to route the demand k in the solution S”12, i.e.,
|(δ(X) \ Ek0 ) ∩ E”12

k | = 1.

S”12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”12

, zS”12

) is belong to F and then to F kX
given that it is also composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. Based on this,

– without changing the spectrum assignment established in S”12: we derive a solution S14 ob-
tained from the solution S”12 by adding an unused edge e′ ∈ E \ (Ek0 ∪ Ek1 ) for the routing
of demand k in K in the solution S12 which means that E”2

k = E”12
k ∪ {e′}. The last-slots

assigned to the demands K, and paths assigned the set of demands K \ {k} in S”12 remain
the same in the solution S14, i.e., S”2

k = S”12
k for each k ∈ K, and E”2

k′ = E”12
k′ for each

k′ ∈ K \ {k}. S14 is clearly feasible given that
• and a feasible path E”2

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S”2

k is assigned to each demand k ∈ K along each edge e′ ∈ E”2
k with

|S”2
k| ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S”2
k and

s′ ∈ S”2
k′ with E”2

k ∩ E”2
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E”2
k
|{s ∈ S”2

k, s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
14

, zS
14

) is belong to F and then to F kX given that it is
also composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. It follows that

µxS”12

+ σzS”12

= µxS
14

+ σzS
14

= µxS”12

+ µke′ + σzS”12

.

As a result, µke′ = 0 for demand k and an edge e′.
– with changing the spectrum assignment established in S”12: let S ′14 be a solution obtained from

the solution S”12 by adding an unused edge e′ ∈ E\(Ek0 ∪Ek1 ) for the routing of demand k in K
in the solution S”12 which means that E′14

k = E”12
k ∪{e′}, and removing slot s selected for the

demand k in S”12 and replaced it by a new slot s′ ∈ {wk, ...,S} (i.e., S′14
k = (S”12

k \ {s})∪{s′}
s.t. {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S”12

k′ with
E′14
k ∩E”12

k′ 6= ∅. The last-slots and paths assigned the set of demands K \ {k} in S”12 remain
the same in the solution S ′14, i.e., S′14

k′ = S”12
k′ and E′14

k′ = E”12
k′ for each k′ ∈ K \ {k}. S ′14 is

clearly feasible given that
• and a feasible path E′14

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′14

k is assigned to each demand k ∈ K along each edge e′ ∈ E′14
k with

|S′14
k | ≥ 1 (contiguity and continuity constraints),

• {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s ∈ S′14
k and

s′ ∈ S′14
k′ with E′14

k ∩ E′14
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′14
k
|{s ∈ S′14

k , s” ∈ {s− wk + 1, ..., s}| ≤ 1 (non-overlapping constraint).
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The corresponding incidence vector (xS
′14
, zS

′14
) is belong to F and then to F kX given that it

is also composed by
∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. It follows that

µxS”12

+ σzS”12

= µxS
′14

+ σzS
′14

= µxS”12

+ µke′ + σzS”12

− σks + σks′

which gives that µke′ = 0 for demand k and an edge e′ given that σks = 0 for all k ∈ K and all
s ∈ {wk, ..., s̄}.

As e′ is chosen arbitrarily for the demand k with e′ /∈ Ek0 ∪Ek1 ∪ (δ(X) \Ek0 ), we iterate the same
procedure for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )). We conclude that for the demand k

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e′ ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µk
′

e′ = 0, for all k′ ∈ K \ {k} and all e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ),

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ (δ(X) \ Ek0 )).

Let’s us prove that the µke for a demand k and edges e ∈ (δ(X) \ Ek0 ) are equivalent. Consider an
edge e′ ∈ (δ(X) \ Ek0 ) s.t. e′ /∈ E12

k . For that, we consider a solution S̃12 = (Ẽ12, S̃12) in which

– a feasible path Ẽ12
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S̃12
k is assigned to each demand k ∈ K along each edge e ∈ Ẽ12

k with |S̃12
k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S̃12

k and

s” ∈ S̃12
k′ with Ẽ12

k ∩ Ẽ12
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈Ẽ12
k
|{s′ ∈ S̃12

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and there is one edge e from (δ(X) \ Ek0 ) selected for the routing of demand k in the solution
S̃12, i.e., |(δ(X) \ Ek0 ) ∩ Ẽ12

k | = 1.

S̃12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (xS̃
12

, zS̃
12

) is belong to F and then to F kX
given that it is composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. Based on this, we distinguish two cases:

– without changing the spectrum assignment established in S̃12: we derive a solution S15 =
(E15, S15) from the solution S̃12 by
• modifying the path assigned to the demand k in S̃12 from Ẽ12

k to a path E15
k passed through

the edge e′ with |(δ(X) \ Ek0 ) ∩ Ẽ12
k | = 1.

The paths assigned to the demands K \ {k} in S̃12 remain the same in S15 (i.e., E15
k” = Ẽ12

k”

for each k” ∈ K \ {k}), and also without modifying the last-slots assigned to the demands K
in S̃12, i.e., S̃12

k = S15
k for each demand k ∈ K. The solution S15 is feasible given that

• a feasible path E15
k is assigned to each demand k ∈ K (routing constraint),

• a set of last-slots S15
k is assigned to each demand k ∈ K along each edge e ∈ E15

k with
|S15
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S15
k and

s” ∈ S15
k′ with E15

k ∩ E15
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E15
k
|{s′ ∈ S15

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |(δ(X) \ Ek0 ) ∩ Ẽ12
k | = 1.

The corresponding incidence vector (xS
15

, zS
15

) is belong to F and then to F kX given that it is
composed by

∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. We then obtain that

µxS̃
12

+ σzS̃
12

= µxS
15

+ σzS
15

= µxS̃
12

+ σzS̃
12

+ µke′ − µke
+

∑
e”∈E15

k \{e′}

µke” −
∑

e”∈Ẽ12
k \{e}

µke”.

It follows that µke′ = µke for demand k and a edge e′ ∈ (δ(X) \ Ek0 ) given that µke” = 0 for all
k ∈ K and all e” ∈ E \ (Ek0 ∪ Ek1 ) with e” /∈ (δ(X) \ Ek0 ).
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– with changing the spectrum assignment established in S̃12: we construct a solution S ′15 derived
from the solution S̃12 by
• modifying the path assigned to the demand k in S̃12 from Ẽ12

k to a path E′15
k passed

through the edge e′ with |(δ(X) \ Ek0 ) ∩ E′15
k | = 1,

• modifying the last-slots assigned to some demands K̃ ⊂ K from S̃12
k̃

to S′15
k̃

for each k̃ ∈ K̃
while satisfying non-overlapping constraint.

The paths assigned to the demands K \{k} in S̃12 remain the same in S ′15 (i.e., E′15
k” = Ẽ12

k” for

each k” ∈ K \ {k}), and also without modifying the last-slots assigned to the demands K \ K̃
in S̃12, i.e., S̃12

k = S′15
k for each demand k ∈ K \ K̃. The solution S ′15 is clearly feasible given

that
• a feasible path E′15

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′15

k is assigned to each demand k ∈ K along each edge e ∈ E′15
k with

|S′15
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′15
k and

s” ∈ S′15
k′ with E′15

k ∩ E′15
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E′15
k
|{s′ ∈ S′15

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• |(δ(X) \ Ek0 ) ∩ E′15
k | = 1.

The corresponding incidence vector (xS
′15
, zS

′15
) is belong to F and then to F kX given that it

is composed by
∑
e∈(δ(X)\Ek

0 ) x
k
e = 1. We have so

µxS̃
12

+ σzS̃
12

= µxS
′15

+ σzS
′15

= µxS̃
12

+ σzS̃
12

+ µke′ − µke +
∑
k̃∈K̃

∑
s′∈S′15

k̃

σk̃s′ −
∑
s∈S̃12

k̃

σk̃s

+
∑

e”∈E′15
k \{e′}

µke” −
∑

e”∈Ẽ12
k \{e}

µke”.

It follows that µke′ = µke for demand k and a edge e′ ∈ (δ(X) \ Ek0 ) given that µke” = 0 for all
k ∈ K and all e” ∈ E \ (Ek0 ∪ Ek1 ) with e” /∈ (δ(X) \ Ek0 ), and σks = 0 for all k ∈ K and all
s ∈ {wk, ..., s̄}.

