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The constrained-routing and spectrum assignment (C-RSA) problem is a key issue when dimensioning and designing an optical network. Given an optical network G and a multiset of traffic demand K, it aims at determining for each traffic demand k ∈ K a path and an interval of contiguous slots while satisfying technological constraints and optimizing some linear objective function(s). In this paper, we first introduce an integer linear programming formulation for the C-RSA problem. We further investigate the facial structure of the associated polytope.

Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by 2022, up from 194. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF] Exabytes per month in 2020 [START_REF]The Network Cisco's Technology News Site: Cisco Predicts More IP Traffic in the Next Five Years Than in the History of the Internet[END_REF]. Optical transport networks are then facing a serious challenge related to continuous growth in bandwidth capacity due to the growth of global communication services and networking: mobile internet network (e.g., 5th generation mobile network), cloud computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social networks) [START_REF] Cheng | Routing and Spectrum Assignment Algorithm based on Spectrum Fragment Assessment of Arriving Services[END_REF], etc... To sustain the network operators face this trend of increase in bandwidth, a new generation of optical transport network architecture called Spectrally Flexible Optical Networks (SFONs) (called also FlexGrid Optical Networks) has been introduced as promising technology because of their flexibility, scalability, efficiency, reliability, survivability [START_REF] Chatterjee | Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey[END_REF][9] compared with the traditional FixedGrid Optical Wavelength Division Multiplexing (WDM) [START_REF] Ramaswami | Optical Networks: A Practical Perspective[END_REF] [START_REF] Ramaswami | Multiwavelength lightwave networks for computer communication[END_REF]. In SFONs the optical spectrum is divided into small spectral units, called frequency slots as shown in Figure 1. They have the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T [START_REF] Amar | Performance assessment and modeling of flexible optical networks[END_REF]. This concept of slots was proposed firstly by Jinno et al. in 2008 [36], and later explored by the same authors in 2010 [START_REF] Walkowiak | Elastic optical networks -a new approach for effective provisioning of cloud computing and content-oriented services[END_REF]. This can be seen as an improvement in resource utilization. We refer the Fig. 1. Slot concept illustration in SFONs [START_REF] Santos | Heuristics for Routing and Spectrum Allocation in Elastic Optical Path Networks[END_REF].

reader to [START_REF] Lopez | Elastic Optical Networks: Architectures, Technologies, and Control[END_REF] for more information about the architectures, technologies, and control of SFONs.
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The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimensioning and designing of SFONs which is the main task for the development of this next generation of optical networks. It consists of assigning for each traffic demand, a physical optical path, and an interval of contiguous slots (called also channels) while optimizing some linear objective(s) and satisfying the following constraints [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]:

1. spectrum contiguity: an interval of contiguous slots should be allocated to each demand k with a width equal to the number of slots requested by demand k; 2. spectrum continuity: the interval of contiguous slots allocated to each traffic demand stills the same along the chosen path; 3. non-overlapping spectrum: the intervals of contiguous slots of demands whose paths are not edge-disjoints in the network cannot share any slot over the shared edges.

Related Works

The RSA is known to be an NP-hard problem [START_REF] Shirazipourazad | On routing and spectrum allocation in spectrum-sliced optical networks[END_REF] [81], and more complex than the historical Routing and Wavelength Assignment (RWA) problem [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF]. Various integer linear programming (ILP) formulations and algorithms have been proposed to solve it. A detailed survey of spectrum management techniques for SFONs is presented in [START_REF] Talebi | Spectrum management techniques for elastic optical networks: A survey[END_REF] where authors classified variants of the RSA problem: offline RSA which has been initiated in [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF], and online or dynamic RSA which has been initiated in [START_REF] Wan | Dynamic Routing and Spectrum Assignment in Spectrum-Flexible Transparent Optical Networks[END_REF] and recently developed in [START_REF] Patel | On Efficient Candidate Path Selection for Dynamic Routing in Elastic Optical Networks[END_REF] and [START_REF] Zhou | Link State Aware Dynamic Routing and Spectrum Allocation Strategy in Elastic Optical Networks[END_REF], and an investigation of numerous aspects proposed in the tutorial [START_REF] Chatterjee | Routing and Spectrum Allocation in Elastic Optical Networks: A Tutorial[END_REF]. This work focuses on the offline RSA problem. There exist two classes of ILP formulations used to solve the RSA problem, called edge-path and edge-node formulations. The ILP edge-path formulation is majorly used in the literature where variables are associated with all possible physical optical paths inducing an explosion of a number of variables and constraints which grow exponentially and in parallel with the growth of the instance size: number of demands, the total number of slots, and topology size: number of links and nodes [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF].

To the best of our knowledge, we observe that several papers which use the edge-path formulation as an ILP formulation to solve the RSA problem, use a set of precomputed-paths without guaranty of optimality e.g. in [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF], [START_REF] Klinkowski | An overview of routing methods in optical burst switching networks[END_REF], [START_REF] Klinkowski | Routing and Spectrum Assignment in Spectrum Sliced Elastic Optical Path Network[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF], and recently in [START_REF] Salameh | Routing With Intelligent Spectrum Assignment in Full-Duplex Cognitive Networks Under Varying Channel Conditions[END_REF]. On the other hand, column generation techniques have been used by Klinkowski et al. in [START_REF] Ruiz | Column generation algorithm for RSA problems in flexgrid optical networks[END_REF], Jaumard et al. in [START_REF] Jaumard | Scalable elastic optical path networking models[END_REF], and recently by Enoch in [START_REF] Enoch | Nested Column Generation decomposition for solving the Routing and Spectrum Allocation problem in Elastic Optical Networks[END_REF] to solve the relaxation of the RSA taking into account all the possible paths for each traffic demand. To improve the LP bounds of the RSA relaxation, Klinkowsky et al. proposed in [START_REF] Klinkowski | Valid inequalities for the routing and spectrum allocation problem in elastic optical networks[END_REF] a valid inequality based on clique inequality separable using a branch-and-bound algorithm.

On the other hand, Klinkowski et al. in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF] propose a branch-and-cut-and-price method based on an edge-path formulation for the RSA problem. Recently, Fayez et al. [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF], and Xuan et al. [START_REF] Xuan | New bi-level programming model for routing and spectrum assignment in elastic optical network[END_REF], they proposed a decomposition approach to solve the RSA separately (i.e., R+SA) based on a recursive algorithm and an ILP edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formulation has been introduced as an alternative for it. It holds a polynomial number of variables and constraints that grow only polynomially with the size of the instance. We found just a few works in the literature that use the edge-node formulation to solve the RSA problem e.g. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF], [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF], [START_REF] Zotkiewicz | Optimization models for flexgrid elastic optical networks[END_REF].

On the other front, and due to the NP-Hardness of the C-RSA problem, we found that several heuristics [START_REF] Ding | Hybrid routing and spectrum assignment algorithms based on distance-adaptation combined coevolution and heuristics in elastic optical networks[END_REF], [START_REF] Mesquita | A Routing and Spectrum Assignment Heuristic for Elastic Optical Networks under Incremental Traffic[END_REF], [START_REF] Santos | Heuristics for Routing and Spectrum Allocation in Elastic Optical Path Networks[END_REF], and recently in [START_REF] He | Invalid-Resource-Aware Spectrum Assignment for Advanced-Reservation Traffic in Elastic Optical Network[END_REF], and greedy algorithms [START_REF] Mahala | Spectrum assignment technique with first-random fit in elastic optical networks[END_REF], and metaheuristics as tabu search in [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF], simulated annealing in [START_REF] Klinkowski | A Simulated Annealing Heuristic for a Branch and Price-Based Routing and Spectrum Allocation Algorithm in Elastic Optical Networks[END_REF], genetic algorithms in [START_REF] Gong | A Two-Population Based Evolutionary Approach for Optimizing Routing, Modulation and Spectrum Assignments (RMSA) in O-OFDM Networks[END_REF], [START_REF] Hai | An efficient genetic algorithm approach for solving routing and spectrum assignment problem[END_REF], [START_REF] Hai | Combining heuristic and exact approaches for solving the routing and spectrum assignment problem[END_REF], ant colony algorithms in [START_REF] Lezama | Solving routing and spectrum allocation problems in flexgrid optical networks using precomputing strategies[END_REF] , and a hybrid meta-heuristic approach in [START_REF] Ruiz | A hybrid meta-heuristic approach for optimization of routing and spectrum assignment in Elastic Optical Network (EON)[END_REF], have been used to solve large sized instances of the RSA problem. Furthermore, some resseraches start using some artificial intelligence algorithms, see for example [START_REF] Liu | A Monte Carlo Based Routing and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] and [START_REF] Lohani | Routing, Modulation and Spectrum Assignment using an AI based Algorithm[END_REF], and some deep-learning algorithms [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF], and also machine-learning algorithms in [START_REF] Salani | Routing and Spectrum Assignment Integrating Machine-Learning-Based QoT Estimation in Elastic Optical Networks[END_REF], and recently in [START_REF] Zhang | Overview on routing and resource allocation based machine learning in optical networks[END_REF] and [START_REF] Gu | Machine Learning for Intelligent Optical Networks: A Comprehensive Survey[END_REF] to get more perefermonce. Selvakumar et al. gives a survey in [START_REF] Selvakumar | The Recent Contributions of Routing and Spectrum Assignment Algorithms in Elastic Optical Network (EON)[END_REF] in which they summarise the most contributions done for the RSA problem before 2019.

In this paper, we are interested in the resolution of a complex variant of the RSA problem, called the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the network should also satisfy the transmission-reach constraint for each traffic demand according to the actual service requirements. To the best of our knowledge a few related works on the RSA, to say the least, take into account this additional constraint such that the length of the chosen path for each traffic demand should not exceed a certain length (in kms). Recently, Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] and [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF] introduced a novel tractable ILP based on the cut formulation for the C-RSA problem with a polynomial number of variables and an exponential number of constraints separable in polynomial time using network flow algorithms. Computational results show that their cut formulation solves larger instances compared with those of Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF] and Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF]. It has been used also as a basic formulation in the study of Colares et al. in [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF], and also by Chouman et al. in [START_REF] Chouman | Impact of RSA Optimization Objectives on Optical Network State[END_REF] and [START_REF] Chouman | Assessing the Health of Flexgrid Optical Networks[END_REF] to show the impact of several objective functions on the on optical network state. Bertero et al. in [START_REF] Bertero | Integer programming models for the routing and spectrum allocation problem[END_REF] give a comparative study between several edge-node formulations and introduce new ILP formulations adapted from the existing ILP formulations in the literature. Note that Velasco et al. in [START_REF] Velasco | Modeling the routing and spectrum allocation problem for flexgrid optical networks[END_REF] and Cai et al. [START_REF] Cai | Novel Node-Arc Model and Multiiteration Heuristics for Static Routing and Spectrum Assignment in Elastic Optical Networks[END_REF] did not take into account the transmission-reach constraint.

Our Contributions

However, so far the exact algorithms proposed in the literature could not solve large-sized instances.

We believe that a cutting-plane-based approach could be powerful for the problem. To the best of our knowledge, such an approach has not been yet considered. For that, the main aim of our work is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end, we aim to provide a deep polyhedral analysis of the C-RSA problem, and based on this, devise a branch-and-cut algorithm for solving the problem considering large-scale networks that are often used. In this Part I of our works, our contribution is to introduce a new ILP formulation for the C-RSA problem which can be seen as an improved formulation for the one introduced by Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF] and [START_REF] Hadhbi | Routage et Affectation Spectrale Optimaux dans des Réseaux Optiques Élastiques FlexGrid[END_REF]. We further investigate the facial structure of the associated polytope.

Organization

Following the introduction, the rest of this paper is organized as follows. In Section [START_REF] Balas | Facets of the knapsack polytope[END_REF], we present the C-RSA problem (input and output). In Section (3), we provide the notation, then we introduce our ILP, called cut formulation based on the so-called cut inequalities. Furthermore, an intial polyhedral investigation is given in Section (4).

The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V, E), which is specified by a set of nodes V , and a multiset4 E of links (optical-fibers). Each link e = ij ∈ E is associated with a length e ∈ R + (in kms), a cost c e ∈ R + such that each fiber-link e ∈ E is divided into s ∈ N + slots. Let S = {1, . . . , s} be an optical spectrum of available frequency slots with s ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz [START_REF] Jiang | An defragmentation scheme for extending the maximal unoccupied spectrum block in elastic optical networks[END_REF], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node o k ∈ V , a destination node d k ∈ V \ {o k }, a slot-width w k ∈ Z + , and a transmission-reach ¯ k ∈ R + (in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (o k ,d k )-path p k in G such that e∈E(p k ) l e ≤ lk , where E(p k ) denotes the set of edges belong the path p k , and a subset of contiguous frequency slots S k ⊂ S of width equal to w k such that S k ∩ S k = ∅ for each pair of demands k, k ∈ K (k = k ) with E(p k ) ∩ E(p k ) = ∅ so the total length of the paths used for routing the demands (i.e., k∈K e∈E(p k ) l e ) is minimized. Figure 2 shows the set of established paths and spectrums for the set of demands {k 1 , k 2 , k 3 , k 4 } (Fig. 2(c) and 3 The C-RSA Integer Linear Programming Formulation

Let's us introduce some notations which will be useful throughout this paper to formulate some constraints. For any subset of nodes X ⊆ V with X = ∅, let δ(X) denote the set of edges having one extremity in X and the other one in X = V \ X which is called a cut. When X is a singleton (i.e., X = {v}), we use δ(v) instead of δ({v}) to denote the set of edges incidents with a node v ∈ V . The cardinality of a set K is denoted by |K|.

Here we introduce our integer linear programming formulation based on cut formulation for the C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi et al. in [START_REF] Hadhbi | A novel integer linear programming model for routing and spectrum assignment in optical networks[END_REF]. For k ∈ K and e ∈ E, let x k e be a variable which takes 1 if demand k goes through the edge e and 0 if not, and for k ∈ K and s ∈ S, let z k s be a variable which takes 1 if slot s is the last-slot allocated for the routing of demand k and 0 if not. The contiguous slots s ∈ {s -w k + 1, ..., s} should be assigned to demand k whenever z k s = 1. Before introducing our ILP, we proceeded to some pre-processing techniques to determine some zero-one variables s.t. we are able to determine them in polynomial time using shortest-path and network flows algorithms as follows.

