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Abstract. The Constrained-Routing and Spectrum Assignment (C-RSA) problem arises
in the dimensioning and management of a next-generation of optical transport networks,
called Spectrally Flexible Optical Networks (SFONs). The C-RSA can be stated as follows.
Given an SFONs as a graph G, and an optical spectrum S of available contiguous frequency
slots, and a multiset of traffic demands K, it aims at determining for each demand k ∈ K a
path in G and an interval of contiguous slots in S while satisfying technological constraints,
and optimizing some linear objective function(s). To the best of our knowledge, a cutting-
plane-based approach has not been yet considered for the problem. For that, the main aim
of our work is to introduce an integer linear programming formulation and provide several
classes of valid inequalities for the associated polyhedron. We further discuss their separation
problems. Using the polyhedral results and the separation procedures, we devise a Branch-
and-Cut algorithm to solve the problem. We also present some computational results and
show the effectiveness of our approach using real and some realistic network topologies.

1 Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month by 2022, up
from 194.4 Exabytes per month in 2020 [82]. Optical transport networks are then facing a serious
challenge related to continuous growth in bandwidth capacity due to the growth of global communi-
cation services and networking: mobile internet network (e.g., 5th generation mobile network), cloud
computing (e.g., data centers), Full High-definition (HD) interactive video (e.g., TV channel, social
networks) [9], etc... To sustain the network operators face this trend of increase in bandwidth, a new
generation of optical transport network architecture called Spectrally Flexible Optical Networks
(SFONs) (called also FlexGrid Optical Networks) has been introduced as promising technology
because of their flexibility, scalability, efficiency, reliability, survivability [7][9] compared with the
traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[66][67]. In SFONs the
optical spectrum is divided into small spectral units, called frequency slots as shown in Figure 1.
They have the same frequency of 12.5 GHz where WDM uses 50 GHz as recommended by ITU-T
[1]. This concept of slots was proposed initially by Jinno et al. in 2008 [36], and later explored
by the same authors in 2010 [85]. This can be seen as an improvement in resource utilization. We
refer the reader to [42] for more information about the architectures, technologies, and control of
SFONs.
The Routing and Spectrum Assignment (RSA) problem plays a primary role when dimensioning
and designing of SFONs. It can be seen as the main task for the development of this next gener-
ation of optical networks. It consists of assigning for each traffic demand, a physical optical path,
and an interval of contiguous slots (called also channels) while optimizing some linear objective(s)
and satisfying the following constraints [29]:

1. spectrum contiguity : an interval of contiguous slots should be allocated to each demand k with
a width equal to the number of slots requested by demand k;

? This work was supported by the French National Research Agency grant ANR-17-CE25-0006, project
FLEXOPTIM.
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Fig. 1. Slot concept illustration in SFONs [75].

2. spectrum continuity : the interval of contiguous slots allocated to each traffic demand stills the
same along the chosen path;

3. non-overlapping spectrum: the intervals of contiguous slots of demands whose paths are not
edge-disjoints in the network cannot share any slot over the shared edges.

1.1 Related Works

Numerous research studies have been conducted on the RSA problem since its first appearance.
The RSA is known to be an NP-hard problem [78] [81], and is more complex than the historical
Routing and Wavelength Assignment (RWA) problem [32]. Various integer linear programming
(ILP) formulations and algorithms have been proposed to solve it. A detailed survey of spectrum
management techniques for SFONs is presented in [81] where authors classified variants of the RSA
problem: offline RSA which has been initiated in [61], and online or dynamic RSA which has been
initiated in [86] and recently developed in [56] and [89], and an investigation of numerous aspects
proposed in the tutorial [6]. This work focuses on the offline RSA problem. There exist two classes
of ILP formulations used to solve the RSA problem, called edge-path and edge-node formulations.
The ILP edge-path formulation is majorly used in the literature where variables are associated
with all possible paths inducing huge variables and constraints that grow exponentially and in
parallel with the growth of the instance size: number of demands, the total number of slots, and
topology size: number of links and nodes [29]. To the best of our knowledge, we observe that several
papers which use the edge-path formulation as an ILP formulation to solve the RSA problem, use
a set of precomputed-paths without guaranty of optimality e.g. in [12], [61], [62], [84], [91], and
recently in [73]. On the other hand, column generation techniques have been used by Klinkowski
et al. in [71], Jaumard et al. in [34], and recently by Enoch in [19] to solve the relaxation of the
RSA taking into account all the possible paths for each traffic demand. To improve the LP bounds
of the RSA relaxation, Klinkowsky et al. proposed in [63] a valid inequality based on clique in-
equality separable using a branch-and-bound algorithm. On the other hand, Klinkowski et al. in
[64] propose a branch-and-cut-and-price method based on an edge-path formulation for the RSA
problem. Recently, Fayez et al. [21], and Xuan et al. [87], they proposed a decomposition approach
to solve the RSA separately (i.e., R+SA) based on a recursive algorithm and an ILP edge-path
formulation.
To overcome the drawbacks of the edge-path formulation usage, a compact edge-node formulation
has been introduced as an alternative for it. It holds a polynomial number of variables and con-
straints that grow only polynomially with the size of the instance. We found just a few works in
the literature that use the edge-node formulation to solve the RSA problem e.g. [4], [84], [91].
On the other front, and due to the NP-Hardness of the C-RSA problem, we found that several
heuristics [16],[49],[75], and recently in [33], and greedy algorithms [44], and metaheuristics as
tabu search in [25], simulated annealing in [64], genetic algorithms in [23], [31], [32], ant colony
algorithms in [39] , and a hybrid meta-heuristic approach in [70], have been used to solve large
sized instances of the RSA problem. Furthermore, some resseraches start using some artificial in-
telligence algorithms, see for example [40] and [41], and some deep-learning algorithms [8], and
also machine-learning algorithms in [74], and recently in [88] and [27] to get more perefermonce.
Selvakumar et al. gives a survey in [77] in which they summarise the most contributions done for
the RSA problem before 2019.
In this paper, we are interested in the resolution of a complex variant of the RSA problem, called
the Constrained-Routing and Spectrum Assignment (C-RSA) problem. Here we suppose that the
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network should also satisfy the transmission-reach constraint for each traffic demand according to
the actual service requirements. To the best of our knowledge a few related works on the RSA, to
say the least, take into account this additional constraint such that the length of the chosen path for
each traffic demand should not exceed a certain length (in kms). Recently, Hadhbi et al. in [29] and
[30] introduced a novel tractable ILP based on the cut formulation for the C-RSA problem with a
polynomial number of variables and an exponential number of constraints separable in polynomial
time using network flow algorithms. Computational results show that their cut formulation solves
larger instances compared with those of Velasco et al. in [84] and Cai et al. [4]. It has been used
also as a basic formulation in the study of Colares et al. in [15], and also by Chouman et al. in [10]
and [11] to show the impact of several objective functions on the optical network state. Bertero et
al. in [3] give a comparative study between several edge-node formulations and introduce new ILP
formulations adapted from the existing ILP formulations in the literature. Note that Velasco et al.
in [84] and Cai et al. [4] did not take into account the transmission-reach constraint.

1.2 Our Contributions

However, so far the exact algorithms proposed in the literature could not solve large-sized instances.
We believe that a cutting-plane-based approach could be powerful for the problem. To the best
of our knowledge, such an approach has not been yet considered. For that, the main aim of our
work is to investigate thoroughly the theoretical properties of the C-RSA problem. To this end,
we aim to provide deeper theoretical analysis and design an efficient Branch-and-Cut algorithm
to solve the C-RSA problem considering large-scale networks compared with what are often used.
Our contribution is to introduce a new ILP formulation for the C-RSA problem which can be seen
as an improved formulation for the one introduced by Hadhbi et al. in [29] and [30]. We further
identify several classes of valid inequalities to obtain tighter LP bounds. Some of these inequalities
are obtained by using conflict graphs related to the problem: clique inequalities, odd-hole, and
lifted odd-hole inequalities. We also use the Chvatal-Gomory procedure to generate larger classes
of inequalities. We then devise their separation procedures and use them to devise Branch-and-
Cut (B&C) algorithm tree to solve the problem. Moreover, we boost its effectiveness through some
enhancements to obtain tighter primal bounds based on a warm-start algorithm based on some
metaheuristics: simulated annealing and tabu search algorithms which push a feasible integral
solution (if possible) in the root of our B&C algorithm before the start of the resolution of C-RSA,
and also a primal-heuristic based on a hybrid method between a greedy algorithm and a local
search algorithm to construct a feasible integral solution from a given fractionally solution in each
node of the B&C tree.

1.3 Organization

Following the introduction, the rest of this paper is organized as follows. In Section (2), we present
the C-RSA problem (input and output). In Section (3), we provide the notation, then we introduce
our ILP, called cut formulation based on the so-called cut inequalities. In Section (4), we thoroughly
investigate the theoretical properties of the C-RSA problem by providing several valid inequalities.
Based on the results of sections (3)-(4), we give an outline of our Branch-and-Cut algorithm in the
section (5). We close with a brief summary of results and future outlook.

2 The Constrained-Routing and Spectrum Assignment Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as follows. We consider
a spectrally flexible optical networks as an undirected, loopless, and connected graph G = (V,E),
which is specified by a set of nodes V , and a multiset 4 E of links (optical-fibers). Each link
e = ij ∈ E is associated with a length `e ∈ R+ (in kms), a cost ce ∈ R+ such that each fiber-link
e ∈ E is divided into s̄ ∈ N+ slots. Let S = {1, . . . , s̄} be an optical spectrum of available frequency

4 We take into account the presence of parallel fibers such that two edges e, e′ which have the same
extremities i and j are independents.
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slots with s̄ ≤ 320 given that the maximum spectrum bandwidth of each fiber-link is 4000 GHz
[35], and K be a multiset 5 of demands such that each demand k ∈ K is specified by an origin node
ok ∈ V , a destination node dk ∈ V \{ok}, a slot-width wk ∈ Z+, and a transmission-reach ¯̀

k ∈ R+

(in kms). The C-RSA problem consists of determining for each demand k ∈ K, a (ok,dk)-path pk
in G such that

∑
e∈E(pk) le ≤ l̄k, where E(pk) denotes the set of edges belong the path pk, and a

subset of contiguous frequency slots Sk ⊂ S of width equal to wk such that Sk ∩ Sk′ = ∅ for each
pair of demands k, k′ ∈ K (k 6= k′) with E(pk) ∩ E(pk′) 6= ∅ so the total length of the paths used
for routing the demands (i.e.,

∑
k∈K

∑
e∈E(pk) le) is minimized.

Figure 2 shows the set of established paths and spectrums for the set of demands {k1, k2, k3, k4}
(Fig. 2(c) and Table 2(d)) of Table 2(b) in a graph G of 7 nodes and 10 edges (Fig. 2(a)) s.t. each
edge e is characterized by a triplet [le, ce, s̄], and optical spectrum S = {1, 2, 3, ..., 8, 9} with s̄ = 9.

Fig. 2. Set of established paths and spectrums in graph G (Fig. 2(a)) for the set of demands {k1, k2, k3, k4}
defined in Table 2(b).

3 The C-RSA Integer Linear Programming Formulation

Let’s introduce some notations which will be useful throughout this paper to formulate some
constraints. For any subset of nodes X ⊆ V with X 6= ∅, let δ(X) denote the set of edges having
one extremity in X and the other one in X̄ = V \X which is called a cut. When X is a singleton
(i.e., X = {v}), we use δ(v) instead of δ({v}) to denote the set of edges incidents with a node
v ∈ V . The cardinality of a set K is denoted by |K|.
Here we introduce our integer linear programming formulation based on cut formulation for the
C-RSA problem which can be seen as a reformulation of the one introduced by Hadhbi et al. in
[29]. For k ∈ K and e ∈ E, let xke be a variable which takes 1 if demand k goes through the edge
e and 0 if not, and for k ∈ K and s ∈ S, let zks be a variable which takes 1 if slot s is the last-slot
allocated for the routing of demand k and 0 if not. The contiguous slots s′ ∈ {s − wk + 1, ..., s}
should be assigned to demand k whenever zks = 1.
Before introducing our ILP, we proceeded to some pre-processing techniques to determine some

5 We take into account that we can have several demands between the same origin-node and destination-
node.
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zero-one variables s.t. we are able to determine them in polynomial time using shortest-path and
network flows algorithms as follows.
For each demand k and each node v, one can compute a shortest path between each of the pair
of nodes (ok, v), (v, dk). If the lengths of the (ok, dk)−paths formed by the shortest paths (ok, v)
and (v, dk) are both greater that l̄k then node v cannot be in a path routing demand k, and we
then say that v is a forbidden node for demand k due to the transmission-reach constraint. Let
V k0 denote the set of forbidden nodes for demand k ∈ K. Note that using Dijkstra’s algorithm,
one can identify in polynomial time the forbidden nodes V k0 for each demand k ∈ K. On the
other hand and regarding the edges, for each demand k and each edge e = ij, one can compute
a shortest path between each of the pair of nodes (ok, i), (j, dk), (ok, j) and (i, dk). If the lengths
of the (ok, dk)−paths formed by e together with the shortest (ok, i) and (j, dk) (resp. (ok, j) and
(i, dk)) paths are both greater that l̄k then edge ij cannot be in a path routing demand k, and we
then say that ij is a forbidden edge for demand k due to the transmission-reach constraint. Let
Ekt denote the set of forbidden edges due to the transmission-reach constraint for demand k ∈ K.
Note that using Dijkstra’s algorithm, one can identify in polynomial time the forbidden edges Ekt
for each demand k ∈ K. This allows us to create in polynomial time a proper topology Gk for each
demand k by deleting the forbidden nodes V k0 and forbidden edges Ekt from the original graph
G (i.e., Gk = G(V \ V k0 , E \ Ekt )). As a result, there may exist some forbidden-nodes due to the
elementary-path constraint which means that all the (ok, dk)−paths passed through a node v are
not elementary-paths. This can be done in polynomial time using Breadth First Search (BFS)
algorithm of complexity O(|E \Ek0 |+ |V \ V k0 |) for each demand k. Note that we did not take into
account this case in our study. Table 1 below shows the set of forbidden edges Ek0 and forbidden
nodes V k0 for each demand k in K already given in Fig. 2(b).

k ok → dk wk
¯̀
k V k

0 Ek
0

1 a→ c 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
2 a→ d 1 4 {g} {cg, dg, df}
3 b→ f 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
4 b→ e 1 4 {g} {cg, dg, df}

Table 1. Topology pre-processing for the set of demands K given in Fig. 2(b).

Let δGk
(v) denote the set of edges incident with a node v for the demand k in Gk. Let δk(W )

denote a cut for demand k ∈ K in Gk s.t. ok ∈W and dk ∈ V \W where W is a subset of nodes in
V of Gk. Let f be an edge in δ(W ) s.t. all the edges e ∈ δ(W ) \ {f} are forbidden for demand k.
As a consequence, edge f is an essential edge for demand k. As the forbidden edges, the essential
edges can be determined in polynomial time using network flows as follows.

1. we create a proper topology Gk = G(V \ V k0 , E \ Ekt ) for the demand k
2. we fix a weight equals to 1 for all the edges e in E \ Ekt for the demand k in Gk
3. we calculate ok − dk min-cut which separates ok from dk.
4. if δGk

(W ) = {e} then the edge e is an essential edge for the demand k s.t. ok ∈ W and
dk ∈ V \W . We increase the weight of the edge e by 1. Go to (3).

5. if |δGk
(W )| > 1 then end of algorithm.

Let Ek1 denote the set of essential edges of demand k, and Ke denote a subset of demands in K
s.t. edge e is an essential edge for each demand k ∈ Ke.
In addition to the forbidden edges thus obtained due to the transmission-reach constraints, there
may exist edges that may be forbidden because of lack of resources for demand k. This is the case
when, for instance, the residual capacity of the edge in question does not allow a demand to use
this edge for its routing, i.e., wk > s̄ −

∑
k′∈Ke

wk′ . Let Ekc denote the set of forbidden edges for

demand k, k ∈ K, due to the resource constraints. Note that the forbidden edges Ekc and forbidden
nodes v in V with δ(v) ⊆ Ekt , should also be deleted from the proper graph Gk of demand k, which
means that Gk contains |E| \ |Ekt | edges and |V | \ |{v ∈ V, δ(v) ⊆ Ekt }| nodes. Let Ek0 = Ekt denote
the set of all forbidden edges for demand k that can be determined due to the transmission reach
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and resources constraints.
As a result of the pre-processing stage, some non-compatibility between demands may appear due
to a lack of resources as follows.

Definition 1. For an edge e, two demands k and k′ with e = ij /∈ Ek0 ∪ Ek1 ∪ Ek
′

0 ∪ Ek
′

1 , are
said non-compatible demands because of lack of resources over the edge e if and only if the the
residual capacity of the edge e does not allow to route the two demands k, k′ together through e,
i.e., wk + wk′ > s̄−

∑
k”∈Ke

wk”.

Let Ke
c denote the set of pair of demands (k, k′) in K that are non-compatibles for the edge e.