Given that the pair of edges (e, e′) are chosen arbitrary in (δ(X)\Ek0 ), we iterate the same procedure
for all pairs (e, e′) ∈ (δ(X) \ Ek0 ) s.t. we find

µke = µke′ , for all pairs e, e′ ∈ (δ(X) \ Ek0 ).

Consequently, we obtain that µke = ρ for all e ∈ (δ(X) \ Ek0 ).
On the other hand, we ensure that all the edges e ∈ Ek0 for each demand k are independants s.t.
for each demand k ∈ K we have∑

e∈Ek
0

µke =
∑
e∈Ek

0

γk,e1 →
∑
e∈Ek

0

(µke − γ
k,e
1 ) = 0.

The only solution of this system is µke = γk,e1 for each e ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e1 , for all k ∈ K and all e ∈ Ek0 ,

We re-do the same thing for the edges e ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e∈Ek
1

µke =
∑
e∈Ek

1

γk,e2 →
∑
e∈Ek

1

(µke − γ
k,e
2 ) = 0

The only solution of this system is µke = γk,e2 for each e ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e2 , for all k ∈ K and all e ∈ Ek1 ,
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On the other hand, all the slots s ∈ {1, ..., wk − 1} for each demand k are independants s.t. for
each demand k ∈ K, we have

wk−1∑
s=1

σks =

wk−1∑
s=1

γk,s3 →
wk−1∑
s=1

(σks − γ
k,s
3 ) = 0

The only solution of this system is σks = γk,s3 for each s ∈ {1, ..., wk − 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks = γk,s3 , for all k ∈ K and all s ∈ {1, ..., wk − 1}. (23)

We conclude that for each k′ ∈ K and e ∈ E

µk
′

e =


γk

′,e
1 , if e ∈ Ek

′

0 ,

γk
′,e

2 , if e ∈ Ek
′

1 ,

ρ, if k = k′ and e ∈ (δ(X) \ Ek0 ),

0, otherwise

and for each k ∈ K and s ∈ S

σks =

{
γk,s3 , if s ∈ {1, ..., wk − 1},

0, otherwise.

We conclude that (µ, σ) = ρ
∑

e∈(δ(X)\Ek
0 )

αke + γQ.

Theorem 6. Consider a demand k ∈ K. Then, the inequality (7),
∑s̄
s=wk

zks ≥ 1, is facet defining
for P (G,K,S).

Proof. Let F kS denote the face induced by inequality
∑s̄
s=wk

zks ≥ 1, which is given by

F kS = {(x, z) ∈ P (G,K,S) :

s̄∑
s=wk

zks = 1}

In order to prove that inequality
∑s̄
s=wk

zks ≥ 1 is facet defining for P (G,K,S), we start checking

that F kS is a proper face which means that it is not empty, and F kS 6= P (G,K,S). We construct a
solution S16 = (E16, S16) as below

– a feasible path E16
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S16
k is assigned to each demand k ∈ K along each edge e′ ∈ E16

k with |S16
k | ≥ 1

(contiguity and continuity constraints),
– {s′−wk+1, ..., s′}∩{s”−wk′ +1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S16

k and s” ∈ S16
k′

with E16
k ∩ E16

k′ 6= ∅ (non-overlapping constraint),
– and one slot s from the set {wk, ..., s̄} is chosen to route the demand k in the solution S16, i.e.,
|S16
k | = 1.

Obviously, S16 is feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

16

, zS
16

) is belong to F
and then to F kS given that it is composed by

∑s̄
s=wk

zks = 1. As a result, F kS is not empty (F kS 6= ∅).
Furthermore, given that s ∈ {wk, ..., s̄} for the demand k, this means that there exists at least one
feasible solution for the problem in which |Sk| ≥ 2 for the demand k. As a result, F kS 6= P (G,K,S).
On another hand, we know that all the solutions of F kS are in P (G,K,S) which means which means
that they verify the equations system (13) s.t. the following equations system (24) associated with
F kS is written as below
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s̄∑
s=wk

zks = 1, s.t. k is chosen arbitrarily,

xke = 0, for all k ∈ K and all e ∈ Ek0 ,
xke = 0, for all k ∈ K and all e ∈ Ekc ,
xke = 1, for all k ∈ K and all e ∈ Ek1 ,

zks = 0, for all k ∈ K and all s ∈ {1, ..., wk − 1}.

(24)

The system (24) shows that the equation

s̄∑
s=wk

zks = 1 is not result of equations of system (13)

which means that the equation
∑s̄
s=wk

zks = 1 is not redundant in the system (24). As a result, the

system (24) is in full rank which implies that the dimension of the face F kS is equal to

dim(F kS ) = |K| ∗ (|E|+ |S|)− rank(M”) = |K| ∗ (|E|+ |S|)− (1 + r) = dim(P (G,K,S))− 1,

where M” denotes the matrix associated with the equation system (24). As a result, the face F kS
is facet defining for P (G,K,S).

We strengthen our proof as follows. We denote the inequality

s̄∑
s=wk

zks ≥ 1 by αx + βz ≤ λ. Let

µx + σz ≤ τ be a valid inequality that defines a facet F of P (G,K,S). Suppose that F kS ⊂ F =
{(x, z) ∈ P (G,K,S) : µx + σz = τ}. We show that there exist ρ ∈ R and γ with γ = (γ1, γ2, γ3)

(γ1 ∈ R
∑

k∈K |E
k
0 |, γ2 ∈ R

∑
k∈K |E

k
1 |, γ3 ∈ R

∑
k∈K(wk−1) ) s.t. (µ, σ) = ρ(α, β) + γQ, and that

– σk
′

s = 0 for all demands k′ ∈ K \ {k} and all slots s ∈ {wk, ..., s̄},
– and µke = 0 for all demands k ∈ K and all edges e ∈ E \ (Ek0 ∪ Ek1 ),
– and all σks are equivalents for demand k and slots s ∈ {wk, ..., s̄} for the demand k.

First, let’s us show that µke = 0 for all the demands k ∈ K and all edges e ∈ E\(Ek0 ∪Ek1 ). Consider
a demand k ∈ K and an edge e ∈ E \(Ek0 ∪Ek1 ). For that, we consider a solution S ′16 = (E′16, S′16)
in which

– a feasible path E′16
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S′16
k is assigned to each demand k ∈ K along each edge e ∈ E′16

k with
|S′16
k | ≥ 1 (contiguity and continuity constraints),

– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′16
k and

s” ∈ S′16
k′ with E′16

k ∩ E′16
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E′16
k
|{s′ ∈ S′16

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– the edge e is not non-compatible edge with the selected edges e ∈ E′16
k of demand k in the

solution S ′16, i.e.,
∑
e′∈E′16

k
le′ + le ≤ l̄k. As a result, E′16

k ∪{e} is a feasible path for the demand

k,
– and one slot s from the set {wk, ..., s̄} is chosen to route the demand k in the solution S”16,

i.e., |S”16
k | = 1.

S ′16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′16
, zS

′16
) is belong to F and then to F kS

given that it is composed by
∑s̄
s=wk

zks = 1. Based on this, we derive a solution S17 obtained from

the solution S ′16 by adding an unused edge e ∈ E \ (Ek0 ∪ Ek1 ) for the routing of demand k in K
in the solution S16 which means that E17

k = E′16
k ∪{e}. The last-slots assigned to the demands K,

and paths assigned the set of demands K \ {k} in S ′16 remain the same in the solution S17, i.e.,
S17
k = S′16

k for each k ∈ K, and E17
k′ = E′16

k′ for each k′ ∈ K \ {k}. S17 is clearly feasible given that

– and a feasible path E17
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S17
k is assigned to each demand k ∈ K along each edge e ∈ E17

k with |S17
k | ≥ 1

(contiguity and continuity constraints),



30 Diarassouba et al.

– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S17
k and

s” ∈ S17
k′ with E17

k ∩ E17
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E17
k
|{s′ ∈ S17

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
17

, zS
17

) is belong to F and then to F kS given that it is
composed by

∑s̄
s=wk

zks = 1. It follows that

µxS
′16

+ σzS
′16

= µxS
17

+ σzS
17

= µxS
′16

+ µke + σzS
′16
.

