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Abstract

Planning the energy transition requires decision makers to have an in-depth knowledge
about a given territory. To achieve this, data is collected from multiple sources, at mul-
tiple scales, with constraints such as privacy policies. Resulting data informs about given
areas of space without a speci�c point location. Such is the case of Energy Performance
Certi�cate (EPC). EPC databases are released under speci�c constraints: anonymization,
geo-localization with postal address, missing details. This paper shows that learning the ob-
served EPCs to predict missing ones can also be seen as a spatial interpolation problem. It
presents a way to treat EPC as a geo-localized information and predict its value at building
level.

Kriging methodology is applied to random �elds observed at random locations to �nd a
Best Linear Unbiased Predictor (BLUP). This new model is referred to as Mixture Kriging.
While the usual Gaussian setting is lost, we show that conditional mean, variance and covari-
ance can be derived. This new model gives interesting results in EPC prediction at building
level which is a prerequisite for decision makers to target renovation e�orts. The speci�c case
of a city in France is taken as an example. The presented model includes Mixture coKriging
so that covariates, even with missing observations, can be used to improve the result. It
is also suggested that Mixture Kriging can be usefully implemented to control uncertainty
propagation. We present potential applications on simulated data.

Keywords� multi-scale processes, area-to-point regression, areal data, block Kriging, change of
support, energy transition

1 Introduction

1.1 Classifying the EPC prediction problem in research

An Energy Performance Certi�cate (EPC) is de�ned in France as an energy consumption associated with
a qualitative labelling letter ranging from A to G as shown in Figure 1 . Energy consumptions associated
with dwellings, identi�ed by their addresses, are inventoried in a database released in open access and
mapped in Figure 2 . A second database matches each address with a land plot. Finally, a third database
gives the living area of every dwelling, be it house or apartment, together with the land plot where they
are located, and a few other technical speci�cations. However the exact location of these dwellings on
each land plot is not certain. From these datasets, decision makers such as municipalities, would like
to infer the EPC (energy consumption and label) of buildings that have not been observed in order to
identify targets for energy retro�t incentives. This problem is referred to as the EPC prediction problem
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along the present paper.

In literature, this problem can be approached from an engineering perspective, from a data manage-
ment one and from a geostatistics points of view.

From an engineering perspective, heat engineers have physical models that compute an energy balance
in order to �nd a given building's energy consumption. To work at a larger scale, they de�ne typologies
of buildings, compute a distribution of these types on a given territory and therefore infer a distribution
of EPC labels. This approach has proven to be e�cient (Ballarini et al. [2017]). However the lack of
knowledge about the detailed technical features of each building is a strong limitation for a prediction
at building level. Some features reduction e�orts have been made (Ali et al. [2020]) but the remaining
features are still problematic to infer and require extra e�orts (Schetelat et al. [2020]). The present work
considers an alternative approach wherein detailed technical knowledge of each building is relinquished,
and instead leverages the geolocated nature of EPC information.

Figure 1: Prescribed vignette appearing
on the French energy certi�cate up to
2021. The meaning of the legend appear-
ing at the top left is e�cient dwelling; top
right: dwelling; bottom: energy intensive
dwelling.

Figure 2: Map of French inventoried EPCs. This image is a screen
capture of the French National Observatory of Buildings (Observa-
toire National des Bâtiments - ONB), released with the consent of
the rights holders U.R.B.S. SAS.

From a data management perspective, the EPC prediction problem requires a process to combine
datasets from multiple sources available at multiple scales which is known as data fusion (Smith et al.
[2008]). These types of problems are becoming increasingly complex due to the growing amount of
data available, whether it be ecological, social or institutional. These datasets relate to space units of
varying shapes, dimensions and cardinality. And in some cases, it may be di�cult to determine the exact
position of an observed object. This is the case of buildings since many governments lack a detailed map
of building stock in their country. Property tax is typically based on intrinsic factors such as surface area
and number of bedrooms, but not extrinsic factors such as the �oor number or window orientation. As
a result of this uncertainty, large scale studies on housing stock have to rely on an abstract concept of
dwelling. This idea of dwelling can refer to a house or an apartment, it is not clearly delimited but it is
described by a set of features such as an area or a number of bedrooms. These features are gathered in
a table with one dwelling per row, meaning that the dwelling is the smallest unit of information.

Similarly, the smallest unit of information for a table with one EPC per row is a part of a building.
It is not clearly de�ned as an object in a 3 dimensional space but it has features that describe it. And to
predict EPC of buildings, one also has to de�ne buildings. Data fusion requires to de�ne the same way
smallest units of information, also known as a granules for each dataset1 . The �eld of study that focuses
on representing, constructing and processing these information granules is called Granular Computing

1�Informally, a granule of a variableX is a clump of values ofX which are drawn together by indistinguishability,
equivalence, similarity, proximity or functionality. For example, an interval is a granule.� Zadeh [2005]
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(Pedrycz [2013]). Assuming that dwellings, EPC observations and complete buildings are represented in
a same data model, meaning that an appropriate data fusion process is implemented, a relevant predictive
model should now be constructed. Granular computing is multidisciplinary but since we are dealing with
geo-localized information, the natural �eld of research is geostatistics which have been de�ned as �dealing
with spatial processes indexed over continuous space� (Cressie [1993], p7).

From a geostatistics perspective, among other issues, the irreducible uncertainty about granules' posi-
tions (dwellings, buildings...) in their underlying space restricts the use of traditional spatial interpolation
models such as Kriging. This work aims to overcome the latter limitation and develop a comprehensive
framework capable of handling data with uncertainty about the position of observed objects while still
allowing for the de�nition of an optimal linear predictor for spatial interpolation of EPC values. As is �rst
presented below, the literature shows that the problems to solve are already identi�ed and that several
solutions have been proposed with their bene�ts and shortcomings.

1.2 The limits of systematic averaging for spatial interpolation

As de�ned by Comber and Zeng [2019], spatial interpolation �is a technique which uses sample values of
known geographical points (or areal units) to estimate (or predict) values at other unknown points (or
area units)�. The same article presents a summary table of the major spatial interpolation approaches
among which is Gaussian Process Regression (Williams and Rasmussen [1996]), also known as Kriging.
Kriging theory was �rst published by Matheron [1963] based on Daniel Krige's master thesis. It relies on
the general assumption that points close to each other in the input space are more likely to have similar
output values. The original article states that Kriging is a �weighted combination� (linear combination)
of observation values that �leads to achieve the best possible estimation� making it the Best Linear
Unbiased Predictor (BLUP) in the least squares sense for point spatial interpolation. Kriging has been
�rst de�ned to interpolate point observations. But the EPC prediction problem deals with observations
that are not point observations but areal observations. Areal interpolation, as de�ned by Lam [1983],
involves �the transformation of data from one set of boundaries to another�. Lam also used the terms
source zone and target zone. For the EPC prediction problem, source zones are dwellings and buildings'
parts that are observed, while target zones are whole buildings. Spatial or areal interpolation research is
based on a the following assumption: granules that are close to each other in the input space are more
likely to have similar features (output values). This is reasonably understandable for temperatures which
are continuously de�ned over the space, but it may be more challenging to observe and model when
dealing with areal data where granules can be of various sizes and shapes, sometimes uncertainly de�ned.
Gotway and Young [2002] highlighted the terms used to describe areal interpolation and its challenges, this
terminology include: block Kriging, multi-scale and multi-resolution modelling, the ecological inference
problem, the modi�able areal unit problem (MAUP), the scaling problem, the change of support problem
and the reduction of variance problem. Below are presented the aspects of this work that are more
relevant for solving the EPC prediction problem.

Block Kriging is a derivative of Kriging designed for handling areal data. It distinguishes point-to-
area, area-to-point and area-to-area predictions. This technique inherited from mining activities assumes
that feature at block (granule) level is the average of block's point features. Point-to-area prediction
produces an estimate �identical to that obtained by averaging the point estimates produced by [Kriging]�
(Isaaks and Srivastava [1989], Cressie [1993]). Kyriakidis [2004] described a complete Kriging model
for area-to-point prediction, proved that it is an optimal predictor and sketched area-to-area prediction.
Goovaerts [2008] studied in depth the problem estimating the variogram, that is to say of measuring the
similarity between 2 points at di�erent distances, for block Kriging. He showed that averaging reduces
the sill of the variogram and tried to tackle this bias. Moreover, while point estimates obtained by Kriging
are optimal, area-to-area Kriging may not be the optimal predictor for the average value over the block.