The C-RSA problem can hence be formulated as follows.

min
∑
k∈K

∑
e∈E

lex
k
e , (1)

subject to ∑
e∈δ(X)

xke ≥ 1,∀k ∈ K,∀X ⊆ V s.t. |X ∩ {ok, dk}| = 1, (2)

∑
e∈E

lex
k
e ≤ ¯̀

k,∀k ∈ K, (3)

xke = 0,∀k ∈ K, ∀e ∈ Ek0 , (4)

xke = 1,∀k ∈ K, ∀e ∈ Ek1 , (5)

zks = 0,∀k ∈ K,∀s ∈ {1, ..., wk − 1}, (6)

s̄∑
s=wk

zks = 1,∀k ∈ K, (7)

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 3,∀(e, k, k′, s) ∈ Q, (8)

0 ≤ xke ≤ 1,∀k ∈ K,∀e ∈ E, (9)

zks ≥ 0,∀k ∈ K, ∀s ∈ S, (10)

xke ∈ {0, 1},∀k ∈ K,∀e ∈ E, (11)

zks ∈ {0, 1},∀k ∈ K,∀s ∈ S. (12)

where Q denotes the set of all the quadruples (e, k, k′, s) for all e ∈ E, k ∈ K, k′ ∈ K, and s ∈ S
with (k, k′) /∈ Ke

c .
Inequalities (2) ensure that there is an (ok, dk)-path between ok and dk for each demand k, and
guarantee that all the demands should be routed. They are called cut inequalities. By optimizing
the objective function (1), and given that the capacities of all edges are strictly positives, this
ensures that there is exactly one (ok, dk)-path between ok and dk which will be selected as optimal
path for each demand k. We suppose that we have sufficient capacity in the network so that all the
demands can be routed. This means that we have at least one feasible solution for the problem.
Inequalities (3) express the length limit on the routing paths which is called ”the transmission-
reach constraint”. Equations (4) ensure that the variables associated to the forbidden edges for
demand k are always equal to 0, and those of the essential edges are always equal to 1 for demand
k. Equations (6) express the fact that a demand k cannot use slot s ≤ wk− 1 as the last-slot . The
slots s ∈ {1, ..., wk − 1} are called forbidden last-slots for demand k. Inequalities (7) ensure that
exactly one slot s ∈ {wk, . . . , s̄} must be assigned to demand k as last-slot. Inequalities (8) express
the contiguity and non-overlapping constraints. Inequalities (9)-(10) are the trivial inequalities,
and constraints (11)-(12) are the integrality constraints.
Note that the linear relaxation of the C-RSA can be solved in polynomial time given that inequal-
ities (2) can be separated in polynomial time using network flows, see e.g. preflow algorithm of
Goldberg and Tarjan introduced in [24] which can be run in O(|V \ V k0 |3) time for each demand
k ∈ K.
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Proposition 1. The formulation (2)-(12) is valid for the C-RSA problem.

Proof. It is trivial given the definition of each constraint of the formulation (2)-(12) such that any
feasible solution for this formulation is necessary a feasible solution for the C-RSA problem.

Proposition 2. Every solution of our cut formulation (1)-(12) is a solution of multi-commodity
flow problem.

Proof. It is trivial given that any feasible solution of the C-RSA problem ensures that there is a
flow of wk slots routed along a path pk which links between the origin-node ok and destination-node
dk for each demand k ∈ K while satisfying the capacity of edges which equals to s̄.

Proposition 3. Every solution of multi-commodity flow problem is not necessary feasible for our
cut formulation (1)-(12).

Proof. It is trivial given that the solution of the multi-commodity flow problem can easily violate
the contiguity and continuity constraints of our C-RSA problem. This means that the wk slots
assigned to the demand k can be not contiguous in a feasible solution of multi-commodity flow
problem, and also for example when the wk slots can be not the same along the path pk for the
demand k.

4 Valid Inequalities

An instance of the C-RSA is defined by a triplet (G,K,S). Let P (G,K,S) be the polytope, convex
hull of the solutions for our cut formulation (1)-(12). In this section we provide several valid
inequalities to obtain tighter LP bounds.
Throughout our proofs, we take into account that xke ≤ 1 for each demand k ∈ K and edge e ∈ E,∑s̄
s=wk

zks = 1 for each demand k, and zks ≥ 0 for each demand k ∈ K and slot s ∈ S. Note that a

slot s ∈ S is assigned to a demand k ∈ K if and only if
∑min(s̄,s+wk−1)
s′=s zks′ = 1.

In what follows, we present several valid inequalities for P (G,K,S). Note that some proof of validity
necessitates more details that may generate an overrun of the number of authorized pages. Please
feel free to contact the authors for more details about each proof.
We start this section by introducing the classes of valid inequalities that can be found using
Chvatal-Gomory procedures.

4.1 Edge-Slot-Assignment Inequalities

Proposition 4. Consider an edge e ∈ E with Ke 6= ∅. Let s be a slot in S. Then, the inequality

∑
k”∈Ke

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 1, (13)

is valid for P (G,K,S).

Proof. Inequality (13) ensures that the set of demands Ke cannot share the slot s over the edge e,
which means that the slot s is assigned to at most one demand k from Ke over edge e.

Based on the non-overlapping inequality (8) and using the Chvatal-Gomory procedure, we define
the following inequality.

Proposition 5. Consider an edge e ∈ E. Let s be a slot in S. Consider a triplet of demands
k, k′, k” ∈ K with e /∈ Ek0 ∩ Ek

′

0 ∩ Ek”
0 . Then, the inequality

xke + xk
′

e + xk”
e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 4, (14)

is valid for P (G,K,S).
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Proof. Consider an edge e ∈ E. Let s be a slot in S. Inequality (14) ensures that if the three
demands k, k′, k” pass through edge e, they cannot share the slot s.
Let’s us show that the inequality (14) can be seen as Chvatal-Gomory cuts using Chvatal-Gomory
procedure. We know from (16) that

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 3,

xke + xk”
e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 3,

xk
′

e + xk”
e +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 3.

By adding the three previous inequalities, we get the following inequality

2xke + 2xk
′

e + 2xk”
e + 2

min(s+wk−1,s̄)∑
s′=s

zks′ + 2

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ + 2

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 9

⇒ xke + xk
′

e + xk”
e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤

⌊
9

2

⌋

⇒ xke + xk
′

e + xk”
e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”
s” ≤ 4.

We conclude at the end that the inequality (14) is valid for P (G,K,S).

The inequality (14) can then be generalized for any subset of demand K̃ ⊆ K under certain
conditions.

Proposition 6. Consider an edge e ∈ E, and a slot s in S. Let K̃ be a subset of demands of K
with e /∈ Ek0 for each demand k ∈ K̃, (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃, and∑
k∈K̃ wk ≤ s̄−

∑
k”∈Ke\K̃ wk”. Then, the inequality

∑
k∈K̃

xke +
∑
k′∈K̃

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ |K̃|+ 1, (15)

is valid for P (G,K,S)6.

Let
(
n
k

)
denote the total number of possibilities to choose a k element in a set of n elements.

Proof. Inequality (15) ensures that if the demands k ∈ K̃ pass through edge e, they cannot share
the slot s. For this, we use the Chvatal-Gomory and recurrence procedures to prove that (15) is
valid for P (G,K,S). For any subset of demands K̃ ⊆ K with e /∈ Ek0 for each demand k ∈ K̃, by
recurrence procedures we get that for all demands K ′ ⊆ K̃ with |K ′| = |K̃| − 1

∑
k∈K′

xke +
∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K ′|+ 1.

By adding the previous inequalities for all K ′ ⊆ K̃ with |K ′| = |K̃| − 1

∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

xke +
∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤
∑
K′⊆K̃

|K′|=|K̃|−1

(|K ′| + 1).

6 Thanks to Prof. Hervé Kerivin for its support to have an initial idea in order to define inequalities (15)
and (20).
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Note that for each k ∈ K̃, the variable xke and the sum
∑min(s+wk−1,s̄)
s′=s zks′ appear (

( |K̃|
|K̃|−1

)
− 1)

times in the previous sum. This implies that

∑
k∈K̃

(

(
|K̃|
|K̃| − 1

)
− 1)xke +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(

(
|K̃|
|K̃| − 1

)
− 1)zks′ ≤

(
|K̃|
|K̃| − 1

)
(|K ′| + 1).

Given that |K ′| = |K̃| − 1, this is equivalent to say that

∑
k∈K̃

(

(
|K̃|
|K̃| − 1

)
− 1)xke +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(

(
|K̃|
|K̃| − 1

)
− 1)zks′ ≤

(
|K̃|
|K̃| − 1

)
|K̃|.

Moreover, and taking into account that (
( |K̃|
|K̃|−1

)
− 1) = |K̃| − 1, we found that

∑
k∈K̃

(|K̃| − 1)xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(|K̃| − 1)zks′ ≤ |K̃|2.

By dividing the two sides of the previous sum by |K̃| − 1, we have

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤

⌊
|K̃|2

|K̃| − 1

⌋
.

After some simplifications, we found that

∑
k∈K̃

xk
e +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+
⌊
|K̃|
|K̃| − 1

⌋
⇒
∑
k∈K̃

xk
e +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+ 1,

given that

⌊
|K̃|
|K̃| − 1

⌋
= 1.

We conclude at the end that the inequality (15) is valid for P (G,K,S).

The inequality (15) can be strengthened as follows. Based on the inequalities (13) and (8), we
strengthen the inequality (8) without modifying its right hand side as follows.

Proposition 7. Consider an edge e ∈ E. Let s be a slot in S. Consider a pair of demands k, k′ ∈ K
with e /∈ Ek0 ∩ Ek

′

0 and (k, k′) /∈ Ke
c . Then, the inequality

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +
∑

k”∈Ke\{k,k′}

min(s+wk”−1,s̄)∑
s′=s

zk”
s′ ≤ 3, (16)

is valid for P (G,K,S).

Proof. Consider an edge e ∈ E, and a pair of demands k, k′ ∈ K. Let s be a slot in S. Inequality
(16) ensures that if the two demands k, k′ pass through edge e, they cannot share the slot s with
the set of demands in Ke \ {k, k′}.
We start our proof by assuming that the inequality (16) is not valid for P (G,K,S). It follows that
there exists a C-RSA solution S in which s /∈ Sk” for each demand k” ∈ Ke \ {k, k′} s.t.

xke(S) + xk
′

e (S) +

min(s+wk−1,s̄)∑
s′=s

zks′(S) +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ (S) +
∑

k”∈Ke\{k,k′}

min(s+wk”−1,s̄)∑
s”=s

zk”
s” (S) > 3.
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Since s /∈ Sk” for each demand k” ∈ Ke\{k, k′} this means that
∑
k”∈Ke\{k,k′}

∑min(s+wk”−1,s̄)
s”=s zk”

s” (S) =

0, and taking into account that xke(S) ≤ 1, xk
′

e (S) ≤ 1,
∑min(s+wk−1,s̄)
s′=s zks′(S) ≤ 1, and

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ (S) ≤

1, it follows that

xke(S) + xk
′

e (S) +

min(s+wk−1,s̄)∑
s′=s

zks′(S) +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ (S) ≤ 3,

which contradicts the inequality (16) for K̃ = {k, k′}, and also what we supposed, i.e., xke(S) +

xk
′

e (S) +

min(s+wk−1,s̄)∑
s′=s

zks′(S) +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ (S) > 3.

Hence |Ek ∩ {e}|+ |Ek′ ∩ {e}|+ |Sk ∩ {s}|+ |Sk′ ∩ {s}|+
∑
k”∈Ke

|Sk” ∩ {s}| ≤ 3.

Let’s us generalize the inequality (16) for each edge e and all slot s ∈ S and any subset of demand
K̃ ⊆ K under certain conditions.

Proposition 8. Consider an edge e ∈ E, and a slot s in S. Let K̃ be a subset of demands of K
with e /∈ Ek0 for each demand k ∈ K̃, (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃, and∑
k∈K̃ wk ≤ s̄−

∑
k”∈Ke\K̃ wk”. Then, the inequality

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k′∈Ke\K̃

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ |K̃|+ 1, (17)

is valid for P (G,K,S).

Proof. Inequality (17) ensures that if the demands k ∈ K̃ pass through edge e, they cannot share
the slot s with the set of demands in Ke \ K̃.
We use the Chvatal-Gomory and recurrence procedures to prove that (17) is valid for P (G,K,S).
For any subset of demands K̃ ⊆ K with e /∈ Ek0 for each demand k ∈ K̃, by recurrence procedures
we get that for all demands K ′ ⊆ K̃ with |K ′| = |K̃| − 1

∑
k∈K′

xke +
∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k”∈Ke\K′

min(s+wk”−1,s̄)∑
s”=s

zk
′

s” ≤ |K ′|+ 1.

By adding the previous inequalities for all K ′ ⊆ K̃ with |K ′| = |K̃| − 1

∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

xke +
∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑
K′⊆K̃

|K′|=|K̃|−1

∑
k”∈Ke\K̃

min(s+wk”−1,s̄)∑
s”=s

zk”
s”

≤
∑
K′⊆K̃

|K′|=|K̃|−1

(|K ′|+ 1).

Note that for each demand k ∈ K̃, the variable xke and sum
∑min(s+wk−1,s̄)
s′=s zks′ appear (

( |K̃|
|K̃|−1

)
−1)

times in the previous sum. It follows that

∑
k∈K̃

(

(
|K̃|
|K̃| − 1

)
− 1)xke +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(

(
|K̃|
|K̃| − 1

)
− 1)zks′

+
∑

k”∈Ke\K̃

min(s+wk”−1,s̄)∑
s”=s

(
|K̃|
|K̃| − 1

)
zk”
s” ≤

(
|K̃|
|K̃| − 1

)
(|K ′|+ 1).
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Given that |K ′|+ 1 = |K̃| and (
( |K̃|
|K̃|−1

)
− 1) = |K̃| − 1, this means that

∑
k∈K̃

(|K̃| − 1)xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(|K̃| − 1)zks′ +
∑

k”∈Ke\K̃

min(s+wk”−1,s̄)∑
s”=s

|K̃|zk”
s” ≤ |K̃|2.

By dividing the two sides of the previous sum by |K̃| − 1, we found that

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k”∈Ke\K̃

min(s+wk”−1,s̄)∑
s”=s

⌊
|K̃|
|K̃| − 1

⌋
zk”
s” ≤

⌊
|K̃|2

|K̃| − 1

⌋
.

After some simplifications, we found that

∑
k∈K̃

xke+
∑

k∈K̃∪(Ke\K̃)

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+

⌊
|K̃|
|K̃| − 1

⌋
⇒
∑
k∈K̃

xke+
∑

k∈K̃∪(Ke\K̃)

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+1,

given that

⌊
|K̃|
|K̃| − 1

⌋
= 1. We conclude at the end that the inequality (17) is valid for P (G,K,S).

4.2 Edge-Interval-Cover Inequalities

Let’s now introduce some valid inequalities which can be seen as cover inequalities using some
notions of cover related to our problem.

Definition 2. An interval I = [si, sj ] represents a set of contiguous slots situated between the two
slots si and sj with j ≥ i+ 1 and sj ≤ s̄.

Definition 3. For an interval of contiguous slots I = [si, sj ], a subset of demands K ′ ⊆ K is said

a cover for the interval I = [si, sj ] if and only if
∑
k∈K̃ wk > |I| and wk < |I| for each k ∈ K̃.

Definition 4. For an interval of contiguous slots I = [si, sj ], a cover K̃ is said a minimal cover

if K̃ \ {k} is not a cover for interval I = [si, sj ] for each demand k ∈ K̃, i.e.,
∑
k′∈K̃\{k} wk′ ≤ |I|

for each demand k ∈ K̃.

Based on these definitions, we introduce the following inequalities.

Proposition 9. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]
with j ≥ i + 1. Let K ′ ⊆ Ke be a minimal cover for interval I = [si, sj ] over edge e. Then, the
inequality

∑
k∈K′

sj∑
s=si+wk−1

zks ≤ |K ′| − 1, (18)

is valid for P (G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K ′| − 1 demands given that K ′ is a minimal
cover for interval I = [si, sj ] over edge e. We start our proof by assuming that the inequality (18)
is not valid for P (G,K,S). It follows that there exists a C-RSA solution S in which {si + wk −
1, ..., sj} ∩ Sk = ∅ for a demand k ∈ K ′ s.t.

∑
k∈K′

sj∑
s=si+wk−1

zks (S) > |K ′| − 1.
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Since {si + wk − 1, ..., sj} ∩ Sk = ∅ for a demand k ∈ K ′ this means that
∑sj
s=si+wk−1 z

k
s (S) = 0,

and taking into account that K ′ is minimal cover for the interval I = [si, sj ] over edge e, and∑sj
s=si+wk−1 z

k
s (S) ≤ 1 for each demand k ∈ K ′, it follows that

∑
k′∈K′\{k}

sj∑
s=si+wk′−1

zk
′

s (S) ≤ |K ′| − 1,

which contradicts what we supposed before, i.e.,
∑
k∈K′

∑sj
s=si+wk−1 z

k
s (S) > |K ′| − 1.

Hence
∑
k∈K′ |Sk ∩ {si + wk − 1, ..., sj}| ≤ |K ′| − 1.

We conclude at the end that the inequality (18) is valid for P (G,K,S).

The inequality (18) can be strengthened using an extention of each minimal cover K ′ ⊂ Ke for an
interval I over edge e as follows.

Proposition 10. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in
[1, s̄]. Let K ′ ⊆ Ke be a minimal cover for interval I = [si, sj ] over edge e with e /∈ Ek0 for each
demand k ∈ K ′, and Ξ(K ′) be a subset of demands in Ke \K ′ s.t. Ξ(K ′) = {k ∈ Ke \K ′ s.t. wk ≥
wk′ ∀k′ ∈ K ′}. Then, the inequality

∑
k∈K′

sj∑
s=si+wk−1

zks +
∑

k′∈Ξ(K′)

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |K ′| − 1, (19)

is valid for P (G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K ′|−1 demands from the demands in K ′∪Ξ(K ′)
given that K ′ is a minimal cover for interval I = [si, sj ] over edge e and the definition of the set
Ξ(K ′) s.t. for each pair (k, k′) with k ∈ K ′ and k′ ∈ Ξ(K ′), the set (K ′ \ {k})∪{k′} stills defining
minimal cover for the interval I over the edge e. Furthermore, for each quadruplet (k, k′, k̃, k̃′) with
k, k′ ∈ K ′ and k̃, k̃′ ∈ Ξ(K ′), the set (K ′ \ {k, k′}) ∪ {k̃, k̃′} stills defining minimal cover for the
interval I over the edge e given that wk + wk′ ≤ wk̃ + wk̃′ .
We strengthen our proof as follows. Let’s first suppose that the inequality (19) is not valid for
P (G,K,S). It follows that there exists a C-RSA solution S in which {si +wk′ − 1, ..., sj}∩Sk′ = ∅
for each demand k′ ∈ Ξ(K ′) s.t.

∑
k∈K′

sj∑
s=si+wk−1

zks (S) > |K ′| − 1.

Since {si+wk′−1, ..., sj}∩Sk′ = ∅ for each demand k′ ∈ Ξ(K ′) this means that
∑sj
s=si+wk′−1 z

k′

s (S) =

0, and taking into account the inequality (18), and that K ′ is minimal cover for the interval
I = [si, sj ] over edge e, and

∑sj
s=si+wk−1 z

k
s (S) ≤ 1 for each demand k ∈ K ′, it follows that

∑
k∈K′

sj∑
s=si+wk−1

zks (S) ≤ |K ′| − 1,

which contradicts what we supposed before, i.e.,
∑
k∈K′

∑sj
s=si+wk−1 z

k
s (S) > |K ′| − 1.