As a result, µke = 0 for demand k and an edge e.
As e is chosen arbitrarily for the demand k with e /∈ Ek0 ∪ Ek1 , we iterate the same procedure for
all e′ ∈ E \ (Ek0 ∪ Ek1 ∪ {e}). We conclude that for the demand k

µke = 0, for all e ∈ E \ (Ek0 ∪ Ek1 ).

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µke = 0, for all k ∈ K and all e ∈ E \ (Ek0 ∪ Ek1 ).

Next, we will show that, σk
′

s′ = 0 for all k′ ∈ K \ {k} and all s′ ∈ {wk′ , ..., s̄}. Consider the demand
k′ in K \{k} and a slot s′ in {wk′ , ..., s̄}\{s}. For that, we consider a solution S”16 = (E”16, S”16)
in which

– a feasible path E”16
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”16
k is assigned to each demand k ∈ K along each edge e ∈ E”16

k with
|S”16

k | ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”16

k and
s” ∈ S”16

k′ with E”16
k ∩ E”16

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E”16

k
|{s′ ∈ S”16

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s′ − wk′ + 1, ..., s′} ∩ {s” − wk + 1, ..., s”} = ∅ for each k ∈ K and s” ∈ S”16
k with

E”16
k ∩E”16

k′ 6= ∅ (non-overlapping constraint taking into account the possibility of adding the
slot s′ in the set of last-slots S”16

k′ assigned to the demand k′ in the solution S”16),
– and |S”16

k | = 1 for the demand k.

S”16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”16

, zS”16

) is belong to F and then to F kS
given that it is composed by

∑s̄
s=wk

zks = 1. Based on this, we distinguish two cases:

– without changing the paths established in S”16: we derive a solution S18 = (E18, S18) from
the solution S”16 by adding the slot s′ as last-slot to the demand k′ without modifying the
paths assigned to the demands K in S”16 (i.e., E18

k = E”16
k for each k ∈ K), and the last-slots

assigned to the demands K \ {k′} in S”16
k remain the same in the solution S18 i.e., S”16

k = S18
k

for each demand k ∈ K \ {k′}, and S18
k′ = S”16

k′ ∪ {s′} for the demand k′. The solution S18 is
feasible given that
• a feasible path E18

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S18

k is assigned to each demand k ∈ K along each edge e ∈ E18
k with

|S18
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S18
k and

s” ∈ S18
k′ with E18

k ∩ E18
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E18
k
|{s′ ∈ S18

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |S18
k | = 1 for the demand k.

The corresponding incidence vector (xS
18

, zS
18

) is belong to F and then to F kS given that it is
composed by

∑s̄
s=wk

zks = 1. We the obtain that

µxS”16

+ σzS”16

= µxS
18

+ σzS
18

= µxS”16

+ σzS”16

+ σk
′

s′ .

It follows that σk
′

s′ = 0 for demand k and a slot s′ ∈ {wk, ..., s̄}.
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– with changing the paths established in S”16: we construct a solution S ′18 derived from the
solution S”16 by adding the slot s′ as last-slot to the demand k′ with modifying the paths
assigned to a subset of demands K̃ ⊂ K in S”16 (i.e., E′18

k = E”16
k for each k ∈ K \ K̃, and

E′18
k 6= E”16

k for each k ∈ K̃) s.t.

• a new feasible path E′18
k is assigned to each demand k ∈ K̃ (routing constraint),

• and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k ∈ K̃ and k′ ∈ K \ K̃ and
each s′ ∈ S”16

k and s” ∈ S”16
k′ with E′18

k ∩E”16
k′ 6= ∅, i.e., for each edge e ∈ E and each slot

s” ∈ S we have
∑
k∈K̃,e∈E′18

k
|{s′ ∈ S”16

k , s” ∈ {s′ − wk + 1, ..., s′}|+
∑
k∈K\K̃,e∈E”16

k
|{s′ ∈

S”16
k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |S′18
k | for the demand k.

The last-slots assigned to the demandsK\{k′} in S”16 remain the same in S ′18, i.e., S”16
k = S′18

k

for each demand k ∈ K \ {k′}, and S′18
k′ = S”16

k′ ∪ {s′} for the demand k′. The solution S ′18 is
clearly feasible given that
• a feasible path E′18

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′18

k is assigned to each demand k ∈ K along each edge e ∈ E′18
k with

|S′18
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′18
k and

s” ∈ S′18
k′ with E′18

k ∩ E′18
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E′18
k
|{s′ ∈ S′18

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |S′18
k | for the demand k.

The corresponding incidence vector (xS
′18
, zS

′18
) is belong to F and then to F kS given that it

is composed by
∑s̄
s=wk

zks = 1. We have so

µxS”16

+ σzS”16

= µxS
′18

+ σzS
′18

= µxS”16

+ σzS”16

+ σk
′

s′ −
∑
k̃∈K̃

∑
e∈E”16

k

µk̃e +
∑
k̃∈K̃

∑
e′∈E′18

k

µk̃e′ .

It follows that σk
′

s′ = 0 for demand k′ and a slot s′ ∈ {wk′ , ..., s̄} given that µke = 0 for all the
demand k ∈ K and all edges e ∈ E \ (Ek0 ∪ Ek1 ).

The slot s′ is chosen arbitrarily for the demand k′, we iterate the same procedure for all feasible
slots in {wk′ , ..., s̄} of demand k′ s.t. we find

σk
′

s′ = 0, for demand k′ and all slots s′ ∈ {wk′ , ..., s̄}.

Given that the demand k′ is chosen arbitrarily. We iterate the same thing for all the demands k”
in K \ {k, k′} such that

σk”
s = 0, for all k” ∈ K \ {k, k′} and all slots s ∈ {wk”, ..., s̄}

Consequently, we conclude that

σk
′

s′ = 0, for all k′ ∈ K \ {k} and all slots s′ ∈ {wk′ , ..., s̄}.

Let’s prove now that σks for demand k and slots s in {wk, ..., s̄} are equivalent. Consider a slot
s′ ∈ {wk, ..., s̄} s.t. s′ /∈ S16

k . For that, we consider a solution S̃16 = (Ẽ16, S̃16) in which

– a feasible path Ẽ16
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S̃16
k is assigned to each demand k ∈ K along each edge e ∈ Ẽ16

k with |S̃16
k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S̃16

k and

s” ∈ S̃16
k′ with Ẽ16

k ∩ Ẽ16
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈Ẽ16
k
|{s′ ∈ S̃16

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S̃16
k′ with

Ẽ16
k ∩ Ẽ16

k′ 6= ∅ (non-overlapping constraint taking into account the possibility of adding the

slot s′ in the set of last-slots S̃16
k assigned to the demand k in the solution S̃16).,

– and |S̃16
k | = 1 for the demand k.
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S̃16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (xS̃
16

, zS̃
16

) is belong to F and then to F k
S̃

given that it is composed by
∑s̄
s=wk

zks = 1. Based on this,

– without changing the paths established in S̃16: we derive a solution S19 = (E19, S19) from the
solution S̃16 by adding the slot s′ as last-slot to the demand k and removing the last slot s ∈ S16

k ,

i.e., S19
k = (S̃16

k \{s})∪{s̃} for the demand k s.t. {s′−wk + 1, ..., s′}∩{s”−wk′ + 1, ..., s”} = ∅
for each k′ ∈ K and s” ∈ S19

k′ with E19
k ∩ E19

k′ 6= ∅. The paths assigned to the demands K in

S̃16 remain the same in S19 (i.e., E19
k = Ẽ16

k for each k ∈ K), and also the last-slots assigned

to the demands K \ {k} in S̃16, i.e., S̃16
k” = S19

k” for each demand k” ∈ K \ {k}. The solution
S19 is feasible given that
• a feasible path E19

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S19

k is assigned to each demand k ∈ K along each edge e ∈ E19
k with

|S19
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S19
k and

s” ∈ S19
k′ with E19

k ∩ E19
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E19
k
|{s′ ∈ S19

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |S19
k | = 1.

The corresponding incidence vector (xS
19

, zS
19

) is belong to F and then to F k
S̃

given that it is

composed by
∑s̄
s=wk

zks = 1. We then obtain that

µxS̃
16

+ σzS̃
16

= µxS
′19

+ σzS
′19

= µxS̃
16

+ σzS̃
16

− σks + σks′ .