For each demand k and each node v, one can compute a shortest path between each of the pair of nodes (o k , v), (v, d k ). If the lengths of the (o k , d k )-paths formed by the shortest paths (o k , v) and (v, d k ) are both greater that lk then node v cannot be in a path routing demand k, and we then say that v is a forbidden node for demand k due to the transmission-reach constraint. Let V k 0 denote the set of forbidden nodes for demand k ∈ K. Note that using Dijkstra's algorithm, one can identify in polynomial time the forbidden nodes V k 0 for each demand k ∈ K. On the other hand and regarding the edges, for each demand k and each edge e = ij, one can compute a shortest path between each of the pair of nodes (o k , i), (j, d k ), (o k , j) and (i, d k ). If the lengths of the (o k , d k )-paths formed by e together with the shortest (o k , i) and (j, d k ) (resp. (o k , j) and (i, d k )) paths are both greater that lk then edge ij cannot be in a path routing demand k, and we then say that ij is a forbidden edge for demand k due to the transmission-reach constraint. Let E k t denote the set of forbidden edges due to the transmission-reach constraint for demand k ∈ K. Note that using Dijkstra's algorithm, one can identify in polynomial time the forbidden edges E k t for each demand k ∈ K. This allows us to create in polynomial time a proper topology G k for each demand k by deleting the forbidden nodes V k 0 and forbidden edges E k t from the original graph

G (i.e., G k = G(V \ V k 0 , E \ E k t )
). As a result, there may exist some forbidden-nodes due to the elementary-path constraint which means that all the (o k , d k )-paths passed through a node v are not elementary-paths. This can be done in polynomial time using Breadth First Search (BFS)

algorithm of complexity O(|E \ E k 0 | + |V \ V k 0 |)
for each demand k. Note that we did not take into account this case in our study. Table 1 below shows the set of forbidden edges E k 0 and forbidden nodes V k 0 for each demand k in K already given in Fig. 2(b).

k o k → d k w k ¯ k V k 0 E k 0 1 a → c 2 4 {e, d, g} {cg, dg, de, df, cd, ef } 2 a → d 1 4 {g} {cg, dg, df } 3 b → f 2 4 {e, d, g} {cg, dg, de, df, cd, ef } 4 b → e 1 4 {g}
{cg, dg, df } Table 1. Topology pre-processing for the set of demands K given in Fig. 2(b).

Let δ G k (v) denote the set of edges incident with a node v for the demand k in G k . Let δ k (W ) denote a cut for demand k ∈ K in G k s.t. o k ∈ W and d k ∈ V \ W where W is a subset of nodes in V of G k .
Let f be an edge in δ(W ) s.t. all the edges e ∈ δ(W ) \ {f } are forbidden for demand k. As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential edges can be determined in polynomial time using network flows as follows.

we create a proper topology

G k = G(V \ V k 0 , E \ E k t )
for the demand k 2. we fix a weight equals to 1 for all the edges e in

E \ E k t for the demand k in G k 3. we calculate o k -d k min-cut which separates o k from d k . 4. if δ G k (W ) = {e} then the edge e is an essential edge for the demand k s.t. o k ∈ W and d k ∈ V \ W .
We increase the weight of the edge e by 1. Go to (3).

if |δ

G k (W )| > 1 then end of algorithm. Let E k
1 denote the set of essential edges of demand k, and K e denote a subset of demands in K s.t. edge e is an essential edge for each demand k ∈ K e . In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there may exist edges that may be forbidden because of lack of resources for demand k. This is the case when, for instance, the residual capacity of the edge in question does not allow a demand to use this edge for its routing, i.e., w k > sk ∈Ke w k . Let E k c denote the set of forbidden edges for demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges E k c and forbidden nodes v in V with δ(v) ⊆ E k t , should also be deleted from the proper graph

G k of demand k, which means that G k contains |E| \ |E k t | edges and |V | \ |{v ∈ V, δ(v) ⊆ E k t }| nodes. Let E k 0 = E k t denote the set
of all forbidden edges for demand k that can be determined due to the transmission reach and resources constraints. As a result of the pre-processing stage, some non-compatibility between demands may appear due to a lack of resources as follows.

Definition 1. For an edge e, two demands k and

k with e = ij / ∈ E k 0 ∪ E k 1 ∪ E k 0 ∪ E k 1
, are said non-compatible demands because of lack of resources over the edge e if and only if the the residual capacity of the edge e does not allow to route the two demands k, k together through e, i.e., w k + w k > sk"∈Ke w k" .

Let K e c denote the set of pair of demands (k, k ) in K that are non-compatibles for the edge e. The C-RSA problem can hence be formulated as follows.

min k∈K e∈E l e x k e , (1) 
subject to e∈δ(X)

x

k e ≥ 1, ∀k ∈ K, ∀X ⊆ V s.t. |X ∩ {o k , d k }| = 1, (2) 
e∈E l e x k e ≤ ¯ k , ∀k ∈ K, (3) 
x

k e = 0, ∀k ∈ K, ∀e ∈ E k 0 , (4) 
x

k e = 1, ∀k ∈ K, ∀e ∈ E k 1 , (5) 
z k s = 0, ∀k ∈ K, ∀s ∈ {1, ..., w k -1}, (6) 
s s=w k z k s ≥ 1, ∀k ∈ K, (7) 
x k e + x k e + min(s+w k -1,s)

s =s z k s + min(s+w k -1,s) s =s z k s ≤ 3, ∀(e, k, k , s) ∈ Q, ( 8 
) 0 ≤ x k e ≤ 1, ∀k ∈ K, ∀e ∈ E, (9) 
z k s ≥ 0, ∀k ∈ K, ∀s ∈ S, (10) 
x

k e ∈ {0, 1}, ∀k ∈ K, ∀e ∈ E, (11) 
z k s ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S. ( 12 
)
where Q denotes the set of all the quadruples (e, k, k , s) for all e ∈ E, k ∈ K, k ∈ K, and s ∈ S with (k, k ) / ∈ K e c . Inequalities [START_REF] Balas | Facets of the knapsack polytope[END_REF] ensure that there is an (o k , d k )-path between o k and d k for each demand k, and guarantee that all the demands should be routed. They are called cut inequalities. By optimizing the objective function [START_REF] Amar | Performance assessment and modeling of flexible optical networks[END_REF], and given that the capacities of all edges are strictly positives, this ensures that there is exactly one (o k , d k )-path between o k and d k which will be selected as optimal path for each demand k. We suppose that we have sufficient capacity in the network so that all the demands can be routed. This means that we have at least one feasible solution for the problem. Inequalities (3) express the length limit on the routing paths which is called "the transmissionreach constraint". Equations (4) ensure that the variables associated to the forbidden edges for demand k are always equal to 0, and those of the essential edges are always equal to 1 for demand k. Equations ( 6) express the fact that a demand k cannot use slot s ≤ w k -1 as the last-slot . The slots s ∈ {1, ..., w k -1} are called forbidden last-slots for demand k. Inequalities [START_REF] Chatterjee | Fragmentation Problems and Management Approaches in Elastic Optical Networks: A Survey[END_REF] should normally be an equation form ensuring that exactly one slot s ∈ {w k , . . . , s} must be assigned to demand k as last-slot . Here we relax this constraint. By a choice of the objective function, the equality is guaranteed at the optimum (e.g. min k∈K s s=w k s.z k s or min k∈K s s=w k s.w k .z k s ). Inequalities [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF] express the contiguity and non-overlapping constraints. Inequalities ( 9)-( 10) are the trivial inequalities, and constraints ( 11)-( 12) are the integrality constraints. Note that the linear relaxation of the C-RSA can be solved in polynomial time given that inequalities (2) can be separated in polynomial time using network flows, see e.g. preflow algorithm of Goldberg and Tarjan introduced in [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] which can be run in

O(|V \ V k 0 | 3 ) time for each demand k ∈ K.
Proposition 1. The formulation (2)-( 12) is valid for the C-RSA problem.

Proof. It is trivial given the definition of each constraint of the formulation (2)-( 12) such that any feasible solution for this formulation is necessary a feasible solution for the C-RSA problem.

Let P (G, K, S) be the polytope, convex hull of the solutions for the cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF].

Polyhedral Analysis

In this section we discuss the facial structure of the C-RSA.

Polyhedron P (G, K, S) Dimension

In what follows, we describe some structural properties. These will be used for determining the dimension of P (G, K, S).

Proposition 2. The follows equation system (13) is of full rank

    
x k e = 0, for all k ∈ K and e ∈ E k 0 , x k e = 1, for all k ∈ K and e ∈ E k 1 , z k s = 0, for all k ∈ K and s ∈ {1, ..., w k -1}.

(

) 13 
The rank of system ( 13) is given by

r = k∈K (|E k 0 | + |E k 1 | + (w k -1)).
Let Q denote a matrix associated with the system (13) which contains r lines linear independents. We distinguish 4 blocks of lines in Q as below block Q 1 corresponds to the equations x k e = 0 for all k ∈ K and all e ∈ E k 0 , block Q 2 corresponds to the equations x k e = 1 for all k ∈ K and all e ∈ E k 1 , block Q 3 corresponds to the equations z k s = 0 for all k ∈ K and all s ∈ {1, ..., w k -1}.

Note that the 4 blocks of the matrix Q are independants.

A solution of the C-RSA problem is given by two sets E k and S k for each demand k ∈ K where E k is a set of edges used for the routing of demand k which contains a path p k satisfying the continuity of (o k , d k )-path p k for the demand k (i.e., E(p k ) ⊆ E k ) such that e∈E k l e ≤ lk and E k 1 ⊆ E k , and S k is a set of slots which represent the set of last-slot selected for the demand k which forms a set of channels such that each channel contains w k contiguous slots. Figure 3 shows the routing solutions for a demand k that are feasible for our problem throughout our proofs. and µx + σz = λ of P (G, K, S) is a linear combination of equation system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF].

Proof. To prove that µx + σz is a linear combination of equations system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF], it is sufficient to prove that for each demand k ∈ K, there exists

γ k 1 ∈ R |E k 0 | , γ k 2 ∈ R |E k 1 | , γ k 3 ∈ R w k -1
(given that the matrix Q has 3 blocks) s.t. (µ, σ) = γQ. Let x S and z S denote the incidence vector of a solution S of the C-RSA problem. Let us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider a demand k and a slot s in {w k , ..., s}. To do so, we consider a solution S 0 = (E 0 , S 0 ) in which a feasible path E 0 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 0 k is assigned to each demand k ∈ K along each edge e ∈ E 0 k with |S 0 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 0 k and s" ∈ S 0

k with E 0 k ∩ E 0 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 0

k |{s ∈ S 0 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 0 k with E 0 k ∩ E 0 k = ∅ (non-
overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S 0 k assigned to the demand k in the solution S 0 ).

S 0 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 0 , z S 0 ) belongs to P (G, K, S). Based on this, we derive a solution S 1 = (E 1 , S 1 ) from the solution S 0 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S 0 (i.e., E 1 k = E 0 1 for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S 0 remain the same in the solution S 1 i.e., S 0 k = S 1 k for each demand k ∈ K \ {k}, and S 1 k = S 0 k ∪ {s} for the demand k. The solution S 1 is feasible given that

-a feasible path E 1 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 1 k is assigned to each demand k ∈ K along each edge e ∈ E 1 k with |S 1 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 1 k and s ∈ S 1 k with E 1 k ∩ E 1 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E

1 k |{s ∈ S 1
k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (x S 1 , z S 1 ) belongs to P (G, K, S). We then obtain that

µx S 0 + σz S 0 = µx S 1 + σz S 1 = µx S 0 + σz S 0 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}. The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} Next we will show that µ k e = 0 for all the demands k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ). Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 0 = (E 0 , S 0 ) in which a feasible path E 0 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 0 k is assigned to each demand k ∈ K along each edge e ∈ E 0 k with |S 0 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 0 k and s" ∈ S 0 k with E 0 k ∩ E 0 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 0 k |{s ∈ S 0 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 0 k and s ∈ S 0 k with (E 0 k ∪ {e}) ∩ E 0 k = ∅ (non-overlapping constraint taking into account the possibility of adding the edge e in the set of edges E 0 k selected to route the demand k in the solution S 0 ), and the edge e is not non-compatible edge with the selected edges e ∈ E 0 k of demand k in the solution S 0 , i.e., e ∈E 0 k l e + l e ≤ lk . As a result, E 0 k ∪ {e} is a feasible path for the demand k.

S 0 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 0 , z S 0 ) belongs to P (G, K, S). Based on this, we distinguish two cases:

without changing the spectrum assignment established in S 0 : we derive a solution S 2 obtained from the solution S 0 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 0 which means that E 2 k = E 0 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 0 remain the same in the solution S 2 , i.e., S 2 k = S 0 k for each k ∈ K, and

E 2 k = E 0 k for each k ∈ K \ {k}. S 2 is clearly feasible given that
• and a feasible path As a result, µ k e = 0 for demand k and an edge e. with changing the spectrum assignment established in S 0 : let S 2 be a solution obtained from the solution S 0 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 0 which means that E 2 k = E 0 k ∪ {e}, and removing slot s selected for the demand k in S 0 and replaced it by a new slot s ∈ {w k , ..., S} (i.e., S 2 k = (S 0 k \ {s}) ∪ {s } s.t. {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S 0 k with E 2 k ∩ E 0 k = ∅. The last-slots and paths assigned the set of demands K \ {k} in S 0 remain the same in the solution S 2 , i.e., S 2 k = S 0 k and E 2 k = E 0 k for each k ∈ K \ {k}. S 2 is clearly feasible given that

E 2 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 2 k is assigned to each demand k ∈ K along each edge e ∈ E 2 k with |S 2 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 2 k and s ∈ S 2 k with E 2 k ∩ E 2 k = ∅, i.e.,
• and a feasible path 

E 2 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 2 k is assigned to each demand k ∈ K along each edge e ∈ E 2 k with |S 2 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 2 k and s ∈ S 2 k with E 2 k ∩ E 2 k = ∅, i.e.,
µx S 0 + σz S 0 = µx S 2 + σz S 2 = µx S 0 + µ k e + σz S 0 -σ k s + σ k s
which gives that µ k e = 0 for demand k and an edge e given that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}.