A known issue resulting from systematic averaging in areal Kriging models arises in scenarios such
as analysing crop yields where the set of agricultural �elds to aggregate for a certain type of crop varies
from year to year. It states that correlations between output variables are heavily dependent on the
aggregation process, making it di�cult to compare correlations between di�erent years. This is the
Modi�able Areal Unit Problem (MAUP) for which a measuring approach has been recently proposed
(Briz-Redón [2022]). While the MAUP refers to correlation between output variables, the ecological
inference problem is a result of the correlations at individual level being di�erent from the correlations
of the averaged outputs at the ecological (group level): a lack of information about the individuals'
positions leads to a bias when the averaged information about individuals distributed into areal units is
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cross-classi�ed by other individual (point level) variables (sex, race). According to Gotway and Young:
�The smoothing e�ect that results from averaging is the underlying cause of both the scale problem in the
MAUP and aggregation bias in ecological studies.� Apart from correlations, the variance itself is a�ected
by systematic averaging. Indeed, the average of identical random variables has a smaller variance than
the variance of the individuals themselves. The speci�c issue of variance reduction at the block level was
partially addressed in Li et al. [2009] using rectangular blocks at multiple scales.

Despite its limitations, the averaging method has proven to be e�ective for interpolating areal data.
For example, Poggio and Gimona [2015] downscaled climate models and predicted soil wetness using
Kriging on the residuals of a generalized additive model (Wood [2017]). Area-to-point Kriging also called
disaggregation has also been implemented by Kerry et al. [2013], Truong and Heuvelink [2013], Yoo and
Kyriakidis [2006]. Additionally, area-to-area Kriging (block Kriging) has been used e�ectively by Zhang
et al. [2018] and has been apply to downscaling by Jin et al. [2018] as well as Pereira et al. [2018]. The
satellite imaging �eld has also notably bene�ted from this framework, as in the pan-sharpening process
which is �a technique to combine the �ne spatial resolution panchromatic (PAN) band with the coarse
spatial resolution multispectral bands of the same satellite to create a �ne spatial resolution multispec-
tral image� Wang et al. [2016]. In this process, points are weighted according to their distance from the
centroid of the satellite pixel when computing the average value.

Both MAUP and ecological inference problem belong to a family of problems related to the combi-
nation of di�erent types of granules in the same model e.g. observing dwellings and predicting buildings.
These problems are gathered in the change of support problems family. Another particular change of
support problem known as spatial misalignment arises when a given output variable is observed at mul-
tiple scales, including point level. Indeed systematic averaging makes points and areas di�erent objects
with di�erent variability, di�erent correlation structure and therefore di�erent predictors. The classi�ca-
tion of problems such as �area-to-point� or �area-to-area� re�ects this categorization. Moraga has built a
Bayesian framework that can be iterated both with point observations and block observations, based on
averaging at areal level for output variables continuously de�ned over the territory (Moraga et al. [2017]).
This model, like other models derived from Kriging, considers blocks to be connected surface areas in
R2 that need to be �discretized� (Goovaerts [2008]) which can distort reality for outputs that are not
continuously de�ned over the space such as populations that are often discrete points heterogeneously
located within a block (such as a county or census tract).

1.3 Beyond systematic averaging

A way to try and overcome change of support problems is to de�ne a new data model for which outputs
at areal level do not require systematic averaging. In this regard, Godoy et al. [2022] de�ned a Gaussian
random �eld on the class BD of closed subsets of a certain domain D ∈ Rn. Distances between elements
of BD are measured with the Hausdor� distance and the correlation structure between outputs is based
on this distance together with a Matérn kernel. Eventually, a Bayesian framework is used to �t the
model with respiratory cancer data yielding encouraging results. This model seems very general and will
probably �nd other �elds of application. However it is not interpretable in the sense that there is no
obvious link between the output at areal level and the output at point level, therefore eluding the question
of consistency. In other words, it is not known whether the aggregation of cancer incidence predictions
at a small scale would give the prediction of cancer incidence at a larger scale. Beside this limitation,
Hausdor�-Gaussian process does not solve the problem of input data uncertainty that is found in the
EPC prediction problem.

In this paper, a new model is proposed where learning and prediction can be made from both ag-
gregated and point support data. An object category called grain is introduced to express this new
approach, consistent with research realities where it may be desirable to complete large aggregated open
datasets with local observations and predict at various scales. Grains containing a continuous or discrete
set of points are treated identically. MAUP is related to determining a covariance model for points from
which are derived the covariance between blocks and the covariance between points and blocks. The
standard aggregation approach is a weighted average. These weights are assumed to be fully determined
for a given block, they are not regarded as a probability distribution for a block, thereby ignoring some
related statistics and other potential sources of stochastic dependence between blocks. The present paper
proposes a method of incorporating a mixture distribution to address this issue. Kriging has already
been developed for features that are mixtures at the point level (Lin et al. [2010]), but Lin et al. make no
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assumption about the distribution of features at the areal level. Instead, we assume the aggregation of
information at the areal level to be a mixture. Averaging a large number of random variables results in
a reduction in variance, whereas mixing a large number of random variable does not tend to reduce the
variance. We will show that this approach e�ectively manages input uncertainty. However, one drawback
is that mixtures of Gaussian random variables are generally not Gaussian, which means that the usual
Gaussian process interpretations and conditioning will no longer hold.

The present study proposes a new model for processing granular data, as detailed in Section 2. In
Subsection 2.1, a suitable data model is established, while in Subsection 2.2, we de�ne the means and
covariances of output variables. Moreover, a Best Linear Unbiased Predictor is derived in Subsection
2.3. We illustrate the model with examples in Section 3, starting with simulated rounded input values in
Subsection 3.1, followed by simulated areal data with varying area sizes in Subsection 3.2. Subsection 3.3
focuses on presenting the EPC prediction problem. Finally, in Section 4, we discuss the pros and cons of
the new model.

2 Optimal linear interpolation of mixture distributions

This work is motivated by the will to handle data that is released in open format by public or private
institutions. The goal is to use institutional data, such as the distribution of salaries at the municipality
level, to estimate the distribution of salaries at a smaller scale, such as a district in a city, while also
including known salaries at speci�c locations. To achieve this, we propose here a general Kriging approach
that extends the traditional Simple or Ordinary Kriging and coKriging techniques. Let us consider an
input space over which is de�ned a �eld of multidimensional random output variables. The output
variables, such as sociological variables, are assumed to be de�ned and potentially observed for both
points in the input space and for geographic areas, such as cities, regions, or countries. These areas are
referred to as �grains�. The model predicts output variables for new inputs, whether they be points or
grains, based on the assumption that there is dependence between outputs based on the relative positions
of the inputs. No assumption is made regarding the shape of the grains, which can even overlap partially
or completely.

2.1 Data model

Let us de�ne the structure of the input space.

De�nition 1 (Inputs). Let d be a positive integer. A territory and grains inside this territory are de�ned
as follows:

� A territory is a subset χ of Rd .

� A point is any element x ∈ χ .

� A grain is any non-empty subset g ⊆ χ .

� A granularity G = {g1, g2, ...} of a territory χ is a �nite set of grains of χ .

It is common in some application �elds to use a di�erent terminology to talk about grains: blocks,
pixels, areas for instance. In the above de�nition, there is no constraint on grains, contrary to pixels that
are usually forming a regular grid known as a raster. Moreover, a grain is not necessarily a connected
set contrary to blocks. And an area is usually seen as associated with a surface area (a set of strictly
positive measure) whereas a grain may be a �nite set of points.

For instance, suppose that the points are represented as pairs of latitude and longitude coordinates.
In this case, χ could be de�ned as the set of all latitude-longitude pairs that fall within a speci�c country,
yielding d = 2 and χ ⊂ R2. A grain may correspond, for example, to a speci�c city, to a speci�c land plot,
or to a speci�c building's footprint. Previous Kriging models refer to blocks or areas for sets of points
that are disjoints and those authors are not interested in the family itself (see for instance Kyriakidis
[2004]). The reader may �nd in Appendix C some considerations about those families that arise when
relaxing the disjunction constraint.

Granularities are de�ned in order to work with families of grains. When dealing with geographic data,
a granularity is usually the minimum scale at which information is available. For instance, granularities
may be the set of land plots, the set of cities, the set of buildings footprints, etc. However, considered
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grains may have non empty intersections and may come from di�erent datasets, at di�erent scales such
as land plots and census tracts. De�nition 1 is general enough to include such sets of grains.

Data that describe population or buildings are not continuously de�ned over a territory, as opposed
to temperature or pollutant concentration. Census data are anonymized at census tract level before being
released. For instance, in a census table describing dwellings, a row describes a dwelling that exists on
a certain census tract but we don't know where exactly on this tract. Then dwellings' surface area is
neither continuous nor clearly geo-localized. De�nition 2 below uni�es outputs that are continuously
de�ned over a territory and outputs that are not.