It follows that σks′ = σks for demand k′ and a slots s, s′ ∈ {wk, ..., s̄}.
– with changing the paths established in S̃16: we construct a solution S ′19 derived from the

solution S̃16 by adding the slot s′ as last-slot to the demand k′ in S ′19
k and removing the last

slot s assigned to k in S̃16
k (i.e., S′19

k = (S̃16
k \ {s}) ∪ {s′} for the demand k) with modifying

the paths assigned to a subset of demands K̃ ⊂ K in S̃16 (i.e., E′19
k = Ẽ16

k for each k ∈ K \ K̃,

and E′19
k 6= Ẽ16

k for each k ∈ K̃), and also the last-slots assigned to the demands K \ {k} in

S̃16 remain the same in S ′19. The solution S ′19 is clearly feasible given that
• a feasible path E′19

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′19

k is assigned to each demand k ∈ K along each edge e ∈ E′19
k with

|S′19
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′19
k and

s” ∈ S′19
k′ with E′19

k ∩ E′19
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈E′19
k
|{s′ ∈ S′19

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and |S′19
k | = 1.

The corresponding incidence vector (xS
′19
, zS

′19
) is belong to F and then to F k

S̃
given that it

is composed by
∑s̄
s=wk

zks = 1. We have so

µxS̃
16

+ σzS̃
16

= µxS
′19

+ σzS
′19

= µxS̃
16

+ σzS̃
16

+ σks′ − σks + σks̃

−
∑
k∈K̃

∑
e∈Ẽ16

k

µxS̃
16

+
∑
k∈K̃

∑
e∈E′19

k

µxS
′19
.

It follows that σks′ = σks for demand k and a slots s, s′ ∈ {wk, ..., s̄} given that µke = 0 for all
k ∈ K and all e ∈ E \ (Ek0 ∪ Ek1 ).

The slot s is chosen arbitrarily for the demand k in {wk, ..., s̄}, we iterate the same procedure for
all feasible slots in {wk, ..., s̄} of demand k s.t. we find

σks′ = σks , for all slots s, s′ ∈ {wk, ..., s̄}.

Consequently, we obtain that σks = ρ for demand k and slots s in {wk, ..., s̄}.
On the other hand, we ensure that all the edges e ∈ Ek0 for each demand k are independants s.t.
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for each demand k ∈ K we have∑
e∈Ek

0

µke =
∑
e∈Ek

0

γk,e1 →
∑
e∈Ek

0

(µke − γ
k,e
1 ) = 0.

The only solution of this system is µke = γk,e1 for each e ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e1 , for all k ∈ K and all e ∈ Ek0 ,

We re-do the same thing for the edges e ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e∈Ek
1

µke =
∑
e∈Ek

1

γk,e2 →
∑
e∈Ek

1

(µke − γ
k,e
2 ) = 0

The only solution of this system is µke = γk,e2 for each e ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke = γk,e2 , for all k ∈ K and all e ∈ Ek1 ,

On the other hand, all the slots s ∈ {1, ..., wk − 1} for each demand k are independants s.t. for
each demand k ∈ K, we have

wk−1∑
s=1

σks =

wk−1∑
s=1

γk,s3 →
wk−1∑
s=1

(σks − γ
k,s
3 ) = 0

The only solution of this system is σks = γk,s3 for each s ∈ {1, ..., wk − 1} for the demand k. As k is
chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks = γk,s3 , for all k ∈ K and all s ∈ {1, ..., wk − 1}. (25)

We conclude that for each k′ ∈ K and e ∈ E

µk
′

e =


γk

′,e
1 , if e ∈ Ek

′

0

γk
′,e

2 , if e ∈ Ek
′

1

0, otherwise

and for each k′ ∈ K and s ∈ S

σk
′

s =


γk

′,s
3 , if s ∈ {1, ..., wk′ − 1}

ρ, if k′ = k and s ∈ {wk′ , ..., s̄}
0, otherwise.

As a result (µ, σ) =

s̄∑
s=wk

ρβks + γQ for the demand k which ends our strengthening of proof.

Proposition 6. Consider an edge e ∈ E, and an interval of contiguous slots I = [si, sj ] ⊂ S. Let

k, k′ ∈ K be pair of demands with e /∈ (Ek0 ∪ Ek
′

0 ), 2wk > |I|, 2wk′ > |I|, wk′ + wk′ > |I|, and
k, k′ are not non-compatible demands for the edge e. Then, the following inequality is valid for
P (G,K,S)

xke + xk
′

e +

sj∑
s=si+wk−1

zks +

sj∑
s=si+wk′−1

zks ≤ 3. (26)

Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, the inequality (26) ensures that
if the two demands k, k′ pass through edge e, they cannot share the interval I = [si, sj ] over edge
e.
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Theorem 7. Consider an edge e ∈ E, and a slot s ∈ S. Let k, k′ be two demands in K with
k, k′ are not non-compatible demands for the edge e. Then, the inequality (8) is facet defining for
P (G,K,S) iff Ke \ {k, k′} = ∅, and there does not exist an interval of contiguous slots I = [si, sj ]
s.t.

– |{si + wk − 1, ..., sj}| ≥ wk,
– and |{si + wk′ − 1, ..., sj}| ≥ wk′ ,
– and s ∈ {si + max(wk, wk′)− 1, ..., sj −max(wk, wk′) + 1},
– and wk + wk′ ≥ |I|+ 1,
– and 2wk ≥ |I|+ 1,
– and 2wk′ ≥ |I|+ 1.

Proof. Let K̃ = {k, k′}.
Neccessity.
If Ke \ K̃ 6= ∅, then the inequality (8) is dominated by the inequality (26) without changing its
right hand side. Moreover, if there exists an interval of contiguous slots I = [si, sj ] s.t.

– |{si + wk − 1, ..., sj}| ≥ wk for each demand k ∈ K̃,
– and s ∈ {si + max

k′∈K̃
wk − 1, ..., sj −max

k∈K̃
wk + 1},

– and wk + wk′ ≥ |I|+ 1 for each k, k′ ∈ K̃,
– and 2wk ≥ |I|+ 1 for each k ∈ K̃.

Then the inequality (8) is dominated by the inequality (26). Hence, the inequality (8) is not facet
defining for P (G,K,S).
Sufficiency.
Let F e,s

K̃
denote the face induced by the inequality (8), which is given by

F e,s
K̃

= {(x, z) ∈ P (G,K,S) :
∑
k∈K̃

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ = |K̃|+ 1}.

In order to prove that inequality
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ ≤ |K̃| + 1 is facet defining for

P (G,K,S), we start checking that F e,s
K̃

is a proper face, and F e,s
K̃
6= P (G,K,S).

We construct a solution S20 = (E20, S20) as below

– a feasible path E20
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S20
k is assigned to each demand k ∈ K along each edge e′ ∈ E20

k with |S20
k | ≥ 1

(contiguity and continuity constraints),
– {s−wk + 1, ..., s} ∩ {s′ −wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s′ ∈ S20

k and s′ ∈ S20
k′

with E20
k ∩ E20

k′ 6= ∅ (non-overlapping constraint),

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k selects a
slot s′ as last-slot in the solution S20 with s′ ∈ {s, ..., s+ wk − 1}, i.e., s′ ∈ S20

k for a demand

k ∈ K̃, and for each s′ ∈ S20
k′ for all k′ ∈ K̃ \ {k} we have s′ /∈ {s, ..., s+ wk′ − 1},

– and all the demands in K̃ pass through the edge e in the solution S20, i.e., e ∈ E20
k for each

k ∈ K̃.

Obviously, S20 is a feasible solution for the problem given that it satisfies all the constraints of our
cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

20

, zS
20

) is belong to

P (G,K,S) and then to F e,s
K̃

given that it is composed by
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. As a

result, F e,s
K̃

is not empty (i.e., F e,s
K̃
6= ∅). Furthermore, given that s ∈ S, this means that there exists

at least one feasible slot assignment Sk for each demands k in K̃ with Sk ∩ {s, ..., s+wk − 1} = ∅.
Hence, F e,s

K̃
6= P (G,K,S).