As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).

Therefore all the equations of the polytope P (G, K, S) are given only in terms of the variables x k e with e ∈ E k 0 ∪ E k 1 and z k s with s ∈ {1, ..., w k }.

Let Q k =   Q 1 k Q 2 k Q 3 k 
 be the submatrix of matrix Q associated to the equations ( 4) and ( 5) and involving variables x k e for all e ∈ E k 0 ∪ E k 1 and variables z k s with s ∈ {1, ..., w k } for demand k. Note that a forbidden edge can never be an essential edge at the same time. Otherwise, the problem is infeasible. We want to show that

µ k = γ k 1 Q 1 k + γ k 2 Q 2 k and σ k = γ k 3 Q k 3 .
For that, we first ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 , On the other hand, note that the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s
3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. [START_REF] Cplex | V12. 9: User's Manual for CPLEX[END_REF] We conclude at the end that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 γ k,e 2 , if e ∈ E k 1 0, otherwise yielding µ k = γ k 1 Q 1 k + γ k 2 Q 2 k for each k ∈ K. Moreover, for each k ∈ K and s ∈ S σ k s = γ k,s 3 , if s ∈ {1, ..., w k -1} 0, otherwise i.e., σ k = γ k 3 Q 3 k .
As a result (µ, σ) = γQ with γ = (γ 1 , γ 2 , γ 3 ) which ends our proof.

Theorem 1. The dimension of P (G, K, S) is given by

dim(P (G, K, S)) = |K| * (|E| + |S|) -r.
Proof. Given the rank of the C-RSA equation system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] and the proposition (3).

Facets

In this section, we investigate the facial structure of our polytope P (G, K, S) by characterizing when the basic inequalities (2)-( 12) of our cut formulation are facets defining for P (G, K, S).

Theorem 2. Consider a demand k ∈ K, and an edge e ∈ E \ (E k 0 , E k 1 ). Then, the inequality x k e ≥ 0 is facet defining for P (G, K, S).

Proof. Let's us denote F k e the face induced by the inequality x k e ≥ 0, which is given by

F k e = {(x, z) ∈ P (G, K, S) : x k e = 0}.
In order to prove that the inequality x k e ≥ 0 is facet defining for P (G, K, S), we start checking that F k e is a proper face which means that it is not empty, and F k e = P (G, K, S). We construct a solution S 3 = (E 3 , S 3 ) as below

-a feasible path E 3 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 3 k is assigned to each demand k ∈ K along each edge e ∈ E 3 k with |S 3 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 3 k and s ∈ S 3 k with E 3 k ∩ E 3 k = ∅ (non-overlapping constraint), - and 
the edge e is not chosen to route the demand k in the solution S 3 , i.e., e / ∈ E 3 k . Obviously, S 3 is feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 3 , z S 3 ) is belong to P (G, K, S) and then to F k e given that it is composed by x k e = 0. As a result, F k e is not empty (F k e = ∅). Furthermore, given that e ∈ E \ (E k 0 ∪ E k 1 ) for the demand k, this means that there exists at least one feasible path E k for the demand k passed through the edge e which means that F k e = P (G, K, S).

On another hand, we know that all the solutions of F k e are in P (G, K, S) which means that they verify the equations system (13) s.t. the new equations system (15) associated with F k e is written as below

          
x k e = 0, s.t. k and e are chosen arbitrarily

x k e = 0, for all k ∈ K and all e ∈ E k 0

x k e = 1, for all k ∈ K and all e ∈ E k 1 z k s = 0, for all k ∈ K and all s ∈ {1, ..., w k -1}.

(

) 15 
Given that the e ∈ E \ (E k 0 ∪ E k 1 ), the system [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF] shows that the equation x k e = 0 is not a result of equations of system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] which means that the equation x k e = 0 is not redundant in the system [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF]. As a result, the system is of full rank. As a result, the dimension of the face F k e is equal to

dim(F k e ) = |K| * (|E| + |S|) -rank(Q ) = |K| * (|E| + |S|) -(1 + r) = dim(P (G, K, S)) -1,
where Q is the matrix associated with the equation system [START_REF] Colares | An extended formulation for the Constraint Routing and Spectrum Assignment Problem in Elastic Optical Networks[END_REF]. As a result, the face F k e is facet defining for P (G, K, S). Furthermore, we strengthened our proof as follows using a technique called "proof by maximality". We denote the inequality x k e ≥ 0 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F k e ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ with γ = (γ 1 , γ 2 , γ 3 ) ( with

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ.
We will show that µ k e = 0 for the demand k and all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}), and µ k e = 0 for all demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}.

First, let's show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider a demand k and a slot s in {w k , ..., s}. Based on this, we consider a solution S 3 = (E 3 , S 3 ) in which

-a feasible path E 3 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 3 k is assigned to each demand k ∈ K along each edge e ∈ E 3 k with |S 3 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 3 k and s" ∈ S 3 k with E 3 k ∩ E 3 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈E 3 k |{s ∈ S 3 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 3 k with E 3 k ∩ E 3 k = ∅ (non-
overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S 3 k assigned to the demand k in the solution S 3 ), and the edge e is not chosen to route the demand k in the solution S 3 , i.e., e / ∈ E 3 k .

S 3 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 3 , z S 3 ) is belong to F and then to F k e given that it is also composed by x k e = 0. Based on this, we derive a solution S 4 = (E 4 , S 4 ) from the solution S 3 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S 3 (i.e., E 4 k = E 3 1 for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S 3 remain the same in the solution k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint), and the edge e is not chosen to route the demand k in the solution S 4 , i.e., e / ∈ E 4 k .

S 4 i.e., S 3 k = S 4 k for each demand k ∈ K \ {k}, and S 4 k = S 3 k ∪ {s} for the demand k. The solution S 4 is feasible given that -a feasible path E 4 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 4 k is assigned to each demand k ∈ K along each edge e ∈ E 4 k with |S 4 k | ≥ 1 (contiguity
The corresponding incidence vector (x S 4 , z S 4 ) is belong to F and then to F k e given that it is also composed by x k e = 0. We then obtain that

µx S 3 + σz S 3 = µx S 4 + σz S 4 = µx S 3 + σz S 3 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}. The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} Next, we will show that µ k e = 0 for all the demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and µ k e = 0 for the demand k and all e ∈ E \

(E k 0 ∪ E k 1 ∪ {e}). Consider the demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}) chosen arbitrarily.
For that, we consider a solution S" 3 = (E" 3 , S" 3 ) in which

-a feasible path E" 3 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S" 3 k is assigned to each demand k ∈ K along each edge e ∈ E" 3 k with |S" 3 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 3 k and s" ∈ S" 3 k with E" 3 k ∩ E" 3 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈E" 3 k |{s ∈ S" 3 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), -and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S" 3 k and s ∈ S" 3 k with (E" 3 k ∪ {e }) ∩ E" 3 k = ∅ (non-
overlapping constraint taking into account the possibility of adding the edge e in the set of edges E" 3 k selected to route the demand k in the solution S" 3 ), and the edge e is not chosen to route the demand k in the solution S" 3 , i.e., e / ∈ E" 3 k .

S" 3 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation ( 2)-( 12). Hence, the corresponding incidence vector (x S" 3 , z S" 3 ) is belong to F and then to F k e given that it is also composed by x k e = 0. Based on this, we distinguish two cases:

without changing the spectrum assignment established in S" 3 : we derive a solution S 5 obtained from the solution S" 3 by adding an unused edge e

∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 3 which means that E 5 k = E" 3 k ∪ {e }.
The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S" 3 remain the same in the solution S 5 , i.e., S 5 k = S" 3 k for each k ∈ K, and

E 5 k = E" 3 k for each k ∈ K \ {k}. S 5 is clearly feasible given that
• and a feasible path

E 5 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 5 k is assigned to each demand k ∈ K along each edge e ∈ E 5 k with |S 5 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 5 k and s ∈ S 5 k with E 5 k ∩ E 5 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈E 5 k |{s ∈ S 5 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint),
• and the edge e is not chosen to route the demand k in the solution S 5 , i.e., e / ∈ E 5 k . The corresponding incidence vector (x S 5 , z S 5 ) is belong to F and then to F k e given that it is also composed by x k e = 0. It follows that

µx S" 3 + σz S" 3 = µx S 5 + σz S 5 = µx S" 3 + µ k e + σz S" 3 .
As a result, µ k e = 0 for demand k and an edge e . with changing the spectrum assignment established in S" 3 : let S 5 be a solution obtained from the solution S" 3 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S" 3 which means that E 5 k = E" 3 k ∪ {e }, and removing slot s selected for the demand k in S" 3 and replaced it by a new slot s ∈ {w k , ..., S} (i.e., S 5 k = (S" 3 k \ {s}) ∪ {s } s.t. {s -w k +1, ..., s }∩{s"-w k +1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 3 k with E 5 k ∩E" 3 k = ∅. The last-slots and paths assigned the set of demands K \ {k} in S" 3 remain the same in the solution S 5 , i.e., S 5 k = S" 3 k and

E 5 k = E" 3 k for each k ∈ K \ {k}. S 5 is clearly feasible given that
• and a feasible path

E 5 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 5 k is assigned to each demand k ∈ K along each edge e ∈ E 5 k with |S 5 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 5 k and s ∈ S 5 k with E 5 k ∩ E 5 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈E 5 k |{s ∈ S 5 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint),
• and the edge e is not chosen to route the demand k in the solution S 5 , i.e., e / ∈ E 5 k . The corresponding incidence vector (x S 5 , z S 5 ) is belong to F and then to F k e given that it is also composed by x k e = 0. It follows that

µx S" 3 + σz S" 3 = µx S 5 + σz S 5 = µx S" 3 + µ k e + σz S" 3 -σ k s + σ k s
which gives that µ k e = 0 for demand k and an edge e given that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}.

As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 ∪ {e}, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}).
We ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e ∈E k 0 µ k e = e ∈E k 0 γ k,e 1 → e ∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,
We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e ∈E k 1 µ k e = e ∈E k 1 γ k,e 2 → e ∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is

µ k e = γ k,e 2 
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,
On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is

σ k s = γ k,s 3 
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 16 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k = k and e = e,
0, otherwise, and for each k ∈ K and s ∈ S

σ k s = γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise.
As a result (µ, σ) = ρα k e + γQ which ends our proof.

Theorem 3. Consider a demand k ∈ K, and a slot s ∈ {w k , .., s}. Then, the inequality z k s ≥ 0 is facet defining for P (G, K, S).

Proof. Let F k s denote the face induced by inequality z k s ≥ 0, which is given by

F k s = {(x, z) ∈ P (G, K, S) : z k s = 0}.
In order to prove that inequality z k s ≥ 0 is facet defining for P (G, K, S), we start checking that F k s is a proper face, and F k s = P (G, K, S). We construct a solution S 6 = (E 6 , S 6 ) as below

-a feasible path E 6 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 6 k is assigned to each demand k ∈ K along each edge e ∈ E 6 k with |S 6 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 6 k and s" ∈ S 6 k with E 6 k ∩ E 6 k = ∅ (non-overlapping constraint)
, and the slot s is not chosen to route the demand k in the solution S 6 , i.e., s / ∈ S 6 k .

Obviously, S 6 is feasible solution for the problem given that it satisfies all the constraints of our cut formulation ( 2)-( 12). Moreover, the corresponding incidence vector (x S 6 , z S 6 ) is belong to F and then to F k s given that it is composed by z k s = 0. As a result, F k s is not empty (F k s = ∅). Furthermore, given that s ∈ {w k , ..., s} for the demand k, this means that there exists at least one feasible solution for the problem in which s ∈ S k for the demand k. As a result, F k s = P (G, K, S). On another hand, we know that all the solutions of F k s are in P (G, K, S) which means that they verify the equations system (13) s.t. the new equations system (17) associated with F k s is written as below

           z k s = 0, s.t.
k and s are chosen arbitrarily

x k e = 0, for all k ∈ K and all e ∈ E k 0

x k e = 1, for all k ∈ K and all e ∈ E k 1 z k s = 0, for all k ∈ K and all s ∈ {1, ..., w k -1}.

(

) 17 
The equation z k s = 0 is not result of equations of system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] which means that the equation z k s = 0 is not redundant in the system [START_REF] Dror | Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW[END_REF]. As a result, the system (17) is of full rank. As a result, the dimension of the face F k s is equal to

dim(F k s ) = |K| * (|E| + |S|) -rank(Q") = |K| * (|E| + |S|) -(1 + r) = dim(P (G, K, S)) -1,
where Q" denotes the matrix associated with the equation system [START_REF] Dror | Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW[END_REF]. As a result, the face F k s is facet defining for P (G, K, S). Furthermore, we strengthen our proof as follows. We denote the inequality z k s ≥ 0 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining First, let's us show that µ k e = 0 for all the demands k ∈ K and all edges e ∈ E \(E k 0 ∪E k 1 ). Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 6 = (E 6 , S 6 ) in which a feasible path E 6 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 6 k is assigned to each demand k ∈ K along each edge e ∈ E k selected to route the demand k in the solution S 6 ), the edge e is not non-compatible edge with the selected edges e ∈ E 6 k of demand k in the solution S 6 , i.e., e ∈E 6 k l e + l e ≤ lk . As a result, E 6 k ∪ {e} is a feasible path for the demand k, and the slot s is not chosen to route the demand k in the solution S" 6 , i.e., s / ∈ S" 6 k .