De�nition 2 (Outputs). Let G be a granularity. Outputs are de�ned over points and grains of G as
follows:

� Y is a p-dimensional multivariate random �eld over χ denoted:

∀x ∈ χ, Y(x) := (Y1(x), . . . , Yp(x))
⊤ ∈ Rp

� For each g ∈ G, a p-dimensional real random vector Y(g) is de�ned to be the value of Y at a
random location Xg ∈ g:

∀g ∈ G, Y(g) := Y(Xg) ∈ Rp

For a given granularity G, the set of random variables {Xg : g ∈ G}, is assumed to be de�ned
and known, and the dependence structure between those random variables is supposed to be known.
Furthermore, these random variables are assumed to be independent from the random �eld Y.

Let us now suppose that the output is partially known on a set of grains:
For (i1, . . . , in) ∈ {1, . . . , p}n and g1, . . . , gn ∈ G the following n random variables are known:

Y = (Y 1, . . . , Y n)
⊤
with Y j = Yij (gj) for j ∈ {1, . . . , n}

As an example, if k observations of the whole random vector Y(gj) are conducted for j ∈ {1, . . . , k},
then n = k · p and the vector of observations is:

Y = (Y1(Xg1), . . . , Yp(Xg1), . . . , Y1(Xgj ), . . . , Yp(Xgj ), . . . , Y1(Xgk), . . . , Yp(Xgk))
⊤
. (1)

If some observations are incomplete, that is to say some components of Ygj are missing for some j,
then Y will be a subvector of Y given in Equation (1). It means that there may be missing data in the
output observations.
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Figure 3: Bar plot of EPC labels frequencies among all EPCs collected in France between 2014 and 2021. Classes
are highly heterogeneous.

Example 1 (Buildings energy e�ciency). Keeping in mind that an Energy Performance Certi�cate
(EPC) is given as an energy consumption in kWh/m2/year (see Figure 3), one can consider a model
for which χ is a city viewed as a 2 dimensional space with latitude and longitude as coordinates, G is the
set of plots and a point in χ is associated with a given square meter of a building on the plot. Y (x) is
the energy consumption associated with the square meter of building x. Then an EPC in the database is
the observed energy e�ciency rating associated with one unknown point among those located on the plot
pointed by the address. Therefore for a certain plot g, this EPC is an observation of Y (Xg). This model
is further developed in subsection 3.3 .
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2.2 Mean and covariances of output variables

The originality of the present work is that for a grain g, Y(g) is de�ned to be equal to Y(Xg), the value
of Y at a random location Xg ∈ g. If the random �eld {Y(x) : x ∈ χ} and the joint distribution of
{Xg ∈ χ : g ∈ G} are known, then the joint distribution of {Y(g) : g ∈ G} can be deduced. And, if one
only knows the moments of order one and cross moments of order two of {Y (x) : x ∈ χ} together with
the joint distribution of {Xg ∈ χ : g ∈ G}, then one can expect to be able to deduce expectation and
cross covariances of {Y(g) : g ∈ G}.

In the rest of the paper, we assume that �rst two moments of {Y(x) : x ∈ χ}, {Xg ∈ χ : g ∈ G} and
{Y(g) : g ∈ G} exist. In the following proposition, we show that we can indeed deduce the moments of
grains' outputs.

Proposition 1 (Mean and covariances of Y(g)). From De�nition 2, we derive the following results:

(i) For any grain g ∈ G and any index i ∈ {1, . . . , p} , assuming that for all x ∈ g we know µi(x) :=
E [Yi(x)], we have:

µi(g) := E [Yi(g)] = E [µi(Xg)] (2)

(ii) For any two grains g, g′ in G and any two indices i, j ∈ {1, . . . , p}, assuming that for all x ∈ g,
x′ ∈ g′ we know ki,j(x, x

′) := Cov [Yi(x), Yj(x
′)], we have:

ki,j(g, g
′) := Cov [Yi(g), Yj(g

′)] = E [ki,j(Xg, Xg′)] + Cov [µi(Xg), µj(Xg′)] (3)

In particular, ki,i(g, g) = Cov [Yi(g), Yi(g)] = V [Yi(g)] = E [ki,i(Xg, Xg)] + V [µi(Xg)].

Proof. (i) is a direct application of the conditional expectation formula where Yi(g) is the result of
conditioning Yi(x) with Xg. And (ii) is derived from the conditional covariance (variance) formula, after
conditioning by the joint random vector (Xg, Xg′) (random variable Xg).

Note that Cov [µi(Xg), µj(Xg′)] = 0 in the case where µi(x) is constant over g or g′ or in the case
where Xg and Xg′ are independent. Also note that this framework yields the expected result that if a
grain is restricted to a point, then the output of this grain is the same as the output of the underlying
point.

Example 2. For two distinct and �nite grains g and g′ of cardinalities [g] , [g′], assuming that Xg and
Xg′ are independent uniform random variables, we get:

µi(g) =
1

[g]

∑
x∈g

µi(x)

ki,j(g, g
′) =

1

[g] [g′]

∑
(x,x′)∈g×g′

Cov [Yi(x), Yj(x
′)]

ki,j(g, g) =
1

[g]

∑
x∈g

Cov [Yi(x), Yj(x)]

Remark 1 (Comparison with average � block-to-block covariances). Previous models using the concept
of blocks de�ne Ȳi(g) := E [Yi(Xg)|{Yi(x), x ∈ g}] =

∫
g
Yi(x)dFg(x), with Fg the cumulative distribution

function (cdf) of the (possibly discrete) random variable Xg, i ∈ {1, . . . , p}. One can check that with this
setting the mean of the mixture Yi(g) and the average Ȳi(g) are identical:

E [Yi(g)] = Ȳi(g) .

Regarding the covariances, when Xg and Xg′ are two independent random variables, one can check that

E [ki,j(Xg, Xg′)] = Cov
[
Ȳi(g), Ȳj(g

′)
]

However
E [ki,j(Xg, Xg)] ̸= Cov

[
Ȳi(g), Ȳj(g)

]
because the independence assumption does not hold any more. As a consequence, V [Yi(g)] ̸= V

[
Ȳi(g)

]
,

even in the speci�c case where ∀i, j, g, g′, Cov [µi(Xg), µj(Xg′)] = 0. The di�erence between a mixture
and an average is retrieved here, the mixture can exhibit a higher dispersion.
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2.3 Best unbiased linear predictor

In this section, it is proved that there exists a best linear predictor to predict the output associated with a
new grain g ⊂ χ given a learning set of observations. The problem amounts to predicting any component
of the output.

Let Y be the vector of observations forming the learning set, and let g ⊂ χ be a grain such that for
some i ∈ {1, . . . , p}, Yi(g) is to be predicted.

Denote:

µ := E [Y] ∈ Rn

K :=
(
Cov

[
Y j , Y j′

])
j,j′∈{1,...,n}

∈ S+
n (R) set of semi-de�nite positiven× n real matrices

hi(g) :=
(
Cov

[
Y j , Yi(g)

])
j∈{1,...,n} ∈ Rn

In the following, K is assumed to be invertible.
With a given set of weights α(g) =

(
α1(g), . . . , αn(g)

)
∈ Rn, is associated a linear predictor Mα(g):

Mα(g) =

n∑
j=1

αj(g)Y j = α(g)
⊤
Y . (4)

The optimal weights αi(g), provided that they exist and are unique, are de�ned to be those minimizing
a quadratic error over all unbiased linear predictors:

αi(g) ∈ arg min
α∈Rn

E
[(
Yi(g)−α⊤Y

)2]
(5)

Given the optimal predictor Mi(g), the prediction errors are denoted:

ϵi(g) := Yi(g)−Mi(g) (6)

ci,j(g, g
′) := E [ϵi(g) ϵj(g

′)] (7)

vi(g) := ci,i(g, g) (8)

The following proposition gives an optimal predictor that can be computed under the minimal assump-
tions of Proposition 1: given the �rst two moments of random variables {Xg : g ∈ G}, all components of
µ, K and hi(x) can be computed.

Proposition 2 (Mixture Kriging prediction). Given a set of observations Y, for any g, g′ ⊂ χ, and in
particular for a single point g = {x}, for any i ∈ {1, . . . , p}, the weights αi(g) yielding the best linear
unbiased predictor (BLUP) of Yi(g) and the associated cross errors are as follows:

(i) Simple Mixture Kriging. If µ = (0, . . . , 0)
⊤
and µi(g) = 0 then

αi(g) = K−1hi(g) (9)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) (10)

(ii) Ordinary Mixture Kriging. If µ ̸= (0, . . . , 0)
⊤

then the condition for unbiasedness writes

µi(g) = αi(g)
⊤
µ and

αi(g) = K−1
(
hi(g) + λi(g)µ

)
where λi(g) =

µi(g)− µ⊤K−1hi(g)

µ⊤K−1µ
(11)

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ (12)

Proof of Proposition 2 is given in Appendix A.
The above Proposition 2 is valid to predict a single component Yi(g) of the output Y(g), but it can

be extended to the prediction of Y(g): the best linear unbiased predictor of Y(g) = (Y1(g) . . . Yp(g))
⊤

for the quadratic error E
[
||Y(g)−AY||22

]
is MA(g) = A(g)Y where A(g) is the matrix of which the i-th

row is equal to αi(g)
⊤ given by Proposition 2.
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2.4 Particular cases

In this subsection, three important particular cases are explored. The �rst one considers the Ordinary
Mixture Kriging situation where the output expectation is the same everywhere, an estimator of this
constant expectation is derived. The second particular case considers Mixture Kriging with noisy obser-
vations and shows that a nugget e�ect can be introduced the same way as for Kriging. The last particular
case shows that Kriging is a special case of Mixture Kriging.

