L Deroussi 
email: deroussi@moniut.univ-bpclermont.fr
  
M Gourgand 
  
  
A scheduling Approach A scheduling Approach A scheduling Approach A scheduling Approach for the design of for the design of for the design of for the design of Flexible Manufacturing Systems Flexible Manufacturing Systems Flexible Manufacturing Systems Flexible Manufacturing Systems

Keywords: Flexible Manufacturing Systems, Scheduling Problem, Machine Assignment Problem, Hybrid methods

The aim of this chapter is to show the interest of considering scheduling problems for the design improvement of Flexible Manufacturing Systems (FMS). The problem occurs when we wish to reconsider the design of an FMS by evaluating its functioning using a low-level model. The experimental results we have obtained show that, in many cases, a simple reorganization of the production cells can improve the overall productivity of an FMS. This problem is known in the literature as the machine assignment problem. The low-level evaluation model we have considered permits to synchronize the handling material system with the production tools, in order to minimize the time required for the production of a given set of jobs (makespan). We propose a hybridized solution approach that combines different optimization strategies: integer linear programming, metaheuristics and discrete event approaches. Integer linear programming is used for elaborating an initial machine assignment (an optimal one for the high-level model). New machine assignments are constructed by ants, and evaluating thanks to a low-level model evaluation. The latter is a black box optimization subroutine that combines iterated local search and discrete event approach.

INTRODUCTION

Flexible Manufacturing systems (FMS) are highly automated production systems in which a set of numerically-controlled machine tools is linked together by a material handling system. One of the most popular handling system is automated guided vehicles (AGV). FMS become more and more popular because of their high productivity and flexibility. On the other hand, FMS are expansive to build and complicated to design. As explained by [START_REF] Bhattacharya | FMS Selection Under Disparate Level-of-Satisfaction of Decision Making Using an Intelligent Fuzzy-MCDM Model[END_REF], the process design of an FMS consists of a set of crucial decisions that have to be made carefully. FMS have been studied by numerous researchers during the last decades. These studies can be classified into three main categories: facility layout problem, guidepath design and vehicle scheduling. The facility layout problem (FLP) concerns the placement of the facilities into the plant area in order to minimize the cost of total material flow between facilities. This problem is usually modelled by a quadratic assignment problem (QAP) (see [START_REF] Drira | Facility layout problems: A survey[END_REF] for a survey). For a given facility layout, the guide path design includes the flow-path layout, the location of the pick up and drop areas (P/D), and the fleet size. Lastly, vehicle scheduling concerns the scheduling of jobs on the machines, the AGV dispatching rules and the solution of conflicts between AGVs. We can distinguish offline scheduling and online scheduling. In the offline situation, all transportation requests are assumed to be known in advance. The vehicle routes between machines are calculated offline before the vehicles take them. In the online situation, the path between two machines is dynamically determined as a function of the state of the system. (Ganasharajah et al., 1998;Le Anh & De Koster, 2006) propose comprehensive surveys of the two last topics.

Although design problems are closely related, they have traditionally been tackled separately because of their computational intractability (Kim & Goetschalckx, 2005). The authors propose a heuristic for the concurrent determination of the block layout, the P/D points and the guide path between P/D points, but they only consider the minimization of the loaded vehicle travel distance. Several authors have noticed the relevance of minimizing the total vehicle travel distance (Sun & Tchernev, 1996;Ganasharajah et al., 1998;Asez-Vaziri et al., 2007). In the latter, the authors claim that "the main costs of an AGV system are the investment cost in the fleet of the vehicles, the electricity consumption, and the wasted material handling capacity due to AGV battery re-charging times. These are all functions of the total required loaded and empty travel distances". In (Asez-Vaziri et al., 2007;2008) the authors consider the empty vehicle travels for designing flow path and P/D location in the special case of unidirectional loop layout. They conclude their study by noting that the ignorance of empty travel may lead to the design of layouts that are far from optimal.