Hence
∑
k∈K′ |Sk ∩ {si + wk − 1, ..., sj}|+

∑
k′∈Ξ(K′) |Sk′ ∩ {si + wk′ − 1, ..., sj}| ≤ |K ′| − 1.

We conclude at the end that the inequality (19) is valid for P (G,K,S).

Moreover, the inequality (18) can be strengthened using lifting procedures proposed by Nemhauser
and Wolsey in [50] without modifying its right-hand side.

Proposition 11. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in

[1, s̄] with j ≥ i+ 1. Let K̃ be a subset of demands of K s.t.

–
∑
k∈K̃

wk ≥ |I|+ 1,
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–
∑

k∈K̃\{k′}

wk ≤ |I| for each k′ ∈ K̃,

–
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′ ,

– e /∈ Ek0 for each demand k ∈ K̃,
– K̃ ≥ 3,
– (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃.

Then, the inequality

∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks ≤ 2|K̃| − 1, (20)

is valid for P (G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K̃|−1 demands given that K̃ is a minimal cover

for interval I = [si, sj ] over edge. It follows that if the demands K̃ pass together through the edge

e (i.e.,
∑
k∈K̃ x

k
e = |K̃|), there is at most |K̃| − 1 demands that can share the interval I over edge

e.
We start our proof by assuming that the inequality (20) is not valid for P (G,K,S). It follows that
there exists a C-RSA solution S in which {si + wk − 1, ..., sj} ∩ Sk = ∅ for a demand k ∈ K ′ s.t.

∑
k∈K′

xke(S) +
∑

k′∈K′\{k}

sj∑
s=si+wk′−1

zk
′

s (S) ≥ 2|K ′|.

Since {si + wk − 1, ..., sj} ∩ Sk = ∅ for a demand k ∈ K ′ this means that
∑sj
s=si+wk−1 z

k
s (S) = 0,

and taking into account that K ′ is minimal cover for the interval I = [si, sj ] over edge e, and∑sj
s=si+wk−1 z

k
s (S) ≤ 1 for each demand k ∈ K ′, it follows that

∑
k∈K′

xke(S) +
∑

k′∈K′\{k}

sj∑
s=si+wk′−1

zk
′

s (S) ≤ 2|K ′| − 1,

which contradicts what we supposed before, i.e.,
∑
k∈K′ x

k
e(S)+

∑
k′∈K′\{k}

∑sj
s=si+wk′−1 z

k′

s (S) ≥
2|K ′|.
One can imagine another case also when K ′∩Ke = ∅, it follows that there exists a C-RSA solution
S′ in which Ek ∩ {e} = ∅ for each demand k ∈ K ′, which means that

∑
k∈K′ x

k
e(S′) = 0 s.t.

∑
k∈K′

sj∑
s=si+wk−1

zks (S′) ≥ 2|K ′|.

Given that
∑sj
s=si+wk−1 z

k
s (S′) ≤ 1 for each demand k ∈ K ′, it follows that

∑
k′∈K′\{k}

sj∑
s=si+wk′−1

zk
′

s (S′) ≤ 2|K ′| − 1,

which contradicts our hypothesis, i.e.,
∑
k∈K′

∑sj
s=si+wk−1 z

k
s (S′) ≥ 2|K ′|.

Hence
∑
k∈K′

|Ek ∩ {e}|+
∑
k∈K′

|Sk ∩ {si + wk − 1, ..., sj}| ≤ 2|K ′| − 1.

We conclude at the end that the inequality (20) is valid for P (G,K,S).

As we did before for the inequality (18), the inequality (20) can be strengthened by introducing
the extended version of the minimal cover K ′ for the interval I over edge e as follows.

Proposition 12. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in

[1, s̄] with j ≥ i+ 1. Let K̃ be a subset of demands of K, and K̃e be a subset of demands in Ke \ K̃
s.t.
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–
∑
k∈K̃

wk ≥ |I|+ 1,

–
∑

k∈K̃\{k′}

wk ≤ |I| for each k′ ∈ K̃,

–
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′ ,

– e /∈ Ek0 for each demand k ∈ K̃,
– K̃ ≥ 3,
– (k, k′) /∈ Ke

c for each pair of demands (k, k′) in K̃,
– wk′ ≥ wk for each k ∈ K̃ and each k′ ∈ K̃e.

Then, the inequality∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks +
∑
k′∈K̃e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 2|K̃| − 1, (21)

is valid for P (G,K,S).

Proof. The inequality (21) can be seen as a particular case for the inequality (20) induced by a set
of demands K ′ = K̃ ∪ K̃e which stills defining a cover for the interval I over edge e.

More general, the inequality (20) can be strengthened using lifting procedures proposed by Nemhauser
and Wolsey in [50] without modifying its right-hand side.

Remark 1. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots with si + 1 ≤
sj , s” be a slot in S, and K̃ be a subset of demands in K satisfying the conditions of the two
inequalities (17) and (20). We ensure that the inequality (17) can never dominate the inequality
(20).

Let us denote by the symbole a � b iff b dominates a.

Proof. Assume that the inequality (17) dominates the inequality (20), this means that there exists
a slot s” ∈ S s.t.∑

k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks �
∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ ≤ |K̃|+ 1.

By removing the sum
∑
k∈K̃ x

k
e from the two sides of the previous comparison, we get

∑
k∈K̃

sj∑
s=si+wk−1

zks �
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ .

Given that the demands in K̃ are independants, we found that

sj∑
s=si+wk−1

zks �
min(s”+wk−1,s̄)∑

s′=s”

zks′ for each k ∈ K̃.

It follows that Ik = [si + wk − 1, sj ] ⊆ [s”,min(s” + wk − 1, s̄)] for each demand k ∈ K̃. Taking

into account that |{s”, ...,min(s” + wk − 1, s̄)}| ≤ wk for each k ∈ K̃, this means that

|Ik| = sj − (si + wk − 1) + 1 ≤ wk =⇒ sj − si + 1 ≤ 2 ∗ wk − 1 for each k ∈ K̃
=⇒ |I| ≤ 2 ∗ wk − 1 for each k ∈ K̃ =⇒ |I| ≤ 2 ∗min

k∈K̃
wk − 1

As a result, wk + wk′ ≥ |I| for each pair of demand (k, k′) in K̃ since that wk ≥ min
k”∈K̃

wk” for

each k ∈ K̃. This contradicts that the set of demand K̃ should satisfy that
∑
k∈K̃\{k′} wk ≤ |I|

for each k′ ∈ K̃. We conclude that the inequality (17) can never dominate the inequality (20) and
satisfying the conditions of validity of the inequality (20) at the same time.
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4.3 Edge-Interval-Clique Inequalities

In what follows, we need to introduce some notions of graph theory to provide some valid inequal-
ities for P (G,K,S).

Definition 5. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]

with si ≤ sj − 1. Consider the conflict graph G̃eI defined as follows. For each demand k ∈ K with

wk ≤ |I| and e /∈ Ek0 , consider a node vk in G̃eI . Two nodes vk and vk′ are linked by an edge in
G̃eI if wk + wk′ > |I| and (k, k′) /∈ Ke

c . This is equivalent to say that two linked nodes vk and vk′

means that the two demands k, k′ define a minimal cover for the interval I over edge e.

For an edge e ∈ E, the conflict graph G̃eI is a threshold graph with threshold value equals to
t = s̄−

∑
k”∈Ke

wk” s.t. for eachnode vk with e /∈ Ek0 ∪Ek1 , we associate a positive weight w̃vk = wk
s.t. all two nodes vk and vk′ are linked by an edge if and only if w̃vk + w̃vk′ > t which is equivalent

to the conflict graph G̃eI .

Proposition 13. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots. Let

C be a clique in the conflict graph G̃eI with |C| ≥ 3, and
∑
vk∈C wk ≤ s̄ −

∑
k′∈Ke\C wk′ . Then,

the inequality

∑
vk∈C

xke +

sj∑
s=si+wk−1

zks ≤ |C|+ 1, (22)

is valid for P (G,K,S).

Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, the inequality (22) ensures that
if the set of demands in the clique C pass through edge e, they cannot share the interval I = [si, sj ]
over edge e. This means that there is at most one demand from the demands in C that can be
totally covered by the interval I over the edge e (i.e., all the slots assigned to the demand are in I).
We start our proof by assuming that the inequality (22) is not valid for P (G,K,S). It follows that
there exists a C-RSA solution S in which {si+wk− 1, ..., sj}∩Sk = ∅ for each demand vk ∈ C s.t.

∑
vk∈C

xke(S) +
∑
vk∈C

sj∑
s=si+wk−1

zks (S) > |C|+ 1.

Since {si+wk−1, ..., sj}∩Sk = ∅ for each demand vk ∈ C this means that
∑sj
s=si+wk−1 z

k
s (S) = 0,

and taking into account that xke(S) ≤ 1 for each vk ∈ C, it follows that∑
vk∈C

xke(S) ≤ |C|+ 1,

which contradicts our hypothesis, i.e.,
∑
vk∈C x

k
e(S) +

∑
vk∈C

∑sj
s=si+wk−1 z

k
s (S) > |C|+ 1.

On another hand, one can imagine another case also when {k ∈ K s.t. vk ∈ C}∩Ke = ∅, it follows
that there exists a C-RSA solution S′ in which Ek∩{e} = ∅ for each demand vk ∈ C, which means
that

∑
vk∈C x

k
e(S′) = 0 s.t.

∑
vk∈C

sj∑
s=si+wk−1

zks (S′) > |C|+ 1.

Given that
∑sj
s=si+wk−1 z

k
s (S′) ≤ 1 for each demand vk ∈ C, it follows that

∑
k′∈C\{k}

sj∑
s=si+wk′−1

zk
′

s (S′) ≤ |C|+ 1,

which contradicts what we supposed before, i.e.,
∑
vk∈C

∑sj
s=si+wk−1 z

k
s (S′) > |C|+ 1.

Hence
∑
vk∈C |Ek ∩ {e}|+

∑
vk∈C |Sk ∩ {si + wk − 1, ..., sj}| ≤ |C|+ 1.

Furthermore, the inequality (22) can be shown as Chvatal-Gomory cuts using Chvatal-Gomory
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and recurrence procedures. For any subset of demands C ⊆ K with wk + wk′ > |I| for each
pair of demands k, k′ ∈ C, and e /∈ Ek0 , wk ≤ |I| for each demand vk ∈ C, and

∑
vk∈C wk ≤

s̄−
∑
vk′∈Ke\C wk′ , by recurrence procedure we get that for all K ′ ⊆ C with |K ′| = |C| − 1

∑
vk∈C′

xke +
∑
vk∈C′

sj∑
s=si+wk−1

zks ≤ |K ′|+ 1.

By adding the previous inequalities for all K ′ ⊆ C with |K ′| = |C| − 1, we get

∑
K′⊆C

|K′|=|C|−1

∑
vk∈C′

xke +
∑
K′⊆C

|K′|=|C|−1

∑
vk∈C′

sj∑
s=si+wk−1

zks ≤
∑
K′⊆C

|K′|=|C|−1

(|K ′| + 1)

Note that for each demand k with vk ∈ C, the variable xke and the sum
∑sj
s=si+wk−1 z

k
s appear

(
( |C|
|C|−1

)
− 1) times in the previous sum. It follows that

∑
vk∈C

(

(
|C|
|C| − 1

)
− 1)xke +

∑
vk∈C

sj∑
s=si+wk−1

(

(
|C|
|C| − 1

)
− 1)zks ≤

(
|C|
|C| − 1

)
|C|.

Given that (
( |C|
|C|−1

)
− 1) = |C| − 1, we found that

∑
vk∈C

(|C| − 1)xke +
∑
vk∈C

sj∑
s=si+wk−1

(|C| − 1)zks ≤ |C|2.

By dividing the two sides of the previous sum by |C| − 1, we have

∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C|2

|C| − 1

⌋
⇒
∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C|
|C| − 1

⌋

⇒
∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C| − 1 + 1

|C| − 1

⌋

By doing the following simplification

∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C| − 1

|C| − 1
+
|C|
|C| − 1

⌋
⇒
∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C|+ |C|

|C| − 1

⌋
,

we found that

∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤ |C|+
⌊
|C|
|C| − 1

⌋
⇒
∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤ |C|+ 1

given that

⌊
|C|
|C| − 1

⌋
= 1.

We conclude at the end that the inequality (22) is valid for P (G,K,S).

Remark 2. Consider an edge e and an interval of contiguous slots I = [si, sj ]. Let K̃ be a subset
of demands in K satisfying the conditions of validity of the inequalities (17) and (22). Then, the
inequality (22) is dominated by the inequality (17) associated with slot s” = si+ min

k∈K̃
wk + 1 if and

only if |{si + wk, ., sj}| ≤ wk for each demand k ∈ K̃.
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Proof. We know from inequalities (17) and (22) that

∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ ≤ |K̃|+ 1 and
∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks ≤ |K̃|+ 1.

Sufficiency.
First, assume that the inequality (17) dominates the inequality (22), this means that there exists
a slot s” ∈ S s.t.

∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks �
∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ ≤ |K̃|+ 1.

By removing the sum
∑
k∈K̃ x

k
e from the two sides of the previous comparison

∑
k∈K̃

sj∑
s=si+wk−1

zks �
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ .

Given that the demands K̃ are independants, we found that

sj∑
s=si+wk−1

zks �
min(s”+wk−1,s̄)∑

s′=s”

zks′ for each k ∈ K̃.

It follows that Ik = [si + wk − 1, sj ] ⊆ [s”,min(s” + wk − 1, s̄)] for each demand k ∈ K̃. Taking

into account that |{s”, ...,min(s” + wk − 1, s̄)}| ≤ wk for each k ∈ K̃, this means that

|Ik| = sj − (si + wk − 1) + 1 ≤ wk for each k ∈ K̃,

that which was to be demonstrated.
Neccessity.
Assume that |Ik| ≤ wk for each demand k ∈ K̃. Given that Ik = [si +wk− 1, sj ] and si +wk− 1 ≥
si + min

k′∈K̃
wk′ − 1 for each demand k ∈ K̃, this means that [si +wk − 1, sj ] ⊆ [si + min

k′∈K̃
wk′ − 1, sj ]

for each demand k ∈ K̃.
Let k̃ be a demand in argmin{k ∈ K̃, wk = min

k′∈K̃
wk′}. We know that |Ik̃| ≤ wk̃, i.e., |{si +

min
k′∈K̃

wk′ − 1, sj}| = sj − (si + min
k′∈K̃

wk′ − 1) + 1 ≤ wk for each demand k ∈ K̃. This implies that

(si + min
k′∈K̃

wk′ − 1) + wk − 1 ≥ sj for each demand k ∈ K̃. It follows that [si + min
k′∈K̃

wk′ − 1, sj ] ⊆

[si + min
k′∈K̃

wk′ − 1, si + min
k′∈K̃

wk′ + wk − 2] for each demand k ∈ K̃. As a result, we obtain that for

each demand k ∈ K̃

Ik = [si + wk − 1, sj ] ⊆ [si + min
k′∈K̃

wk′ − 1, sj ]

and [si + min
k′∈K̃

wk′ − 1, sj ] ⊆ [si + min
k′∈K̃

wk′ − 1, si + min
k′∈K̃

wk′ + wk − 2]

=⇒ Ik = [si + wk − 1, sj ] ⊆ [si + min
k′∈K̃

wk′ − 1, si + min
k′∈K̃

wk′ + wk − 2].

By giving s” = si + min
k′∈K̃

wk′ − 1, it is equivalent to say that

Ik = [si + wk − 1, sj ] ⊆ [s”, s” + wk − 1] for each k ∈ K̃

We know from (17) that

∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ ≤ |K̃|+ 1.
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Taking into account that [s”, s” +wk− 1] = [s”, si +wk− 2]∪ [si +wk− 1, sj ]∪ [sj + 1, s” +wk− 1]

for each k ∈ K̃, it follows that

∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ =
∑
k∈K̃

xke +
∑
k∈K̃

[

si+wk−2∑
s′=s”

zks′ +

sj∑
s′=si+wk−1

zks′ +

min(s”+wk−1,s̄)∑
s′=sj+1

zks′ ] ≤ |K̃|+ 1

=⇒
∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ =
∑
k∈K̃

xke +
∑
k∈K̃

si+wk−2∑
s′=s”

zks′ +
∑
s′∈Ik

zks′ +

min(s”+wk−1,s̄)∑
s′=sj+1

zks′ ≤ |K̃|+ 1

=⇒
∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ =
∑
k∈K̃

xke +
∑
k∈K̃

∑
s′∈Ik

zks′ +

si+wk−2∑
s′=s”

zks′ +

min(s”+wk−1,s̄)∑
s′=sj+1

zks′ ≤ |K̃|+ 1,

which shows that the inequality (17) dominates the inequality (22)

∑
k∈K̃

xke +
∑
k∈K̃

∑
s∈Ik

zks �
∑
k∈K̃

xke +
∑
k∈K̃

min(s”+wk−1,s̄)∑
s′=s”

zks′ ≤ |K̃|+ 1.

Remark 3. Consider an edge e and an interval of contiguous slots I = [si, sj ]. Let K̃ be a subset
of demands in K satisfying the conditions of validity of the inequalities (17) and (22). Then,
the inequality (22) dominates the inequality (17) associated with each slot s” ∈ I if and only if
|{si+wk−1, ..., sj}| ≥ wk for each demand k ∈ K̃ and s” ∈ {si+ max

k′∈K̃
wk−1, ..., sj−max

k∈K̃
wk + 1}.

Proof. We know from inequalities (17) and (22) that

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+ 1 and
∑
k∈K̃

xke +
∑
k∈K̃

∑
s∈Ik

zks ≤ |K̃|+ 1.

Neccessity.
First, assume that |Ik| ≥ wk and s” ∈ {si + max

k′∈K̃
wk − 1, ..., sj − max

k∈K̃
wk + 1} for each demand

k ∈ K̃, this means that

s” ≥ si + wk − 1 and s” ≤ sj − wk + 1 for each k ∈ K̃
=⇒ s” ≥ si + wk − 1 and s” + wk − 1 ≤ sj for each k ∈ K̃

=⇒ [s”, s+ wk − 1] ⊆ [si + wk − 1, sj ] for each k ∈ K̃
=⇒ [s”, s+ wk − 1] ⊆ Ik with |Ik| ≥ wk for each k ∈ K̃.