Particular case 1 (µ = µ0(1, . . . , 1)
⊤). Regarding ordinary mixture Kriging, assuming that all random

variables Yi(g) have the same unknown expectation µ0, setting 1n = (1, . . . , 1)
⊤
, Equation 9 simpli�es

into:

αi(g) = K−1

(
hi(g) +

1− 1n
⊤K−1hi(g)

1n
⊤K−11n

1n

)
,

and setting

m̂(g) :=
1n

⊤K−1Y

1n
⊤K−11n

,

Mi(g) becomes:

Mi(g) = m̂(g) + hi(g)
⊤
K−1(Y − 1nm̂(g)) ,

therefore m̂(g) is an unbiased estimator of µ0. m̂ can be compared with usual sample mean for independent

observations Y = 1n
⊤Y

1n
⊤1n

.

Particular case 2 (Noisy observations). Let us consider the case where, for a given x ∈ χ, we can only
observe Ỹi(x) = Yi(x) + ϵi(x) where ϵi(x) is independent from any Yj(x

′). We denote the resulting noisy
outputs, observations and covariances:

Ỹi(g) := Ỹi(Xg) = Yi(g) + ϵi(g)

Ỹ j := Ỹij (Xgj ) = Y j + ϵj

ηi,j(x, x
′) := Cov [ϵi(x), ϵj(x

′)]

Then covariance between 2 grains outputs is:

k̃i,j(g, g
′) := Cov

[
Ỹi(g), Ỹj(g

′)
]
= ki,j(g, g

′) + E [ηi,j(Xg, Xg′)]

Therefore observations covariance matrix writes:

K̃ :=
(
Cov

[
Ỹ j , Ỹ j′

])
j,j′∈{1,...,n}

K̃ = K+
(
Cov

[
ϵj , ϵj

′
])

j,j′∈{1,...,n}

K̃ = K+Kϵ

And covariance vector between observations and a new grain writes:

h̃i(g) :=
(
Cov

[
Y j + ϵj , Yi(g) + ϵi(g)

])
j∈{1,...,n}

h̃i(g) = hi(g) +
(
E
[
ηij ,i(Xgj , Xg)

])
j∈{1,...,n}

h̃i(g) = hi(g) + hϵ,i(g)

Typically, we can assume that E [ηi,j(Xg, Xg′)] = 1{i=j}1{g=g′}ηi,i(g, g). In which case Kϵ is a
diagonal matrix and hϵ,i(g) is null as long as g is not among the observed grains.

Particular case 3 (Gaussian Singleton). Assume that {Y(x) : x ∈ χ} is a vector-valued Gaussian ran-
dom �eld and that each Xg is Dirac distributed for all grains. This last condition holds in particular when
each grain is restricted to one singleton point. In this Gaussian case, one retrieves Simple Kriging and
Ordinary Kriging predictors, as de�ned for example in Rasmussen and Williams [2006]. In this sense,
the Mixture Kriging results presented here can be seen as a generalization of the Kriging interpolation.

It is also to be noticed that under certain assumptions, one can prove that if Mi(g) = E [Yi(g)|Y]
then the cross error can also be viewed as a conditional expectation: ci,j(g, g′) = E [Cov [Yi(g), Yj(g

′)|Y]].
Details are given in Appendix B.
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3 Illustration

3.1 Unidimensional case: rounded inputs

A common issue when feeding statistical models with real data is the precision of input data and its impact
on a model's performance. Usual applications of Kriging take this uncertainty into account increasing
output variances by a value that is known as nugget e�ect (e.g. Rocas et al. [2021]). Precision being a
typical case of input data uncertainty, the example below simulates the e�ect of rounding input values to
the nearest units. Let us consider a one dimensional, centred Gaussian random �eld Y (x), x ∈ [1, 10] of
constant variance. Let us assume that this �eld is observed at some input values that are rounded to the
nearest unit i.e. for 2 input values of x1, x2 ∈ ]0.5, 1.5], the observer sees the same value x̃1 = x̃2 = 1. For
a Kriging model, these are multiple observations of a same point and it is necessary to introduce a nugget
e�ect in the model for the observations' covariance matrix to be invertible. This nugget e�ect simulates
an uncertainty on the output values while the uncertainty is really on the input values. Therefore, it
makes sense to describe those input values as random positions x̃1,g and x̃2,g in g = ]0.5, 1.5] instead of
deterministic x̃1 = x̃2 = 1. Then, we can model the observed objects as mixture distributions and �t a
mixture Kriging model. Let us compare both approaches.

Using the geoR package in R language, we simulate a 1-dimensional random �eld realization with
Gaussian covariance kernel which parameters are detailed in Table 1 . x is discretized between 0 and 10
with step 0.05. We pick 8 points for observations as listed in Table 2 . These observations are plotted on
Figure 4 . Observations {o1, o2, o6} form the learning set, observations {o4, o5, o7} form the test set and
observations {o3, o8} form the validation set.

Underlying �eld Model properties Validation Total

Variance Range Model Variance Nugget Range MSE MSE

1 4 Kriging 1 10−9 4 0.037 1.14
1 4 Mixture Kriging 1 0 4 0.027 1.18

Table 1: Parameters and performances of �tted models in the case of observations with rounded input. Note that
nugget e�ect for Kriging is the result of an optimization process. For Mixture Kriging, nugget is null by design.
Validation MSE: Mean Squared Error on validation set. Total MSE: Mean Squared Error on the complete interval
[0, 10].

Input Output

Set Label Underlying x Rounded x Grain y
(True value) (for Kriging) (for Mixture Kriging)

Learning o1 0.55 1 g1 = ]0.5, 1.5] 0.923
Learning o2 0.85 1 g2 = ]0.5, 1.5] 1.005
Validation o3 1.65 2 g3 = ]1.5, 2.5] 1.127

Test o4 3.00 3 g4 = ]2.5, 3.5] 0.946
Test o5 3.45 3 g5 = ]2.5, 3.5] 0.801

Learning o6 7.20 7 g6 = ]6.5, 7.5] 0.337
Test o7 9.40 9 g7 = ]8.5, 9.5] 0.884

Validation o8 9.70 10 g8 = ]9.5, 10] 0.908

Table 2: Observations of the simulated Gaussian random �eld.

Kriging model (Figure 4 left) has repeated observations for x = 1 and x = 3. The learning set is used
to �t a family of models with the same kernel parameters as those used for simulation plus a nugget e�ect
among (10−i)i∈{1,...,10}. Nugget e�ect yielding the smallest mean squared error (MSE) on the test set is
selected. A new model is �tted with both learning and test sets using same kernel and the previously
selected nugget e�ect. This model is applied to compute a validation MSE and a total MSE computed
on all points in [0, 10]. The variance of the prediction error is also predicted using formula given in
Proposition 2 .
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Regarding Mixture Kriging (Figure 4 right), grains g1 = [0.5, 1.5[ and g3 = [2.5, 3.5[ are observed
twice each while the other grains are observed once each. Mixture Kriging model can handle repeated
observations by design. Uncertainty on the input is resulting from the random position that generates the
observation. The grain covariances are computed from the point covariances as detailed in Proposition 1 .
The random positions (Xgi)i∈{1,...,8} are assumed to be uniform on the points of the associated grains.
Both learning set and test set are used to �t a model with the same kernel parameters as for simulation
and without nugget e�ect. Validation MSE and total MSE are computed for comparison with Kriging.

o1

o2
o3

o4
o5

o6

o7
o8

Kriging without grains definition Mixture Kriging with grains definition

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.0

0.5

1.0

1.5

x

y

Type of y

prediction +− 2 sd(error)

Observations

Kriging without grains definition

Mixture Kriging with grains definition

Type of y

predictions

true

Figure 4: Rounded inputs. Left and right Dashed line labelled �true� shows a simulated uniform random �eld.
Solid line labelled �predictions� shows �tted model mean prediction (see Table 1). Ribbon shows an interval
of radius twice the root square of the estimated error variance. Left: Kriging model. Triangular dots show
observations. Right Mixture Kriging. Horizontal line segments show observations. (See Table 2 for more details
about observations).