In this chapter, we consider the machine layout problem in FMS environment of type job shop or flexible job shop. The problem is to assign machines to locations within a given layout arrangement such that a given performance measure is optimized. Several authors [START_REF] El-Baz | A Genetic Algorithm for Facility Layout Problems of Different Manufacturing Environments[END_REF]Ray & Sarker, 2008) work on the machine assignment problem for different categories of layouts (flow-line, multi-line, closed loop). The first paper focuses on the machine assignment problem, while the two others include also the job assignment problem. Nevertheless, all these authors minimize the total costs of the material flow (the sum of transport costs and machining costs for the two last papers) and they propose evolutionary algorithms to solve their problem. The objective pursued in this paper is different. We want to show that the solution obtained by solving the design problem (tactical level or high-level model) is not necessarily the best solution when we consider scheduling problems (operational level or low-level model).

The remainder of this chapter is organized as follows. In the first section, we detail the studied problem and we introduce some notations. The next section gives a description of the proposed solution approach. This approach is applied to FMS of job shop type and flexible job shop type.

Finally, we conclude and propose some perspectives.

DESCRIPTION OF THE PROBLEM AND NOTATIONS

In this section, we give more details about the studied problem and we introduce the notations used in the remainder of the chapter.

Problem definition

The problem under consideration consists in the simultaneous solution of machine layout problem, scheduling of AGVs and scheduling of machines in an FMS environment. We consider a given layout arrangement where the entire shop floor is divided into a number of locations. We assume that all the locations are of equal area. Any machine could be assigned to any location, with no compatibility restriction. These locations are linked together by a guide path network, as shown in figure 1. The arrows indicate if the arcs are unidirectional or bidirectional. The value on each arc indicates the travel time (or distance) when a vehicle moves along the section. Table 1 gives the shortest path between any two locations. The FMS is of flexible job shop type. Each job consists of a set of operations that must be processed in the given order. Each operation needs to be processed during a given amount of time on a given type of machines. A type of machine characterizes a subset of the machines (identical or not). Each machine can handle at most one operation at a time. Each job has to be transported from an origin machine to a destination machine by AGV. The problem is to determine the assignment of machines to locations, which minimizes the completion time of a given set of jobs (makespan). The calculation of the makespan requires synchronization between the production tools and the material handling system. Each of these two problems, when examined separately, is NPhard. It is, according to the best of our knowledge, the first time that the makespan criterion is used to tackle design problems in FMS environments.

If the FMS is of job shop type, each machine is the single representative of its type. It is a special case of the FMS flexible job shop problem, for which an operation could be achieved by several machines. Thus, it will raise the question of the choice of the machine that will achieve this operation. Finally, we won't consider in this chapter the FMS flow shop scheduling. Indeed, for this kind of FMS, the guide path layout is often designed with an inner loop. In this case, the machine assignment problem is less relevant.

Fig. 1.

An illustration of a layout with 5 locations 1 and its related travel time matrix. 
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Notations

In the remainder of this paper, we will use the following notations: 

• { } 1 , , n J J J = ⋯ the set of n independent jobs, • { } 1 , , m L L L = ⋯ the set of m locations, • { } 1 , , t T T T = ⋯ the set of t types of machine, • { } 1 , , m M M M = ⋯ the set of m machines (including the load / unload machines), • , 1, t m t t ∈ the number of machines of type t T , • { } 1 , , k V V V = ⋯ the set of k vehicles, • j α the number of operations of job j J J ∈ , • { } , 1, j ji j O o i α = ∈ the set of operations of job j J J ∈ , • 0 j o a fictitious load operation of job j J J ∈ • j j J J O O ∈ = ∪ the
j m m µ ∈ . • 1 if machine is of type 0 otherwise m t mt M T τ  =   • ( ) 1 2 1 2 2 , l l l l
t t′ ∈ ℕ respectively the loaded and empty travel times between locations 1 l and 2 l . In the important peculiar case of identical machines for each type, these notations can be simplified by replacing

( ) ( ) ( ) 1 , , ,..., 1, ji ji m ji ji ji m p p t µ µ µ ∈ × ℕ with ( ) ( ) , 1, ji ji p t µ ∈ × ℕ .