We denote the inequality
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ ≤ |K̃|+1 by αx+βz ≤ λ. Let µx+σz ≤ τ

be a valid inequality that is facet defining F of P (G,K,S). Suppose that F e,s
K̃
⊂ F = {(x, z) ∈

P (G,K,S) : µx + σz = τ}. We show that there exists ρ ∈ R and γ = (γ1, γ2, γ3) (s.t. γ1 ∈
R

∑
k∈K |E

k
0 |, γ2 ∈ R

∑
k∈K |E

k
1 |, γ3 ∈ R

∑
k∈K(wk−1)) s.t. (µ, σ) = ρ(α, β) + γQ, and that
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– σks′ = 0 for all demands k ∈ K and all slots s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s + wk − 1} if
k ∈ K̃,

– and σks′ are equivalents for all k ∈ K̃ and all s′ ∈ {s, ..., s+ wk − 1},
– and µke′ = 0 for all demands k ∈ K and all edges e ∈ E \ (Ek0 ∪ Ek1 ) with e 6= e′ if k ∈ K̃,
– and all µke are equivalents for the set of demands in K̃,
– and σks′ and µke are equivalents for all k ∈ K̃ and all s′ ∈ {s, ..., s+ wk − 1}.

We first show that µke′ = 0 for each edge e′ ∈ E \ (Ek0 ∪Ek1 ) for each demand k ∈ K with e 6= e′ if
k ∈ K̃. Consider a demand k ∈ K and an edge e′ ∈ E \ (Ek0 ∪ Ek1 ) with e 6= e′ if k ∈ K̃. For that,
we consider a solution S ′20 = (E′20, S′20) in which

– a feasible path E′20
k is assigned to each demand k ∈ K (routing constraint),

– and a set of last-slots S′20
k is assigned to each demand k ∈ K along each edge e′ ∈ E′20

k with
|S′20
k | ≥ 1 (contiguity and continuity constraints),

– and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′20
k

and s” ∈ S′20
k′ with E′20

k ∩ E′20
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′20
k
|{s′ ∈ S′20

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k selects a
slot s′ as last-slot in the solution S ′20 with s′ ∈ {s, ..., s+wk − 1}, i.e., s′ ∈ S′20

k for a demand

k ∈ K̃, and for each s′ ∈ S′20
k′ for all k′ ∈ K̃ \ {k} we have s′ /∈ {s, ..., s+ wk′ − 1},

– and the edge e′ is not non-compatible edge with the selected edges e” ∈ E′20
k of demand k in

the solution S ′20, i.e.,
∑
e”∈E′20

k
le” + le′ ≤ l̄k. As a result, E′20

k ∪ {e′} is a feasible path for the

demand k,
– and all the demands in K̃ pass through the edge e in the solution S ′20, i.e., e ∈ E′20

k for each

k ∈ K̃.

S ′20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS

′20
, zS

′20
) is belong to F and then to F e,s

K̃

given that it is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. Based on this, we derive a solution

S21 obtained from the solution S ′20 by adding an unused edge e′ ∈ E \ (Ek0 ∪ Ek1 ) for the routing
of demand k in K in the solution S20 which means that E21

k = E′20
k ∪ {e′}. The last-slots assigned

to the demands K, and paths assigned the set of demands K \ {k} in S ′20 remain the same in the
solution S21, i.e., S21

k = S′20
k for each k ∈ K, and E21

k′ = E′20
k′ for each k′ ∈ K \ {k}. S21 is clearly

feasible given that

– and a feasible path E21
k is assigned to each demand k ∈ K (routing constraint),

– and a set of last-slots S21
k is assigned to each demand k ∈ K along each edge e′ ∈ E21

k with
|S21
k | ≥ 1 (contiguity and continuity constraints),

– and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S21
k

and s” ∈ S21
k′ with E21

k ∩ E21
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E21
k
|{s′ ∈ S21

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
21

, zS
21

) is belong to F and then to F e,s
K̃

given that it is

composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. It follows that

µxS
′20

+ σzS
′20

= µxS
21

+ σzS
21

= µxS
′20

+ µke′ + σzS
′20
.

As a result, µke′ = 0 for demand k and an edge e′.
As e′ is chosen arbitrarily for the demand k with e /∈ Ek0 ∪ Ek1 and e 6= e′ if k ∈ K̃, we iterate the
same procedure for all e ∈ E \ (Ek0 ∪ Ek1 ∪ {e′}) with e 6= e” if k ∈ K̃. We conclude that for the
demand k

µke′ = 0, for all e′ ∈ E \ (Ek0 ∪ Ek1 ) with e 6= e′ if k ∈ K̃.

Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \{k}
and all e′ ∈ E \ (Ek0 ∪ Ek1 ). We conclude at the end that

µke′ = 0, for all k ∈ K and all e′ ∈ E \ (Ek0 ∪ Ek1 ) with e 6= e′ if k ∈ K̃.
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Let’s us show that σks′ = 0 for all k ∈ K and all s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s + wk − 1} if
k ∈ K̃. Consider the demand k and a slot s′ in {wk, ..., s̄} with s′ /∈ {s, ..., s + wk − 1} if k ∈ K̃.
For that, we consider a solution S”20 = (E”20, S”20) in which

– a feasible path E”20
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”20
k is assigned to each demand k ∈ K along each edge e′ ∈ E”20

k with
|S”20

k | ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”20

k and
s” ∈ S”20

k′ with E”20
k ∩ E”20

k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑
k∈K,e′∈E”20

k
|{s′ ∈ S”20

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S”20
k′ with

E”20
k ∩E”20

k′ 6= ∅ (non-overlapping constraint taking into account the possibility of adding the
slot s′ in the set of last-slots S”20

k assigned to the demand k in the solution S”20),

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k selects a
slot s′ as last-slot in the solution S”20 with s′ ∈ {s, ..., s+wk− 1}, i.e., s′ ∈ S”20

k for a demand

k ∈ K̃, and for each s′ ∈ S”20
k′ for all k′ ∈ K̃ \ {k} we have s′ /∈ {s, ..., s+ wk′ − 1},

– and all the demands in K̃ pass through the edge e in the solution S”20, i.e., e′ ∈ E”20
k for each

k ∈ K̃.

S”20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation
(2)-(12). Hence, the corresponding incidence vector (xS”20

, zS”20

) is belong to F and then to F e,s
K̃

given that it is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. Based on this, we distinguish two

cases:

– without changing the paths established in S”20: we derive a solution S22 = (E22, S22) from
the solution S”20 by adding the slot s′ as last-slot to the demand k without modifying the
paths assigned to the demands K in S”20 (i.e., E22

k = E”20
k for each k ∈ K), and the last-slots

assigned to the demands K \ {k} in S”20 remain the same in the solution S22 i.e., S”20
k′ = S22

k′

for each demand k′ ∈ K \ {k}, and S22
k = S”20

k ∪ {s′} for the demand k. The solution S22 is
feasible given that
• a feasible path E22

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S22

k is assigned to each demand k ∈ K along each edge e′ ∈ E22
k with

|S22
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S22
k and

s” ∈ S22
k′ with E22

k ∩ E22
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E22
k
|{s′ ∈ S22

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
22

, zS
22

) is belong to F and then to F e,s
K̃

given that it

is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We then obtain that

µxS”20

+ σzS”20

= µxS
22

+ σzS
22

= µxS”20

+ σzS”20

+ σks′ .

It follows that σks′ = 0 for demand k and a slot s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s + wk − 1} if
k ∈ K̃.

– with changing the paths established in S”20: we construct a solution S ′22 derived from the
solution S”20 by adding the slot s′ as last-slot to the demand k with modifying the paths
assigned to a subset of demands K̃ ⊂ K in S”20 (i.e., E′22

k = E”20
k for each k ∈ K \ K̃, and

E′22
k 6= E”20

k for each k ∈ K̃) s.t.