In this case the mean prediction is almost the same for both models. But the predicted error variance
(visible on the ribbons in Figure 4) di�ers. By construction, Kriging is supposed to interpolate observa-
tions exactly resulting in a very small error variance near observations. However, Mixture Kriging takes
into account the input uncertainty and predicts a signi�cantly positive error variance even near observa-
tions. If one increases the nugget e�ect on the Kriging model, the predicted error variance increases but
there remains a �bottle neck� e�ect near the observations and predictions are shrunk towards 0.

3.2 Unidimensional case: grains of varying size

Imagine a company that wants to measure some performance indicator for manufactured objects that
are produced according to certain design speci�cations. The design is denoted x, it belongs to a set of
permissible values χ and Y(x) is the performance indicator. For instance, Y can measure the lift of an
aircraft wing depending on some shape parameter x. Because of some unavoidable manufacturing pre-
cision issues, the manufactured object's characteristics do not match the design's speci�cations exactly.
This uncertainty on the manufactured object induces some uncertainty on the performance. Thus, the
constructed design can be viewed as a random vector Xgx , taking values in some tolerance set gx ⊂ χ
around the design x ∈ χ. When testing some designs x1, . . . , xn, the industry observes performances
Y(g1), . . . ,Y(gn). Measuring both the expectation and the variance of Y(x) for each permissible design
x ∈ χ is one method to �nd the best design but this can be costly so that �tting an interpolation model
with the set of k observations is preferable. In this setting, for the sake of simplicity, we assume that Y(x)
is conditioned by observations

{
y(xi) = sin(x2

i ) : i ∈ {1, . . . , n}
}
. In this case, we assume that the pre-

cision associated with a design xi is an interval centred on x. The real characteristic of the object having
performance y(xi) is a random value in this grain which is assumed to be uniform on all points of the grain.

We compare 3 models:

� P1 : Manufactured object is produced exactly according to the design, precision interval is restricted
to a point.

� P2 : The precision is the same for all designs, the associated interval is of �xed measure.
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Grains are of varying size

Grains are of diameter 0.2

Grains are singletons

0 1 2 3 4

−1

0

1

−1

0

1

−1

0

1

x

y

Point
Underlying
observed point

Ribbon

grains
prediction
+− 2*sd(error)

Type of y

predicted

true

Figure 5: Mixture Kriging and grain sizes.

All: Dashed line represents y(x). Solid line is the mean prediction. Ribbon shows an interval centred on the
mean prediction, of radius twice the square root of the predicted error variance. Vertical columns show the grains
as x intervals. Black triangles show the underlying observed point (observed Xg and associated output).

� P3 : The larger is x, the larger is the uncertainty on the manufactured object, which means that
intervals' measures are growing with the design x.

All three models have a null nugget e�ect and a Gaussian kernel with the overall variance of y on
χ = [0, 4] as variance parameter. Range parameter is optimized minimizing mean squared error between
y and point prediction on χ. When grains are restricted to points (Figure 5 top), we get the usual results
on simple Kriging, in particular predicted values are exactly interpolating observations. When grains are
intervals of same size (Figure 5 middle), predicted values are not interpolating any more, predicted error
is not null on the grains but is also smaller than above far from the grains. In the bottom �gure, the
greater is x, the greater the uncertainty on the manufactured object as compared to design. Predicted
error (ribbon) is increasing with the grains diameter.

Model properties

Granularity Variance Nugget Range Exact interpolation

Grains are singletons 0.36 0 0.3 Yes

Grains are of equal measure 0.36 0 0.4 No

Grains are of increasing measure 0.36 0 0.3 No

Table 3: Compare models quality for di�erent types of granularities.

Overall, it is important to note that mixture Kriging model accounts for the randomness of input
values without any nugget e�ect, therefore preserving variability of predicted values.
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3.3 Energy Performance Certi�cate (EPC) prediction

Let us now address the EPC prediction problem in a more detailed manner. EPC is given as a numeric
energy consumption per square meter and per year which is associated with a letter ranging from A to
G. A and B label the most energy saving dwellings (less that 90kWh/m2/year). F and G label the most
consuming dwellings (more than 330kWh/m2/year). We want to model a situation where we observe
EPC with an uncertainty on the location of the observed dwelling on the land plot where it lies and where
the observed dwelling can not be distinguished among all the dwellings of this land plot. And we want
to predict an EPC at the whole land plot level, that is to say for the set of buildings it contains.

As can be seen in Figure 3, observations are strongly unbalanced, meaning that labels A, B, F, G
are rarely observed while labels C, D, E are very common. As a result, labels A, B, F, G are di�cult
to predict although they are more interesting for decision makers. Therefore we introduce the Balanced
Accuracy (BA) criterion. It is an asymmetric performance measure that focuses on good results (Gösgens
et al. [2021]) and it gives the same weight to each class. Denoting TL the number of observations with
label L and TPL the number of good predictions with label L, the balanced accuracy is given by the
formula:

BA =
1

7

∑
L∈{A,...,G}

TPL

TL

Let us �rst consider the following variable normalization: given a real random variable X, FX its cdf,
supposed to be invertible and FN the standard Gaussian distribution cdf, we denote H(X) the random
variable given by F−1

N (FX(X)). It follows a standard Gaussian distribution. Moreover H has an inverse
since X = F−1

X (FN (H(X))).
Let us consider the model M1 such that:

� χ is the territory of an urban area in the French city of Angers in a 3 dimensional space where
coordinates represent construction year, latitude and longitude.

� A random �eld Y (x) is de�ned on χ. It represents the image through H of the energy consumption
per square meter and per year at x.

� A grain g is de�ned as a set of points in a 3 dimensional space χ. A grain represents a land plot.
Each point represents a square meter of living area. It has 3 coordinates. The set of all grains form
the granularity G.

� For any grain g ∈ G, the random variable Xg is the uniform law on the points of g. It represents the
uncertainty on the location of observations. On g, the output variable is de�ned as: Y (g) = Y (Xg).

� A vector of observations of n distinct grains is given and denoted Y.

Moreover, by construction, Y is centred.

The granularity G is mapped in Figure 6 . Note that the grains seem to be disjoint but they are not
due to overlaps on the 3rd dimension. The set of observations is represented in Figure 7 .

For this model, the following assumptions are made:

� For any two distinct grains g, g′, random variable Xg is independent from Xg′ .

� For any two points x, x′, the covariance between Y (x) and Y (x′) is following a Matérn 3/2 model:

Cov [Y (x), Y (x′)] = σ2

(
1 +

3∑
i=1

|xi − x′
i|

θi

)
exp

(
−

3∑
i=1

|xi − x′
i|

θi

)
where U = (σ2, θ1, θ2, θ3) ∈]0, 1]×]0,+∞[3

σ2 is called the variance coe�cient and Θ = (θ1, θ2, θ3) the length scale coe�cients. Note that no
nugget e�ect is required because the model takes into account the spatial uncertainty of the input by
construction.

Mixture Kriging predictor described in subsection 2.3 is used to predict energy consumption at plot
level. It can be proved that without nugget e�ect the mean prediction, in the case of a one dimensional
output, does not depend on σ2 (the proof is simply deduced from the fact that for an invertible matrix A,
we have (λA)−1 = λ−1A−1). σ2 is therefore set to 1. Θ is chosen so as to maximize the BA criterion of the
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Construction	year	(percentiles)
	0%	–	10%
	10%	–	20%
	20%	–	30%
	30%	–	40%
	40%	–	50%
	50%	–	60%
	60%	–	70%
	70%	–	80%
	80%	–	90%
	90%	–	100%

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 6: An urban area in Angers: latitude is the ver-
tical dimension, longitude is the horizontal dimension,
construction year is given by the colour. The side of
the square is 1km. Construction years range from 1340
(�rst percentile) to 2019 (last percentile).

Observed	EPC	(label)
	A
	B
	C
	D
	E
	F
	G

Leaflet	|	©	OpenStreetMap	contributors,	CC-BY-SA

Figure 7: Map of the 365 observations. Each colour
represents a label associated with a numeric value. See
also Figure 1 .

predicted labels derived from the predicted energy consumptions. BA is computed using leave-one-out
cross validation. Note that the leave-one-out cross validation predictor that is derived from Proposition
2 is also linear and optimal for quadratic error. A code has been developed in R language to implement
Mixture Kriging.

Let us now consider a Kriging model M2 to compare performances with Mixture Kriging model M1.
M2 has same properties as M1 presented above except that:

� Grains are singletons. A grain g =
{
x1, ..., xq

}
is replaced by a point x of coordinates the minimum

construction year and the mean latitude and longitude values. Note that is assumed that the year
of construction of the eldest building portion is the most meaningful information for prediction.
This makes sense especially because the eldest part of a building is usually also the largest one.