THE SOLUTION APPROACH

We present in this section the proposed solution approach. The general framework is summarized in figure 2. We propose first a formulation of our problem for the minimization of loaded vehicle travels as a quadratic assignment problem (QAP). The machine assignment obtained by the solution of this QAP is used to define a TSP-like problem on which we will apply Ant Colony System. The goal of ACS is to build diversified machine assignments, which are correlated to the initial assignment. These randomly constructed machine assignments are evaluated using a black-box optimization algorithm derived from a previous work [START_REF] Deroussi | A simple metaheuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF].

Fig. 2.

The proposed solution approach.

Determination of the initial solution

The location of machines can be determined by minimizing the total loaded vehicle travel distance. The general case of the FMS flexible job shop scheduling problem is first investigated. A quadratic 0-1 integer formulation is proposed for this problem.

The peculiar case of the FMS job shop scheduling problem is then considered as a simplification of the general case.

Quadratic 0-1 integer formulation for the FMS flexible job shop

The problem of finding the machine assignment that minimizes the total loaded vehicle travel distance, in the case of FMS flexible job shop problem, can be formulated as follows:

Minimize 1 2 , 1 1 2 1 2 1 1 j i ji ji m m l l o l o l o O l l t y y - ∈ = = ∑ ∑∑ (1) Subject to 1 1, 1, m ml m x l m = = ∈ ∑ (2) 1 1, 1, m ml l x m m = = ∈ ∑ (3) 1 1, ji m o l ji l y o O + = = ∈ ∑ (4) 1 ji ji m o l m ml m y x µ τ = ≤ ∑ , ji o O + ∈ , 1, l m ∈ (5) with 1 if is assigned to 0 otherwise m l ml M L x  =   , 1, m m ∈ , 1, l m ∈ , 1 if operation is assigned to 0 otherwise ji ji l o l o L y  =   , ji o O + ∈ , 1, l m ∈ .
The objective function minimizes the sum of the loaded travel times (1). Constraints (2) and (3) indicate respectively that each location receives exactly one machine, and that each machine is assigned to exactly one location. Constraints (4) indicate that each operation is assigned to exactly one location. Constraints (5) indicate that one operation can be assigned to a location if and only if this location receives a machine of the appropriate type. (operations are automatically located on the suitable machine). The previous model can be simplified as indicated below:

Minimise , 1 , , 1 1 i j ij ij m m ll l l o O l l t x x µ µ - ′ ′ ′ ∈ = = ∑ ∑∑ (1') Subject to 1 1, 1, m ml m x l m = = ∈ ∑ (2) 1 1, 1, m ml l x m m = = ∈ ∑ (3)
The objective function is rewritten by using the variables ml x (we recall that in the job shop context, ji µ designs indifferently the machine or the type). Constraints ( 2) and ( 3) are identical to those of the first model. This is the Koopmans & Beckman formulation for the QAP (1957), in which the coefficients of the cost matrix are all equal to 1.

Obviously, the quadratic problem formulated in the general case is NP-hard because the QAP is a special case of this problem. It can be solved exactly, if its size allows it, by mathematical solvers, or solved approximately by heuristic approaches.

The main objective of this chapter is not to optimally solve the QAP. Nevertheless, the solution of this problem is interesting for many reasons. Firstly, we want to show that the optimal solution of the QAP is not necessarily those that leads to the most efficient machine assignment. Secondly, we can expect that this optimal solution (or an approximate solution when the optimal solution is out of reach) is a good assignment. This knowledge can be useful for finding better assignments. In the remainder of this chapter, we will use the misnomer term of "QAP-optimal assignment" for defining the solution of the QAP, even if the problem is not optimally solved.