This means that Ik can be written as unions of sub-intervals, i.e., Ik = [si + wk − 1, s” − 1] ∪
[s”, s” + wk − 1] ∪ [s” + wk − 1, sj ]. As a result,

∑
s∈Ik

zks =

s”−1∑
s=si+wk−1

zks′ +

s”+wk−1∑
s′=s”

zks′ +

sj∑
s′=s”+wk

zks′ for each k ∈ K̃.

By doing a sum over all the demands in K̃, it follows that

∑
k∈K̃

∑
s∈Ik

zks =
∑
k∈K̃

s”−1∑
s=si+wk−1

zks′ +

s”+wk−1∑
s′=s”

zks′ +

sj∑
s′=s”+wk

zks′ .

As a result,

∑
k∈K̃

xke +
∑
k∈K̃

∑
s∈Ik

zks =
∑
k∈K̃

xke +
∑
k∈K̃

s”−1∑
s=si+wk−1

zks′ +

s”+wk−1∑
s′=s”

zks′ +

sj∑
s′=s”+wk

zks′ ≤ |K̃|+ 1

=⇒
∑
k∈K̃

xke +
∑
k∈K̃

s”+wk−1∑
s′=s”

zks′ ≤
∑
k∈K̃

xke +
∑
k∈K̃

∑
s∈Ik

zks ≤ |K̃|+ 1.
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As a result, the inequality (22) dominates the inequality (17).
Sufficiency.
We assume that the inequality (22) dominates the inequality (17)

∑
k∈K̃

xke +
∑
k∈K̃

s”+wk−1∑
s′=s”

zks′ �
∑
k∈K̃

xke +
∑
k∈K̃

∑
s∈Ik

zks .

By removing the sum
∑
k∈K̃ x

k
e from two sides of the previous comparison, we found

∑
k∈K̃

s”+wk−1∑
s′=s”

zks′ �
∑
k∈K̃

∑
s∈Ik

zks .

Taking into account that the demands in K̃ are indepedants, it follows that

s”+wk−1∑
s′=s”

zks′ �
∑
s∈Ik

zks for each demand k ∈ K̃.

Hence, [s”, s” + wk − 1] ⊆ Ik for each k ∈ K̃. This means that

|Ik| ≥ wk and s” ≥ si + wk − 1 and s” + wk − 1 ≤ sj for each k ∈ K̃
=⇒ s” ≥ si + max

k∈K̃
wk − 1 and s” ≤ sj −max

k∈K̃
wk + 1

=⇒ s” ∈ {si + max
k∈K̃

wk − 1, ..., sj −max
k∈K̃

wk + 1}

As a result, |Ik| ≥ wk for each demand k ∈ K̃, and s” ∈ {si + max
k∈K̃

wk − 1, ..., sj − max
k∈K̃

wk + 1}

that which was to be demonstrated, and which ends our proof.

Moreover, the inequality (22) can be strengthened as follows.

Proposition 14. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of contiguous slots. Let

C be a clique in the conflict graph G̃eI with |C| ≥ 3, and
∑
vk∈C wk ≤ s̄ −

∑
k′∈Ke\C wk′ . Let

Ce ⊆ Ke \ C be a clique in the conflict graph G̃eI s.t. wk + wk′ ≥ |I| + 1 for each vk ∈ C and
vk′ ∈ Ce. Then, the inequality

∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks +
∑

vk′∈Ce

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |C|+ 1, (23)

is valid for P (G,K,S).

Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, the inequality (23) ensures that
if the set of demands in the clique C pass through edge e, they cannot share the interval I = [si, sj ]
over edge e with a subset of demands in Ce. We first suppose that the inequality (23) is not valid for
P (G,K,S). It follows that there exists a C-RSA solution S in which Sk′ ∩{si +wk′ − 1, ..., sj} = ∅
for each demand k′ ∈ Ce s.t.

∑
vk∈C

xke(S) +
∑
vk∈C

sj∑
s=si+wk−1

zks (S) > |C|+ 1.

Since Sk′ /∈ I for each demand k′ ∈ Ce this means that
∑
vk′∈Ce

∑sj
s′=si+wk′−1 z

k′

s′ (S) = 0,

and taking into account inequality (22) and that xke(S) ≤ 1 for each demand vk ∈ C and∑sj
s=si+wk−1 z

k
s (S)(S) ≤ 1 for each demand vk ∈ C, it follows that

∑
vk∈C

xke(S) +
∑
vk∈C

sj∑
s=si+wk−1

zks (S) ≤ |C|+ 1,
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which contradicts what we supposed before.
On another hand and when C ∩Ke = ∅, it follows that there exists a C-RSA solution S′ in which
Ek ∩ {e} = ∅ and Sk′ ∩ {si + wk′ − 1, ..., sj} = ∅ for each demand k′ ∈ C s.t.∑

vk∈C

sj∑
s=si+wk−1

zks (S′) > |C|+ 1.

Given that
∑sj
s=si+wk−1 z

k
s (S′) ≤ 1 for each demand k ∈ C, it follows that∑

vk∈C

sj∑
s=si+wk−1

zks (S′) ≤ |K̃|+ 1,

which contradicts what we supposed before, i.e.,
∑
vk∈C

∑sj
s=si+wk−1 z

k
s (S′) > |C|+ 1.

As a result,∑
vk∈C

|Ek ∩ {e}|+
∑
vk∈C

|Sk ∩ {si + wk − 1, ..., sj}|+
∑
k′∈Ce

|Sk′ ∩ {si + wk′ − 1, ..., sj}| ≤ |C|+ 1.

Looking at the definition of the inequality (22), we detected that there may exist some cases that
we can face that are not covered by the inequality (22). For this, we provide the following inequality
and its generalization.

4.4 Interval-Clique Inequalities

Proposition 15. Consider an interval of contiguous slots I = [si, sj ] in S with si ≤ sj − 1. Let

k, k′ be a pair of demands in K with Ek1 ∩Ek
′

1 6= ∅, and wk ≤ |I|, and wk′ ≤ |I|, and wk+wk′ > |I|.
Then, the inequality

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1, (24)

is valid for P (G,K,S).

Proof. It is trivial given that the interval I = [si, sj ] cannot cover the two demands k, k′ shared
an essential edge with total sum of number of slots exceeds |I|. Furthermore, the inequality (24)
is a particular case of the inequality (22) for K̃ = {k, k′} over each edge e ∈ Ek1 ∩Ek

′

1 . However, it
will be used for a generalized inequality using the following conflict graph.

Definition 6. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with si ≤ sj − 1. Consider

the conflict graph G̃EI defined as follows. For each demand k ∈ K with wk ≤ |I|, consider a node

vk in G̃EI . Two nodes vk and vk′ are linked by an edge in G̃EI if wk +wk′ > |I| and Ek1 ∩Ek
′

1 6= ∅.
Proposition 16. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with si ≤ sj − 1, and

C be a clique in the conflict graph G̃EI with |C| ≥ 3. Then, the inequality∑
vk∈C

sj∑
s=si+wk−1

zks ≤ 1, (25)

is valid for P (G,K,S).

Proof. It is trivial given the definition of clique set in the conflict graph G̃EI s.t. for all two linked
node vk and vk′ in G̃EI , we know from the inequality (24)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1.

By adding the previous inequalities for all two linked node vk and vk′ in the clique set C, we get∑
vk

(|C| − 1)

sj∑
s=si+wk−1

zks ≤ |C| − 1 =⇒
∑
vk

sj∑
s=si+wk−1

zks ≤
|C| − 1

|C| − 1
=⇒

∑
vk∈C

sj∑
s=si+wk−1

zks ≤ 1.

We conclude at the end that the inequality (25) is valid for P (G,K,S).
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4.5 Interval-Odd-Hole Inequalities

Proposition 17. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with si ≤ sj − 1, and

H be an odd-hole H in the conflict graph G̃EI with |H| ≥ 5. Then, the inequality

∑
vk∈H

sj∑
s=si+wk−1

zks ≤
|H| − 1

2
, (26)

is valid for P (G,K,S).

Proof. It is trivial given the definition of odd-hole set in the conflict graph G̃EI . We strengthen
our proof as belows. For each pair of nodes (vk, vk′) linked in H by an edge, we know that∑sj
s=si+wk−1 z

k
s +

∑sj
s′=si+wk′−1 z

k′

s′ ≤ 1. Given that H is an odd-hole which means that we have

|H|−1 pair of nodes (vk, vk′) linked in H, and by doing a sum for all pairs of nodes (vk, vk′) linked
in H, it follows that

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |H| − 1.

where E(H) denotes the set of edges in the sub-graph of the conflict graph G̃EI induced by H.
Taking into account that each node vk in H has two neighbors inH, this implies that

∑sj
s=si+wk−1 z

k
s

appears twice in the previous inequality. As a result,

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ =
∑
vk∈H

2

sj∑
s=si+wk−1

zks ,
∑
vk∈H

2

sj∑
s=si+wk−1

zks ≤ |H| − 1.

By dividing the two sides of the previous sum by 2, it follows that

∑
vk∈H

sj∑
s=si+wk−1

zks ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (26) is valid for P (G,K,S).

The inequality (26) can be strengthened without modifying its right-hand side by combining the
inequality (25) and (26) as follows.

Proposition 18. Consider an interval of contiguous slots I = [si, sj ] ⊆ S with si ≤ sj − 1. Let H

be an odd-hole H in the conflict graph G̃EI , and C be a clique in the conflict graph G̃EI with

– |H| ≥ 5,
– and |C| ≥ 3,
– and H ∩ C = ∅,
– and the nodes (vk, vk′) are linked in G̃EI for all vk ∈ H and vk′ ∈ C.

Then, the inequality

∑
vk∈H

sj∑
s=si+wk−1

zks +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ ≤
|H| − 1

2
, (27)

is valid for P (G,K,S).

Proof. It is trivial given the definition of odd-hole set and clique set in the conflict graph G̃EI s.t.

if
∑sj
s′=si+wk′−1 z

k′

s′ = 1 for vk′ ∈ C, it forces the quantity
∑
vk∈H

∑sj
s=si+wk−1 z

k
s to be equal to

0. Otherwise, we know from the inequality (26) that the sum
∑
vk∈H

∑sj
s=si+wk−1 z

k
s is always

smaller than |H|−1
2 . We strengthen our proof by assuming that the inequality (27) is not valid for
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P (G,K,S). It follows that there exists a C-RSA solution S in which {si +wk′ − 1, ..., sj} /∈ Sk′ for
each demand k′ with node vk′ in the clique C s.t.

∑
vk∈H

sj∑
s=si+wk−1

zks (S) +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ (S) >
|H| − 1

2
.

Since {si+wk′−1, ..., sj} /∈ Sk′ for each node vk′ in the clique C, this means that
∑
vk′∈C

∑sj
s′=si+wk′−1 z

k′

s′ (S) =

0, and taking into account the inequality (26), and that
∑sj
s=si+wk−1 z

k
s (S) ≤ 1 for each vk ∈ H

and
∑sj
s′=si+wk′−1 z

k′

s′ (S) ≤ 1 for each vk′ ∈ C, it follows that
∑
vk∈H

∑sj
s=si+wk−1 z

k
s (S) ≤ |H|−1

2 ,

which contradicts that
∑
vk∈H

sj∑
s=si+wk−1

zks (S) +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ (S) >
|H| − 1

2
.

Hence
∑
vk∈H |Sk ∩ Ik|+

∑
vk′∈C

|Sk′ ∩ {si + wk′ − 1, ..., sj}| ≤ |H|−1
2 .

4.6 Edge-Slot-Assignment-Clique Inequalities

Taking into account the non-overlapping inequalities (8), we define another conflict graph differ-
ently compared with the conflict graphs introduced previously.

Definition 7. Let G̃eS be a conflict graph defined as follows. For each slot s ∈ {wk, ..., s̄} and
demand k ∈ K with e /∈ Ek0 , consider a node vk,s in G̃eS. Two nodes vk,s and vk′,s′ are linked by

an edge in G̃eS if and only if

– k = k′,
– or {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} 6= ∅ if k 6= k′ and (k, k′) /∈ Ke

c .

The conflict graph G̃eS is not an interval graph given that some nodes vk,s and vk′,s′ are linked
even if the {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅, i.e., when k = k′.

Proposition 19. Consider an edge e ∈ E. Let C be a clique in the conflict graph G̃eS with |C| ≥ 3,
and

∑
k∈C wk ≤ s̄−

∑
k′∈Ke\C wk′ . Then, the inequality∑

vk,s∈C
(xke + zks ) ≤ |C|+ 1, (28)

is valid for P (G,K,S).

Proof. It is trivial given the definition of a clique set in the conflict graph G̃eS s.t. for each two
linked nodes vk,s and vk′,s′ in G̃eS , we have

xke + xk
′

e + zks + zk
′

s′ ≤ 3.

This can be generalized for a triplet of linked nodes vk,s and vk′,s′ and vk′′,s′′ with wk + wk′ +
wk” ≤ s̄ −

∑
k̃∈Ke\{k,k′,k”} wk̃, such that for each linked nodes (vk,s, vk′,s′) and (vk,s, vk′′,s′′) and

(vk′,s′ , vk′′,s′′), we have

xke + xk
′

e + zks + zk
′

s′ ≤ 3,

xke + xk”
e + zks + zk”

s” ≤ 3,

xk
′

e + xk”
e + zk

′

s′ + zk”
s” ≤ 3.

By adding the three previous inequalities, we get the following inequality using the chvatal gomory
procedure

2xke + 2xk
′

e + 2xk”
e + 2zks + 2zk

′

s′ + 2zk”
s” ≤ 9

⇒ xke + xk
′

e + xk”
e + zks + zk

′

s′ + zk”
s” ≤ 4 given that

⌊
9

2

⌋
= 4.
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This can be generalized for each clique C with |C| ≥ 4 while showing that the inequality (28)
can be seen as Chvatal-Gomory cuts. For that, and using the Chvatal-Gomory and recurrence
procedures, we get that for all C ′ ⊂ C with |C ′| = |C| − 1 and |C ′| ≥ 3∑

vk,s∈C′
xke + zks ≤ |C ′|+ 1.

By adding the previous inequalities for all C ′ ⊂ C with |C ′| = |C| − 1, and doing then some
simplification, we get at the end that

∑
vk,s∈C

xke + zks ≤
⌊
|C|+ |C|

|C| − 1

⌋
⇒

∑
vk,s∈C

xke + zks ≤ |C| + 1

given that

⌊
|C|
|C| − 1

⌋
= 1. We conclude that the inequality (28) is valid for P (G,K,S).

This gives us an idea about new non-overlapping inequalities defined as follows.

Proposition 20. Consider an edge e, and a pair of demands k, k′ ∈ K with e /∈ Ek0 ∪ Ek
′

0 . Let s
be a slot in {wk, ..., s̄}. Then, the inequality

xke + xk
′

e + zks +

min(s+wk′−1,s̄)∑
s”=s−wk+1

zk
′

s” ≤ 3, (29)

is valid for P”(G,K,S) = {(x, z) ∈ P (G,K,S) :

s̄∑
s=wk

zks = 1 &

s̄∑
s=wk′

zk
′

s = 1}.

Remark 4. The inequality (29) is a particular case of inequality (28) for a clique C = {vk,s} ∪
{vk′,s′ ∈ G̃ec s.t. {s′ − w′k + 1, ..., s′} ∩ {s− wk + 1, ..., s} 6= ∅}.

Remark 5. The inequality (28) associated with a clique C over edge e, it is dominated by the
inequality (22) associated with an interval I = [si, sj ] and the subset of demands K̃ over edge e iff

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Proof. Consider an edge e and an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let C be a clique

in the conflict graph G̃eS , and K̃ = {k ∈ K s.t. vk,s ∈ C} be a subset of demands in K with K̃ is

a clique in the conflict graph G̃eI for the interval I = [si, sj ].
Necessity: First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈C

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈C

s′ for each vk,s ∈ C, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ C, it follows that s ∈ Ik for each vk,s ∈ C of demand

k ∈ K̃. As a result, we get that∑
k∈K̃

xke +
∑
k∈K̃

∑
s′∈Ik

zks′ =
∑
k∈K̃

xke +
∑
k∈K̃

zks +
∑
k∈K̃

∑
s′∈Ik\{s}

zks′ (30)

=⇒
∑
k∈K̃

∑
s′∈Ik

zks′ =
∑
k∈K̃

zks +
∑
k∈K̃

∑
s′∈Ik\{s}

zks′ . (31)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, this means that∑
k∈K̃

zks =
∑

vk,s∈C
zks .
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This implies that∑
k∈K̃

∑
s′∈Ik

zks′ =
∑

vk,s∈C
zks +

∑
k∈K̃

∑
s′∈Ik\{s}

zks′ =⇒
∑

vk,s∈C
zks �

∑
k∈K̃

∑
s′∈Ik

zks′ .

Given that the demands are independants, it follows that

zks �
∑
s′∈Ik

zks′ for each vk,s ∈ C.

Hence, the inequality (28) is dominated by the inequality (22).
Sufficiency: Assume that the inequality (28) is dominated by the inequality (22). It follows that∑

vk,s∈C
xkez

k
s �

∑
k∈K̃

xke +
∑
s′∈Ik

zks′ =⇒
∑

vk,s∈C
zks �

∑
k∈K̃

∑
s′∈Ik

zks′ =⇒
∑
k∈K̃

zks �
∑
k∈K̃

∑
s′∈Ik

zks′

=⇒ zks �
∑
s′∈Ik

zks′ for each k ∈ K̃ =⇒ s ∈ Ik for each k ∈ K̃ =⇒ s ∈ Ik for each node vk,s ∈ C

=⇒ s− wk + 1 ∈ I for each node vk,s ∈ C =⇒ min
vk,s∈C

(s− wk + 1) ∈ I

and max
vk,s∈C

s ∈ I for each node vk,s ∈ C =⇒ [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ Ik′ of each pair of demands
k, k′ ∈ K̃. Hence, {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each pair (vk,s, vk′,s′) ∈ C since
s ∈ Ik and s′ ∈ Ik′ . We conclude at the end that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I,

which ends our proof.

4.7 Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered by the
inequalities (17) and (28). For this, we provide the following definition of a conflict graph and its
associated inequality.

Definition 8. Let G̃ES be a conflict graph defined as follows. For all slot s ∈ {wk, ..., s̄} and
demand k ∈ K, consider a node vk,s in G̃ES . Two nodes vk,s and vk′,s′ are linked by an edge in G̃ES
iff

– k = k′,
– or Ek1 ∩ Ek

′

1 6= ∅ and {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} 6= ∅.