� A nugget e�ect has to be introduced so as to have a smooth predictor:

V [Y (x)] = σ2 + ϵ2 where ϵ2 ∈ [0, 1] .

Kriging predictor is used. V = (σ2, θ1, θ2, θ3, ϵ
2) is chosen so as to maximize BA, the same way as

for M1. The standard R package DiceKriging is used for prediction.

Both modelsM1 andM2 are optimized with a genetic algorithm provided by R package ga parametrized
with population size 50, elitism 5, maximum number of iterations 100, maximum number of iterations
without improvement 100. Other parameters are left to default.

With regards to the optimal parameters in Table 4 , length scale parameters are smaller in M1 than
in M2, meaning that M1 prediction is in�uenced by fewer neighbours than M2. The nugget e�ect found
for M2 is small. As for the optimal performances in Table 5, M1 reaches a larger BA than M2 by 37%.
However M1 has lower performances on other indicators with a di�erence of approximately 10%. The
variance of all 365 predictions with M1 is 150% larger than with M2. These �gures are better understood
by examining the confusion matrices in Tables 6 and 7. Indeed, the percentage of large errors (represented
by the red area) is 3% with model M1 and 0.5% with M2. We know that large errors have an important
impact on MAE and RMSE. However, the percentage of true labels A and B that are predicted as A or
B is 25% with M1 and 10% with M2. For labels F and G, these �gures are 16% and 0% respectively.
This information is valuable for decision makers seeking to identify energy-intensive dwellings.

These results suggest that Mixture Kriging (M1) predictions have an improved variability compared to
Kriging (M2). Despite having fewer parameters, Mixture Kriging signi�cantly improves the BA although
it leads to more frequent large errors. Kriging accounts for uncertainty in the input data eliminating the
need to add uncertainty to the output. In this example it avoids grouping predictions near the mean
value (shrinkage) and yields a better BA as compared with Kriging which requires the introduction of a
nugget e�ect.
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Model ϵ2 σ2 θ1 θ2 θ3

Mixture Kriging (M1) 0.00* 1.00* 0.28 0.44 1.22

Kriging (M2) 0.02 0.53 0.98 0.82 1.49

*: These parameters are treated as constant parameters.

Table 4: Optimal parameters for M1 and M2.

EPC int. EPC num.

Model BA MAE RMSE MAE RMSE Prediction range

Mixture Kriging (M1) 0.26 0.93 1.37 78.93 106.16 6,66

Kriging (M2) 0.19 0.85 1.22 72.22 92.98 2,59

EPC int.: Energy Performance Certi�cate treated as an integer: 1 for label A, ..., 7 for G.

EPC num.: energy consumption expressed in kWh/m2/year.

BA: Balanced Accuracy; MAE: Mean Absolute Error; RMSE: Root Mean Squared Error.

Prediction range: Variance of the vector of predictions.

Table 5: Optimal performances achieved by M1 and M2 with 3 input variables and no output covariate.

True

values
Predicted values

A B C D E F G

A 2 1 1 2 2 0 0

B 1 3 3 9 2 2 0

C 1 3 3 26 15 4 0

D 3 5 5 80 33 5 1

E 4 2 2 36 36 5 1

F 0 3 3 4 5 3 0

G 0 0 0 1 1 0 0

Table 6: Confusion matrix of M1 predictions

True

values
Predicted values

A B C D E F G

A 1 0 0 5 1 0 0

B 0 2 2 11 4 0 0

C 0 1 1 48 12 0 0

D 2 1 1 94 32 0 0

E 0 1 1 56 30 0 0

F 1 0 0 11 3 0 0

G 0 0 0 1 0 0 0

Table 7: Confusion matrix of M2 predictions

4 Discussion and conclusion

Since the discovery of Kriging, the issue of learning from and predicting areal data has been a concern.
Proposed models have mainly assumed that the output at the areal level is the mean of the point
outputs, which has proven helpful in various �elds such as mining, climatology or satellite imaging,
where averaging makes sense for interpretation and where blocks tend to have similar shapes and sizes.
However, in other �elds such as agriculture or social studies, blocks can have varying shapes or sizes and
averaging is not always the most meaningful interpretation. In these cases, problems like Modi�able Areal
Unit Problem (MAUP), ecological inference and variance reduction problems can become challenging to
solve. Over the past few decades researchers have been developing methods to assess and/or correct
MAUP e�ect (Briz-Redón [2022]). Modifying territory partitioning (Li et al. [2009]) is also an e�ective
solution for addressing variance reduction problem, but not always possible. Both Kriging and block-
Kriging incorporate uncertainties on input and/or output values through the addition of a nugget e�ect to
variances, hereby simulating the addition of a white noise to the outputs. This transformation smooths
predicted values but also shrinks them: the range between minimal and maximal predicted values is
reduced, thus degrading the prediction of values that are particularly large or particularly small.

The availability of new datasets with uncertainty on the inputs and where averaging is not a meaning-
ful interpretation has driven us to seek a novel method of linear interpolation. We have introduced a new
element in the model that is a random position (input value) associated with the output at areal level.
It has been found that resulting mixture distributions can be interpolated optimally and the resulting
Best Linear Unbiased Predictor (BLUP) requires only the �rst 2 moments of the prior random �eld and
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a spatial covariance function. This model can learn from and predict outputs associated with grains of
any shape, size or cardinality. Even points are acceptable. The terms �grains� and �granularity� have
been introduced to describe these objects.

The new model called Mixture Kriging is still consistent with Kriging in the sense that Kriging is
a special case of Mixture Kriging where grains are restricted to singletons. However, Mixture Kriging
generates a mean prediction range that is not impacted by the grain's shape or size under usual conditions.
As a consequence there is no prediction shrinkage due to this factor. If the output variance is the same
everywhere at point level, then it is also the same as the output variance at grain level, meaning that
there is no variance reduction either. Similarly if the covariance between the output variable of interest
and another output variable is the same everywhere at point level, then it will also be the same as the
covariance at grain level regardless of the grain's shape. This implies that this model has no measurable
MAUP e�ect.

The main computational distinction between block-to-block Kriging and Mixture Kriging lies in the
method of computing the observations variance and the covariance between covariates associated with the
same grain. This results mainly in the diagonal of the observations covariance matrix being greater than
what is found with Kriging. This is precisely the sought e�ect when introducing a supplementary noise
on the outputs (nugget e�ect) in Kriging for smoothing predictions. This explains why Mixture Kriging
has smooth predictions but with limited shrinkage, hence a good performance with Balanced Accuracy.
Regarding computational di�erences, it should also be noted that Mixture Kriging (like block-to-block
Kriging) has a higher computational cost than Kriging, this cost is growing like the squared value of the
density of points in the grains. In practical applications, Mixture Kriging is therefore designed to handle
data with uncertainty on the input values without introducing nugget e�ect.

This new approach opens the way for implementing Mixture Kriging models with new datasets that
have been impossible to �t in the usual Kriging framework. In particular, datasets that inform about
granules that are uncertainly de�ned such as dwellings, buildings, streets, human persons, households. It
can also be used for datasets informing about granules which should have deterministic shapes or position
in the input space but come with a numerical uncertainty such as measure precision, rounding e�ect,
observations' aggregations or observations' anonymization. Moreover, the model can handle multivariate
outputs, even if some output components are missing in the observations. Encouraging results have been
found studying the prediction of Energy Performance Certi�cates (EPC). Results show that Mixture
Kriging can be useful to improve the prediction of values far from the average, and in our case to improve
the detection of energy saving homes. Future studies should test the upscaling feasibility of the already
developed model and test the bene�ts of using covariates. We also study the possibility to develop a
similar model with Universal Kriging.
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A Proof of Proposition 2

It is interesting for the understanding of the problem to give it a geometrical approach. Let us denote Fi(g)
the set of linear unbiased predictors of Yi(g) given an observation vector Y. With previous notations, it
means that:

Fi(g) :=
{
α⊤Y : µi(g) = α⊤µ

}
Gi(g) := {αYi(g) : α ∈ R}

And similarly, we denote:

F :=
{
α⊤Y : α ∈ Rn

}
(the feature space generated by observations)

F0 :=
{
α⊤Y : α⊤µ = 0

}
H := F ×Gi(g)

One can note that F0 is a subspace of F of dimension dim(F ) − 1. Moreover F0 + Fi(g) = Fi(g),
meaning that Fi(g) is an a�ne subspace of F having F0 for underlying vector space (see Figure 8). But
it also means that the sets of unbiased linear predictors for each output variable are parallel:

∀i, j ∈ {1, . . . , p}, ∀g, g′ ∈ χ, Fi(g) ∥ Fj(g
′)

Now, given that we are minimizing the quadratic error between Yi(g) and Mi(g) which can be seen
as the distance between Yi(g) and Mi(g) in H, the optimization process is geometrically a projection of
Yi(g) on Fi(g). This approach is illustrated in Figure 8.