The assignment generation

Let us first justify the choice of a complex paradigm for generating new assignments. Starting with the QAP-optimal assignment, we try to iteratively improve it by evaluating the makespan criterion. It is necessary to generate new machine assignments. A simple way consists to modify a solution by the application of a basic move (for example the exchange of two machines) and to implement a local search technique. The drawback of this approach is that we cannot guarantee that it allows to reach the optimal machine assignment. Another simple way is to generate the assignments randomly. Obviously, each assignment is then reachable. The drawback of this approach is that we don't exploit the knowledge of the QAP optimal assignment, which is a good assignment. It is the reason why we use an ant colony system (ACS) approach for generating new solutions. Each assignment has a non null probability to be chosen, and this probability is higher for the assignments that are close to the QAP optimal assignment. We can notice that using this approach, different ants can construct the same assignment that will be evaluated several times. Far to be a problem, this means that the most promising assignments (the closest ones to the QAP optimal assignment) are evaluated several times, exactly as if we execute several runs and we keep the best evaluation. In ACS, ants progressively build random solutions, guiding themselves with the pheromone information. We first recall how ACS is applied to the traveling salesman problem (TSP) in the literature. In a second time, we propose an original way to use the QAP-optimal assignment in order to define a TSP-like problem on which ACS will be applied.

Ant Colony System for the Traveling Salesman Problem

Ant Colony System is a cooperative learning algorithm that was first introduced by [START_REF] Colorny | Distributed Optimization by Ant Colony[END_REF][START_REF] Dorigo | Ant Colony System: A cooperative learning approach to the traveling salesman problem[END_REF] describe how this approach can be applied to the traveling salesman problem (TSP).

Let G be a complete graph in which the vertices are the cities. The edges ( ) Let's assume that an ant is in city r. It chooses its next city s among those which have not yet been visited. For that, the ant takes into account the cost of the travel and the pheromone rate between r and s.

,
The probability with which ant k in city r chooses to move to city s is given by (Eq. 1) (this state transition rule is called randomproportional rule in [START_REF] Dorigo | Ant Colony System: A cooperative learning approach to the traveling salesman problem[END_REF]).

( )

( ) ( ) ( ) ( ) ( ) ( ) , , if , , , 0 otherwise k k k u J r r s r s s J r r u r u p r s β β τ η τ η ∈  ∈   =     ∑ (Eq. 1)
where τ is the pheromone,

1 η δ = is the inverse of the distance ( ) , r s δ , ( ) k J r is
the subset of cities that remain to be visited by ant k located in city r, β is a parameter which determines the relative importance between pheromone and distance.

Each time an ant ends the construction of its tour, a local updating rule (Eq. 2) is applied to change the pheromone level.

( ) (

) ( )

0 , 1 , r s r s τ ρ τ ρτ ← - + (Eq. 2)
where 0 1 ρ < < , and 0

τ is the initial level of pheromone.

An iteration of ACS ends when all ants have constructed their solution. A global updating rule (Eq. 3) is then applied using the globally best solution found since the beginning of the trial.

( ) ( ) ( ) ( ) , 1 , , r s r s r s τ α τ α τ ← - + ∆ (Eq. 3)
where

( ) ( ) ( ) 1 if , _ , 0 otherwise gb L r s gbest solution r s τ -  ∈  ∆ =    0 1
α < < is a parameter and gb L is the length of the best solution encountered so far. [START_REF] Dorigo | Ant Colony System: A cooperative learning approach to the traveling salesman problem[END_REF] propose also the following parameter settings:

2 β = , 0.1 α ρ = = , ( ) 
1 0 nn nL τ - =
where n is the number of cities and nn L is a rough approximation of the optimal value (for example obtained by a construction heuristic). The number of ants is 10 m = . The initial level of pheromone is given by ( ) 0 , r s τ τ = for any pair ( ) , r s of cities.