The conflict graph G̃ES cannot define an interval graph given that some nodes vk,s and vk′,s′ are
linked even if the {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅, i.e., when k = k′.

Proposition 21. Let C be a clique in conflict graph G̃ES with |C| ≥ 3. Then, the inequality∑
vk,s∈C

zks ≤ 1, (32)

is valid for P (G,K,S).

Proof. It is trivial given the definition of a clique set in the conflict graph G̃ES s.t. for each two
linked nodes vk,s and vk′,s′ in G̃ES , we know that the inequality

zks + zk
′

s′ ≤ 1,
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is valid for P (G,K,S). By adding the previous inequalities for all two linked nodes vk,s and vk′,s′

in G̃ES , we get

∑
vk,s

(|C| − 1)zks ≤ |C| − 1 =⇒
∑
vk,s

zks ≤
|C| − 1

|C| − 1
=⇒

∑
vk,s

zks ≤ 1,

which ends our proof.

Remark 6. The inequality (32) associated with a clique C, it is dominated by the inequality (25)
associated with an interval I = [si, sj ] and the subset of demands K̃ if and only if [ min

vk,s∈C
(s−wk +

1), max
vk,s∈C

s] ⊂ I and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C, and 2wk ≥ |I|+ 1 and wk ≤ |I| for

each vk ∈ C.

Proof. Consider an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let C be a clique in the conflict

graph G̃ES , and K̃ = {k ∈ K s.t. vk,s ∈ C} be a subset of demands in K with K̃ is a clique in the

conflict graph G̃EI for the interval I = [si, sj ].
Neccessity.
First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈C

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈C

s′ for each vk,s ∈ C, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ C, it follows that s ∈ Ik = [si + wk − 1, sj ] for each

vk,s ∈ C of demand k ∈ K̃. As a result, we get that∑
k∈K̃

∑
s′∈Ik

zks′ =
∑
k∈K̃

zks +
∑
k∈K̃

∑
s′∈Ik\{s}

zks′ . (33)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ C}, this means that∑
k∈K̃

zks =
∑

vk,s∈C
zks .

It follows that ∑
k∈K̃

∑
s′∈Ik

zks′ =
∑

vk,s∈C
zks +

∑
k∈K̃

∑
s′∈Ik\{s}

zks′ .

Given that all the variable zks is positive for each k ∈ K and s ∈ S, this implies that∑
vk,s∈C

zks �
∑
k∈K̃

∑
s′∈Ik

zks′ .

Hence, the inequality (32) is dominated by the inequality (25).
Sufficiency.
Assume that the inequality (32) is dominated by the inequality (25). It follows that∑

vk,s∈C
zks �

∑
k∈K̃

∑
s′∈Ik

zks′ =⇒
∑
k∈K̃

zks �
∑
k∈K̃

∑
s′∈Ik

zks′

Given that the demands in K̃ are independants, this allows us to take that

zks �
∑
s′∈Ik

zks′ for each k ∈ K̃.
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Given that the variable zks is positive for each k ∈ K and s ∈ S, this means that

s ∈ Ik for each k ∈ K̃,

which is equivalent to say that

s ∈ Ik for each node vk,s ∈ C =⇒ s ∈ {si + wk − 1, ..., sj}.

It follows that

s− wk + 1 ∈ I for each node vk,s ∈ C.

As a result,

min
vk,s∈C

(s− wk + 1) ∈ I and max
vk,s∈C

s ∈ I for each node vk,s ∈ C

=⇒ [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj} of

each pair of demands k, k′ ∈ K̃. Hence, {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each pair
(vk,s, vk′,s′) ∈ C since s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj}. We conclude at the end that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in C,
– and [ min

vk,s∈C
(s− wk + 1), max

vk,s∈C
s] ⊂ I,

which ends our proof.

4.8 Slot-Assignment-Odd-Hole Inequalities

Proposition 22. Let H be an odd-hole in the conflict graph G̃ES with |H| ≥ 5. Then, the inequality∑
vk,s∈H

zks ≤
|H| − 1

2
, (34)

is valid for P (G,K,S).

Proof. It is trivial given the definition of the odd-hole in the conflict graph G̃ES . We strengthen
our proof as belows. For each pair of nodes (vk,s, vk′,s′) linked in H by an edge, we know that

zks + zk
′

s′ ≤ 1. Given that H is an odd-hole which means that we have |H| − 1 pair of nodes
(vk,s, vk′,s′) linked in H, and by doing a sum for all pairs of nodes (vk,s, vk′,s′) linked in H, it
follows that ∑

(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ ≤ |H| − 1.

Taking into account that each node vk in H has two neighbors in H, this implies that zks appears
twice in the previous inequality. As a result,∑

(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ =
∑

vk,s∈H
2zks =⇒

∑
vk,s∈H

2zks ≤ |H| − 1

=⇒
∑

vk,s∈H
zks ≤

⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (34) is valid for P (G,K,S).

Remark 7. The inequality (34) is dominated by the inequality (26) if and only if there exists an
interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with
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– [ min
vk,s∈H∪C

(s− wk + 1), max
vk,s∈H∪C

] ⊂ I,

– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,
– and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H.

Proof. Consider an interval of contiguous slots I = [si, sj ] ⊆ [1, s̄]. Let H be an odd-hole in the

conflict graph G̃ES , and K̃ = {k ∈ K s.t. vk,s ∈ H} be a subset of demands in K with K̃ is an

odd-hole in the conflict graph G̃EI for the interval I = [si, sj ].
Neccessity.
First, assume that

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in H,
– and [ min

vk,s∈H
(s− wk + 1), max

vk,s∈H
s] ⊂ I.

Given that s − wk + 1 ≥ min
vk′,s′∈H

(s′ − wk′ + 1) and s ≤ max
vk′,s′∈H

s′ for each vk,s ∈ H, and that

|{s − wk + 1, ..., s}| = wk for each vk,s ∈ H, it follows that s ∈ Ik = [si + wk − 1, sj ] for each

vk,s ∈ H of demand k ∈ K̃. As a result, we get that∑
k∈K̃

∑
s′∈Ik

zks′ =
∑
k∈K̃

zks +
∑
k∈K̃

∑
s′∈Ik\{s}

zks′ . (35)

Taking into account that K̃ = {k ∈ K s.t. vk,s ∈ H}, this means that∑
k∈K̃

zks =
∑

vk,s∈H
zks .

This implies that ∑
k∈K̃

∑
s′∈Ik

zks′ =
∑

vk,s∈H
zks +

∑
k∈K̃

∑
s′∈Ik\{s}

zks′

=⇒
∑

vk,s∈H
zks �

∑
k∈K̃

∑
s′∈Ik

zks′ =⇒ zks �
∑
s′∈Ik

zks′ for each vk,s ∈ H.

Hence, the inequality (34) is dominated by the inequality (26).
Sufficiency.
Assume that the inequality (34) is dominated by the inequality (26) and given that K̃ = {k ∈
K s.t. vk,s ∈ H}, this means that ∑

k∈K̃

zks =
∑

vk,s∈H
zks .

It follows that ∑
vk,s∈H

zks �
∑
k∈K̃

∑
s′∈Ik

zks′ =⇒
∑
k∈K̃

zks �
∑
k∈K̃

∑
s′∈Ik

zks′ .

Given that the demands in K̃ are independants, this implies that

zks �
∑
s′∈Ik

zks′ for each k ∈ K̃ =⇒ s ∈ Ik for each k ∈ K̃ =⇒ s ∈ Ik for each node vk,s ∈ H.

As a result,

s− wk + 1 ∈ I for each node vk,s ∈ H =⇒ min
vk,s∈H

(s− wk + 1) ∈ I

and max
vk,s∈H

s ∈ I for each node vk,s ∈ H =⇒ [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

s] ⊆ I.

Furthermore, and given that wk + wk′ > |I| for each pair of demands k, k′ ∈ K̃, it follows that
{s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj} of

each pair of demands k, k′ ∈ K̃. Hence, {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s} 6= ∅ for each pair
(vk,s, vk′,s′) ∈ H since s ∈ Ik and s′ ∈ {si + wk′ − 1, ..., sj}. We conclude at the end that



28 Diarassouba et al.

– s̃ ∈ {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, s′} for each pair of nodes (vk,s, vk′,s′) in H,

– and [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

s] ⊂ I,

which ends our proof.

The inequality (34) can be strengthened without modifying its right hand side by combining the
inequality (34) and (32) as follows.

Proposition 23. Let H be an odd-hole, and C be a clique in the conflict graph G̃ES with

– |H| ≥ 5,

– and |C| ≥ 3,

– and H ∩ C = ∅,
– and the nodes (vk,s, vk′,s′) are linked in G̃ES for all vk,s ∈ H and vk′,s′ ∈ C.

Then, the inequality

∑
vk,s∈H

zks +
|H| − 1

2

∑
vk′,s′∈C

zk
′

s′ ≤
|H| − 1

2
, (36)

is valid for P (G,K,S).

Proof. It is trivial given the definition of the odd-hole and clique in G̃ES s.t. if
∑
vk′,s′∈C

zk
′

s′ = 1 for

a vk′,s′ ∈ C ∈ C which implies that the quantity
∑
vk,s∈H z

k
s is forced to be equal to 0. Otherwise,

we know from the inequality (34) that the sum
∑
vk,s∈H z

k
s is always smaller than |H|−1

2 . We

strengthen our proof by assuming that the inequality (36) is not valid for P (G,K,S). It follows
that there exists a C-RSA solution S in which s′ /∈ Sk′ for each node vk′,s′ in the clique C s.t.

∑
vk,s∈H

zks (S) +
|H| − 1

2

∑
vk′,s′∈C

zk
′

s′ (S) >
|H| − 1

2
.

Since s′ /∈ Sk′ for each node vk′,s′ in the clique C this means that
∑
vk′,s′∈C

zk
′

s′ (S) = 0, and

taking into account the inequality (34), zks (S) ≤ 1 for each vk,s ∈ H, and that zk
′

s′ (S) ≤ 1 for each
vk′,s′ ∈ C, it follows that

∑
vk,s∈H

zks (S) ≤ |H| − 1

2
,

which contradicts that
∑
vk,s∈H z

k
s (S) + |H|−1

2

∑
vk′,s′∈C

zk
′

s′ (S) > |H|−1
2 .

Hence
∑
vk,s∈H |Sk ∩ {s}|+

∑
vk′,s′∈C

|Sk′ ∩ {s′}| ≤ |H|−1
2 .

Remark 8. The inequality (36) is dominated by the inequality (27) if and only if there exists an
interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

– [ min
vk,s∈H∪C

(s− wk + 1), max
vk,s∈H∪C

] ⊂ I,

– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,

– and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in C,

– and wk + wk′ ≥ |I|+ 1 for each vk ∈ H and vk′ ∈ C,

– and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H,

– and 2wk′ ≥ |I|+ 1 and wk′ ≤ |I| for each vk′ ∈ C.

Proof. Similar to the proof of the remark 7.
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4.9 Non-Compatibility-Clique Inequalities

Let us now introduce some valid inequalities that are related to the routing sub-problem due to
the transmission-reach constraint.

Definition 9. For a demand k, two edges e = ij /∈ Ek0 ∩ Ek1 , e′ = lm /∈ Ek0 ∩ Ek1 are said non-
compatible edges if and only if the lengths of (ok, dk)-paths formed by e = ij and e′ = lm together
are greater that l̄k.

Note that we are able to determine the non-compatible edges for each demand k in polynomial
time using shortest-path algorithms.

Proposition 24. Consider an edge e ∈ E. Let (k, k′) be a pair of non-compatible demands for the
edge e. Then, the inequality

xke + xk
′

e ≤ 1, (37)

is valid for P (G,K,S).

Proof. It is trivial given the definition of non-compatible demands for the edge e.

Proposition 25. Consider a demand k ∈ K. Let (e, e′) be a pair of non-compatible edges for the
demand k. Then, the inequality

xke + xke′ ≤ 1, (38)

is valid for P (G,K,S).

Proof. It is trivial given the definition of non-compatible edges for a demand k.

Based on the inequalities (37) and (38), we introduce the following conflict graph.

Definition 10. Let G̃KE be a conflict graph defined as follows. For each demand k and edge e /∈
Ek0 ∪ Ek1 , consider a node vke in G̃KE . Two nodes vke and vk

′

e′ are linked by an edge in G̃KE

– if k = k′: e and e′ are non compatible edges for demand k.
– if k 6= k′: k and k′ are non compatible demands for edge e.

Proposition 26. Let C be a clique in G̃KE . Then, the inequality∑
vke∈C

xke ≤ 1, (39)

is valid for P (G,K,S).

Proof. It is trivial given the definition of a clique set in the conflict graph G̃KE s.t. by adding the

inequalities (38) for all pairs of nodes (vke , v
k′

e′ ) in the clique C in G̃KE∑
vke∈C

(|C| − 1)xke ≤ (|C| − 1) =⇒
∑
vke∈C

xke ≤
|C| − 1

|C| − 1
=⇒

∑
vke∈C

xke ≤ 1,

which ends our proof.

4.10 Non-Compatibility-Odd-Hole Inequalities

Proposition 27. Let H be an odd-hole in the conflict graph G̃KE with |H| ≥ 3. Then, the inequality∑
vke∈H

xke ≤
|H| − 1

2
, (40)

is valid for P (G,K,S).
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Proof. It is trivial given the definition of the odd-hole in the conflict graph G̃KE . We strengthen our
proof as belows. For each pair of nodes (ve, ve′) linked in H by an edge, we know that xke +xke′ ≤ 1.

Given that H is an odd-hole which means that we have |H| − 1 pair of nodes (vke , v
k′

e′ ) linked in H,

and by doing a sum for all pairs of nodes (vke , v
k′

e′ ) linked in H, it follows that∑
(vke ,v

k′
e′ )∈E(H)

xke + xk
′

e′ ≤ |H| − 1.

Taking into account that each node vke in H has two neighbors in H, this implies that xke appears
twice in the previous inequality. As a result,∑

(vke ,v
k′
e′ )∈E(H)

xke + xk
′

e′ =
∑
vke∈H

2xke =⇒
∑
vke∈H

2xke ≤ |H| − 1

=⇒
∑
vke∈H

xke ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that the inequality (40) is valid for P (G,K,S).

The inequality (40) can be strengthened without modifying its right hand side by combining the
inequality (40) and (39) as follows.

Proposition 28. Let H be an odd-hole in the conflict graph G̃KE , and C be a clique in the conflict
graph G̃KE with

– |H| ≥ 5,
– and |C| ≥ 3,
– and H ∩ C = ∅,
– and the nodes (vke , v

k′

e′ ) are linked in G̃KE for all vke ∈ H and vk
′

e′ ∈ C.

Then, the inequality ∑
vke∈H

xke +
|H| − 1

2

∑
vk
′

e′ ∈C

xk
′

e′ ≤
|H| − 1

2
, (41)

is valid for P (G,K,S).

Proof. It is trivial given the definition of the odd-hole and clique in G̃KE s.t. if
∑
vk
′

e′ ∈C
xk
′

e′ = 1 for a

vk
′

e′ ∈ C, which implies that the quantity
∑
vke∈H

xke is forced to be equal to 0. Otherwise, we know

from the inequality (40) that the sum
∑
vke∈H

xke should be smaller than |H|−1
2 . We strengthen our

proof by assuming that the inequality (41) is not valid for P (G,K,S). It follows that there exists
a C-RSA solution S in which e′ /∈ Ek′ for each node vk

′

e′ in the clique C s.t.∑
vke∈H

xke(S) +
|H| − 1

2

∑
vk
′

e′ ∈C

xk
′

e′ (S) >
|H| − 1

2
.

Since e′ /∈ Ek′ for each node vk
′

e′ in the clique C this means that
∑
vk
′

e′ ∈C
xk
′

e′ (S) = 0, and taking

into account the inequality (40), and that xke(S) ≤ 1 for each vke ∈ H and xk
′

e′ (S) ≤ 1 for each

vk
′

e′ ∈ C, it follows that ∑
vke∈H

xke(S) ≤ |H| − 1

2
,

which contradicts what we supposed before, i.e.,
∑
vke∈H

xke(S) + |H|−1
2

∑
vk
′

e′ ∈C
xk
′

e′ (S) > |H|−1
2 .

Hence
∑
vke∈H

|Ek ∩ {e}|+
∑
vk
′

e′ ∈C

|Ek′ ∩ {e′}| ≤
|H| − 1

2
.

We conclude at the end that the inequality (41) is valid for P (G,K,S).

On the other hand, let’s us now provide some inequalities related to the capacity constraint.
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4.11 Edge-Capacity-Cover Inequalities

Proposition 29. Consider an edge e in E. Then, the inequality∑
k∈K\Ke

wkx
k
e ≤ s̄−

∑
k′∈Ke

wk′ , (42)

is valid for P (G,K,S).

Proof. The number of slots allocated in the edge e ∈ E should be less than the residual capacity

of the edge e which is equal to s̄−
∑
k′∈Ke

wk′ .

Based on this, we introduce the following definitions.

Definition 11. For an edge e ∈ E, a subset of demands C ⊆ K with e /∈ Ek0 ∩ Ek1 For each

demand k ∈ C, is said a cover for the edge e if
∑
k∈C

wk > s̄−
∑
k′∈Ke

wk′ .

Definition 12. For an edge e in E, a cover C is said a minimal cover if C \ {k} is not a cover

for all k ∈ C, i.e.,
∑

k′∈C\{k}

wk′ ≤ s̄−
∑
k”∈Ke

wk”.

Proposition 30. Consider an edge e in E. Let C be a minimal cover in K for the edge e. Then,
the inequality ∑

k∈C

xke ≤ |C| − 1, (43)

is valid for P (G,K,S).

Proof. If C is a minimal cover for edge e ∈ E this means that there are at most |C| − 1 demands
from the set of demands in C that can use the edge e. We strengthen our proof by assuming that
the inequality (43) is not valid for P (G,K,S). It follows that there exists a C-RSA solution S in
which e /∈ Ek′ for a demand k′ ∈ C s.t.∑

k∈C

xke(S) > |C| − 1.

Since e /∈ Ek′ for a demand k′ ∈ C this means that xk
′

e (S) = 0, and taking into account that C is
minimal cover for the edge e, xke(S) ≤ 1 for each k ∈ C \ {k′} and xk

′

e (S) ≤ 1, it follows that∑
k∈C\{k′}

xke(S) ≤ |C| − 1

which contradicts what we supposed before, i.e.,
∑
k∈C x

k
e(S) > |C| − 1.