F of P (G, K, S). Suppose that F k s ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ with γ = (γ 1 , γ 2 , ..., γ 4 ) (γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β) + γQ,
S 6 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 6 , z S 6 ) is belong to F and then to F k s given that it is composed by z k s = 0. Based on this, we derive a solution S 7 obtained from the solution S 6 by adding an unused edge e ∈ E \(E k 0 ∪E k 1 ) for the routing of demand k in K in the solution S 6 which means that

E 7 k = E 6 k ∪ {e}.
The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 6 remain the same in the solution S 7 , i.e., S 7 k = S 6 k for each k ∈ K, and

E 7 k = E 6 k for each k ∈ K \ {k}. S 7 is clearly feasible given that
and a feasible path k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and the slot s is not chosen to route the demand k in the solution S 7 , i.e., s / ∈ S 7 k .

E 7 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S 7 k is assigned to each demand k ∈ K along each edge e ∈ E 7 k with |S 7 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 7 k and s" ∈ S 7 k with E 7 k ∩ E 7 k = ∅, i.e.,
The corresponding incidence vector (x S 7 , z S 7 ) is belong to F and then to F k s given that it is composed by z k s = 0. It follows that

µx S 6 + σz S 6 = µx S 7 + σz S 7 = µx S 6 + µ k e + σz S 6 .
As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).
Next, we will show that, σ k s = 0 for all k ∈ K \ {k} and all s ∈ {w k , ..., s}, and σ k s = 0 for all slots s ∈ {w k , ..., s} -{s}. Consider the demand k and a slot s in {w k , ..., s} \ {s}. For that, we consider a solution S" 6 = (E" 6 , S" 6 ) in which a feasible path E" 6 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 6 k is assigned to each demand k ∈ K along each edge e ∈ E" 6 k with |S" 6 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 6 k and s" ∈ S" 6 k with E" 6 k ∩ E" 6 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 6 k |{s ∈ S" 6 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 6 k with E" 6 k ∩ E" 6 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 6 k assigned to the demand k in the solution S" 6 ), and the slot s is not chosen to route the demand k in the solution S" 6 , i.e., s / ∈ S" 6 k .

S" 6 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 6 , z S" 6 ) is belong to F and then to F k s given that it is composed by z k s = 0. Based on this, we distinguish two cases:

without changing the paths established in S" 6 : we derive a solution S 8 = (E 8 , S 8 ) from the solution S" 6 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 6 (i.e., E 8 k = E" 6 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 6 remain the same in the solution S 8 i.e., S" It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} \ {s}. with changing the path established in S" 6 : we construct a solution S 8 derived from the solution S" 6 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 6 (i.e., E 8 k = E" 6 k for each k ∈ K \ K, and

E 8 k = E" 6 k for each k ∈ K) s.t.
• a new feasible path E 8 k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 6 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 6 k assigned to the demand k in the solution S" 6 ), • and the slot s is not chosen to route the demand k in the solution S 8 , i.e., s / ∈ S 8 k . The last-slots assigned to the demands K \ {k} in S" 6 remain the same in S 8 , i.e., S" 6 k = S 8 k for each demand k ∈ K \ {k}, and S 8 k = S" 6 k ∪ {s} for the demand k. The solution S 8 is clearly feasible given that • and the slot s is not chosen to route the demand k in the solution S 8 , i.e., s / ∈ S 8 k . The corresponding incidence vector (x S 8 , z S 8 ) is belong to F and then to F k s given that it is composed by z k s = 0. We have so

• a feasible path E 8 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 8 k is assigned to each demand k ∈ K along each edge e ∈ E 8 k with |S 8 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 8 k and s" ∈ S 8 k with E 8 k ∩ E 8 k = ∅, i.e.,
µx S" 6 + σz S" 6 = µx S 8 + σz S 8 = µx S" 6 + σz S" 6 + σ k s - k∈ K e∈E" 6 k µ k e + k∈ K e ∈E 8 k µ k e .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} \ {s} given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ).

The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} \ {s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} \ {s}. Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s = s if k = k .

On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 , On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s =1 σ k s = w k -1 s =1 γ k,s 3 → w k -1 s =1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 18 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =      γ k,e 1 , if e ∈ E k 0 , γ k,e 2 , if e ∈ E k 1 , 0, otherwise,
and for each k ∈ K and s ∈ S

σ k s =            γ k ,s 3 , if s ∈ {1, ..., w k -1}, 0, if s ∈ {w k , ..., s} and k = k, 0, if s ∈ {w k , ..., s} \ {s} and k = k, ρ, if s = s and k = k.
As a result (µ, σ) = ρβ k s + γQ which ends our strengthening of proof. Proposition 4. Consider a demand k ∈ K. Let (e, e ) be a pair of non-compatible edges for the demand k. Then, the inequality

x k e + x k e ≤ 1, (19) 
is valid for P (G, K, S).

Proof. It is trivial due to the transmission-reach constraint and given the definition of noncompatible edges for the demand k.

Based on the definition of a non-compatible demands for an edge e, we introduce the following inequality.

Proposition 5. Consider an edge e ∈ E. Let (k, k ) be a pair of non-compatible demands for the edge e with e /

∈ E k 0 ∪ E k 1 ∪ E k 0 ∪ E k 1 .
Then, the inequality

x k e + x k e ≤ 1, (20) 
is valid for P (G, K, S).

Proof. It is trivial given the definition of non-compatible demands for the edge e.

Based on the inequalities ( 20) and ( 19), we introduce the following conflict graph . 

F k e = {(x, z) ∈ P (G, K, S) : x k e = 1}.
In order to prove that inequality x k e ≤ 1 is facet defining for P (G, K, S), we start checking that F k e is a proper face, and F k e = P (G, K, S). We construct a solution S 9 = (E 9 , S 9 ) as below a feasible path E 9 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 9 k is assigned to each demand k ∈ K along each edge e ∈ E 9 k with |S 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 9 k and s ∈ S 9

k with E 9 k ∩ E 9 k = ∅ (non-overlapping constraint), and the edge e is chosen to route the demand k in the solution S 9 , i.e., e ∈ E 9 k .

Obviously, S 9 is feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-( 12). Moreover, the corresponding incidence vector (x S 9 , z S 9 ) is belong to P (G, K, S) and then to F k e given that it is composed by x k e = 1. As a result, F k e is not empty (F k e = ∅). Furthermore, given that e ∈ E \ (E k 0 ∪ E k 1 ) for the demand k, this means that there exists at least one feasible path E k for the demand k passed through the edge e which means that F k e = P (G, K, S).

On another hand, we know that all the solutions of F k e are in P (G, K, S) which means that they verify the equations system (13) s.t. the new equations system (21) associated with F k e is written as below

          
x k e = 1, s.t. k and e are chosen arbitrarily

x k e = 0, for all k ∈ K and all e ∈ E k 0

x k e = 1, for all k ∈ K and all e ∈ E k 1 z k s = 0, for all k ∈ K and all s ∈ {1, ..., w k -1}.

(

) 21 
Given that the e ∈ E \ (E k 0 ∪ E k 1 ), the system [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF] shows that the equation x k e = 1 is not a result of equations of system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] which means that the equation x k e = 1 is not redundant in the system [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF]. As a result, the system is of full rank. As a result, the dimension of the face F k e is equal to

dim(F k e ) = |K| * (|E| + |S|) -rank( Q ) = |K| * (|E| + |S|) -(1 + r) = dim(P (G, K, S)) -1,
where Q is the matrix associated with the equation system [START_REF] Fayez | Recursive algorithm for selecting optimum routing tables to solve offline routing and spectrum assignment problem[END_REF]. As a result, the face F k e is facet defining for P (G, K, S). Furthermore, we strengthened our proof as follows. We denote the inequality x k e ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F k e ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ with γ = (γ 1 , γ 2 , γ 3 ) ( with

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
) s.t. (µ, σ) = ρ(α, β) + γQ. We will show that µ k e = 0 for the demand k and all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}), and µ k e = 0 for all demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}.

First, let's show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider a demand k and a slot s in {w k , ..., s}. To do so, we consider a solution S 9 = (E 9 , S 9 ) in which a feasible path E 9 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S k with E 9 k ∩ E 9 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S 9 k assigned to the demand k in the solution S 9 ), and the edge e is chosen to route the demand k in the solution S 9 , i.e., e ∈ E 9 k .

S 9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S 9 , z S 9 ) is belong to P (G, K, S). Based on this, we derive a solution S 10 = (E 10 , S 10 ) from the solution S 9 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S 9 (i.e., E 10 k = E 9 1 for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S 9 remain the same in the solution S 10 i.e., S 9 k = S 10 k for each demand k ∈ K \ {k}, and S 10 k = S 9 k ∪ {s} for the demand k. The solution S 10 is feasible given that a feasible path E 10 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S The corresponding incidence vector (x S 10 , z S 10 ) is belong to F and then to F k e given that it is also composed by x k e = 1. We then obtain that

µx S 9 + σz S 9 = µx S 10 + σz S 10 = µx S 9 + σz S 9 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}. The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} Next, we will show that µ k e = 0 for all the demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and µ k e = 0 for the demand k and all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). Consider the demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}) chosen arbitrarily. For that, we consider a solution S" 9 = (E" 9 , S" 9 ) in which a feasible path E" 9 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 9 k is assigned to each demand k ∈ K along each edge e ∈ E" 9 k with |S" 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 9 k and s" ∈ S" 9 k with E" 9 k ∩ E" 9 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 9 k |{s ∈ S" 9 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e" ∈ E" 9 k of demand k in the solution S" 9 , i.e., e"∈E" 9 k l e" + l e ≤ lk . As a result, E" 9 k ∪ {e } is a feasible path for the demand k, and the edge e is chosen to route the demand k in the solution S" 9 , i.e., e ∈ E" 9 k . S" 9 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 9 , z S" 9 ) is belong to F and then to F k e given that it is also composed by x k e = 1. Based on this, we distinguish two cases: without changing the spectrum assignment established in S" 9 : we derive a solution S 11 obtained from the solution S" 9 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 9 which means that E" 2 k = E" 9 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S" 9 remain the same in the solution S 11 , i.e., S" 2 k = S" 9 k for each k ∈ K, and E" 2 k = E" 9 k for each k ∈ K \ {k}. S 11 is clearly feasible given that

• and a feasible path E" 2 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S" 2 k is assigned to each demand k ∈ K along each edge e ∈ E" As a result, µ k e = 0 for demand k and an edge e . with changing the spectrum assignment established in S" 9 : let S 11 be a solution obtained from the solution S" 9 by adding an unused edge e ∈ E\(E k 0 ∪E k 1 ) for the routing of demand k in K in the solution S" 9 which means that E 11 k = E" 9 k ∪{e} s.t. {s-w k +1, ..., s}∩{s"-w k +1, ..., s"} = ∅ for each k ∈ K \ {k} and s" ∈ S" 9 k with E 11 k ∩ E" 9 k = ∅. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S" 9 Hence, µ k e = 0 for demand k and an edge e . As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 ∪ {e}, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}).
We ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e ∈E k 0 µ k e = e ∈E k 0 γ k,e 1 → e ∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e ∈E k 1 µ k e = e ∈E k 1 γ k,e 2 → e ∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s

3
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 22 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k = k and e = e,

0, otherwise,

and for each k ∈ K and s ∈ S

σ k s = γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise.
As a result (µ, σ) = ρα k e + γQ which ends our proof.

Theorem 5. Consider a demand k and a subset of node X ⊂ V, with |X ∩ {o k , d k }| = 1 and X ∩ V k 0 = ∅. Then, the inequality (2), e∈δ(X) x k e ≥ 1, is facet defining for P (G, K, S) if and only if δ(X) ⊂ E k 1 .

Proof. Let F k X denote the face induced by inequality e∈(δ(X)\E k 0 )

x k e ≥ 1, which is given by

F k X = {(x, z) ∈ P (G, K, S) : e∈(δ(X)\E k 0 )
x k e = 1}

Let X = {o k }. In order to prove that inequality

e∈(δ(X)\E k 0 )
x k e ≥ 1 is facet defining for P (G, K, S), we start checking that F k X is a proper face which means that it is not empty, and F k X = P (G, K, S). We construct a solution S 12 = (E 12 , S 12 ) as below a feasible path E 12 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 12 k is assigned to each demand k ∈ K along each edge e ∈ E 12 k with |S 12 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 12 k and s ∈ S 12 k with E 12 k ∩ E 12 k = ∅ (non-overlapping constraint), and one edge e from (δ(X) \ E k 0 ) is chosen to route the demand k in the solution S 12 , i.e.,

|(δ(X) \ E k 0 ) ∩ E 12 k | = 1.
Obviously, S 12 is feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-( 12). Moreover, the corresponding incidence vector (x S 12 , z S 12 ) is belong to P (G, K, S) and then to F k X given that it is composed by e∈(δ(X)\E k 0 )

x k e = 1. As a result, F k X is not empty (F k X = ∅). Furthermore, given that e ∈ E \ (E k 0 ∪ E k 1 ) for the demand k, this means that there exists at least one feasible path E k for the demand k passed through the edge e which means that F k X = P (G, K, S). Let denote the inequality e∈(δ(X)\E k 0 )

x k e ≥ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F k X ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ with γ = (γ 1 , γ 2 , γ 3 ) ( with