The last remark concerns the state transition rule called pseudo-random-proportional rule (Eq. 1') in which 0 q is a parameter ( 0 0 1 q ≤ ≤ ). 0 q determines the relative importance of exploitation (high values of 0 q ) versus exploration (low values of 0 q ). The random-proportional rule is obtained by fixing 0 0 q = in Eq. 1'. In this chapter, we will apply the random-proportional rule because we will consider very small instances of TSP (between 5 and 13 cities). Fig. 3. AP-optimal assignment for the Ex11 instance (section 4.1).

( ) ( ) ( ) ( ) { } ( ) 0 arg max , , if , r,s otherwise k u J r k k r u r u q q p r s p β τ η ∈  ≤  ′ =    (Eq. 1')
Adaptation of ACS for the machine assignment problem By applying the scheme just defined above, ants must build a machine assignment. The driving principle we support here is to employ the QAP-optimal assignment to define a TSP. For that, we consider a bipartite graph ( ) L , the machine that is assigned to the location 2 L , …, the machine that is assigned to the location m L . We illustrate the different steps of this problem transformation on the instance Ex11 2 . The reader can refer to the table 4. The QAPoptimal solution for this instance is ( ) 

,
1, 2 6 δ γ = × . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 3 3 L1/M2 L2/M4 L3/LU L4/M1 L5/M3
β =
for different settings of γ .

In order to define the best setting for γ , a preliminary experiment has been realised on the instance Ex21. This instance has been chosen because the QAP-optimal assignment is not of very good quality. We apply ACS in the same conditions, except for the setting of γ . For each value of γ , five runs have been executed. The table 3 gives the average results with regards to the relative gap to the best known upper bound.

We can see that higher the value of γ is, better the performance of ACS is. We will use in the following 1 γ = . Although we may obtain better results with 1 γ > , we prevent this case because it is illogic with the definition of ( )

1, m δ . This experiment seems to show that it is preferable to favour diversification for this parameter. 

The Assignment evaluation

For evaluating a machine assignment, we consider now the simultaneous scheduling of machines and vehicles in order to minimize the makespan criterion.

In the case of the FMS job shop problem, the related problem has been formulated as a nonlinear mixed integer programming model by [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in an FMS[END_REF] 
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′ problem is offline; traffic congestions or collisions are ignored). We will call DGT this metaheuristic in the following of this chapter. It will be used as a blackbox subroutine for the assignment evaluations.

We introduce now the main principles of DGT. Given a machine assignment and a list of jobs to produce, then the list of transportation tasks is known. For example, if a job is processed by the following sequence of machines 3 1 2 , , M M M , we will define four transportation tasks for this job, from the load station to For that, a neighborhood is defined for modifying the current solution. An evaluation subroutine based on discrete events calculates the arrival dates of jobs on the machine input buffer, and the completion time of each operation. The makespan is equal to the completion time of the last operation.

An important advantage can be pointed out by using this separation between optimization and evaluation. Some dispatching rules can be added or removed depending on the evaluation model requirements. In our case, the studied problem is typically at strategic level. This means that we will have to work with aggregated data. In this condition, considering online scheduling rules such as traffic constraints probably makes no practical sense. So, we can use a relatively simple evaluation model. Moreover, it has been fairly easy to modify our model for evaluating solutions for the FMS flexible job shop. When a vehicle starts a transportation task, the destination machine must be determined according to the type required by the job. The following rule is applied; the chosen machine is the one that processes the job in the shortest time. Except for this difference, the evaluation models are exactly the same for the two FMS problems.

DGT is an iterated local search algorithm. Unless otherwise stated, 1000 local searches are executed for each evaluation of a machine assignment.

COMPUTATIONAL STUDY FOR THE FMS JOB SHOP PROBLEM

We propose now to implement the proposed solution approach in order to determine machine assignments for the FMS job-shop problem. The benchmark test is composed by instances derived from the literature, and described in the first subsection. The main objectives of this part are to show that, for these toy instances (there are only 120 possible machine assignments), the solution of the QAP is not always the most effective, and that ACS is appropriate for searching better solutions. We will give in the second subsection the QAP-optimal assignments. These assignments are optimal for the minimisation of the loaded vehicle travel distance. The third subsection is devoted to the exhaustive enumeration of assignments. We will show that the QAP-optimal solution is not the most efficient in many cases. We finish in the forth subsection by a comparison between two methods that generate new machine assignments: ACS and local search.