Hence
∑
k∈C

|Ek ∩ {e}| ≤ |C| − 1.

We conclude at the end that the inequality (43) is valid for P (G,K,S).

We verified that the inequality (43) can be easily strengthened by using its extended format which
we call extended minimal cover for an edge e as follows.

Proposition 31. Consider an edge e in E. Let C be a minimal cover in K for the edge e, and Ξ(C)
be a subset of demands in K\C∪Ke where Ξ = {k ∈ K\C∪Ke : e /∈ Ek0 and wk ≥ wk′ ∀k′ ∈ C}.
Then, the inequality ∑

k∈C

xke +
∑

k′∈Ξ(C)

xk
′

e ≤ |C| − 1, (44)

is valid for P (G,K,S).
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Proof. If C is minimal cover for edge e ∈ E this means that there is at most |C|− 1 demands from
the set of demands in C ∪ Ξ(C) that can use the edge e. We strengthen our proof by assuming
that the inequality (44) is not valid for P (G,K,S). It follows that there exists a C-RSA solution
S in which e /∈ Ek′ for each demand k′ ∈ Ξ(C) s.t.∑

k∈C

xke(S) > |C| − 1.

Since e /∈ Ek′ for for each demand k′ ∈ Ξ(C)this means that xk
′

e (S) = 0, and taking into account
that C is minimal cover for the edge e, xke(S) ≤ 1 for each k ∈ C and xk

′

e (S) ≤ 1, it follows that∑
k∈C

xke(S) ≤ |C| − 1

which contradicts what we supposed before, i.e.,
∑
k∈C x

k
e(S) > |C| − 1 and also the inequality

(43).

Hence
∑
k∈C

|Ek ∩ {e}|+
∑

k′∈Ξ(C)

|Ek′ ∩ {e}| ≤ |C| − 1.

We conclude at the end that the inequality (43) is valid for P (G,K,S).

Furthermore, the inequality (43) can have a more generalized strengthening format using lifting
procedures proposed by Nemhauser and Wolsey in [50].

5 Branch-and-Cut Algorithm

Based on the theoretical results presented in this paper, we devise a Branch-and-Cut algorithm
to solve the C-RSA problem. We aim to study the effectiveness of our algorithm and assess the
impact of each valid inequality on the effectiveness of our algorithm. First, we give an overview
of our algorithm. Then, we describe the separation procedure used for each valid inequality based
on exact algorithms, greedy algorithms, and heuristics. In the end, we provide a detailed behavior
study of our Branch-and-Cut algorithm using two types of topologies: real, and realistic, and two
types of instances: random, and realistic ones.

5.1 Overview

In what follows, we describe our Branch-and-Cut algorithm. Consider an undirected, loopless, and
connected graph G = (V,E), which is specified by a set of nodes V , and a multiset E of links. Each
link e = ij ∈ E is associated with a length `e ∈ R+ (in kms), a cost ce ∈ R+ s.t. each link e ∈ E
is divided into s̄ ∈ N+ slots. Let S = {1, . . . , s̄} be an optical spectrum of available frequency slots
with s̄ ≤ 320, and K be a multiset of demands s.t. each demand k ∈ K is specified by an origin
node ok ∈ V , a destination node dk ∈ V \ {ok}, a slot-width wk ∈ Z+, and a transmission-reach
¯̀
k ∈ R+ (in kms). We first consider a restricted linear problem denoted by LP0 given by the

inequalities (3)-(7) and (9)-(12) s.t. the cut inequalities (2) and non-overlapping inequalities (8)
are not included in LP0. LP0 is so equivalent to

min
∑
k∈K

∑
e∈E

lex
k
e∑

e∈E

lex
k
e ≤ ¯̀

k, ∀k ∈ K,

xk
e = 0,∀k ∈ K, ∀e ∈ Ek

0 ,

xk
e = 1,∀k ∈ K, ∀e ∈ Ek

1 ,

zks = 0,∀k ∈ K, ∀s ∈ {1, ..., wk − 1},
s̄∑

s=wk

zks = 1,∀k ∈ K,

0 ≤ xk
e ≤ 1,∀k ∈ K, ∀e ∈ E,

0 ≤ zks ≤ 1,∀k ∈ K, ∀s ∈ S.
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Given an optimal solution (x̄, z̄) for the relaxation of LP0. It is feasible for the C-RSA problem
iff (x̄, z̄) is integral and it satisfies the cut inequalities (2) and non-overlapping inequalities (8).
Usually, (x̄, z̄) does not satisfy the inequalities (2) and (8). As a result, (x̄, z̄) is not feasible for
the C-RSA problem. For that, we generate several valid inequalities violated by a solution (x̄, z̄)
at each iteration of our Branch-and-Cut algorithm. This is known under the name ”Separation
Problem” which consists in identifying for a given class of valid inequalities the existence of one or
more inequalities of this class that are violated by the current solution. We repeat this procedure
in each iteration of our algorithm until non violated inequality is identified. As a result, the final
solution is optimal for the linear relaxation of our cut formulation. Furthermore, if it is integral,
then it is optimal for the C-RSA problem. Otherwise, we create two subproblems called childs by
branching on a fractional variable (variable branching rule) or some constraints using the Ryan &
Foster branching rule (constraint branching rule). Based on this, we devise a basic Branch-and-Cut
algorithm by combining a cutting-plane algorithm based on the separation of the cut inequalities
(2) and non-overlapping inequalities (8), and a Branch-and-Bound algorithm.

5.2 Separation Procedures: Complexity and Algorithms

On another hand, to accelerate our Branch-and-Cut algorithm, we already introduced several
classes of valid inequalities used to obtain tighter LP bounds. Based on this, and at each iteration
in a certain level of our Branch-and-Cut algorithm, one can identify one or more than one violated
inequality by the current fractional solution for a given class of valid inequalities. To do so, we
study the separation problem of each valid inequality as follows.

Separation of Non-Overlapping Inequalities Consider a fractional solution (x̄, z̄), and an
edge e ∈ E and a slot s ∈ S. The separation problem associated with the inequality (8) consists in
identifying all pairs of demands k, k′ ∈ K s.t.

x̄ke + x̄k
′

e +

min(s+wk−1,s̄)∑
s′=s

z̄ks′ +

min(s+wk′−1,s̄)∑
s”=s

z̄k
′

s” > 3.

To do so, we propose an exact algorithm in O(|E| ∗ s̄ ∗ |K| ∗ log(|K|)) which works as follows.

We select each pair of demands k, k′ ∈ K with xke > 0,
∑min(s+wk−1,s̄)
s′=s zks′ > 0, x̄k

′

e > 0 and∑min(s+wk′−1,s̄)
s”=s z̄k

′

s” > 0. We then add the inequality (8) induced by each selected pair of demands
k, k′ for the slot s ove edge e, to the current LP if it is violated, i.e.,

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ 3.

Otherwise, we conclude that such inequality does not exist for the current solution (x̄, z̄). On the
other hand, given that the inequalities (7) are taken in format of equations when implementing
our B&C algorithm (i.e.,

∑s̄
s=wk

zks = 1 for all k ∈ K). Based on this, and taking into account the
non-overlapping inequalities (8), we already proposed a new non-overlapping inequality (29) more
efficient compared to the ones of (8). To do so, we propose an exact algorithm in O(|E| ∗ s̄ ∗ |K| ∗
(|K|−1)) which works as follows. For each demand k and each slot s ∈ {wk, ..., s̄} over edge e with

xke > 0, zks > 0, we select each demand k′ ∈ K with x̄k
′

e > 0 and
∑min(s+wk′−1,s̄)
s”=s−wk+1 z̄k

′

s” > 0. We then
add the following inequality to the current LP if it is violated, i.e.,

xke + xk
′

e + zks +

min(s+wk′−1,s̄)∑
s”=s−wk+1

zk
′

s” ≤ 3.

Otherwise, we conclude that there does not exist an inequality from the non-overlapping inequalities
(29) violated current solution (x̄, z̄). Note that, from an efficiency point of view, the inequalities
(29) replace the inequalities (8) in our B&C algorithm.
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Separation of Cut Inequalities In this section,frameworksss the separation problem of our
cut inequalities (2). Its associated separation problem consists in identifying a cut inequalities (2)
that is violated by a given fractional solution (x̄, z̄). For each demand k ∈ K, this can be done in
polynomial time [22] as shown in the theorem of Ford and Fulkerson by finding a minimum cut
separating the origin-node ok and destination-node dk. As a result, this can be done exactly [22]

and very effectively in O(|V \V k0 |2 ∗
√
|E \ Ek0 |) using an efficient implementation of minimum cut

algorithm based on the so-called preflow push-relabel algorithm of Goldberg and Tarjan [24] to
compute maximum flow/minimum cut in the proper graph Gk of demand k by assigning a positive
weight x̄ke for each edge e in the graph Gk. For that, we use a C++ library proposed by the
LEMON GRAPH library [38] which calls the algorithm of Goldberg and Tarjan for the minimum
cut computation. Based on this, we conclude that the separation of the cut inequalities (2) can be
done in O(|V |2 ∗

√
|E| ∗ |K|) in the worst case.

Separation of Edge-Slot-Assignment Inequalities Consider a fractional solution (x̄, z̄), and
an edge e ∈ E and a slot s ∈ S. The separation problem associated with the inequality (15) consists
in identifying a subset of demands K̃∗ ⊂ K s.t.

∑
k∈K̃∗

x̄ke +

min(s+wk−1,s̄)∑
s′=s

z̄ks′ > |K̃∗|+ 1.

To do so, we propose an exact algorithm in O(|K| ∗ |E| ∗ s̄) which works as follows. The main idea

is to iteratively add each demand k ∈ K to K̃∗ iff xke > 0 and
∑min(s+wk−1,s̄)
s′=s zks′ > 0. We then

add the inequality (15) induced by K̃∗ to the current LP if it is violated, i.e.,

∑
k∈K̃∗

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃∗|+ 1.

Otherwise, we conclude that such inequality does not exist for the current solution (x̄, z̄). Moreover,
if such violated inequality is identified, it can be easily lifted introducing the inequality (17) induced
by K̃∗ and a subset of demands Ke \ K̃∗ as follows

∑
k∈K̃∗

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k′∈Ke\K̃∗

min(s+wk′−1,s̄)∑
s′=s

≤ |K̃∗|+ 1.

Separation of Edge-Slot-Assignment-Clique Inequalities Consider an edge e ∈ E, and a
fractional solution (x̄, z̄). The separation algorithm for the inequality (28) consists in identifying a
maximal clique C∗ in the conflict graph G̃eS s.t.∑

vk,s∈C∗
x̄ke + z̄ks > |C|+ 1.

To do this, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [51] to identify
a maximal clique C∗ in conflict graph G̃eS given that computing a maximal clique in such a graph
is also NP-hard problem [59]. Based on this, we first assign a positive weight z̄ks ∗ x̄ke to each node
vk,s in the conflict graph G̃eS . We then select a node vk,s in the conflict graph G̃eS having the largest

weight compared with the other nodes in G̃eS , and set C∗ = {vk,s}. After that, we iteratively add
each node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already assigned to the

current clique C∗ and z̄k
′

s′ > 0 and x̄k
′

e > 0. At the end, we add the inequality (28) induced by the
clique C∗ for edge e to the current LP if it is violated, i.e., we add the following inequality∑

vk,s∈C∗
xke + zks ≤ |C|+ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ s.t. each vk′,s′ ∈ N∗ is linked

with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in G̃eS . For that, we use also the greedy algorithm
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introduced by Nemhauser and Sigismondi in [51] to identify the clique N∗ as follows. We first set
N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node in G̃eS having the largest value of node-degree (i.e., |δ(vk′,s′)|)
in G̃eS and vk′,s′ is linked with all the nodes vk,s ∈ C∗ in G̃eS and k′ ∈ Ke. Afterwards, we iteratively

add each node vk”,s” /∈ C∗ ∪N∗ to the current N∗ if it is linked in G̃eS with all the nodes already
assigned to C∗ and N∗ and k” ∈ Ke. At the end, we add the inequality (28) induced by the clique
C∗ ∪N∗ to the current LP, i.e., ∑

vk,s∈C∗
(xke + zks ) +

∑
vk′,s′∈N∗

zk
′

s′ ≤ 1.

Separation of Edge-Interval-Cover Inequalities Let’s discuss the separation problem of the
inequality (20). Given a fractional solution (x̄, z̄), and an edge e ∈ E. We first construct a set of
intervals of contiguous slots I ∈ Ie s.t. each interval of contiguous slots Ie is identified by generating
two slots si and sj randomly in S with sj ≥ si + 2 maxk∈K\K̄e

wk. Consider now an interval of
contiguous slots I = [si, sj ] ∈ Ie over an edge e. The separation problem associated with the

inequality (20) is Np-Hard [60] given that it consists in identifying a cover K̃∗ for the interval
I = [si, sj ] over the edge e, s.t.

∑
k∈K̃∗

x̄ke +

sj∑
s′=si+wk−1

z̄ks′ > 2|K̃∗| − 1.

For that, we use a greedy algorithm introduced by Nemhauser and Sigismondi in [51] as follows.
We first select a demand k ∈ K having the largest number of requested slot wk with x̄ke > 0 and∑sj
s′=si+wk−1 z̄

k
s′ > 0, and then set K̃∗ to K̃∗ = {k}. After that, we iteratively add each demand

k′ ∈ K \ K̃∗ to K̃∗ with x̄k
′

e > 0 and
∑sj
s′=si+wk′−1 z̄

k′

s′ > 0, until a cover K̃∗ is obtained for the

interval I over the edge e with
∑
k∈K̃∗ wk > |I|. We further derive a minimal cover from the cover

K̃∗ by deleting each demand k ∈ K̃∗ if
∑
k′∈K̃∗\{k} wk′ ≤ |I|. We then add the inequality (20)

induced by the minimal cover K̃∗ for the interval I and edge e if it is violated, i.e., we add the
following valid inequality to the current LP

∑
k∈K̃∗

xke +

sj∑
s′=si+wk−1

zks′ ≤ 2|K̃∗| − 1.

Furthermore, the inequality (20) induced by the minimal cover K̃∗ can be lifted in polynomal time
O(Ke \ K̃) by introducing an extended cover inequality (21) as follows

∑
k∈K̃∗

xke +

sj∑
s′=si+wk−1

zks′ +
∑
k′∈K̃∗e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 2|K̃∗| − 1,

where wk′ ≥ wk for each k ∈ K̃∗ and each k′ ∈ K̃∗e .

Separation of Edge-Interval-Clique Inequalities The separation problem related to the in-
equality (22) is NP-hard [55][59] given that it consists in identifying a maximal clique C∗ in the
conflict graph G̃eI for a given edge e and a given interval I = [si, sj ] s.t.

∑
k∈C∗

x̄ke +

sj∑
s′=si+wk−1

z̄ks′ > |C∗|+ 1,

for a given fractional solution (x̄, z̄) of the current LP.
We start our procedure of separation by constructing a set of intervals of contiguous slots I =
[si, sj ] ∈ Ie for a given edge e ∈ E s.t. each interval of contiguous slots I = [si, sj ] ∈ Ie is identified
for each slot si ∈ S and slot sj with sj ∈ {si + maxk∈K\K̄e

wk, ...,min(s̄, si + 2 maxk∈K\K̄e
wk)}.

Consider now an interval of contiguous slots I = [si, sj ] ∈ Ie over an edge e, and its associated
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conflict graph G̃eI . We then use a greedy algorithm introduced by Nemhauser and Sigismondi in
[51] to identify a maximal clique in conflict graph G̃eI as follows. We first associate a positive weight
for each node vk in G̃eI equals to x̄ke ∗

∑sj
s′=si+wk−1 z̄

k
s′ . We then set C∗ = {k} s.t. k is a demand in

K having the largest number of slots wk and weight x̄ke ∗
∑sj
s′=si+wk−1 z̄

k
s′ . After that, we iteratively

add each demand k′ having x̄k
′

e > 0 and
∑sj
s′=si+wk′−1 z̄

k′

s′ > 0 s.t. its corresponding node vk′ is
linked with all the nodes vk with k already assigned to the current C∗. After that, we check if the
inequality (22) induced by the maximal clique C∗ for the interval I and edge e is violated or not.
If so, we add the inequality (22) induced by the maximal clique C∗ to the current LP, i.e.,∑

k∈C∗
xke +

sj∑
s′=si+wk−1

zks′ ≤ |C∗|+ 1.

One can strengthen this additional inequality by adding the inequality (23) induced by the maximal
clique C∗ and C∗e ⊂ Ke \ C∗, i.e.,∑

k∈C∗
xke +

sj∑
s′=si+wk−1

zks′ +
∑
k′∈C∗e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |C∗|+ 1,

s.t.

– wk′ + wk ≥ |I|+ 1 for each k ∈ C∗ and k′ ∈ C∗e ,
– wk′ + wk” ≥ |I|+ 1 for each k′ ∈ C∗e and k” ∈ C∗e ,
– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗e .

Separation of Interval-Clique Inequalities Given a fractional solution (x̄, z̄), and an interval of
contiguous slots I = [si, sj ]. Our separation algorithm for the inequality (25) consists in identifying

a maximal clique C∗ in the conflict graph G̃EI s.t.∑
k∈C∗

sj∑
s′=si+wk−1

z̄ks′ > 1.

As result, its associated separation problem is NP-hard given that computing a maximal clique in
a given graph is known to be a NP-hard problem [59]. For that, we also use the greedy algorithm
introduced by Nemhauser and Sigismondi in [51] to identify a maximal clique in conflict graph
G̃EI as follows. We first generate a set of intervals of contiguous slots denoted by IE s.t. each
interval of contiguous slots I = [si, sj ] ∈ IE is given for each slot si ∈ S and slot sj with sj ∈
{si + max

k∈K,
|Ek

1 |≥1

wk, ...,min(s̄, si + 2 max
k∈K,
|Ek

1 |≥1

wk)}. We then consider an interval of contiguous slots I =

[si, sj ] ∈ IE and its associated conflict graph G̃EI . We associate a positive weight
∑sj
s′=si+wk−1 z̄

k
s′

for each node vk in G̃EI . We select a demand k s.t. k is a demand in K having the largest number
of slots wk and weight

∑sj
s′=si+wk−1 z̄

k
s′ , and then set C∗ = {k}. After that, we iteratively add each

demand k′ having
∑sj
s′=si+wk′−1 z̄

k′

s′ > 0 s.t. its corresponding node vk′ is linked with all the nodes

vk with k ∈ C∗. At the end, we add the inequality (25) induced by the maximal clique C∗ if it is
violated, i.e., by adding the following inequality to the current LP∑

k∈C∗

sj∑
s′=si+wk−1

zks′ ≤ 1.