Proof. For given i ∈ {1, . . . , p} and g ⊆ χ, let Mα = α⊤Y be a linear predictor of Yi(g), where α =
(α1, . . . , αn) is a vector of weights, and denote the associated error vi(g,α) := E

[
(Yi(g)−Mα)

2
]
, then:

vi(g,α) = E
[(
α⊤Y − Yi(g)

)2]
= E

[
α⊤YY⊤α− 2Yi(g)α

⊤Y + Yi(g)
2
]

= α⊤Kα+α⊤µµ⊤α− 2α⊤ (hi(g) + µµi(g)
)
+ V [Yi(g)] + µi(g)

2 .

(i) If µ = (0, . . . , 0)
⊤ and µi(g) = 0 then

vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .

By di�erentiation over each component of α,

∂vi(g,α)

∂α
:=

(
∂vi(g,α)

∂αj

)
j∈{1,...,p}

= 2Kα− 2hi(g) .

Without constraints, this value should be null at any extremum, and thus the optimal vector of
weights is

αi(g) = K−1hi(g) .

Since K is symmetric positive, this only extremum is a minimum.

Figure 8: Geometrical interpretation of the prediction process.
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(ii) If µ ̸= (0, . . . , 0)
⊤ then the condition for unbiasedness writes µi(g) = α⊤µ by linearity of expecta-

tion.

vi(g,α) rewrites again:
vi(g,α) = α⊤Kα− 2α⊤hi(g) + V [Yi(g)] .

We introduce the Lagrangian operator:

L(α, λ) = vi(g,α)− 2λ(α⊤µ− µi(g)) .

We are minimizing a quadratic function over a single a�ne equality constraint. A necessary opti-
mality condition is:

∂L
∂α

(α, λ) = 0 ,

that is to say:
2Kα− 2hi(g)− 2λµ = 0 ,

and therefore the optimal weights are

αi(g) = K−1(hi(g) + λµ) .

The unbiasedness condition is:

µ⊤(K−1(hi(g) + λµ)) = µi(g) ,

so that

λi(g) =
µi(g)− µ⊤K−1hi(g)

µ⊤K−1µ
.

Therefore this only solution is a minimum of vi(g,α).

Let us consider now the cross-errors:

ci,j(g, g
′) = E [(Yi(g)−Mi(g)) (Yj(g

′)−Mj(g
′))] .

Due to unbiasedness condition, it means that:

ci,j(g, g
′) = Cov [Yi(g)−Mi(g), Yj(g

′)−Mj(g
′)]

= Cov [Yi(g), Yj(g
′)]− Cov [Yi(g),Mj(g

′)]− Cov [Mi(g), Yj(g
′)] + Cov [Mi(g),Mj(g

′)]

= Cov [Yi(g), Yj(g
′)]− Cov

[
Yi(g),αj(g

′)
⊤
Y
]
− Cov

[
αi(g)

⊤
Y, Yj(g

′)
]
+Cov

[
αi(g)

⊤
Y,αj(g

′)
⊤
Y
]
.

Which rewrites:

ci,j(g, g
′) = ki,j(g, g

′)−αj(g
′)
⊤
hi(g)−αi(g)

⊤
hj(g

′) +αi(g)
⊤
Kαj(g

′) . (13)

Note that equation (13) is true for any linear unbiased predictor.
Which, in the case of simple mixture Kriging, simpli�es into:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) .

And in the case of ordinary mixture Kriging:

ci,j(g, g
′) = ki,j(g, g

′)− hi(g)
⊤
K−1hj(g

′) + λi(g)λj(g)µ
⊤K−1µ .

The expressions of vi(g) = ci,i(g, g) in both cases follow immediately.
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B Cross-errors and conditional covariances

Proposition 3 (Cross-errors and conditional covariances). Consider the assumption

(A) : ∀i ∈ {1, . . . , p}, ∀g ∈ G, Mi(g) = E [Yi(g)|Y] .

This is for example the case when {Y(x) : x ∈ χ} is a vector-valued Gaussian random �eld and when
each Xg is Dirac distributed (see Remark 3). In this setting, under assumption (A), one can show that
cross errors for both Simple Mixture Kriging and Ordinary Mixture Kriging are

ci,j(g, g
′) = E [Cov [Yi(g), Yj(g

′)|Y]] . (14)

If Cov [Yi(g), Yj(g
′)|Y] does not depend on Y, as it is the case for conditional Gaussian vectors,

Equation simpli�es: E [Cov [Yi(g), Yj(g
′)|Y]] = Cov [Yi(g), Yj(g

′)|Y].

Proof. The proof uses a classical approach on orthogonality of Best Linear Unbiased Predictors. It is
presented here in three steps. The proof can be simpli�ed in the Simple Mixture Kriging setting.

� First, given the notations introduced in Appendix A, let δ ∈ F0 be a non-zero vector and β a real
number.

Let Mβ
i (g) := Mi(g) + β δ ∈ Fi(g). Recall that ϵi(g) := Yi(g)−Mi(g) and vi(g) := E

[
(ϵi(g))

2
]
.

We have:

E
[
(Yi(g)−Mβ

i (g))
2
]
= vi(g)− 2βE [ϵi(g) δ] + β2E

[
δ2
]
.

The minimum value of this polynomial expression is reached for:

β0 =
E [ϵi(g) δ]

E [δ2]
.

Since the only optimal point is Mi(g), M
β0

i (g) = Mi(g) and therefore β0 = 0. As a consequence,
as both E [ϵi(g)] = 0 and E [δ] = 0:

∀δ ∈ F0, ∀i ∈ {1, . . . , p}, ∀g ∈ χ, E [ϵi(g) δ] = Cov [ϵi(g), δ] = 0 . (15)

From a geometrical point of view it is equivalent to say that the inner product of the error and
any vector of F0, such as the di�erence of any linear unbiased predictors of Yj(g

′), is null. This
approach can be found for example in Aldworth [1998], section 4.5.1. page 122, in the case of
ordinary Kriging on a stationary process.

� Now, let δ and δ′ be any two vectors of F0. As a consequence of the previous result in Equation (15),
we have:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] =ci,j(g, g

′) + 0 + 0 + Cov [δ, δ′] (16)

� On the other hand, using the conditional covariance formula, we have:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = E [Cov [ϵi(g) + δ, ϵj(g

′) + δ′ | Y]] + Cov [E [ϵi(g) + δ |Y],E [ϵj(g
′) + δ′ |Y]]

Given a Y, the random variables δ, δ′, Mi(g) and Mj(g
′) are constant, so that the �rst term is

E [Cov [ϵi(g) + δ, ϵj(g
′) + δ′ | Y]] = E [Cov [Yi(g), Yj(g

′) | Y]].

Furthermore, we have assumed in Assumption (A) that Mi(g) = E [Yi(g)|Y] and Mj(g
′) =

E [Yj(g
′)|Y], therefore E [ϵi(g)|Y] = E [ϵj(g

′)|Y] = 0 and:

Cov [ϵi(g) + δ, ϵj(g
′) + δ′] = E [Cov [Yi(g), Yj(g

′) | Y]] + Cov [δ, δ′] (17)

Identifying the equations (16) and (17), we get the expected result.
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C Operations on granularities, overlapping granularities

In the course of our research, we started studying some granularities available in our databases and their
relations/classi�cations: e.g. what is the relation between the set of land plots and the set of census
tracts? We also thought about ways to build non-overlapping granularities from existing granularities.
This lead us to the de�nitions of the following concepts.

De�nition 3 (Non-overlapping granularity). A granularity G is said to be non-overlapping when all
intersections of grains are empty: ∀g, g′ ∈ G, g ∩ g′ = ∅.

De�nition 4 (Granularity order). The granularity order G ≤ H, or equivalently H ≥ G, holds for two
granularities G and H under the following condition:

G ≤ H ⇔ ∀g ∈ G,

{
g ∈ ∪

h∈H
h

and ∀h ∈ H, g ∩ h ∈ {∅, g}

G is said to be thinner than H, or equivalently H coarser than G. In particular, G ≤ H implies that
any grain of G is a subset of at least one grain in H, but it also implies that a grain of G does not partly
overlap a grain of H.

Relation ≤ is transitive on the set of granularities de�ned on χ. It de�nes of partial order on this
set.

Proposition 4 (Non-overlapping granularities). De�ne an insertion operator ⊕, for any non-overlapping
granularity G and any grain h by:

G ⊕ {h} :=

{
g0 : g0 ̸= ∅ and g0 ∈ {g ∩ h : g ∈ G} ∪ {g \ h : g ∈ G} ∪

{
h \ ∪

g∈G
g

}}
.