All the experiments in sections 4 and 5 are executed on a Pentium 4, 3.4 GHz. Routines are written in C.

Benchmark Test

We will adapt the benchmark test initially proposed by [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in an FMS[END_REF]. It is composed of 40 instances, built from 4 layouts (including the layout 1 shown in figure 1) and 10 jobsets (jobset 1 is illustrated by figure 4). Each layout contains 5 machines (4 production machines noted

1 M , 2 M , 3 M , 4
M and a single load / unload station noted LU) and two vehicles (AGVs). Jobsets contain between 5 and 8 jobs, and between 18 and 27 operations to schedule. The name "Ex_ij" will design the instance built from jobset i and layout j.

Loaded and empty vehicle travels are supposed to have the same durations (in particular, loaded and unloaded times are neglected). So, layout data is simply composed of the matrix of the vehicle travel times ( ll ll t t

′ ′ ′ = ).
The jobsets give, for each job, the sequence of operations that have to be processed in the given order ( ji M µ ∈ , ji p ∈ ℕ ). Compared to the initial jobsets, we add a fictitious operation at the end of the process plan of each job. This additional operation takes place on the unload station, and have null duration ( ) ,0 LU . It ensures that each job physically leaves the system after being processed.

A solution is given by a m-tuple where the i th component designs the machine which is assigned to the location i L . For example, the assignment ( )

1 4 3 2 , , , , M M LU M M , or ( ) 1, 4, ,3, 2 LU indicates that 1 M is assigned to 1 L , 4 M to 2
L , and so on. We assume that there are no incompatibility issues between the machines and the locations.

Each of these instances contains 5 machines to assign to 5 locations. Thus, we have 5!=120 possible machine assignments.

The QAP-optimal assignment can be easily obtained by exhaustive enumeration.

Fig. 4.

Sequence of operations to be processed in the given order in jobset 1.

The QAP machine layout

In table 4, we indicate in column "QAP Assign" for each instance, the optimal assignment according to the minimization of the loaded vehicle travel distances. The column "Cost" gives the value of this criterion. These QAP-optimal solutions give a first machine assignment, which is not necessarily optimal when empty vehicle travels are also considered. (3,4,2,1,LU) 130 Ex101 (LU,1,2,3,4) 184 Ex52

(3,4,1,2,LU) 74 Ex102 (LU,2,1,3,4) 84 Ex53 (4,1,2,LU,3) 98 Ex103 (2,1,3,4,LU) 112

Ex54

(3,2,4,LU,1) 152 Ex104 (1,3,4,2,LU) 190 (3,2,4,LU,1) 94 97 113 Ex101 (4,LU,2,1,3) 148 153 171 Ex52

(2,LU,3,4,1) 73 74 96 Ex102 (LU,2,1,3,4) 132 132 158 Ex53 (4,1,2,LU,3) 81 81 101 Ex103 (2,1,3,4,LU) 135 135 168 Ex54 (3,2,4,LU,1) 107 107 145 Ex104 (2,1,3,LU,4) 158 159 214

Exhaustive enumeration of machine assignments

As there are only 120 possible machine assignments, we propose to evaluate each of them according to the makespan criterion (using the black-box subroutine DGT). For each assignment, 10 runs are realised (this represents 1200 calls of DGT for each instance). Each instance requires between 40 and 100 minutes of CPU time (one call of the makespan evaluation requires between 2 and 5 seconds according to the size of the instance). We present in table 5 the results obtained. The column "Best Assign" gives the best obtained machine assignment. Its cost is given in column "C best ". The columns "C QAP " and "C worse " gives respectively the best result obtained with QAP-optimal assignment and with the worst assignment (the latter is given for information only).