Moreover, this additional inequality can be strengthened as follows∑
k∈C∗

sj∑
s′=si+wk−1

zks′ +
∑
k′∈C∗e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1,

where C∗E ⊂ K \ C∗ s.t.

– wk′ + wk ≥ |I|+ 1 and Ek1 ∩ Ek
′

1 6= ∅ for each k ∈ C∗ and k′ ∈ C∗E ,
– wk′ + wk” ≥ |I|+ 1 and Ek

′

1 ∩ Ek”
1 6= ∅ for each k′ ∈ C∗E and k” ∈ C∗E ,

– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗E .
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Separation of Interval-Odd-Hole Inequalities For the inequality (26), we propose a separa-
tion algorithm that consists in identifying an odd-hole H∗ in the conflict graph G̃EI for a given
Interval I and a fractional solution (x̄, z̄) s.t.

∑
k∈H∗

sj∑
s′=si+wk−1

z̄ks′ >
|H∗| − 1

2
.

This can be done in polynomial time as shown by Rebennack et al. in [68] and [69]. Based on this,
we use the exact algorithm proposed by the same authors which consists of finding a minimum
weighted odd-cycle in a graph. For that, we should first generate a set of intervals of contiguous
slots IE as we did before in the section 5.2. We then consider a conflict graph G̃EI associated with
a given interval of contiguous slots I ∈ IE . We construct an auxiliary conflict graph G̃′EI which can
be seen as a bipartite graph by duplicating each node vk in G̃EI (i.e., vk and v′k) and each two nodes

are linked in G̃′EI if their original nodes are linked in G̃EI . We assign to each link (va, vb) in G̃′EI a

weight equals to
1−

∑sj

s′=si+wa−1
z̄a
s′−

∑sj

s′=si+wb−1
z̄b
s′

2 . We then compute for each node vk in G̃EI , the

shortest path between vk and its copy in the auxiliary conflict graph G̃′EI denoted by pvk,v′k . After

that, we check if the total sum of weight over edges belong this path is smallest than 1
2 ,

∑
(va,vb)∈E(pvk,v′

k
)

1−
∑sj
s′=si+wa−1 z̄

a
s′ −

∑sj
s′=si+wb−1 z̄

b
s′

2
<

1

2
.

If so, the odd-hole H∗ is composed by all the original nodes of nodes belong the computed shortest
path pvk,v′k , i.e., V (pvk,v′k) \ {v′k}. We then add the inequality (26) induced by the odd-hole H∗ to
the current LP, i.e.,

∑
k∈H∗

sj∑
s′=si+wk−1

zks′ ≤
|H∗| − 1

2
.

It can be lifted using the greedy algorithm introduced by Nemhauser and Sigismondi in [51] to
identify a maximal clique C∗ in conflict graph G̃EI s.t.

– wk′ + wk ≥ |I|+ 1 and Ek1 ∩ Ek
′

1 6= ∅ for each k ∈ H∗ and k′ ∈ C∗,
– wk′ + wk” ≥ |I|+ 1 and Ek

′

1 ∩ Ek”
1 6= ∅ for each k′ ∈ C∗ and k” ∈ C∗,

– wk′ ≤ |I| and 2wk′ ≥ |I|+ 1 for each k′ ∈ C∗.

For that, we first assign a positive weight equals to the number of slots request wk′ by the demand
k′ for each node vk′ linked with all the nodes vk ∈ H∗ in the conflict graph G̃EI . We then select
the node vk′ linked with all the nodes vk ∈ H∗ in the conflict graph G̃EI having the largest weight,
and set C∗ to {k′}. After that, we iteratively add each demand k” to the current clique C∗ if its
associated node vk” is linked with all the nodes vk ∈ H∗ and nodes vk′ ∈ C∗. As a result, we add
the inequality (27) induced by the odd-hole H∗ and clique C∗ to the current LP, i.e.,

∑
k∈H∗

sj∑
s′=si+wk−1

zks′ +
|H∗| − 1

2

∑
k′∈C∗

sj∑
s”=si+wk′−1

zk
′

s” ≤
|H∗| − 1

2
.

Separation of Slot-Assignment-Clique Inequalities Now, we describe the separation algo-
rithm for the inequality (32). It consists in identifying a maximal clique C∗ in the conflict graph
G̃ES s.t. ∑

vk,s∈C∗
z̄ks > 1,

for a given fractional solution (x̄, z̄) of the current LP.
To do so, we use the greedy algorithm introduced by Nemhauser and Sigismondi in [51] to identify
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a maximal clique C∗ in conflict graph G̃ES given that computing a maximal clique in such a graph
is also NP-hard problem [59]. Based on this, we first assign a positive weight z̄ks to each node vk,s
in the conflict graph G̃ES . We then select a node vk,s in the conflict graph G̃ES having the largest

weight compared with the other nodes in G̃ES , and set C∗ = {vk,s}. After that, we iteratively add
each node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already assigned to the

current clique C∗ and z̄k
′

s′ > 0. At the end, we add the inequality (32) induced by the clique C∗ to
the current LP if it is violated, i.e., we add the following inequality∑

vk,s∈C∗
zks ≤ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ s.t. each vk′,s′ ∈ N∗ is linked

with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in G̃ES . For that, we use also the greedy algorithm
introduced by Nemhauser and Sigismondi in [51] to identify the clique N∗ as follows. We first set
N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node in G̃ES having the largest value of node-degree (i.e., |δ(vk′,s′)|)
in G̃ES and vk′,s′ is linked with all the nodes vk,s ∈ C∗ in G̃ES . Afterwards, we iteratively add each

node vk′,s′ /∈ C∗ ∪N∗ to the current N∗ if it is linked in G̃ES with all the nodes already assigned to
C∗ and N∗. At the end, we add the inequality (32) induced by the clique C∗ ∪N∗ to the current
LP, i.e., ∑

vk,s∈C∗
zks +

∑
vk′,s′∈N∗

zk
′

s′ ≤ 1.

Separation of Slot-Assignment-Odd-Hole Inequalities The separation algorithm of the in-
equality (34) can be performed by identifying an odd-hole H∗ in the conflict graph G̃ES for a given
fractional solution (x̄, z̄) s.t. ∑

vk,s∈H∗
z̄ks >

|H∗| − 1

2
.

This can be done in polynomial time as shown by Rebennack et al. in [68] and [69] by finding a
minimum weighted odd-cycle in the conflict graph G̃ES . To do so, we first construct an auxiliary
conflict graph G̃′ES which can be seen also as a bipartite graph by duplicating each node vk,s in G̃ES
(i.e., vk,s and v′k,s) s.t. each two nodes are linked in G̃′ES if their original nodes are linked in G̃ES .

We assign to each link (ṽk,s, ṽk′,s′) in G̃′ES a weight equals to
1−z̄ks−z̄

k′
s′

2 . We then compute for each

node vk,s in G̃ES , the shortest path between vk,s and its copy v′k,s in the auxiliary conflict graph

G̃′ES denoted by pvk,s,v′k,s
. After that, we check if the total sum of weight over edges belonging to

this path is smaller than 1
2 . If so, the odd-hole H∗ is composed by all the original nodes of nodes

belong the computed shortest path pvk,s,v′k,s
, i.e., V (pvk,s,v′k,s

) \ {v′k,s}. As a result, the following

inequality (34) induced by the odd-hole H∗∑
vk,s∈H∗

zks ≤
|H∗| − 1

2
,

should be added to the current LP. Moreover, one can strengthen the inequality (34) induced by
the odd-hole H∗ using the greedy algorithm introduced by Nemhauser and Sigismondi in [51] to
identify a maximal clique C∗ in the conflict graph G̃ES s.t. each node vk′,s′ ∈ C∗ should have a

link with all the nodes vk,s ∈ H∗, and all the nodes vk”,s” ∈ C∗ \ {vk′,s′} in the conflict graph G̃ES .
For that, we first assign a node vk′,s′ /∈ H∗ to the clique C∗ (i.e., C∗ = {vk′,s′}) s.t. vk′,s′ has the

largest value of node-degree (i.e., |δ(vk′,s′)|) in G̃ES and vk′,s′ is linked with all the nodes vk,s ∈ H∗
in G̃ES . After that, we iteratively add each node vk′,s′ /∈ H∗ ∪ C∗ to the current clique C∗ if it is

linked in G̃ES with all the nodes already assigned to the odd-hole H∗ and the clique C∗. We then
add the inequality (36) induced by the odd-hole H∗ and clique C∗∑

vk,s∈H∗
zks +

|H∗| − 1

2

∑
vk′,s′∈C∗

zk
′

s′ ≤
|H∗| − 1

2
,
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Separation of Non-Compatibility-Clique Inequalities Consider now the inequality (39), and
a fractional solution (x̄, z̄). Its associated separation algorithm consists in identifying a maximal
clique C∗ in the conflict graph G̃KE s.t. ∑

vk,e∈C∗
x̄ke > 1.

The separation problem related to this inequality is NP-hard given that computing a maximal
clique in the conflict graph G̃KE is NP-hard problem [59]. For that, we also use the greedy algorithm
introduced by Nemhauser and Sigismondi in [51] to identify a maximal clique in conflict graph G̃KE
taking into account the fractional solution (x̄, z̄) as follows. We first assign a positive weight x̄ke
to each node vk,e in the conflict graph G̃KE . We then select a node vk,e in the conflict graph G̃KE
having the largest weight x̄ke , and set C∗ = {vk,e}. After that, we iteratively add each node vk′,e′

to the current C∗ if it is linked with all the nodes vk,e ∈ C∗ and x̄k
′

e′ > 0. At the end, the following
inequality (39) induced by the clique C∗ ∑

vk,e∈C∗
xke ≤ 1,

should be added to the current LP if it is violated. Furthermore, one can strengthen the additional
inequality (39) by identifying a maximal clique N∗ s.t. each vk′,e′ ∈ N∗ is linked with all the

nodes vk,e ∈ C∗ ∪ (N∗ \ {vk′,e′}) in G̃KE . For that, we use also the greedy algorithm introduced by
Nemhauser and Sigismondi in [51] to identify the clique N∗ as follows. We first set N∗ = {vk′,e′}
with vk′,e′ /∈ C∗ a node in G̃KE having the largest degree |δ(vk′,e′)| in G̃KE and should be also linked

with all the nodes vk,e ∈ C∗ in G̃KE . We then iteratively add each node vk′,e′ /∈ C∗ ∪ N∗ to the

current N∗ if it is linked in G̃KE with all the nodes already assigned to C∗ and N∗. At the end, we
add the inequality (39) induced by the clique C∗ ∪N∗ to the current LP, i.e.,∑

vk,e∈C∗
xke +

∑
vk′,e′∈N∗

xk
′

e′ ≤ 1.

Separation of Non-Compatibility-Odd-Hole Inequalities The separation algorithm related
to the inequality (40) can be done in polynomial time by finding a minimum weighted odd-cycle
in the conflict graph G̃KE as shown by Rebennack et al. in [68] and [69]. For that, our aims is to
identify an odd-hole H∗ in the conflict graph G̃KE s.t.∑

vk,e∈H∗
x̄ke >

|H∗| − 1

2
,

for a given fractional solution (x̄, z̄) of the current LP.
We start its procedure of separation by constructing an auxiliary conflict graph G̃′KE by duplicating
each node vk,e in G̃KE (i.e., vk,e and v′k,e) s.t. each two nodes are linked in G̃′KE if their original

nodes are linked in G̃KE . We assign to each link (ṽk,e, ṽk′,e′) in G̃′KE a weight
1−x̄k

e−x̄
k′
e′

2 . After that,

we compute for each node vk,e in G̃KE , the shortest path between vk,e and its copy v′k,e. We denote
this shortest path by pvk,e,v′k,e

. Note that if the total sum of weight over edges belonging to this

path is smaller than 1
2 , this means that there exists odd-hole H∗ composed by all the original nodes

of nodes belong the computed shortest path pvk,e,v′k,s
, i.e., V (pvk,e,v′k,s

) \ {v′k,s}, s.t. its associated

inequality (40) is violated by the current fractional solution (x̄, z̄) to the current LP. As a result,
we add following inequality (40) induced by the odd-hole H∗∑

vk,e∈H∗
xke ≤

|H∗| − 1

2
.

Moreover, the inequality (40) induced by the odd-hole H∗ can be lifted using the greedy algorithm
introduced by Nemhauser and Sigismondi in [51] by identifying a maximal clique C∗ in the conflict
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graph G̃KE s.t. each node vk′,e′ ∈ C∗ should have a link with all the nodes vk,e ∈ H∗, and all the

nodes vk′”,e” ∈ C∗ \{vk′,e′} in the conflict graph G̃KE . To do so, we first assign a node vk′,e′ /∈ H∗ to

the clique C∗ (i.e., C∗ = {vk′,e′}) having the largest degree |δ(vk′,e′)| in G̃KE , and vk′,e′ should be

linked with all the nodes vk,e ∈ H∗ in G̃KE . After that, we iteratively add each node vk′,e′ /∈ H∗∪C∗
to the current clique C∗ if it is linked in G̃KE with all the nodes already assigned to H∗ ∪ C∗. We
then add the inequality (41) induced by the odd-hole H∗ and the clique C∗∑

vk,e∈H∗
xke +

|H∗| − 1

2

∑
vk′,e′∈C∗

xk
′

e′ ≤
|H∗| − 1

2
.

Separation of Edge-Capacity-Cover Inequalities Let’s now study the separation problem of
the inequality (43). Given a fractional solution (x̄, z̄), and an edge e ∈ E. The separation problem
associated with the inequality (43) is Np-Hard [60] given that it consists in identifying a cover K̃∗

the edge e, s.t. ∑
k∈K̃∗

x̄ke > |K̃∗| − 1.

To do so, we propose a separation algorithm based on a greedy algorithm introduced by Nemhauser
and Sigismondi in [51]. We first select a demand k ∈ K \Ke having largest number of requested
slot wk with x̄ke > 0, and set K̃∗ to K̃∗ = {k}. After that, we iteratively add each demand
k′ ∈ K \ (Ke ∪ K̃∗) to K̃∗ while

∑
k∈K̃∗ wk ≤ s̄ −

∑
k̃∈Ke

wk̃, i.e., until a cover K̃∗ is obtained
for the the edge e with

∑
k∈K̃∗ wk > s̄ −

∑
k̃∈Ke

wk̃. We further derive a minimal cover from the

cover K̃∗ by deleting each demand k ∈ K̃∗ if
∑
k′∈K̃∗\{k} wk′ ≤ s̄ −

∑
k̃∈Ke

wk̃. We then add the

inequality (43) induced by the minimal cover K̃∗ for the edge e to the current LP if it is violated,
i.e., ∑

k∈K̃∗
xke ≤ |K̃∗| − 1.

Furthermore, the inequality (43) induced by the minimal cover K̃∗ can be lifted by introducing an
extended cover inequality (44) as follows∑

k∈K̃∗
xke ≤ |K̃∗| − 1,

where wk′ ≥ wk for each k ∈ K̃∗ and each k′ ∈ K̃∗e with k /∈ Ke.

5.3 Primal Heuristic

Here, we propose a primal heuristic to boost the performance of our Branch-and-Cut algorithm. It
is based on a hybrid method between a local search algorithm and a greedy-algorithm. Given an
optimal fractional solution (x̄, z̄) in a certain node of the B&C tree, our primal heuristic consists
in constructing an integral ”feasible” solution from this fractional solution. To do so, we first
construct several paths Rk for each demand k ∈ K based on the fractional values x̄ke using network
flow algorithms s.t. each path p ∈ Rk satisfies the cut inequalities (2). We then use a local search
algorithm which consists in generating at each iteration a sequence of demands L (order) numeroted
with L = 1′, 2′, ..., |K|′ − 1, |K|′. Based on this sequence of demands, our greedy algorithm selects
a path p from Rk and a slot s for each demand k′ ∈ L with z̄k

′

s 6= 0 and x̄ke 6= 0 for each e ∈ E(p),
while respecting the non-overlapping constraint with the set of demands that precede the demand
k′ in the list L (i.e., the demands 1′, 2, ..., k′−1). However, if there does not exist such pair of path p
and slot s for the demand k′, we then select a path p and a slot s for the demand k′ ∈ L with z̄k

′

s = 0
with s ∈ {wk′ , ..., s̄} and x̄ke 6= 0 for each e ∈ E(p) while respecting the non-overlapping constraint
with the set of demands that precede the demand k′ in the list L. Algorithm 5.3 summarizes the
different steps of our greed-algorithm for a given sequence of demands.
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Algorithm 1 Greedy-Algorithm for the Branch-and-Cut Algorithm

Data: A set of edges E, a spectrum S, a multi-set K of demands, an optimal solution (x∗, z∗) of the
current LP, a set Rk of precomputed feasible paths for each demand k ∈ K based on the values
x∗ke , set FIX0 of fixed variables to 0, a set FIX1 of fixed variables to 1 in the current node in the
tree of B&C, and a sequence of demands L = 1′, 2′, ..., |K|′ − 1, |K|′

Result: integral solution
Set Ek = ∅, and Sk = ∅ for each demand k ∈ K for each demand k′ ∈ L do

Set SERVED = FALSE Order the set of paths in Rk′ in increasing order according to the total length
of the paths p ∈ Rk′ , and let R′k′ denote the set of ordered paths in Rk′ for each path p ∈ R′k′ do

for each slot s ∈ {wk′ , ..., s̄} do
if SERVED = FALSE then

if zk
′

s ∈ FIX1 then
Set FEASIBLE= TRUE for each demand k ∈ {1, ..., k′ − 1} do

Let sk denote the last-slot already selected for the demand k with sk ∈ Sk if
E(p) ∩ Ek 6= ∅ and {s− wk′ + 1, ..., s} ∩ {sk − wk + 1, ...sk} 6= ∅ then

Set FEASIBLE= FALSE
end

end
if FEASIBLE = TRUE then

Set Ek′ = E(p), Sk′ = {s}, and SERVED = TRUE
end

end
else

if zk
′

s /∈ FIX0 and 0 < z∗k
′

s ≤ 1 then
Set FEASIBLE= TRUE for each demand k ∈ {1, ..., k′ − 1} do

Let sk denote the last-slot already selected for the demand k with sk ∈ Sk if
E(p) ∩ Ek 6= ∅ and {s− wk′ + 1, ..., s} ∩ {sk − wk + 1, ...sk} 6= ∅ then

Set FEASIBLE= FALSE
end

end
if FEASIBLE = TRUE then

Set Ek′ = E(p), Sk′ = {s}, and SERVED = TRUE
end

end

end

end

end

end
if SERVED = FALSE then

for each path p ∈ R′k′ do
for each slot s ∈ {wk′ , ..., s̄} do

if SERVED = FALSE then

if zk
′

s /∈ FIX0 and z∗k
′

s = 0 then
Set FEASIBLE= TRUE for each demand k ∈ {1, ..., k′ − 1} do

Let sk denote the last-slot already selected for k with sk ∈ Sk if E(p)∩Ek 6= ∅
and {s− wk′ + 1, ..., s} ∩ {sk − wk + 1, ...sk} 6= ∅ then

Set FEASIBLE= FALSE
end

end
if FEASIBLE = TRUE then

Set Ek′ = E(p), Sk′ = {s}, and SERVED = TRUE
end

end

end

end

end

end

end
Let S = ({Ek for all k ∈ K}, {Sk for all k ∈ K}) be the final solution obtained by our greedy-algorithm.
It is feasible for the C-RSA iff Ek 6= ∅ and Sk 6= ∅ for each demand k ∈ K return integral solution S
for current node in the tree of our B&C algorithm
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After that, we compute the associated total length of the paths selected for the set of demands
K in the final solution S given by the greedy-algorithm (i.e.,

∑
k∈K

∑
e∈Ek

le). Our local search
algorithm generates a new sequence by doing some permutation of demands in the last sequence
of demands if the value of the solution given by the greedy algorithm is smaller than the value of
the best solution found until the current iteration. Otherwise, we stop our algorithm, and we give
in the output the best solution found during our primal heuristic induced by the best sequence of
demands having the smallest value of the total length of the selected path compared with the other
generated sequences. Algorithm 5.3 summarizes the different steps of our local search algorithm
which calls our greedy-algorithm 5.3 at each iteration.