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
) s.t. (µ, σ) = ρ(α, β) + γQ. We will show that µ k e = 0 for the demand k and all e ∈ E \ (E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 )), and µ k e = 0 for all demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s}, and that µ k e are equivalent for all e ∈ (δ(X) \ E k 0 ). First, let's show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}. Consider a demand k and a slot s in {w k , ..., s}. For that, we consider a solution S 12 = (E 12 , S 12 ) in which a feasible path E 12 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S k assigned to the demand k in the solution S 12 ), and one edge e from (δ(X) \ E k 0 ) is chosen to route the demand k in the solution S 12 , i.e., 12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 12 , z S 12 ) is belong to P (G, K, S). Based on this, we derive a solution S 13 = (E 13 , S 13 ) from the solution S 12 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S 12 (i.e., E 13 k = E 12 1 for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S 12 remain the same in the solution S 13 i.e., S 12 k = S 13 k for each demand k ∈ K \ {k}, and S 13 k = S 12 k ∪ {s} for the demand k. The solution S 13 is feasible given that a feasible path E 13 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 13 k is assigned to each demand k ∈ K along each edge e ∈ E 13 k with |S 13 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 13 k and s ∈ S 13 k with E 13 k ∩ E 13 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 13 k |{s ∈ S 13 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

|(δ(X) \ E k 0 ) ∩ E 12 k | = 1. S
The corresponding incidence vector (x S 13 , z S 13 ) is belong to F and then to F k X given that it is also composed by e∈(δ(X)\E k 0 )

x k e = 1. We then obtain that

µx S 12 + σz S 12 = µx S 13 + σz S 13 = µx S 12 + σz S 12 + σ k s .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}. The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} Next, we will show that µ k e = 0 for all the demands k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), and µ k e = 0 for the demand k and all e ∈ E \ (

E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 )). Consider the demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 
)) chosen arbitrarily. For that, we consider a solution S" 12 = (E" 12 , S" 12 ) in which a feasible path E" 12 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 12 k is assigned to each demand k ∈ K along each edge e ∈ E" 12 k with |S" 12 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 12 k and s" ∈ S" 12 k with E" 12 k ∩ E" 12 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 12 k |{s ∈ S" 12 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e" ∈ E" 12 k of demand k in the solution S" 12 , i.e., e"∈E" 12 k l e" + l e ≤ lk . As a result, E" 12 k ∪ {e } is a feasible path for the demand k, and one edge e from (δ(X) \ E k 0 ) is chosen to route the demand k in the solution S" 12 , i.e., 12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 12 , z S" 12 ) is belong to F and then to F k X given that it is also composed by e∈(δ(X)\E k 0 )

|(δ(X) \ E k 0 ) ∩ E" 12 k | = 1. S"
x k e = 1. Based on this, without changing the spectrum assignment established in S" 12 : we derive a solution S 14 obtained from the solution S" 12 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 12 which means that E" 2 k = E" 12 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S" 12 remain the same in the solution S 14 , i.e., S" 2 k = S" 12 k for each k ∈ K, and E" 2 k = E" 12 k for each k ∈ K \ {k}. S 14 is clearly feasible given that

• and a feasible path E" 2 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S" 2 k is assigned to each demand k ∈ K along each edge e ∈ E" As a result, µ k e = 0 for demand k and an edge e . with changing the spectrum assignment established in S" 12 : let S 14 be a solution obtained from the solution S" 12 by adding an unused edge e ∈ E \(E k 0 ∪E k 1 ) for the routing of demand k in K in the solution S" 12 which means that E 14 k = E" 12 k ∪ {e }, and removing slot s selected for the demand k in S" 12 and replaced it by a new slot s ∈ {w k , ..., S} (i.e., S 14 k = (S" 12 k \ {s}) ∪ {s } s.t. {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 12 k with E 14

k ∩ E" 12 k = ∅. The last-slots and paths assigned the set of demands K \ {k} in S" 12 remain the same in the solution S 14 , i.e., S 14 k = S" 12 k and E 14 k = E" 12 k for each k ∈ K \ {k}. S 14 is clearly feasible given that

• and a feasible path E 14 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S The corresponding incidence vector (x S 14 , z S 14 ) is belong to F and then to F k X given that it is also composed by e∈(δ(X)\E k 0 )

x k e = 1. It follows that µx S" 12 + σz S" 12 = µx S 14 + σz S 14 = µx S" 12 + µ k e + σz S" 12 -σ k s + σ k s which gives that µ k e = 0 for demand k and an edge e given that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}.

As e is chosen arbitrarily for the demand k with e /

∈ E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 ), we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 )
). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 )).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K \ {k} and all e ∈ E \ (E k 0 ∪ E k 1 ), µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ∪ (δ(X) \ E k 0 )).
Let's us prove that the µ k e for a demand k and edges e ∈ (δ(X) \ E k 0 ) are equivalent. Consider an edge e ∈ (δ(X) \ E k 0 ) s.t. e / ∈ E 12 k . For that, we consider a solution S12 = ( Ẽ12 , S12 ) in which

-a feasible path Ẽ12 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S12 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ12 k with | S12 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S12 k and s" ∈ S12 k with Ẽ12 k ∩ Ẽ12 k = ∅, i.e.
, for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈ Ẽ12 k |{s ∈ S12 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint),
and there is one edge e from (δ(X) \ E k 0 ) selected for the routing of demand k in the solution S12 , i.e., |(δ(X) \ E k 0 ) ∩ Ẽ12 k | = 1. S12 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S12 , z S12 ) is belong to F and then to F k X given that it is composed by e∈(δ(X)\E k 0 )

x k e = 1. Based on this, we distinguish two cases:

without changing the spectrum assignment established in S12 : we derive a solution S 15 = (E 15 , S 15 ) from the solution S12 by • modifying the path assigned to the demand k in S12 from Ẽ12 k to a path E 15 k passed through the edge e with |(δ(X) \ E k 0 ) ∩ Ẽ12 k | = 1. The paths assigned to the demands K \ {k} in S12 remain the same in S 15 (i.e., E 15 k" = Ẽ12

k"

for each k" ∈ K \ {k}), and also without modifying the last-slots assigned to the demands K in S12 , i.e., S12 k = S 15 k for each demand k ∈ K. The solution S 15 is feasible given that • a feasible path E 15 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 15 k is assigned to each demand k ∈ K along each edge e ∈ E 15 k with |S 15 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 15 k and s" ∈ S 15 k with E 15 k ∩ E 15 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e∈E 15 k |{s ∈ S 15 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and |(δ(X) \ E k 0 ) ∩ Ẽ12 k | = 1.
The corresponding incidence vector (x S 15 , z S 15 ) is belong to F and then to F k X given that it is composed by e∈(δ(X)\E k 0 )

x k e = 1. We then obtain that

µx S12 + σz S12 = µx S 15 + σz S 15 = µx S12 + σz S12 + µ k e -µ k e + e"∈E 15 k \{e } µ k e" - e"∈ Ẽ12 k \{e} µ k e" .
It follows that µ k e = µ k e for demand k and a edge e ∈ (δ(X) \ E k 0 ) given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e" / ∈ (δ(X) \ E k 0 ).

with changing the spectrum assignment established in S12 : we construct a solution S 15 derived from the solution S12 by • modifying the path assigned to the demand k in S12 from Ẽ12 k to a path E 15

k passed through the edge e with |(δ(X) \ E k 0 ) ∩ E 15 k | = 1,
• modifying the last-slots assigned to some demands K ⊂ K from S12 k to S 15 k for each k ∈ K while satisfying non-overlapping constraint. The paths assigned to the demands K \ {k} in S12 remain the same in S 15 (i.e., E 15 k" = Ẽ12 k" for each k" ∈ K \ {k}), and also without modifying the last-slots assigned to the demands K \ K in S12 , i. 

w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • |(δ(X) \ E k 0 ) ∩ E 15 k | = 1.
The corresponding incidence vector (x S 15 , z S ) is belong to F and then to F k X given that it is composed by e∈(δ(X)\E k 0 )

x k e = 1. We have so

µx S12 + σz S12 = µx S 15 + σz S 15 = µx S12 + σz S12 + µ k e -µ k e + k∈ K s ∈S 15 k σ k s - s∈ S12 k σ k s + e"∈E 15 k \{e } µ k e" - e"∈ Ẽ12 k \{e} µ k e" .
It follows that µ k e = µ k e for demand k and a edge e ∈ (δ(X) \ E k 0 ) given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e" / ∈ (δ(X) \ E k 0 ), and σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s}.

Given that the pair of edges (e, e ) are chosen arbitrary in (δ(X)\E k 0 ), we iterate the same procedure for all pairs (e, e ) ∈ (δ(X) \ E k 0 ) s.t. we find µ k e = µ k e , for all pairs e, e ∈ (δ(X) \ E k 0 ).

Consequently, we obtain that µ k e = ρ for all e ∈ (δ(X) \ E k 0 ). On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that

µ k e = γ k,e
1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s

3
for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that

σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. ( 23 
)
We conclude that for each k ∈ K and e ∈ E

µ k e =            γ k ,e 1 , if e ∈ E k 0 , γ k ,e 2 , if e ∈ E k 1 , ρ, if k = k and e ∈ (δ(X) \ E k 0 ), 0, otherwise and for each k ∈ K and s ∈ S σ k s = γ k,s 3 , if s ∈ {1, ..., w k -1}, 0, otherwise. We conclude that (µ, σ) = ρ e∈(δ(X)\E k 0 )
α k e + γQ.

Theorem 6. Consider a demand k ∈ K. Then, the inequality (7), s s=w k z k s ≥ 1, is facet defining for P (G, K, S).

Proof. Let F k

S denote the face induced by inequality s s=w k z k s ≥ 1, which is given by

F k S = {(x, z) ∈ P (G, K, S) : s s=w k z k s = 1}
In order to prove that inequality s s=w k z k s ≥ 1 is facet defining for P (G, K, S), we start checking that F k S is a proper face which means that it is not empty, and F k S = P (G, K, S). We construct a solution S 16 = (E 16 , S 16 ) as below a feasible path E 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 16 k is assigned to each demand k ∈ K along each edge e ∈ E 16 k with |S 16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 16 k and s" ∈ S 16

k with E 16 k ∩ E 16 k = ∅ (non-overlapping constraint), and one slot s from the set {w k , ..., s} is chosen to route the demand k in the solution S 16 , i.e.,

|S 16 k | = 1.
Obviously, S 16 is feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)-( 12). Moreover, the corresponding incidence vector (x S 16 , z S 16 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. As a result, F k S is not empty (F k S = ∅). Furthermore, given that s ∈ {w k , ..., s} for the demand k, this means that there exists at least one feasible solution for the problem in which |S k | ≥ 2 for the demand k. As a result, F k S = P (G, K, S). On another hand, we know that all the solutions of F k S are in P (G, K, S) which means which means that they verify the equations system (13) s.t. the following equations system (24) associated with

F k S is written as below                        s s=w k z k s = 1, s.t. k is chosen arbitrarily,
x k e = 0, for all k ∈ K and all e ∈ E k 0 , x k e = 0, for all k ∈ K and all e ∈ E k c , x k e = 1, for all k ∈ K and all e ∈ E k 1 , z k s = 0, for all k ∈ K and all s ∈ {1, ..., w k -1}.

(24

)
The system [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF] shows that the equation

s s=w k z k s = 1
is not result of equations of system [START_REF] Chudnovsky | Detecting an Odd Hole[END_REF] which means that the equation s s=w k z k s = 1 is not redundant in the system [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF]. As a result, the system (24) is in full rank which implies that the dimension of the face

F k S is equal to dim(F k S ) = |K| * (|E| + |S|) -rank(M ") = |K| * (|E| + |S|) -(1 + r) = dim(P (G, K, S)) -1,
where M " denotes the matrix associated with the equation system [START_REF] Goldberg | A New Approach to the Maximum Flow Problem[END_REF]. As a result, the face F k S is facet defining for P (G, K, S).

We strengthen our proof as follows. We denote the inequality

s s=w k z k s ≥ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that defines a facet F of P (G, K, S). Suppose that F k S ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exist ρ ∈ R and γ with γ = (γ 1 , γ 2 , γ 3 ) (γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1) ) s.t. (µ, σ) = ρ(α, β)
+ γQ, and that σ k s = 0 for all demands k ∈ K \ {k} and all slots s ∈ {w k , ..., s}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ), and all σ k s are equivalents for demand k and slots s ∈ {w k , ..., s} for the demand k. First, let's us show that µ k e = 0 for all the demands k ∈ K and all edges e ∈ E \(E k 0 ∪E k 1 ). Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ). For that, we consider a solution S 16 = (E 16 , S 16 ) in which a feasible path E 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 16 k ∪ {e} is a feasible path for the demand k, and one slot s from the set {w k , ..., s} is chosen to route the demand k in the solution S" 16 , i.e., |S" 16 k | = 1. S 16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S 16 , z S 16 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. Based on this, we derive a solution S 17 obtained from the solution S 16 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 16 which means that E 17 k = E 16 k ∪ {e}. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 16 As a result, µ k e = 0 for demand k and an edge e. As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 , we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e}). We conclude that for the demand k

µ k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ).
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that

µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).
Next, we will show that, σ k s = 0 for all k ∈ K \ {k} and all s ∈ {w k , ..., s}. Consider the demand k in K \ {k} and a slot s in {w k , ..., s} \ {s}. For that, we consider a solution S" 16 = (E" 16 , S" 16 ) in which a feasible path E" 16 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 16 k is assigned to each demand k ∈ K along each edge e ∈ E" 16 k with |S" 16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 16 k and s" ∈ S" 16 k with E" 16 k ∩ E" 16 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 16 k |{s ∈ S" 16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 16 k with E" 16 k ∩ E" 16 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 16 k assigned to the demand k in the solution S" 16 ), and |S" 16 k | = 1 for the demand k. S" 16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S" 16 , z S" 16 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. Based on this, we distinguish two cases:

without changing the paths established in S" 16 : we derive a solution S 18 = (E 18 , S 18 ) from the solution S" 16 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 16 (i.e., E 18 k = E" 16 k for each k ∈ K), and the last-slots assigned to the demands K \ {k } in S" 16 k remain the same in the solution S 18 i.e., S" 16 k = S 18 k for each demand k ∈ K \ {k }, and S 18 k = S" 16 k ∪ {s } for the demand k . The solution S 18 is feasible given that

• a feasible path E 18 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 18
k is assigned to each demand k ∈ K along each edge e ∈ E 18 k with |S 18 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 18 k and s" ∈ S 18 k with E 18 k ∩ E 18 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 18 k |{s ∈ S 18 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and |S 18 k | = 1 for the demand k. The corresponding incidence vector (x S 18 , z S 18 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. We the obtain that µx S" 16 + σz S" 16 = µx S 18 + σz S 18 = µx S" 16 + σz S" 16 + σ k s .