• a new feasible path E′22
k is assigned to each demand k ∈ K̃ (routing constraint),

• and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k ∈ K̃ and k′ ∈ K \ K̃ and
each s′ ∈ S”20

k and s” ∈ S”20
k′ with E′22

k ∩E”20
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot

s” ∈ S we have
∑
k∈K̃,e′∈E′22

k
|{s′ ∈ S”20

k , s” ∈ {s′−wk + 1, ..., s′}|+
∑
k∈K\K̃,e′∈E”20

k
|{s′ ∈

S”20
k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

• and {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k′ ∈ K̃ and s” ∈ S”20
k” (non-

overlapping constraint taking into account the possibility of adding the slot s′ in the set of
last-slots S”20

k assigned to the demand k in the solution S”20).
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The last-slots assigned to the demands K\{k} in S”20 remain the same in S ′22, i.e., S”20
k′ = S′22

k′

for each demand k′ ∈ K \ {k}, and S′22
k = S”20

k ∪ {s} for the demand k. The solution S ′22 is
clearly feasible given that
• a feasible path E′22

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′22

k is assigned to each demand k ∈ K along each edge e′ ∈ E′22
k with

|S′22
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′22
k and

s” ∈ S′22
k′ with E′22

k ∩ E′22
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′22
k
|{s′ ∈ S′22

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
′22
, zS

′22
) is belong to F and then to F e,s

K̃
given that it

is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We have so

µxS”20

+ σzS”20

= µxS
′22

+ σzS
′22

= µxS”20

+ σzS”20

+ σks′ −
∑
k̃∈K̃

∑
e′∈E”20

k

µk̃e′ +
∑
k̃∈K̃

∑
e”∈E′22

k

µk̃e”.

It follows that σks′ = 0 for demand k and a slot s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s + wk − 1}
if k ∈ K̃ given that µke′ = 0 for all the demand k ∈ K and all edges e′ ∈ E \ (Ek0 ∪ Ek1 ) with
e 6= e′ if k ∈ K̃.

The slot s′ is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible
slots in {wk, ..., s̄} of demand k with s′ /∈ {s, ..., s+ wk − 1} if k ∈ K̃ s.t. we find

σks′ = 0, for demand k and all slots s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s+ wk − 1} if k ∈ K̃.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k′

in K \ {k} such that

σk
′

s′ = 0, for all k′ ∈ K \ {k} and all slots s′ ∈ {wk′ , ..., s̄} with s′ /∈ {s, ..., s+ wk′ − 1} if k′ ∈ K̃.

Consequently, we conclude that

σks′ = 0, for all k ∈ K and all slots s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s+ wk − 1} if k ∈ K̃.

Let prove that σks′ for all k ∈ K̃ and all s′ ∈ {s, ..., s+wk − 1} are equivalents. Consider a demand
k′ and a slot s′ ∈ {s, ..., s+wk′ −1} with k′ ∈ K̃. For that, we consider a solution S̃20 = (Ẽ20, S̃20)
in which

– a feasible path Ẽ20
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S̃20
k is assigned to each demand k ∈ K along each edge e′ ∈ Ẽ20

k with |S̃20
k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S̃20

k and

s” ∈ S̃20
k′ with Ẽ20

k ∩ Ẽ20
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈Ẽ20
k
|{s′ ∈ S̃20

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk+1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k ∈ K and s ∈ S”20
k with Ẽ20

k ∩Ẽ20
k′ 6= ∅

(non-overlapping constraint taking into account the possibility of adding the slot s′ in the set
of last-slots S”20

k′ assigned to the demand k′ in the solution S”20),

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k selects a
slot s′ as last-slot in the solution S̃20 with s′ ∈ {s, ..., s+ wk − 1}, i.e., s′ ∈ S̃20

k for a demand

k ∈ K̃, and for each s′ ∈ S̃20
k′ for all k′ ∈ K̃ \ {k} we have s′ /∈ {s, ..., s+ wk′ − 1},

– and all the demands in K̃ pass through the edge e in the solution S̃20, i.e., e′ ∈ Ẽ20
k for each

k ∈ K̃.

S̃20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (xS̃
20

, zS̃
20

) is belong to F and then to F e,s
K̃

given that it is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. Based on this, we distinguish two

cases:
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– without changing the paths established in S̃20: we derive a solution S23 = (E23, S23) from the
solution S̃20 by adding the slot s′ as last-slot to the demand k without modifying the paths
assigned to the demands K in S̃20 (i.e., E23

k = Ẽ20
k for each k ∈ K), and also the last-slots

assigned to the demands K \ {k, k′} in S̃20 remain the same in S23, i.e., S̃20
k” = S23

k” for each

demand k” ∈ K \ {k, k′}, and S23
k′ = S̃20

k′ ∪{s′} for the demand k′, and modifying the last-slots

assigned to the demand k by adding a new last-slot s̃ and removing the last slot s′ ∈ S̃20
k

with s′ ∈ {si + wk + 1, ..., sj} and s̃ /∈ {si + wk + 1, ..., sj} for the demand k with k ∈ K̃ s.t.

S23
k = (S̃20

k \ {s}) ∪ {s̃} s.t. {s̃− wk + 1, ..., s̃} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each k′ ∈ K and
s′ ∈ S23

k′ with E23
k ∩ E23

k′ 6= ∅. The solution S23 is feasible given that
• a feasible path E23

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S23

k is assigned to each demand k ∈ K along each edge e′ ∈ E23
k with

|S23
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S23
k and

s” ∈ S23
k′ with E23

k ∩ E23
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E23
k
|{s′ ∈ S23

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
23

, zS
23

) is belong to F and then to F e,s
K̃

given that it

is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We then obtain that

µxS̃
20

+ σzS̃
20

= µxS
23

+ σzS
23

= µxS̃
20

+ σzS̃
20

+ σk
′

s” − σks′ + σks̃ .

It follows that σk
′

s” = σks′ for demand k′ and a slot s′ ∈ {wk, ..., s̄} with k′ ∈ K̃ and s′ ∈
{s, ..., s+ wk′ − 1} given that σks̃ = 0 for s̃ /∈ {s, ..., s+ wk − 1} with k ∈ K̃.

– with changing the paths established in S̃20: we construct a solution S ′23 derived from the
solution S̃20 by adding the slot s′ as last-slot to the demand k′ with modifying the paths
assigned to a subset of demands K̃ ⊂ K in S̃20 (i.e., E′23

k = Ẽ20
k for each k ∈ K \ K̃, and

E′23
k 6= Ẽ20

k for each k ∈ K̃), and also the last-slots assigned to the demands K \ {k, k′}
in S̃20 remain the same in S ′23, i.e., S̃20

k” = S′23
k” for each demand k” ∈ K \ {k, k′}, and

S′23
k′ = S̃20

k′ ∪ {s′} for the demand k′, and modifying the last-slots assigned to the demand k

by adding a new last-slot s̃ and removing the last slot s′ ∈ S̃20
k with s′ ∈ {si + wk + 1, ..., sj}

and s̃ /∈ {si + wk + 1, ..., sj} for the demand k with k ∈ K̃ s.t. S′23
k = (S̃20

k \ {s}) ∪ {s̃} s.t.
{s̃−wk + 1, ..., s̃}∩{s′−wk′ + 1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S′23

k′ with E′23
k ∩E′23

k′ 6= ∅.
The solution S ′23 is clearly feasible given that
• a feasible path E′23

k is assigned to each demand k ∈ K (routing constraint),
• a set of last-slots S′23

k is assigned to each demand k ∈ K along each edge e′ ∈ E′23
k with

|S′23
k | ≥ 1 (contiguity and continuity constraints),

• {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S′23
k and

s” ∈ S′23
k′ with E′23

k ∩ E′23
k′ 6= ∅, i.e., for each edge e′ ∈ E and each slot s” ∈ S we have∑

k∈K,e′∈E′23
k
|{s′ ∈ S′23

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS
′23
, zS

′23
) is belong to F and then to F e,s

K̃
given that it

is composed by
∑
k∈K̃ x

k
e′ +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We have so

µxS̃
20

+ σzS̃
20

= µxS
′23

+ σzS
′23

= µxS̃
20

+ σzS̃
20

+ σk
′

s” − σks′ + σks̃

−
∑
k∈K̃

∑
e′∈Ẽ20

k

µke′ +
∑
k∈K̃

∑
e′∈E′23

k

µke′ .

It follows that σk
′

s” = σks′ for demand k′ and a slot s′ ∈ {wk, ..., s̄} with k′ ∈ K̃ and s′ ∈
{s, ..., s+wk′ − 1} given that σks̃ = 0 for s̃ /∈ {s, ..., s+wk − 1} with k ∈ K̃, and µke′ = 0 for all
k ∈ K and all e′ ∈ E \ (Ek0 ∪ Ek1 ) with e′ 6= e if k ∈ K̃.