We can notice that the QAP-optimal machine assignment is not the best one for 17 of the 40 instances that compose our benchmark test (these instances are indicated in the table with grey-colored cells). This means that for about half of the instances, the QAP-optimal machine assignment can be improved. However, the QAP-optimal assignment is generally of good quality. This justifies the choice of QAP assignment as initial solution. To conclude, we can notice the case of the instance Ex21, for which the QAP-optimal solution has a makespan of 116 against 106 for the best assignment (this represents a relative gap of 8.62%). We give in figure 5 the Gantt charts of these two solutions. Of course, the sum of loaded vehicle travel distance is better for the QAP-optimal solutions (144 against 150). On the contrary, the QAP-optimal solution is worse when we compare the sum of vehicle travel distance (224 against 208). 
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Comparison ACS / optimisation method

We focus in this section on the 17 instances for which the QAP-optimal assignment can be improved. In a preliminary study, we firstly apply classical optimization methods such as local search (figure 6). 10 runs have been executed for each instance in order to prevent stochastic variations. The heuristic stops after 120 calls at the evaluation subroutine DGT (we have a total of 1200 calls of DGT, the same as for the enumeration). The perturbation of a machine assignment is a random exchange move. Let for example X=(1,3,2,5,4) be a machine assignment. If we randomly choose to exchange machines 5 and 3, we obtain the machine assignment Y= (1,5,2,3,4). We can remark that we allow to exchange the same machine. This leads to Y=X. We summarize in table 6 the obtained results. The columns "C best " and "C QAP " indicate the best makespan obtained respectively for the best and for the QAPoptimal assignments. For the local search, we have three columns "Min", "Max" and "Avg", in which we give respectively the result of the best run, of the worst run and the average result of the 10 runs. The row "Gap" indicates the relative gap of the method to the best found evaluation.

The same information is given for the ACS algorithm. 100 iterations are performed (with 10 ants). Each run of ACS requires 1000 calls of the evaluation subroutine DGT (against 120 calls for local search). In order to give the same time for the two methods, we divide the time given for one evaluation of a machine evaluation by a factor 8. So, the makespan evaluation for a machine assignment is of less good quality. We give in the column "Time" the approximate computational time to execute one run of LS and ACS (in seconds).

We can remark that ACS performs better than LS (ACS obtains a global performance of 0.78% against 1,81% for LS). LS improves the QAP-optimal solution for only 6 of the 17 instances (grey colored cells), and the best assignment is found for 5 instances (dark grey colored cells). These results are relatively disappointing. Two reasons can be put forward:

• the good quality of best QAP assignment. For example, for Ex24, there is only one better assignment. This explains the difficulty to improve the initial solution, • the exchange move doesn't seem efficient. For Ex13, there are 5 better assignments, but none of them can be reached from the QAP-optimal assignment by an exchange move. This last point is particularly worrying. This seems to indicate that LS is dependent on the landscape of the instance: if it exists a better solution in the neighborhood, LS will be effective; if not, LS won't be able to improve the QAP-optimal solution. It seems difficult to define a criterion that allows to foresee the landscape of each instance. On the contrary, the results obtained with ACS are promising. In most cases, ACS permits to improve the QAP-optimal solution (for 13 of the 17 instances). The best known assignment is found for 12 instances. The most interesting point is that ACS appears to be a robust method. The standard deviation is very low. We can note that a best upper bound has been found for the Ex74 instance.

In the next section, we will study in more detail the behaviour of ACS for more difficult instances, for which it is impossible to enumerate the machine assignments.

COMPUTATIONAL STUDY FOR FMS FLEXIBLE JOB SHOP PROBLEM

We propose to consider now the FMS flexible job shop problem. We describe firstly the benchmark test, before we give the obtained QAP-optimal solutions. The second subsection is dedicated to the calculation of the makespan of these QAPoptimal solutions. The results obtained by applying ACS are finally presented before we conclude regarding the experimental part of this work.