It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s}.

with changing the paths established in S" 16 : we construct a solution S 18 derived from the solution S" 16 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 16 (i.e., E 18 k = E" 16 k for each k ∈ K \ K, and

E 18 k = E" 16 k for each k ∈ K) s.t. • a new feasible path E 18
k is assigned to each demand k ∈ K (routing constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 16 k and s" ∈ S" 16 k with E 18 k ∩ E" 16 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e∈E 18 k |{s ∈ S" 16 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e∈E" 16 k |{s ∈ S" 16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and |S 18 k | for the demand k. The last-slots assigned to the demands K\{k } in S" 16 k | for the demand k. The corresponding incidence vector (x S 18 , z S 18 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. We have so

µx S" 16 + σz S" 16 = µx S 18 + σz S 18 = µx S" 16 + σz S" 16 + σ k s - k∈ K e∈E" 16 k µ k e + k∈ K e ∈E 18 k µ k e .
It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} given that µ k e = 0 for all the demand k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ).

The slot s is chosen arbitrarily for the demand k , we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s}.

Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k" in K \ {k, k } such that σ k" s = 0, for all k" ∈ K \ {k, k } and all slots s ∈ {w k" , ..., s} Consequently, we conclude that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s}.

Let's prove now that σ k s for demand k and slots s in {w k , ..., s} are equivalent. Consider a slot s ∈ {w k , ..., s} s.t. s / ∈ S 16 k . For that, we consider a solution S16 = ( Ẽ16 , S16 ) in which S16 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation

-a feasible path Ẽ16 k is assigned to each demand k ∈ K (routing constraint), -a set of last-slots S16 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ16 k with | S16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S16 k and s" ∈ S16 k with Ẽ16 k ∩ Ẽ16 k = ∅, i.
(2)-( 12). Hence, the corresponding incidence vector (x 

+ σz S16 + σ k s -σ k s + σ k s - k∈ K e∈ Ẽ16 k µx S16 + k∈ K e∈E 19 k µx S 19 .
It follows that σ k s = σ k s for demand k and a slots s, s ∈ {w k , ..., s} given that µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ).

The slot s is chosen arbitrarily for the demand k in {w k , ..., s}, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k s.t. we find σ k s = σ k s , for all slots s, s ∈ {w k , ..., s}.

Consequently, we obtain that σ k s = ρ for demand k and slots s in {w k , ..., s}. On the other hand, we ensure that all the edges e ∈ E k 0 for each demand k are independants s.t.

for each demand k ∈ K we have

e∈E k 0 µ k e = e∈E k 0 γ k,e 1 → e∈E k 0 (µ k e -γ k,e 1 ) = 0.
The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have

e∈E k 1 µ k e = e∈E k 1 γ k,e 2 → e∈E k 1 (µ k e -γ k,e 2 ) = 0
The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 ,

On the other hand, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have

w k -1 s=1 σ k s = w k -1 s=1 γ k,s 3 → w k -1 s=1 (σ k s -γ k,s 3 ) = 0
The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}. [START_REF] Goscien | Tabu search algorithm, Routing, Modulation and spectrum allocation, Anycast traffic, Elastic optical networks[END_REF] We conclude that for each k ∈ K and e ∈ E 

µ k e =        γ k ,e 1 , if e ∈ E k 0 γ k ,e 2 , if e ∈ E k
∪ E k 0 ), 2w k > |I|, 2w k > |I|, w k + w k > |I|,
and k, k are not non-compatible demands for the edge e. Then, the following inequality is valid for P (G, K, S)

x k e + x k e + sj s=si+w k -1 z k s + sj s=si+w k -1 z k s ≤ 3. ( 26 
)
Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, the inequality [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF] Then the inequality ( 8) is dominated by the inequality [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF]. Hence, the inequality ( 8) is not facet defining for P (G, K, S).

Sufficiency.

Let F e,s K denote the face induced by the inequality [START_REF] Chen | Deep-RMSA: A Deep-Reinforcement-Learning Routing, Modulation and Spectrum Assignment Agent for Elastic Optical Networks[END_REF], which is given by

F e,s K = {(x, z) ∈ P (G, K, S) : k∈ K x k e + min(s+w k -1,s) s =s z k s = | K| + 1}.
In order to prove that inequality k∈ K x k e + min(s+w k -1,s) s =s z k s ≤ | K| + 1 is facet defining for P (G, K, S), we start checking that F e,s K is a proper face, and F e,s K = P (G, K, S). We construct a solution S 20 = (E 20 , S 20 ) as below Obviously, S 20 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 20 , z S 20 ) is belong to P (G, K, S) and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. As a result, F e,s K is not empty (i.e., F e,s K = ∅). Furthermore, given that s ∈ S, this means that there exists at least one feasible slot assignment S k for each demands k in K with S k ∩ {s, ..., s + w k -1} = ∅. Hence, F e,s K = P (G, K, S). We denote the inequality k∈ K x k e + min(s+w k -1,s) s =s z k s ≤ | K| + 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a valid inequality that is facet defining F of P (G, K, S). Suppose that F e,s K ⊂ F = {(x, z) ∈ P (G, K, S) : µx + σz = τ }. We show that there exists ρ ∈ R and γ = (γ 1 , γ 2 , γ 3 ) (s.t. 

γ 1 ∈ R k∈K |E k 0 | , γ 2 ∈ R k∈K |E k 1 | , γ 3 ∈ R k∈K (w k -1)
k e = 0, for all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.
Moreover, given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \{k} and all e ∈ E \ (E k 0 ∪ E k 1 ). We conclude at the end that µ k e = 0, for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.

Let's us show that σ k s = 0 for all k ∈ K and all s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K. Consider the demand k and a slot s in {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K. For that, we consider a solution S" 20 = (E" 20 , S" 20 ) in which a feasible path E" 20 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 20 k is assigned to each demand k ∈ K along each edge e ∈ E" 20 k with |S" 20 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 20 k and s" ∈ S" 20 k with E" 20 k ∩ E" 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

k∈K,e ∈E" 20 k |{s ∈ S" 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 20 k with E" 20 k ∩ E" 20 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 20 k assigned to the demand k in the solution S" 20 ), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S" 20 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S" 20 k for a demand k ∈ K, and for each s ∈ S" 20 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S" 20 , i.e., e ∈ E" 20 k for each k ∈ K.

S" 20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-( 12). Hence, the corresponding incidence vector (x S" 20 , z S" 20 ) is belong to F and then to F e,s K given that it is composed by k∈

K x k e + min(s+w k -1,s) s =s z k s = 1.
Based on this, we distinguish two cases:

without changing the paths established in S" 20 : we derive a solution S 22 = (E 22 , S 22 ) from the solution S" 20 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S" 20 (i.e., E 22 k = E" 20 k for each k ∈ K), and the last-slots assigned to the demands K \ {k} in S" 20 remain the same in the solution S 22 i.e., S" 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S" 20 k" (nonoverlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 20 k assigned to the demand k in the solution S" 20 ).

The last-slots assigned to the demands K \{k} in S" 20 remain the same in S 22 , i.e., S" 

-1} if k ∈ K.
Given that the demand k is chosen arbitrarily. We iterate the same thing for all the demands k in K \ {k} such that σ k s = 0, for all k ∈ K \ {k} and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s

+ w k -1} if k ∈ K.
Consequently, we conclude that σ k s = 0, for all k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K.

Let prove that σ k s for all k ∈ K and all s ∈ {s, ..., s + w k -1} are equivalents. Consider a demand k and a slot s ∈ {s, ..., s + w k -1} with k ∈ K. For that, we consider a solution S20 = ( Ẽ20 , S20 ) in which a feasible path Ẽ20

k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S20

k is assigned to each demand k ∈ K along each edge e ∈ Ẽ20 k with | S20 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S20 k and s" ∈ S20 k with Ẽ20 k ∩ Ẽ20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈ Ẽ20 k |{s ∈ S20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S" 20 k with Ẽ20 k ∩ Ẽ20 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S" 20 k assigned to the demand k in the solution S" 20 ), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S20 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S20 k for a demand k ∈ K, and for each s ∈ S20 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S20 , i.e., e ∈ Ẽ20 k for each k ∈ K. S20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S20 , z S20 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. Based on this, we distinguish two cases:

without changing the paths established in S20 : we derive a solution S 23 = (E 23 , S 23 ) from the solution S20 by adding the slot s as last-slot to the demand k without modifying the paths assigned to the demands K in S20 (i.e., E 23 k = Ẽ20 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S20 remain the same in S 23 , i.e., S20 z k s = 1. We then obtain that

µx S20 + σz S20 = µx S 23 + σz S 23 = µx S20 + σz S20 + σ k s" -σ k s + σ k s .
It follows that σ k s" = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s, ..., s + w k -1} given that σ k s = 0 for s / ∈ {s, ..., s + w k -1} with k ∈ K. with changing the paths established in S20 : we construct a solution S 23 derived from the solution S20 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S20 (i.e., E 23 Given that the pair (k, k ) are chosen arbitrary in the set of demands K, we iterate the same procedure for all pairs (k, k ) s.t. we find σ k s = σ k s" , for all pairs (k, k ) ∈ K with s ∈ {s, ..., s + w k -1} and s ∈ {s, ..., s + w k -1}. We re-do the same procedure for each two slots s, s ∈ {s, ..., s + w k -1} for each demand k ∈ K with k ∈ K s.t.

σ k s = σ k s" , for all k ∈ K and s, s ∈ {s, ..., s + w k -1}.

Let us prove now that µ k e for all k ∈ K with k ∈ K are equivalents. For that, we consider a solution S 24 = (E 24 , S 24 ) defined as below a feasible path E 24 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 24 k is assigned to each demand k ∈ K along each edge e ∈ E 24 k with |S 24 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 24 k and s ∈ S 24 k with E 24 k ∩ E 24 k = ∅ (non-overlapping constraint), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k pass through the edge e in the solution S 24 , i.e., e ∈ E 24 k for a demand k ∈ K, and e / ∈ E 24 k for all k ∈ K \ {k}, and all the demands in K share the slot s over the edge e in the solution S 24 , i.e., {s i + w k + 1, ..., s j } ∩ S 24 k = ∅ for each k ∈ K. Obviously, S 24 is a feasible solution for the problem given that it satisfies all the constraints of our cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Moreover, the corresponding incidence vector (x S 24 , z S 24 ) is belong to P (G, K, S) and then to F e,s K given that it is composed by k with Ẽ24 k ∩ Ẽ24 k = ∅, and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k pass through the edge e in the solution S24 , i.e., e ∈ Ẽ24 k for a demand k ∈ K, and e / ∈ Ẽ24 k for all k ∈ K \ {k}, and all the demands in K share the slot s over the edge e in the solution S24 , i.e., {s, ..., s + w k -1} ∩ S24 k = ∅ for each k ∈ K. S24 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)- [START_REF] Christodoulopoulos | Elastic Bandwidth Allocation in Flexible OFDM-Based Optical Networks[END_REF]. Hence, the corresponding incidence vector (x S24 , z S24 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. Based on this, we derive a solution S" 25 = (E" 25 , S" 25 ) from the solution S24 by the paths assigned to the demands K \ {k, k } in S24 remain the same in S" 25 (i.e., E" 25 k" = Ẽ24

k"

for each k" ∈ K \ {k, k }), without modifying the last-slots assigned to the demands K in S24 , i.e., S24 k = S" 25 k for each demand k ∈ K, modifying the path assigned to the demand k in S24 from Ẽ24 k to a path E" 25 k passed through the edge e (i.e., e ∈ E" k with E" 25 k" ∩ E" 25 k = ∅. The solution S" 25 is feasible given that a feasible path E" 25 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S" 25 k is assigned to each demand k ∈ K along each edge e ∈ E" 25 k with |S" 25 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S" 25 k and s" ∈ S" 25 k with E" 25 k ∩ E" 25 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E" 25 k |{s ∈ S" 25 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

The corresponding incidence vector (x S" 25 , z S" 25 ) is belong to F and then to F e,s K given that it is composed by k∈ K Furthermore, let prove that all σ k s and µ k e are equivalents for all k ∈ K and s ∈ {s, ..., s + w k -1}. For that, we consider for each demand k with k ∈ K, a solution S 26 = (E 26 , S 26 ) derived from the solution S24 as below the paths assigned to the demands K \ {k } in S24 remain the same in S 26 (i.e., E 26 k" = Ẽ24 k" for each k" ∈ K \ {k }), without modifying the last-slots assigned to the demands K \ {k} in S24 , i.e., S24

k" = S 26 k" for each demand k" ∈ K \ {k}, modifying the set of last-slots assigned to the demand k in S24 from S24 k to S 26 k s.t. S 26 k ∩ {s, ..., s + w k -1} = ∅.

Hence, there are | K|-1 demands from K that share the slot s over the edge e (i.e., all the demands in K \ {k }), and two demands {k, k } from K that use the edge e in the solution S 26 . The solution S 26 is then feasible given that a feasible path E 26 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 26 k is assigned to each demand k ∈ K along each edge e ∈ E 26 k with |S 26 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S It follows that µ k e = σ k s for demand k and slot s ∈ {s, ..., s + w k -1} given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with e = e" if k ∈ K. Moreover, by doing the same thing over all slots s ∈ {s, ..., s + w k -1}, we found that µ k e = σ k s , for all s ∈ {s, ..., s + w k -1}.

Given that k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K to show that µ k e = σ k s , for all k ∈ K and all s ∈ {s, ..., s + w k -1}.

Based on this, and given that all µ k e are equivalents for all k ∈ K, and that σ k s are equivalents for all k ∈ K and s ∈ {s, ..., s + w k -1}, we obtain that µ k e = σ k s , for all k, k ∈ K and all s ∈ {s, ..., s + w k -1}. Consequently, we conclude that µ k e = σ k s = ρ, for all k, k ∈ K and all s ∈ {s, ..., s + w k -1}.