This operator ⊕ adds a partition of the grain h to the non-overlapping granularity G, while ensuring that
G ⊕ {h} is non-overlapping and has the same union of grains as h ∪

⋃
g∈G

g.

Then we have:

(i) For any non-overlapping granularity G and grain h, the resulting granularity is thinner than G∪{h}:

G ⊕ {h} ≤ G ∪ {h} .

(ii) For any non-overlapping granularity G and grains h, h′, the insertion order does not matter:

(G ⊕ {h})⊕ {h′} = (G ⊕ {h′})⊕ {h} .

(iii) Among the granularities that are thinner than a �nite granularity G = {g1, . . . , gn}, there is a
unique maximal non-overlapping granularity G⊕ and we can construct it iteratively with the
insertion operator.

G⊕ := {g1} ⊕ . . .⊕ {gn} . (18)

This granularity is a non-overlapping granularity such that G⊕ ≤ G, and it is maximal, in the
sense that any other non-overlapping G′ that is thinner than G is also thinner than G⊕: G′ ≤ G ⇒
G′ ≤ G⊕.

Proof. � Let us prove the item (i)
Let us prove that G⊕{h} ≤ G∪{h}. Let g+ ∈ G⊕{h} and g′ ∈ G∪{h}. It is clear by construction
that g+ ∈ ∪

g∈G∪{h}
g. Moreover:

g+ = g ∩ h or g+ = g \ h or g+ = h \ ∪
g∈G

AND g′ ∈ G or g′ = h

One can prove that in all 6 di�erent combined cases, either g+ ∩ g′ = g+ or g+ ∩ g′ = ∅.
As a consequence, G ⊕ {h} ≤ G ∪ {h}.
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� Let us prove the item (ii).
Let g2 ∈ (G ⊕ {h})⊕ {h′} then:

(A) ∃g1 ∈ G ⊕ {h}, g2 = g1 ∩ h′ or (B) ∃g1 ∈ G ⊕ {h}, g2 = g1 \ h′ or (C) g2 = h′ \ ∩
g∈G⊕{h}

g

Let g1 ∈ G ⊕ {h} then:

(a) ∃g0 ∈ G, g1 = g0 ∩ h or (b) ∃g0 ∈ G, g1 = g0 \ h or (c) g1 = h \ ∪
g∈G

g

(Aa) g2 = g0 ∩ h ∩ h′ =g0 ∩ h′ ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Aa)
(Ab) g2 = (g0 \ h) ∩ h′ =(g0 ∩ h′) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Ba)
(Ac) g2 = (h \ ∪

g∈G
g) ∩ h′ =(h′ \ ∪

g∈G
g) ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Ac)

(Ba) g2 = (g0 ∩ h) \ h′ =(g0 \ h′) ∩ h ∈(G ⊕ {h′})⊕ {h}, see case (Ab)
(Bb) g2 = (g0 \ h) \ h′ =(g0 \ h′) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Bb)
(Bc) g2 = (h \ ∪

g∈G
g) \ h′ =h \ ∪

g∈G⊕{h′}
g ∈(G ⊕ {h′})⊕ {h}, see case (C)

(C) g2 = h′ \ ∪
g∈G⊕{h}

g =(h′ \ ∪
g∈G

g) \ h ∈(G ⊕ {h′})⊕ {h}, see case (Bc)

For cases (Bc) and (C), we used the fact that ∪
g∈G⊕{h}

g = h ∪ ∪
g∈G

g.

� Let us prove the item (iii)
Note that due to item (ii), G⊕ does not depend on the indexing order of the grains composing G.
Moreover, due to item (i), {g1} ⊕ {g2} ≤ {g1, g2} and by recurrence, G⊕ ≤ G.
Now let us prove that for any non-overlapping granularity H, any granularity G, any grain g0:

G ≤ H ∪ {g0} ⇒ G ≤ H⊕ {g0}

Suppose G ≤ H∪{g0}. Let g ∈ G and g+ ∈ H⊕{g0}, taking into account thatH is non-overlapping:

(A) ∃h ∈ H : g ⊂ h ∩ g0 or (B) ∃h ∈ H : g ⊂ h \ g0 or (C) g ⊂ g0 \ ∪
h∈H

h

and (a) ∃h′ ∈ H : g+ = h′ ∩ g0 or (b) ∃h′ ∈ H : g+ = h′ \ g0 or (c) g+ = g0 \ ∪
h∈H

h

In cases Ab, Ac, Ba, Bc, Ca, Cb, we have g ∩ g+ = ∅. In cases Aa and Bb, if h = h′ then
g ∩ g+ = g, otherwise g ∩ g+ = ∅. In case Cc, g ∩ g+ = g. Therefore in either case, g ∩ g+ ∈ {g, ∅}
and G ≤ H ⊕ {g0}.

When a non-overlapping granularity is needed, one can thus use Proposition 4 and build G⊕ directly
from any �nite granularity G, possibly overlapping. However, we will see in the rest of the paper that the
proposed model is also suited for overlapping granularities.

When two data sources are available, relying on two granularities G and H it can also be convenient
to de�ne G ⊕ H := (G ∪ H)⊕ to get a non-overlapping resulting granularity allowing to work with both
data sources. As an example, if an information is given at the level of a grid reference system G, and
also at a level of urban areas H, it may be convenient to build all intersection areas by this way. The
Proposition 4 gives a simple way to do so, even in more complicated situations where both G and H are
overlapping granularities.

In the Example 3 below, one investigates the impact of overlapping granularities. In many cases, the
overlaps impact is limited. In situations where this impact can be important, one can use the construction
of non-overlapping granularity presented in Proposition 4 (see Appendix C).

Example 3 (Overlapping granularity). Consider two overlapping grains g and g′, with non-empty in-
tersection g0 = g ∩ g′. We want to compare the situation where Xg is dependent on Xg′ with a situation
of independence.
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Figure 9: Thinner granularity and maximal thinner non-overlapping granularity. Left: The granularity compris-
ing the 5 green grains (solid lines) is thinner than the granularity comprising the 3 red grains (dashed lines).
Right: The granularity comprising 7 non overlapping grains is the maximal non-overlapping granularity that is
thinner than the red granularity on the left.

� Case of dependence. We de�ne random locations Xg0 , Xg\g0 , Xg′\g0 and two Bernoulli random
variables B and B′. We assume that those �ve random variables are mutually independent. Let:{

Xg = BXg0 + (1−B)Xg\g0
Xg′ = B′Xg0 + (1−B′)Xg′\g0

(19)

� Case of independence. We introduce here X⊥
g0 an independent copy of Xg0 , independent from Xg0 ,

Xg\g0 , Xg′\g0 , B and B′. Let:{
Xg = BXg0 + (1−B)Xg\g0
X⊥

g′ = B′X⊥
g0 + (1−B′)Xg′\g0

(20)

Let ∆ be the covariance di�erence due to the dependence structure of Xg and Xg′ ,

∆ := Cov
[
Yi(Xg), Yj(X

⊥
g′ )
]
− Cov [Yi(Xg), Yj(Xg′)] . (21)

Then setting ρmax = sup {|ki,j(x, x)− ki,j(x, x
′)| : x ∈ g0, x

′ ∈ g0}, assuming that

∀x ∈ g ∪ g′,

{
µi(x) = µi(g) = µi(g

′)

µj(x) = µj(g) = µj(g
′)

one can show that:
|∆| ≤ P [B = B′ = 1]P

[
Xg0 ̸= X⊥

g0

]
ρmax . (22)

The variation due to the common dependence structure on the overlap can be signi�cant if all of the
three factors are not negligible. This shows in particular that overlapping grains are not too problematic,
when means are identical, if the probability of selecting the intersection g0 for both grain is small, or if
the probability of selecting di�erent points in the intersection is small.

Proof of the results in Example 3. Under given assumptions on the means µi and µj , Applying the total
covariance formula on Cov

[
Yi(Xg), Yj(X

⊥
g′ )
]
and Cov [Yi(Xg), Yj(Xg′)], we get

∆ = E
[
Cov

[
Yi(Xg), Yj(X

⊥
g′ )|(B,B′)

]]
− E [Cov [Yi(Xg), Yj(Xg′)|(B,B′)]] ,

and the di�erence is non zero in the only case where B = B′ = 1, so that using independence,

∆ = P [B = B′ = 1]
(
E [Cov [Yi(Xg0), Yj(Xg0)]]− E

[
Cov

[
Yi(Xg0), Yj(X

⊥
g0)
]])

The parenthesis vanishes in any conditional cases where X⊥
g0 = Xg0 , and in other cases, the conditional

di�erence is bounded by ρmax , hence the result.
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