Algorithm 2 Primal Heuristic Based on a Hybrid Algorithm Between a Local Search Algorithm
and Greedy-Algorithm for the B&C Algorithm.

Data: A set of edges E, a spectrum S, a multi-set K of demands, and a maximum number of iterations
iter, the maximal size of neighborhood n

Result: integral solution
Let (x∗, z∗) be the optimal solution of the current LP Let FIX0 be the fixed variables to 0 in the current
node in the tree of B&C Let FIX1 be the fixed variables to 1 in the current node in the tree of B&C
Construct several paths Rk for each demand k ∈ K based on the fractional values x∗ke using network
flow algorithms s.t. each path p ∈ Rk satisfies the cut inequalities (2) Set val∗ = INF , and best solution
S∗ = ∅ Consider a sequence of demands L = 1′, 2′, ..., |K|′− 1, |K|′ Call the greedy-algorithm 5.3 based
on the sequence L Let S be the final solution obtained by our greedy-algorithm 5.3 for the sequence L
Compute its associated cost by summing the total length of the paths selected to route the demands K
in the solution S, denoted by V AL if S is feasible then

Set val∗ = V AL Set S∗ = S
end
Set i = 1 while i ≤ iter do

Set val∗i = INF Construct n sequences denoted by N(L) from the sequence L by doing some
permutations between some demands selected randomly in the sequence L for each neighbour Lj ∈
N(L) do

Call the greedy-algorithm 5.3 based on the sequence Lj Let Sj be the final solution obtained by
our greedy-algorithm 5.3 for the sequence Lj Compute its associated cost by summing the total
length of the paths selected to route the demands K in the solution Sj , denoted by valj if Sj is
feasible and val∗i > valj then

Set val∗i = valj Set S̃∗i = Sj
end

end
if val∗ > val∗i then

Set val∗ = val∗i Set S∗ = S̃∗i
end
Set i = i + +

end
return integral solution S∗ for current node in the tree of our B&C algorithm
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6 Computational Study

6.1 Implementation’s Feature

We have used C++ Programming Language to implement our B&C algorithm under Linux using
three frameworks, CPLEX 12.9 [14], Gurobi 9.0 [28], and ”Solving Constraint Integer Programs”
(SCIP 7.0) [76] framework using CPLEX 12.9 as LP solver. It has been tested on LIMOS high-
performance servers with a memory size limited to 64 Gb while benefiting from parallelism by
activating 8 threads using Gurobi or SCIP (which is not possible using Cplex), and with a CPU
time limited to 5 hours (18000 s).

6.2 Description of Instances

We further proposed a deep study of the behavior of our algorithl using two types of instances:
random and real, and 14 graphs (topologies). They are composed of two types of graphs: real, and
other realistics. They are composed of two types of graphs: real, and other realistics from SND-Lib
[52] with a number of links 21 ≤ |E| ≤ 166, and a number of nodes 14 ≤ |V | ≤ 161 as shown in the
Table 2. Note that we tested 4 instances for each triplet (G,K, s̄) with |K| ∈ {10, 20, 30, 40, 50},
and s̄ up to 180 slots.

Topology
Number
of Nodes

Number
of Links

Max Node
Degree

Min Node
Degree

Average Node
Degree

German 17 25 5 2 2.94
Nsfnet 14 21 4 2 3
Spain 30 56 6 2 3.73

Conus75 75 99 5 2 2.64

Real
Topology

Coronet100 100 136 5 2 2.72

Europe 28 41 5 2 2.92
France 25 45 10 2 3.6

German50 50 88 5 2 3.52
Brain161 161 166 37 1 2.06
Giul39 39 86 8 3 4.41
India35 35 80 9 2 4.57
Pioro40 40 89 5 4 4.45
Ta65 65 108 10 1 3.32

Realistic
Topology

Zib54 54 80 10 1 2.96

Table 2. Characteristics of different topologies used for our experiments.

6.3 Computational Results

We first studied the impact of each family of valid inequalities introduced before on the effectiveness
of our B&C algorithm using Cplex, Gurobi, and SCIP considering 4 criteria, the average number
of nodes in the enumeration tree (Nb Nd), average gap (Gap) which represents the relative error
between the lower bound gotten at the end of the resolution and best upper bound, average CPU
time computation (T CPU), the average number of violated inequalities added (Ineq Add). To
do this, we consider a subset of instances with a number of demands ranges in {10, 20, 30, 40, 50}
and s̄ up to 50, while using three topologies (German, Nsfnet, and Spain). For each instance, we
used Cplex with benefiting of its automatic cut generation (denoted by B&C Cplex in the differ-
ent tables), Cplex using our valid inequalities and disabling its proper cut generation (denoted by
B&C Cplex Additional Ineq), Gurobi with benefiting of its automatic cut generation (denoted by
B&C Gurobi), Gurobi using our valid inequalities and disabling the Gurobi proper cut generation
(denoted by B&C Gurobi Additional Ineq), SCIP with benefiting of its automatic cut generation
(denoted by B&C SCIP), SCIP using our valid inequalities and disabling the SCIP proper cut gen-
eration (denoted by B&C SCIP Additional Ineq). Note that the gap values given in red, represent
the instances solved to optimality.
The results show that the cover-based inequalities (43) and (20) are efficient than the clique-based
inequalities (32), (28) and (22). Our B&C algorithm is very efficient using SCIP and Gurobi when
adding the cover-based inequalities (43) and (20). We notice that adding these families of valid
inequalities allows solving to optimality some instances that are not solved to optimality using
B&C Cplex, B&C Gurobi, and B&C SCIP. Furthermore, they allow reducing the average gap,
average number of nodes, and the average CPU time. On the other hand, we observed that our
valid inequalities do not work well when using Cplex. This is due to deactivating the inequalities of
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the proper Cplex cut generation, and Cplex does not work well without its proper cut generation
even if our valid inequalities are shown to be efficient using Gurobi and Cplex for the instances
tested. The results show also that several inequalities of the cover-based inequalities (43) and (20),
and clique-based inequalities (32), (28) and (22), they are generated along our B&C algorithm.
However, the number of clique-based inequalities (32) generated is very less compared with other
inequalities. Based on these results, we conclude that our valid inequalities are very useful to obtain
tighter LP bounds using Gurobi and SCIP. On the other hand, the different families of odd-hole
inequalities are shown to be not efficient for the instances used such that the number of their
violated inequalities generated is very less and equals to 0 for several instances. As a result, we
combine these families of valid inequalities s.t. their separation is performed along with the B&C
algorithm (using Cplex, Gurobi, and SCIP) in the following order

1. edge-capacity-cover inequalities (43),
2. edge-interval-cover inequalities (20),
3. edge-slot-assignment-clique inequalities (28),
4. edge-interval-clique inequalities (22),
5. slot-assignment-clique inequalities (32).

After that, we provide a comparative study between Cplex, Gurobi, and SCIP using the B&C
(without additional valid inequalities) algorithm. To do so, we evaluate the impact of the valid
inequalities used within our B&C algorithm. For this, we present some computational results using
several instances with a number of demand ranges in {10, 20, 30, 40, 50} and s̄ up to 180 slots. We
use two types of topologies: real, and realistic ones from SND-LIB already described in Table 2.
Our first series of computational results presented in Table 3, concerns the results obtained for the
B&C algorithm using real topologies. On the other hand, in the second series of computational
results are shown in Table 4, we present the results found for the B&C algorithm using realistic
topologies.
The results show that adding several families of valid inequalities is very efficient. They improve
the effectiveness of our B&C algorithm compared with the last approach described in the last
subsequent when adding just one family of valid inequalities within our B&C algorithm. We first
notice that introducing valid inequalities allows solving several instances to optimality that are not
solved to optimality using B&C Cplex, B&C Gurobi, and B&C SCIP. Furthermore, they enable
reducing the average number of nodes in the B&C tree, and also the average CPU time for several
instances. On the other hand, and when the optimality is not guaranteed, adding valid inequalities
decreases the average gap for several instances. However, there exist few instances in which adding
valid inequalities does not improve the results of the B&C algorithm. We further observe that
using our valid inequalities within Gurobi (i.e., B&C Gurobi Ineq) is shown to be very efficient
for the small-sized instances compared with Cplex and SCIP (see for example the Tables 3 and
4). However, and looking at the instances that are solved to optimality introducing our valid
inequalities using Gurobi and SCIP, we notice that we have less number of nodes and time CPU
using SCIP compared with Gurobi (see for example the Tables 3 and 4). Furthermore, there exist
some instances in which introducing our valid inequalities using SCIP works much better than
Gurobi s.t. B&C SCIP Ineq can solve several instances to optimality that are not solved using
B&C Gurobi Ineq. Based on these results, we conclude that using our valid inequalities allows
obtaining tighter LP bound.
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7 Conclusion

In this paper, we focused on a complex variant of the Routing and Spectrum Assignment (RSA)
problem, called the Constrained-Routing and Spectrum Assignment (C-RSA). We first proposed a
new integer linear programming formulation based on the so-called cut formulation for the C-RSA.
We further identified several families of valid inequalities to obtain tighter LP bounds. Moreover,
we presented a separation algorithm for each valid inequality. Based on these results, we devised
a Branch-and-Cut (B&C) algorithm to solve the problem. The valid inequalities are shown to be
efficient and allow improving the effectiveness of our B&C algorithm. Our next step is to study
the impact of the following branching strategies on the effectiveness of the B&C algorithm.

7.1 Cut Formulation Variables Branching Strategy

Here, we use the classical branching schemes. We select a variable from the variables zks or xke
induced by a demand k ∈ K and slot s ∈ {wk, ..., s̄} or edge e having the largest value z∗ks or x∗ke
with 0 < z∗ks < 1 or 0 < x∗ke < 1. Then, if a pair of demand k ∈ K and edge e is selected, our
branching algorithm generates two nodes (also called childs) by using or not the edge e to route
the demand k, i.e., xke = 0 or xke = 1 which induces two new sub-problems. Otherwise, if a pair of
demand k and slot s is selected, our branching algorithm generates two nodes by selecting or not
the slot s as last-slot for the demand k, i.e., zks = 0 or zks = 1.

7.2 Demand-Edge-Usage Variables Branching Strategy

In this branching strategy, the variables xke are priorities. It consists in branching on a variable
0 ≤ xke ≤ 1 for a demand k and edge e. To do so, we select a demand k ∈ K and a edge
e ∈ E \ (Ek0 ∪Ek1 ) having the largest value of x∗ke with 0 < x∗ke < 1. Then, we generate two nodes
by imposing the usage of edge e to route the demand k or no, i.e., we create two sub-problem with
xke = 0 or xke = 1. However, if such pair of demand k and edge e does not identified in a certain
level of our algorithm, we select a variable zks induced by a demand k ∈ K and slot s ∈ {wk, ..., s̄}
having the largest value z∗ks with 0 < z∗ks < 1, and then generate two nodes by imposing that
zks = 0 or zks = 1.

7.3 Demand-Slot-Assignment Variables Branching Strategy

Let us present now another branching scheme in which the variables zks are priorities. It consists in
branching on a variable 0 ≤ zks ≤ 1 for a demand k and slot s. To do so, we select a demand k ∈ K
and a slot s ∈ {wk, ..., s̄} having the largest value of z∗ks with 0 < z∗ks < 1. Then, we generate two
nodes by selecting or not the slot s as last-slot for the demand k, i.e., zks = 0 or zks = 1. However,
if such pair of demand k and slot s does not identified in a certain level of our algorithm, we select
a variable xke induced by a demand k ∈ K and edge e ∈ E \ (Ek0 ∪ Ek1 ) having the largest value
x∗ke with 0 < x∗ke < 1, and then generate two nodes by imposing the usage of edge e to route the
demand k or no, i.e., we create two sub-problem with xke = 0 or xke = 1.

7.4 Demands-Dependency-Edge-Usage Constraints Branching Strategy

Here, we create dependency constraints between demands s.t. it consists in selecting two demands

k, k′ for an edge e having the largest value of x∗ke +x∗k
′

e with 0 < x∗ke < 1 and 0 < x∗k
′

e < 1. Based
on this, we create 4 branches by deciding if the demands k, k′ pass together through the edge e or
no, i.e., by adding some constraints as follows

– branch 1 by adding the constraint xke + xk
′

e = 0,
– branch 2 by adding the constraints xke = 0 and xk

′

e = 1,
– branch 3 by adding the constraints xke = 1 and xk

′

e = 0,
– branch 4 by adding the constraints xke = 1 and xk

′

e = 1.
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However, if such pair of demands k, k′ and edge e does not exist, we select a variable from the
variables zks or xke induced by a demand k ∈ K and slot s ∈ {wk, ..., s̄} or edge e having the largest
value z∗ks or x∗ke with 0 < z∗ks < 1 or 0 < x∗ke < 1. Then, if a pair of demand k ∈ K and edge e is
selected, we generate two nodes by deciding if the demand k uses the edge e or not, i.e., xke = 0
or xke = 1. Otherwise, if a pair of demand k and slot s is selected, we then generate two nodes by
selecting or not the slot s as last-slot for the demand k, i.e., zks = 0 or zks = 1.

7.5 Demands-Dependency-Slot-Assignment Constraints Branching Strategy

Similar to what we just did in the last paragraph, we create dependency constraints between de-

mands s.t. we select two demands k, k′ for a slot s ∈ S having the largest value of
∑min(s+wk−1,s̄)
s′=s z∗ks′+∑min(s+wk′−1,s̄)

s′=s z∗k
′

s′ with 0 <
∑min(s+wk−1,s̄)
s′=s z∗ks′ < 1 and 0 <

∑min(s+wk′−1,s̄)
s′=s z∗k

′

s′ < 1. Based
on this, we create 4 branches by deciding if the slot s is assigned to the demands k, k′ or no, i.e.,
we create

– branch 1 by adding the constraint

min(s+wk−1,s̄)∑
s′=s

z∗ks′ +

min(s+wk′−1,s̄)∑
s′=s

z∗k
′

s′ = 0,

– branch 2 by adding the constraints

min(s+wk−1,s̄)∑
s′=s

z∗ks′ = 0 and

min(s+wk′−1,s̄)∑
s′=s

z∗k
′

s′ = 1,

– branch 3 by adding the constraints

min(s+wk−1,s̄)∑
s′=s

z∗ks′ = 1 and

min(s+wk′−1,s̄)∑
s′=s

z∗k
′

s′ = 0,

– branch 4 by adding the constraints

min(s+wk−1,s̄)∑
s′=s

z∗ks′ = 1 and

min(s+wk′−1,s̄)∑
s′=s

z∗k
′

s′ = 1.

However, if such pair of demands k, k′ and edge e are not found, we select a variable from the
variables of our cut formulation zks or xke induced by a demand k ∈ K and slot s ∈ {wk, ..., s̄} or
edge e having the largest value z∗ks or x∗ke with 0 < z∗ks < 1 or 0 < x∗ke < 1. Then, if a pair of
demand k ∈ K and edge e is selected, we generate two nodes by deciding if the demand k uses the
edge e or not, i.e., xke = 0 or xke = 1. Otherwise, if a pair of demand k and slot s is selected, we
then generate two nodes by selecting or not the slot s as last-slot for the demand k, i.e., zks = 0 or
zks = 1.
On the other hand, we will study the impact of adding the following symmetry-breaking inequalities
on the effectiveness of the B&C algorithm

Proposition 32. Consider a demand k in K, a slot s ∈ {1, ..., s̄− 1}. Let s′ be a slot in {s, ..., s̄}

min(s′+wk−1,s̄)∑
s”=s′

zks” −
∑
k′∈K

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ 0. (45)

This ensures that the slot s′ can be assigned to the demand k iff the slot s (which precedes the slot
s′) is already assigned to at least one demand k′ in K. A similar idea was proposed by Mendez-Diaz
and Zabala in [48] to break the symmetry for the vertex coloring problem. Note that the inequalities
(45) are not valid for the polytope P (G,K,S) given that they cut off some feasible regions in our
polytope P (G,K,S). In any case, we ensure that there exists at least one optimal solution from our
original problem that remains feasible and belongs to the convex hull of non-symmetric solutions
of the C-RSA problem.
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