On the other hand, we ensure that all e ∈ E k 0 for each demand k are independants s.t. for each demand k ∈ K we have The only solution of this system is µ k e = γ k,e

1
for each e ∈ E k 0 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 1 , for all k ∈ K and all e ∈ E k 0 ,

We re-do the same thing for the edges e ∈ E k 1 for each demand k which are independants s.t. for each demand k ∈ K we have The only solution of this system is µ k e = γ k,e

2
for each e ∈ E k 1 for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We conclude that µ k e = γ k,e 2 , for all k ∈ K and all e ∈ E k 1 , Furthermore, all the slots s ∈ {1, ..., w k -1} for each demand k are independants s.t. for each demand k ∈ K, we have The only solution of this system is σ k s = γ k,s 3 for each s ∈ {1, ..., w k -1} for the demand k. As k is chosen arbitrarily in K, we iterate the same procedure for all k ∈ K \ {k}. We then get that σ k s = γ k,s 3 , for all k ∈ K and all s ∈ {1, ..., w k -1}.

We conclude that for each k ∈ K and e ∈ E 

Conclusion

In this paper, we studied the Constrained-Routing and Spectrum Assignment problem. We first introduced an integer linear programming based on the so-called cut formulation for the problem. We investigated the facial structure of the associated polyhedron by showing that some basic inequalities of the cut formulation are facet-defining under certain conditions.

Fig. 2 .

 2 Fig. 2. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4} defined in Table 2(b).

Fig. 3 .Proposition 3 .

 33 Fig. 3. A set of edges E k for a demand k containing an (o k , d k )-path P k together with: isolated-edge, islated-cycle, two isolated-edges, and linked-cycle.

4 k

 4 and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 4 k and s ∈ S with E 4 k ∩ E 4 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 4 k |{s ∈ S 4

  and that σ k s = 0 for demand k and all slots s ∈ {w k , ..., s} \ {s}, and σ k s = 0 for all demands k ∈ K \ {k} and all slots s ∈ {w k , ..., s}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ).

Definition 2 .

 2 For a demand k, two edges e = ij / ∈ E k 0 ∩ E k 1 , e = lm / ∈ E k 0 ∩ E k 1 are said noncompatible edges iff the lengths of (o k , d k )-paths formed by e = ij and e = lm together are greater that lk . Note that we are able to determine the non-compatible edges for each demand k in polynomial time using shortest-path algorithms by verifying if the length of the following (o k , d k )-paths -(o k , d k )-path formed by e and e together with the shortest (o k , i), (j, l) and (m, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , i), (j, m) and (l, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , j), (i, l) and (m, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , j), (i, m) and (l, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , l), (m, i) and (j, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , l), (m, j) and (i, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , m), (l, i) and (j, d k ) paths, -(o k , d k )-path formed by e and e together with the shortest (o k , m), (l, j) and (i, d k ) paths, are greater that lk .

9 k

 9 is assigned to each demand k ∈ K along each edge e ∈ E 9 k with |S 9 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 9 k and s" ∈ S 9 k with E 9 k ∩ E 9 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 9 k |{s ∈ S 9 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 9

10 k

 10 is assigned to each demand k ∈ K along each edge e ∈ E 10 k with |S 10 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 10 k and s ∈ S 10 k with E 10 k ∩ E 10 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 10 k |{s ∈ S 10 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

12 k

 12 is assigned to each demand k ∈ K along each edge e ∈ E 12 k with |S 12 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 12 k and s" ∈ S 12 k with E 12 k ∩ E 12 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 12 k |{s ∈ S 12 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S 12 k with E 12 k ∩E 12 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S 12

14 k

 14 is assigned to each demand k ∈ K along each edge e ∈ E 14 k with |S 14 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 14 k and s ∈ S 14 k with E 14 k ∩ E 14 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 14 k |{s ∈ S 14 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

S 15 k

 15 e., S12 k = for each demand k ∈ K \ K. The solution S 15 is clearly feasible given that • a feasible path E 15 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 15 k is assigned to each demand k ∈ K along each edge e ∈ E 15 k with |S 15 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 15 k and s" ∈ S 15 k with E 15 k ∩ E 15 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 15 k |{s ∈ S 15 k , s" ∈ {s -

k

  is assigned to each demand k ∈ K along each edge e ∈ E 16 k with |S 16 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 16 k and s" ∈ S 16 k with E 16 k ∩ E 16 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 16 k |{s ∈ S 16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), the edge e is not non-compatible edge with the selected edges e ∈ E 16 k of demand k in the solution S 16 , i.e., e ∈E 16 k l e +l e ≤ lk . As a result, E 16

S 18 k

 18 remain the same in S 18 , i.e., S" 16 k = for each demand k ∈ K \ {k }, and S 18 k = S" 16 k ∪ {s } for the demand k . The solution S 18 is clearly feasible given that • a feasible path E 18 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 18 k is assigned to each demand k ∈ K along each edge e ∈ E 18 k with |S 18 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 18 k and s" ∈ S 18 k with E 18 k ∩ E 18 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 18 k |{s ∈ S 18 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and |S 18

  e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ16 k |{s ∈ S16 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S16 k with Ẽ16 k ∩ Ẽ16 k = ∅ (non-overlapping constraint taking into account the possibility of adding the slot s in the set of last-slots S16 k assigned to the demand k in the solution S16 )., and | S16 k | = 1 for the demand k.

3 ,Proposition 6 .

 36 and for each k ∈ K and s ∈ S if s ∈ {1, ..., w k -1} ρ, if k = k and s ∈ {w k , ..., s} 0, otherwise. As a result (µ, σ) = s s=w k ρβ k s + γQ for the demand k which ends our strengthening of proof. Consider an edge e ∈ E, and an interval of contiguous slots I = [s i , s j ] ⊂ S. Let k, k ∈ K be pair of demands with e / ∈ (E k 0

-

  a feasible path E 20 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 20 k is assigned to each demand k ∈ K along each edge e ∈ E 20 k with |S 20 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S 20 k and s ∈ S 20 k with E 20 k ∩ E 20 k = ∅ (non-overlapping constraint), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S 20 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S 20 k for a demand k ∈ K, and for each s ∈ S 20 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and all the demands in K pass through the edge e in the solution S 20 , i.e., e ∈ E 20 k for each k ∈ K.

  ) s.t. (µ, σ) = ρ(α, β) + γQ, and that σ k s = 0 for all demands k ∈ K and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K, and σ k s are equivalents for all k ∈ K and all s ∈ {s, ..., s + w k -1}, and µ k e = 0 for all demands k ∈ K and all edges e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K, and all µ k e are equivalents for the set of demands in K, and σ k s and µ k e are equivalents for all k ∈ K and all s ∈ {s, ..., s + w k -1}. We first show that µ k e = 0 for each edge e ∈ E \ (E k 0 ∪ E k 1 ) for each demand k ∈ K with e = e if k ∈ K. Consider a demand k ∈ K and an edge e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K. For that, we consider a solution S 20 = (E 20 , S 20 ) in which a feasible path E 20 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 20 k is assigned to each demand k ∈ K along each edge e ∈ E 20 k with |S 20 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 20 k and s" ∈ S 20 k with E 20 k ∩ E 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 20 k |{s ∈ S 20 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and there is one demand k from the set of demands K (i.e., k ∈ K s.t. the demand k selects a slot s as last-slot in the solution S 20 with s ∈ {s, ..., s + w k -1}, i.e., s ∈ S 20 k for a demand k ∈ K, and for each s ∈ S 20 k for all k ∈ K \ {k} we have s / ∈ {s, ..., s + w k -1}, and the edge e is not non-compatible edge with the selected edges e" ∈ E 20 k of demand k in the solution S 20 , i.e., e"∈E 20 k l e" + l e ≤ lk . As a result, E 20 k ∪ {e } is a feasible path for the demand k, and all the demands in K pass through the edge e in the solution S 20 , i.e., e ∈ E 20 k for each k ∈ K.S 20 is clearly feasible for the problem given that it satisfies all the constraints of cut formulation (2)-(12). Hence, the corresponding incidence vector (x S 20 , z S 20 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) s =s z k s = 1. Based on this, we derive a solution S 21 obtained from the solution S 20 by adding an unused edge e ∈ E \ (E k 0 ∪ E k 1 ) for the routing of demand k in K in the solution S 20 which means that E 21 k = E 20 k ∪ {e }. The last-slots assigned to the demands K, and paths assigned the set of demands K \ {k} in S 20 remain the same in the solution S 21 , i.e., S 21 k = S 20 k for each k ∈ K, and E 21 k = E 20 k for each k ∈ K \ {k}. S 21 is clearly feasible given that and a feasible path E 21 k is assigned to each demand k ∈ K (routing constraint), and a set of last-slots S 21 k is assigned to each demand k ∈ K along each edge e ∈ E 21 k with |S 21 k | ≥ 1 (contiguity and continuity constraints), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 21 k and s" ∈ S

  for each k ∈ K \ K, andE 23 k = Ẽ20k for each k ∈ K), and also the last-slots assigned to the demands K \ {k, k } in S20 remain the same in S23 , i.e., S20 k" = S 23 k" for each demand k" ∈ K \ {k, k }, and S 23 k = S20 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S20 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with k ∈ K s.t. S 23 k = ( S20 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 23 k with E 23 k ∩ E 23 k = ∅. The solution S 23 is clearly feasible given that • a feasible path E 23 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 23 k is assigned to each demand k ∈ K along each edge e ∈ E 23 k with |S 23 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 23 k and s" ∈ S 23 k with E 23 k ∩ E 23 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 23 k |{s ∈ S 23 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 23 , z S 23 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + min(s+w k -1,s) It follows that σ k s" = σ k s for demand k and a slot s ∈ {w k , ..., s} with k ∈ K and s ∈ {s, ..., s + w k -1} given that σ k s = 0 for s / ∈ {s, ..., s + w k -1} with k ∈ K, and µ k e = 0 for all k ∈ K and all e ∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.

-

  a feasible path Ẽ24 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S24 k is assigned to each demand k ∈ K along each edge e ∈ Ẽ24 k with | S24 k | ≥ 1 (contiguity and continuity constraints), -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S24 k and s" ∈ S24 k with Ẽ24 k ∩ Ẽ24 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈ Ẽ24 k |{s ∈ S24 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s-w k +1, ..., s}∩{s -w k +1, ..., s } = ∅ for each k ∈ K and s ∈ S 24

  25 k ) with k ∈ K s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and each s ∈ S24 k and each s ∈ S24 k with Ẽ24 k ∩ E" 25 k = ∅, modifying the path assigned to the demand k in S24 with e ∈ Ẽ24 k and k ∈ K from Ẽ24 k to a path E" 25 k without passing through the edge e (i.e., e / ∈ E" 25 k ) and {s -w k + 1, ..., s} ∩ {s -w k" + 1, ..., s } = ∅ for each k" ∈ K \ {k, k } and each s ∈ S24 k and each s ∈ S24 k" with Ẽ24 k" ∩ E" 25 k = ∅, and {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each s ∈ S24 k and each s ∈ S24

  It follows that µ k e = µ k e for demand k and a edge e ∈ E \ (E k 0 ∪ E k 1 ) with v k ,e ∈ K given that µ k e" = 0 for all k ∈ K and all e" ∈ E \ (E k 0 ∪ E k 1 ) with k ∈ K. Given that the pair (k, k ) are chosen arbitrary in the set of demands K, we iterate the same procedure for all pairs (k, k ) s.t. we find µ k e = µ k e , for all pairs (k, k ) ∈ K.

1 , if e ∈ E k 0 , γ k ,e 2 , 3 ,

 123 if e ∈ E k 1 , ρ, if k ∈ K and e = e,0, otherwise, and for each k ∈ K and s ∈ S if s ∈ {1, ..., w k -1} ρ, if k ∈ K and s ∈ {s, ..., s + w k -1}, 0, otherwise. As a result (µ, σ) = k∈ K ρα k e + min(s+w k -1,s) s =s ρβ k s + γQ.

Table 2

 2 (d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t. each edge e is characterized by a triplet [l e , c e , s], and optical spectrum S = {1, 2, 3, ..., 8, 9} with s = 9.

  for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint),• and e ∈E 2 k \{e} l e + l e ≤ lk . The corresponding incidence vector (x S 2 , z S 2 ) is belong to P (G, K, S). It follows that

	k∈K,e∈E 2 k	|{s ∈ S 2 k , s" µx S 0 + σz S 0	= µx S 2	+ σz S 2	= µx S 0	+ µ k e + σz S 0	.

  for each edge e ∈ E and each slot s" ∈ S we have

	k∈K,e∈E 2 k The corresponding incidence vector (x S 2 , z S 2 ) is belong to P (G, K, S). It follows that |{s ∈ S 2 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

  -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 6 k and s" ∈ S 6 k with E 6 k ∩ E 6 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 6 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s ∈ S 6 k and s" ∈ S 6 k with (E 6 k ∪ {e}) ∩ E 6 k = ∅ (non-overlapping constraint taking into account the possibility of adding the edge e in the set of edges E 6

		|{s ∈
	S 6 k , s"	k
		6 k with |S 6 k | ≥ 1
	(contiguity and continuity constraints),	

  6 k = S 8 k for each demand k ∈ K \ {k}, and S 8 k = S" 6 k ∪ {s } for the demand k. The solution S 8 is feasible given that • a feasible path E 8 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 8 k is assigned to each demand k ∈ K along each edge e ∈ E 8 k with |S 8 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 8 k and s" ∈ S 8 k with E 8 k ∩ E 8 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and the slot s is not chosen to route the demand k in the solution S 8 , i.e., s / ∈ S 8 k . The corresponding incidence vector (x S 8 , z S 8 ) is belong to F and then to F k

	k∈K,e∈E 8 k composed by z k |{s ∈ S 8 k , s" s given that it is s = 0. We then obtain that
	µx S" 6	+ σz S" 6	= µx S 8	+ σz S 8	= µx S" 6	+ σz S" 6	+ σ k s .