Given that the pair (k, k′) are chosen arbitrary in the set of demands K̃, we iterate the same
procedure for all pairs (k, k′) s.t. we find

σks′ = σk
′

s”, for all pairs (k, k′) ∈ K̃
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with s′ ∈ {s, ..., s+wk− 1} and s′ ∈ {s, ..., s+wk′ − 1}. We re-do the same procedure for each two
slots s, s′ ∈ {s, ..., s+ wk − 1} for each demand k ∈ K with k ∈ K̃ s.t.

σks′ = σks”, for all k ∈ K̃ and s, s′ ∈ {s, ..., s+ wk − 1}.

Let us prove now that µke for all k ∈ K with k ∈ K̃ are equivalents. For that, we consider a solution
S24 = (E24, S24) defined as below

– a feasible path E24
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S24
k is assigned to each demand k ∈ K along each edge e′ ∈ E24

k with |S24
k | ≥ 1

(contiguity and continuity constraints),
– {s−wk + 1, ..., s} ∩ {s′ −wk′ + 1, ..., s′} = ∅ for each k, k′ ∈ K and each s′ ∈ S24

k and s′ ∈ S24
k′

with E24
k ∩ E24

k′ 6= ∅ (non-overlapping constraint),

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k pass
through the edge e in the solution S24, i.e., e ∈ E24

k for a demand k ∈ K̃, and e /∈ E24
k′ for all

k′ ∈ K̃ \ {k},
– and all the demands in K̃ share the slot s over the edge e in the solution S24, i.e., {si + wk +

1, ..., sj} ∩ S24
k 6= ∅ for each k ∈ K̃.

Obviously, S24 is a feasible solution for the problem given that it satisfies all the constraints of
our cut formulation (2)-(12). Moreover, the corresponding incidence vector (xS

24

, zS
24

) is belong

to P (G,K,S) and then to F e,s
K̃

given that it is composed by
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ = 1.

Consider now a demand k′ in K̃ s.t. e /∈ E24
k′ . For that, we consider a solution S̃24 = (Ẽ24, S̃24) in

which

– a feasible path Ẽ24
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S̃24
k is assigned to each demand k ∈ K along each edge e ∈ Ẽ24

k with |S̃24
k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S̃24

k and

s” ∈ S̃24
k′ with Ẽ24

k ∩ Ẽ24
k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑

k∈K,e∈Ẽ24
k
|{s′ ∈ S̃24

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and {s−wk+1, ..., s}∩{s′−wk′ +1, ..., s′} = ∅ for each k ∈ K and s′ ∈ S24
k with Ẽ24

k ∩Ẽ24
k′ 6= ∅,

– and there is one demand k from the set of demands K̃ (i.e., k ∈ K̃ s.t. the demand k pass
through the edge e in the solution S̃24, i.e., e ∈ Ẽ24

k for a demand k ∈ K̃, and e /∈ Ẽ24
k′ for all

k′ ∈ K̃ \ {k},
– and all the demands in K̃ share the slot s over the edge e in the solution S̃24, i.e., {s, ..., s +
wk − 1} ∩ S̃24

k 6= ∅ for each k ∈ K̃.

S̃24 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

(2)-(12). Hence, the corresponding incidence vector (xS̃
24

, zS̃
24

) is belong to F and then to F e,s
K̃

given that it is composed by
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. Based on this, we derive a solution

S”25 = (E”25, S”25) from the solution S̃24 by

– the paths assigned to the demands K \{k, k′} in S̃24 remain the same in S”25 (i.e., E”25
k” = Ẽ24

k”

for each k” ∈ K \ {k, k′}),
– without modifying the last-slots assigned to the demands K in S̃24, i.e., S̃24

k = S”25
k for each

demand k ∈ K,
– modifying the path assigned to the demand k′ in S̃24 from Ẽ24

k′ to a path E”25
k′ passed through

the edge e (i.e., e ∈ E”25
k′ ) with k′ ∈ K̃ s.t. {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for

each k ∈ K and each s′ ∈ S̃24
k′ and each s′ ∈ S̃24

k with Ẽ24
k ∩ E”25

k′ 6= ∅,
– modifying the path assigned to the demand k in S̃24 with e ∈ Ẽ24

k and k ∈ K̃ from Ẽ24
k to

a path E”25
k without passing through the edge e (i.e., e /∈ E”25

k ) and {s − wk + 1, ..., s} ∩
{s′ − wk” + 1, ..., s′} = ∅ for each k” ∈ K \ {k, k′} and each s′ ∈ S̃24

k and each s′ ∈ S̃24
k” with

Ẽ24
k” ∩ E”25

k 6= ∅, and {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each s′ ∈ S̃24
k and each

s′ ∈ S̃24
k′ with E”25

k” ∩ E”25
k 6= ∅.

The solution S”25 is feasible given that
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– a feasible path E”25
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S”25
k is assigned to each demand k ∈ K along each edge e ∈ E”25

k with
|S”25

k | ≥ 1 (contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S”25

k and
s” ∈ S”25

k′ with E”25
k ∩ E”25

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E”25

k
|{s′ ∈ S”25

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (xS”25

, zS”25

) is belong to F and then to F e,s
K̃

given that it is

composed by
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We then obtain that

µxS̃
24

+ σzS̃
24

= µxS
25

+ σzS
25

= µxS̃
24

+ σzS̃
24

+ µk
′

e − µke
+

∑
e”∈E”25

k′\{e}

µk
′

e” −
∑

e”∈Ẽ24
k′

µk
′

e” +
∑

e”∈E”25
k

µke” −
∑

e”∈Ẽ24
k \{e}

µke”.

It follows that µk
′

e = µke for demand k′ and a edge e′ ∈ E \ (Ek
′

0 ∪ Ek
′

1 ) with vk′,e′ ∈ K̃ given that

µke” = 0 for all k ∈ K and all e” ∈ E \ (Ek0 ∪ Ek1 ) with k ∈ K̃.

Given that the pair (k, k′) are chosen arbitrary in the set of demands K̃, we iterate the same
procedure for all pairs (k, k′) s.t. we find

µke = µk
′

e , for all pairs (k, k′) ∈ K̃.

Furthermore, let prove that all σks′ and µke are equivalents for all k ∈ K̃ and s′ ∈ {s, ..., s+wk−1}.
For that, we consider for each demand k′ with k′ ∈ K̃, a solution S26 = (E26, S26) derived from
the solution S̃24 as below

– the paths assigned to the demands K \ {k′} in S̃24 remain the same in S26 (i.e., E26
k” = Ẽ24

k” for
each k” ∈ K \ {k′}),

– without modifying the last-slots assigned to the demands K \ {k} in S̃24, i.e., S̃24
k” = S26

k” for
each demand k” ∈ K \ {k},

– modifying the set of last-slots assigned to the demand k′ in S̃24 from S̃24
k′ to S26

k′ s.t. S26
k′ ∩

{s, ..., s+ wk′ − 1} = ∅.

Hence, there are |K̃|−1 demands from K̃ that share the slot s over the edge e (i.e., all the demands
in K̃ \{k′}), and two demands {k, k′} from K̃ that use the edge e in the solution S26. The solution
S26 is then feasible given that

– a feasible path E26
k is assigned to each demand k ∈ K (routing constraint),

– a set of last-slots S26
k is assigned to each demand k ∈ K along each edge e ∈ E26

k with |S26
k | ≥ 1

(contiguity and continuity constraints),
– {s′ − wk + 1, ..., s′} ∩ {s” − wk′ + 1, ..., s”} = ∅ for each k, k′ ∈ K and each s′ ∈ S26

k and
s” ∈ S26

k′ with E26
k ∩ E26

k′ 6= ∅, i.e., for each edge e ∈ E and each slot s” ∈ S we have∑
k∈K,e∈E26

k
|{s′ ∈ S26

k , s” ∈ {s′ − wk + 1, ..., s′}| ≤ 1 (non-overlapping constraint),

– and
∑
k∈K̃ |E26

k ∩ {e}|+ |S26
k ∩ {s, ..., s+ wk − 1}| = |K̃|+ 1.

The corresponding incidence vector (xS
26

, zS
26

) is belong to F and then to F e,s
K̃

given that it is

composed by
∑
k∈K̃ x

k
e +

∑min(s+wk−1,s̄)
s′=s zks′ = 1. We then obtain that

µxS̃
24

+ σzS̃
24

= µxS
26

+ σzS
26

= µxS̃
24

+ σzS̃
24

+ µk
′

e − σk
′

s′ +
∑

e”∈E26
k′ \{e}

µk
′

e” −
∑

e”∈Ẽ24
k′

µk
′

e”.

It follows that µk
′

e = σk
′

s′ for demand k′ and slot s′ ∈ {s, ..., s+ wk′ − 1} given that µke” = 0 for all

k ∈ K and all e” ∈ E \ (Ek0 ∪ Ek1 ) with e 6= e” if k ∈ K̃. Moreover, by doing the same thing over
all slots s′ ∈ {s, ..., s+ wk′ − 1}, we found that

µk
′

e = σk
′

s′ , for all s′ ∈ {s, ..., s+ wk′ − 1}.



On the Facial Structure of the C-RSA Polyhedron 41

Given that k′ is chosen arbitrarily in K̃, we iterate the same procedure for all k ∈ K̃ to show that

µke = σks′ , for all k ∈ K̃ and all s′ ∈ {s, ..., s+ wk − 1}.

Based on this, and given that all µke are equivalents for all k ∈ K̃, and that σks′ are equivalents for
all k ∈ K̃ and s′ ∈ {s, ..., s+ wk′ − 1}, we obtain that

µke = σk
′

s′ , for all k, k′ ∈ K̃ and all s′ ∈ {s, ..., s+ wk′ − 1}.

Consequently, we conclude that

µke = σk
′

s′ = ρ, for all k, k′ ∈ K̃ and all s′ ∈ {s, ..., s+ wk′ − 1}.

On the other hand, we ensure that all e′ ∈ Ek0 for each demand k are independants s.t. for each
demand k ∈ K we have ∑

e′∈Ek
0

µke′ =
∑
e′∈Ek

0

γk,e
′

1 →
∑
e′∈Ek

0

(µke′ − γ
k,e′

1 ) = 0.

The only solution of this system is µke′ = γk,e
′

1 for each e′ ∈ Ek0 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

1 , for all k ∈ K and all e′ ∈ Ek0 ,

We re-do the same thing for the edges e′ ∈ Ek1 for each demand k which are independants s.t. for
each demand k ∈ K we have∑

e′∈Ek
1

µke′ =
∑
e′∈Ek

1

γk,e
′

2 →
∑
e′∈Ek

1

(µke′ − γ
k,e′

2 ) = 0

The only solution of this system is µke′ = γk,e
′

2 for each e′ ∈ Ek1 for the demand k. As k is chosen
arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We conclude that

µke′ = γk,e
′

2 , for all k ∈ K and all e′ ∈ Ek1 ,

Furthermore, all the slots s′ ∈ {1, ..., wk − 1} for each demand k are independants s.t. for each
demand k ∈ K, we have

wk−1∑
s=1

σks′ =

wk−1∑
s=1

γk,s
′

3 →
wk−1∑
s=1

(σks′ − γ
k,s′

3 ) = 0

The only solution of this system is σks′ = γk,s
′

3 for each s′ ∈ {1, ..., wk − 1} for the demand k. As k
is chosen arbitrarily in K, we iterate the same procedure for all k′ ∈ K \ {k}. We then get that

σks′ = γk,s
′

3 , for all k ∈ K and all s′ ∈ {1, ..., wk − 1}. (27)

We conclude that for each k′ ∈ K and e′ ∈ E

µk
′

e′ =


γk

′,e′

1 , if e′ ∈ Ek0 ,

γk
′,e′

2 , if e′ ∈ Ek1 ,
ρ, if k′ ∈ K̃ and e′ = e,

0, otherwise,

and for each k ∈ K and s′ ∈ S

σks′ =


γk,s

′

3 , if s′ ∈ {1, ..., wk − 1}
ρ, if k ∈ K̃ and s′ ∈ {s, ..., s+ wk − 1},

0, otherwise.

As a result (µ, σ) =
∑
k∈K̃

ραke +

min(s+wk−1,s̄)∑
s′=s

ρβks′ + γQ.
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5 Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We first
introduced an integer linear programming based on the so-called cut formulation for the problem.
We investigated the facial structure of the associated polyhedron by showing that some basic
inequalities of the cut formulation are facet-defining under certain conditions.
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Optiques Élastiques FlexGrid. In: Journées Polyédres et Optimisation Combinatoire (JPOC-Metz) 2019,
pp. 1-4.

31. Hai, D.H., and Hoang, K.M. : An efficient genetic algorithm approach for solving routing and spectrum
assignment problem. In: Journal of Recent Advances in Signal Processing 2017.

32. Hai, D.H., and Morvan, M., and Gravey, P.: Combining heuristic and exact approaches for solving the
routing and spectrum assignment problem. In: Journal of Iet Optoelectronics 2017, pp. 65-72.

33. He, S., Qiu, Y., and Xu, J. : Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation
Traffic in Elastic Optical Network. In: Sensors 2020.

34. Jaumard, B., and Daryalal, M. : Scalable elastic optical path networking models. In: 18th International
Conference Transparent Optical Networks (ICTON) 2016, pp. 1-4.

35. Jiang, R., and Feng, M., and Shen, J. : An defragmentation scheme for extending the maximal unoc-
cupied spectrum block in elastic optical networks. In: 16th International Conference on Optical Com-
munications and Networks (ICOCN) 2017, pp. 1-3.

36. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Yoshimatsu, T., Kobayashi, T., Miyamoto, Y.,
Yonenaga, K., Takada, A., Ishida, O., and Matsuoka, S. : Demonstration of novel spectrum-efficient
elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s. In: 34th
European Conference on Optical Communication 2008.

37. Joksch, H.C. : The shortest route problem with constraints. In: Journal of Mathematical Analysis and
Applications, pp. 191-197.

38. https://lemon.cs.elte.hu/trac/lemon.
39. Lezama, F., Martinez-Herrera, A.F., Castanon, G., Del-Valle-Soto, C., Sarmiento, A.M., Munoz de

Cote, A. : Solving routing and spectrum allocation problems in flexgrid optical networks using pre-
computing strategies. In: Journal of Photon Netw Commun 41, pp. 17-35.

40. Liu, L., and Yin, S., and Zhang, Z., and Chu, Y., and Huang, S. : A Monte Carlo Based Routing and
Spectrum Assignment Agent for Elastic Optical Networks. In: Asia Communications and Photonics
Conference (ACP) 2019, pp. 1-3.

41. Lohani, V., Sharma, A., and Singh, Y.N. : Routing, Modulation and Spectrum Assignment using
an AI based Algorithm. In: 11th International Conference on Communication Systems & Networks
(COMSNETS) 2019, pp. 266-271.

42. Lopez, V., and Velasco, L. : Elastic Optical Networks: Architectures, Technologies, and Control. In:
Springer Publishing Company, Incorporated 2016.

43. Lozano, L., and Medaglia, A.L. : On an exact method for the constrained shortest path problem. In:
Journal of Computers & Operations Research, pp. 378-384.

44. Mahala, N., and Thangaraj, J. : Spectrum assignment technique with first-random fit in elastic optical
networks. In : 4th International Conference on Recent Advances in Information Technology (RAIT)
2018, pp. 1-4.

45. Margot, F. : Symmetry in integer linear programming. In: 50 Years of Integer Programming 1958-2008,
Springer, 2010, pp. 647-686.

46. Margot, F. : Pruning by isomorphism in branch-and-cut. In: Mathematical Programming 2002, pp.
71-90.

47. Margot, F. : Exploiting orbits in symmetric ilp. In: Mathematical Programming 2003, pp. 3-21.



44 Diarassouba et al.

48. Méndez-Dı́az, I. and Zabala, P. : A Branch-and-Cut algorithm for graph coloring. In: Discrete Applied
Mathematics Journal 2006, pp. 826-847.

49. Mesquita, L.A.J., and Assis, K., and Santos, A.F., and Alencar, M., and Almeida, R.C. : A Routing and
Spectrum Assignment Heuristic for Elastic Optical Networks under Incremental Traffic. In: SBFoton
International Optics and Photonics Conference (SBFoton IOPC) 2018, pp. 1-5.

50. Nemhauser, G.L., and Wolsey, L.A. : Integer and Combinatorial Optimization. In: John Wiley 1988.

51. Nemhauser, G. L., and Sigismondi, G.: A Strong Cutting Plane/Branch-and-Bound Algorithm for
Node Packing. In: The Journal of the Operational Research Society 1992, pp. 443-457.
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