  For demand k and an edgee ∈ E \ (E k 0 ∪ E k 1 ), if N (v k,e ) = ∅ in GK E , the inequality x k e ≤1 is dominated by the inequality[START_REF] Eppstein | Finding the k shortest paths[END_REF] or (19) s.t. there exists at least one clique of cardinality at least equals to 2 in the conflict graph GE S that contains the node v k,e . As a result, the inequality x k e ≤ 1 is not facet defining for P (G, K, S).

	Sufficiency.
	Let F k e denote the face induced by inequality x k e ≤ 1, which is given by

Definition 3. Let GK E be a conflict graph defined as follows. For each demand k and edge e / ∈ E k 0 ∪ E k 1 , consider a node v k e in GK E . Two nodes v k e and v k e are linked by an edge in GK E if k = k : e and e are non compatible edges for demand k. if k = k : k and k are non compatible demands for edge e. Theorem 4. Consider a demand k ∈ K, and an edge e ∈ E \ (E k 0 ∪ E k 1 ). Then, the inequality x k e ≤ 1 is facet defining for P (G, K, S) if and only if N (v k,e ) = ∅ in GK E . Proof. Neccessity.

  2 k with |S" 2 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S" 2 k and s ∈ S" 2 k with E" 2 k ∩ E" 2 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have

	k∈K,e ∈E" 2 k The corresponding incidence vector (x S 11 , z S 11 ) is belong to F and then to F k |{s ∈ S" 2 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint). e given that it is also composed by x k e = 1. It follows that
	µx S" 9	+ σz S" 9	= µx S 11	+ σz S 11	= µx S" 9	+ µ k e + σz S" 9	.

  remain the same in the solution S 11 , i.e., S 11 • {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S11 The corresponding incidence vector (x S 11 , z S 11 ) is belong to F and then to F k e given that it is also composed by x k

	s ∈ S 11 k	with E 11 k ∩ E 11	k	and

k = S" 9 k for each k ∈ K, and

E 11 k = E" 9 k for each k ∈ K \ {k}. S

11 is clearly feasible given that • and a feasible path E 11 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 11 k is assigned to each demand k ∈ K along each edge e ∈ E 11 k with |S 11 k | ≥ 1 (contiguity and continuity constraints), k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 11 k |{s ∈ S 11 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint). e = 1. It follows that µx S" 9 + σz S" 9 = µx S 11 + σz S 11 = µx S" 9 + µ k e + σz S" 9 .

  The corresponding incidence vector (x S 14 , z S 14 ) is belong to F and then to F k

	|S" 2 k | ≥ 1 (contiguity and continuity constraints),		2 k with
	• {s -w X given that it is also composed by e∈(δ(X)\E k 0 ) x k e = 1. It follows that
	µx S" 12	+ σz S" 12	= µx S 14	+ σz S 14	= µx S" 12	+ µ k e + σz S" 12	.

k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k, k ∈ K and each s ∈ S" 2 k and s ∈ S" 2 k with E" 2 k ∩ E" 2 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E" 2 k |{s ∈ S" 2 k , s" ∈ {s -w k + 1, ..., s}| ≤ 1 (non-overlapping constraint).

  remain the same in the solution S 17 , i.e., S 17 -{s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 17 k and s" ∈ S 17 k with E 17 k ∩ E 17 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 17 k |{s ∈ S 17 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 17 , z S 17 ) is belong to F and then to F k

	composed by s s=w k z k s = 1. It follows that				S given that it is
	µx S 16	+ σz S 16	= µx S 17	+ σz S 17	= µx S 16	+ µ k e + σz S 16	.

k = S 16 k for each k ∈ K, and E 17 k = E 16 k for each k ∈ K \ {k}. S 17 is clearly feasible given that and a feasible path E 17 k is assigned to each demand k ∈ K (routing constraint), a set of last-slots S 17 k is assigned to each demand k ∈ K along each edge e ∈ E 17 k with |S 17 k | ≥ 1 (contiguity and continuity constraints),

  S16 , z S16 ) is belong to F and then to F k S given that it is composed by s s=w k z k s = 1. Based on this, without changing the paths established in S16 : we derive a solution S 19 = (E 19 , S 19 ) from the solution S16 by adding the slot s as last-slot to the demand k and removing the last slot s ∈ S 16 k , i.e., S 19 k = ( S16 k \ {s}) ∪ {s} for the demand k s.t. {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and s" ∈ S 19 k with E 19 k ∩ E 19 k = ∅. The paths assigned to the demands K in S16 remain the same in S 19 (i.e., E 19 k = Ẽ16 k for each k ∈ K), and also the last-slots assigned to the demands K \ {k} in S16 , i.e., S16 k" = S 19 k" for each demand k" ∈ K \ {k}. The solution S 19 is feasible given that • a feasible path E 19 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 19 k is assigned to each demand k ∈ K along each edge e ∈ E 19 k with |S 19 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 19 k and s" ∈ S 19 k with E 19 k ∩ E 19 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), • and |S 19 k | = 1. The corresponding incidence vector (x S 19 , z S 19 ) is belong to F and then to F kIt follows that σ k s = σ k s for demand k and a slots s, s ∈ {w k , ..., s}. with changing the paths established in S16 : we construct a solution S 19 derived from the solution S16 by adding the slot s as last-slot to the demand k in S 19 for each k ∈ K), and also the last-slots assigned to the demands K \ {k} in S16 remain the same in S 19 . The solution S 19 is clearly feasible given that • a feasible path E 19 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 19 k is assigned to each demand k ∈ K along each edge e ∈ E 19 • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 19 S 19 , z S 19 ) is belong to F and then to F k

	k∈K,e∈E 19 k	|{s ∈ S 19 k , s" S given that it is
	composed by s s=w k z k s = 1. We then obtain that
		µx	S16	+ σz	S16	= µx S 19	+ σz S 19	= µx	S16	+ σz	S16	-σ k s + σ k s .
	and removing the last k \ {s}) ∪ {s } for the demand k) with modifying k = ( S16 the paths assigned to a subset of demands K ⊂ K in S16 (i.e., E 19 slot s assigned to k in S16 k (i.e., S 19 k k = Ẽ16 k for each k ∈ K \ K, and E 19 k = Ẽ16
	|S 19 k | ≥ 1 (contiguity and continuity constraints),	k	with
	and = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), k ∩ E 19 with E 19 k k∈K,e∈E 19 s" ∈ S 19 k |{s ∈ S 19 k • and |S 19 k | = 1.
	The corresponding incidence vector (x S given that it
	is composed by s s=w k z k s = 1. We have so
	µx	S16	+ σz	S16	= µx S 19	+ σz S 19	= µx	S16

k

  ensures that if the two demands k, k pass through edge e, they cannot share the interval I = [s i , s j ] over edge e.Theorem 7. Consider an edge e ∈ E, and a slot s ∈ S. Let k, k be two demands in K with k, k are not non-compatible demands for the edge e. Then, the inequality (8) is facet defining for P (G, K, S) iff K e \ {k, k } = ∅, and there does not exist an interval of contiguous slots I = [s i , s j ] s.t.-|{s i + w k -1, ..., s j }| ≥ w k , and |{s i + w k -1, ..., s j }| ≥ w k , and s ∈ {s i + max(w k , w k ) -1, ..., s j -max(w k , w k ) + 1}, and w k + w k ≥ |I| + 1, and 2w k ≥ |I| + 1, and 2w k ≥ |I| + 1.Proof. Let K = {k, k }.Neccessity.If K e \ K = ∅, then the inequality (8) is dominated by the inequality (26) without changing its right hand side. Moreover, if there exists an interval of contiguous slots I = [s i , s j ] s.t.-|{s i + w k -1, ..., s j }| ≥ w k for each demand k ∈ K, and s ∈ {s i + max k ∈ K w k -1, ..., s j -max k∈ K w k + 1},and w k + w k ≥ |I| + 1 for each k, k ∈ K, and 2w k ≥ |I| + 1 for each k ∈ K.

  The corresponding incidence vector (x S 21 , z S 21 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e +

	21 k with E 21 k ∩ E 21					
		min(s+w k -1,s) s =s	z k s = 1. It follows that
	µx S 20	+ σz S 20	= µx S 21	+ σz S 21	= µx S 20	+ µ k e + σz S 20	.
	As a result, µ k e = 0 for demand k and an edge e . As e is chosen arbitrarily for the demand k with e / ∈ E k 0 ∪ E k 1 and e = e if k ∈ K, we iterate the same procedure for all e ∈ E \ (E k 0 ∪ E k 1 ∪ {e }) with e = e" if k ∈ K. We conclude that for the
	demand k						
	µ						

k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 21 k |{s ∈ S 21 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  The solution S22 is feasible given that• a feasible path E 22 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S22 k is assigned to each demand k ∈ K along each edge e ∈ E 22 k with |S22 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S22 The corresponding incidence vector (x S 22 , z S 22 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s, ..., s+ w k -1} if k ∈ K.with changing the paths established in S" 20 : we construct a solution S 22 derived from the solution S" 20 by adding the slot s as last-slot to the demand k with modifying the paths assigned to a subset of demands K ⊂ K in S" 20 (i.e., E22 • and {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k ∈ K and k ∈ K \ K and each s ∈ S" 20 k and s" ∈ S" 20 k with E 22 k ∩ E" 20 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈ K,e ∈E 22 k |{s ∈ S" 20 k , s" ∈ {s -w k + 1, ..., s }| + k∈K\ K,e ∈E" 20

								20 k = S 22
	s" ∈ S 22 k with E 22 k ∩ E 22						k and
		min(s+w k -1,s) s =s	z k s = 1. We then obtain that
	µx S" 20	+ σz S" 20	= µx S 22	+ σz S 22	= µx S" 20	+ σz S" 20	+ σ k s .
	k k is assigned to each demand k ∈ K (routing constraint), = E" 20 k for each k ∈ K \ K, and k for each k ∈ K) s.t. k = E" 20 E 22 • a new feasible path E 22
								|{s ∈
								k
	S"						

k for each demand k ∈ K \ {k}, and S 22 k = S" 20 k ∪ {s } for the demand k. k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e ∈E 22 k |{s ∈ S 22 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint).

  20 k = S 22 k for each demand k ∈ K \ {k}, and S 22 k = S" 20 k ∪ {s} for the demand k. The solution S 22 is clearly feasible given that • a feasible path E 22 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S 22 kis assigned to each demand k ∈ K along each edge e ∈ E 22 • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S 22 ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 22 , z S 22 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e + It follows that σ k s = 0 for demand k and a slot s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k -1} if k ∈ K given that µ k e = 0 for all the demand k ∈ K and all edges e∈ E \ (E k 0 ∪ E k 1 ) with e = e if k ∈ K.The slot s is chosen arbitrarily for the demand k, we iterate the same procedure for all feasible slots in {w k , ..., s} of demand k with s / ∈ {s, ..., s + w

	|S 22 k | ≥ 1 (contiguity and continuity constraints),		k	with
	and = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k k , s" min(s+w k -1,s) k ∩ E 22 with E 22 k k∈K,e ∈E 22 s" ∈ S 22 k k |{s ∈ S 22 s =s z k s = 1. We have so
	µx S" 20	+ σz S" 20	= µx S 22	+ σz S 22	= µx S" 20	+ σz S" 20	+ σ k s -	µ k e +	µ k e" .
							k∈ K e ∈E" 20 k	k∈ K e"∈E 22 k

k -1} if k ∈ K s.t.

we find σ k s = 0, for demand k and all slots s ∈ {w k , ..., s} with s / ∈ {s, ..., s + w k

  k" = S 23 k" for each demand k" ∈ K \ {k, k }, and S 23 k = S20 k ∪ {s } for the demand k , and modifying the last-slots assigned to the demand k by adding a new last-slot s and removing the last slot s ∈ S20 k with s ∈ {s i + w k + 1, ..., s j } and s / ∈ {s i + w k + 1, ..., s j } for the demand k with k ∈ K s.t.S 23 k = ( S20 k \ {s}) ∪ {s} s.t. {s -w k + 1, ..., s} ∩ {s -w k + 1, ..., s } = ∅ for each k ∈ K and s ∈ S 23 k with E 23 k ∩ E 23 k = ∅.The solution S 23 is feasible given that • a feasible path E23 k is assigned to each demand k ∈ K (routing constraint), • a set of last-slots S23 k is assigned to each demand k ∈ K along each edge e ∈ E 23 k with |S23 k | ≥ 1 (contiguity and continuity constraints), • {s -w k + 1, ..., s } ∩ {s" -w k + 1, ..., s"} = ∅ for each k, k ∈ K and each s ∈ S23 k and s" ∈ S23 k with E 23 k ∩ E 23 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint). The corresponding incidence vector (x S 23 , z S 23 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e +

	k∈K,e ∈E 23 k	|{s ∈ S 23 k , s"

min(s+w k -1,s) s =s

  k∈ K x k e + Consider now a demand k in K s.t. e / ∈ E 24 k . For that, we consider a solution S24 = ( Ẽ24 , S24 ) in which

	min(s+w k -1,s) s =s	z k s = 1.

  26 k and s" ∈ S 26 k with E 26 k ∩ E 26 k = ∅, i.e., for each edge e ∈ E and each slot s" ∈ S we have k∈K,e∈E 26 k |{s ∈ S 26 k , s" ∈ {s -w k + 1, ..., s }| ≤ 1 (non-overlapping constraint), and k∈ K |E 26 k ∩ {e}| + |S 26 k ∩ {s, ..., s + w k -1}| = | K| + 1. The corresponding incidence vector (x S 26 , z S 26 ) is belong to F and then to F e,s K given that it is composed by k∈ K x k e +

						min(s+w k -1,s) s =s	z k s = 1. We then obtain that		
	µx	S24	+ σz	S24	= µx S 26	+ σz S 26	= µx	S24	+ σz	S24	+ µ k e -σ k s +	µ k e" -	µ k e" .
											e"∈E 26 k \{e}	e"∈ Ẽ24 k	

We take into account the presence of parallel fibers such that two edges e, e which have the same extremities i and j are independents.

We take into account that we can have several demands between the same origin-node and destinationnode.