Benchmark test

We propose a new family of instances inspired from the literature. It derives from the Bilge & Ulusoy's instances for the FMS job shop problem. These instances have been adapted in the following way: it is assumed that each production machine is duplicated. So we have two identical machines of each type, except for the LU station. The FMS is composed of 9 locations. We have modified the layout 1 by adding 4 locations, as it is shown in figure 7. The transportation time matrix is deduced from this modified layout by determining the shortest path between two locations. In order to restore the balance between transportation times and production times, the latter are increased twofold in every jobset. We will denote these instances by FJSP-BU'i', where 'i' designs the jobset. All these instances are solved with 2 vehicles.

Solution of the QAP

All of these instances have been solved with the mathematical solver CPLEX using the MIP formulation described in section 3.1. For each instance, CPLEX has been stopped after 3 hours of computational time. None of the ten instances has been optimally solved. Nevertheless, the solver gives the best found machine assignment when the time is up. The obtained results are presented in table 7. Despite the fact that the given solutions are not proved to be optimal, we will continue to call these solutions the "QAP optimal" assignments in order to keep homogeneous designation in the chapter. These solutions are good enough, in order to be used as initial assignment.

Table 7. The "QAP-optimal" assignments the loaded vehicle travel distance.

Instances

QAP Assign Cost FJSP-BU11

(1,3,8,4,6,LU,5,7,2) 88 FJSP-BU21

(1,2,4,6,LU,3,7,8,5) 68 FJSP-BU31 (4,3,5,6,1,8,7,LU,2) 68 FJSP-BU41

(1,LU,4,7,6,8,5,3,2) 72 FJSP-BU51

(2,1,6,8,LU,4,3,5,7) 60 FJSP-BU61

(2,7,LU,5,6,4,8,3,1) 72 FJSP-BU71 (6,LU,1,7,8,4,2,3,5) 88

FJSP-BU81

(1,8,LU,6,5,4,7,3,2) 72 FJSP-BU91 (6,5,1,8,3,4,2,LU,7) 60 FJSP-BU101 [START_REF] References Abdelmaguid | A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF]LU,4,2,8,1,6,3,5) 80

Evaluation of the QAP-optimal solutions

We use the evaluation subroutine DGT to evaluate the "QAP-optimal" assignments. For each instance, 10 runs are completed. We present in table 8 the obtained results. The columns "Min", "Max" and "Avg" give respectively the best, the worst and the average makespan. The time in seconds is indicated in the column "Time". The row "Gap" gives the average relative gap to the best known solution. ACS finds always a better assignment. Sometimes, the improvement is significant (116 against 126 for the BU31 instance). The average results show the efficiency of ACS (ACS is at 0.93% of the best found solution against 4.36% for the QAP optimal solution. It could be expected a significant long term benefits in term of productivity, if our general approach is applied for this kind of FMS.

CONCLUSION

We focus in this study on the machine assignment problem in flexible manufacturing systems environment. We show that the simple fact to consider empty travel times leads in many cases to the design of better layouts. Unfortunately, empty travel times are very difficult to determine because these times require a dynamic evaluation. This leads either to consider very simple systems, or to propose an elaborated solution approach. We propose in this paper a hybrid approach that combines integer linear programming, metaheuristics and discrete events approaches.

Actually, the link between design problems and scheduling problems is not sufficiently studied in the FMS literature. It constitutes an important research topic, with possible industrial spin-offs.

  r s are valued by a cost function ( ) , r s δ (which can represent a distance or a time between r and s), and by a desirability function ( ) , r s τ which represents the pheromone rate on this edge. The general principle of the ACS algorithm is that each ant builds a solution (an Hamiltonian cycle in the TSP context).

  , L M E where the vertices are defined by the set of locations L on the left side and by the set of machines M on the right side. Each edge ( ) Each ant randomly chooses successively the machine that is assigned to the location 1

  that the machine m M is located at l L (5 designs here the L/U station). The QAP-optimal solution is represented in figure3. We propose to define a distance between a location and a machine by the formula a parameter. In fact, the setting of value for γ creates a balance between intensification and diversification. If γ is close to 0 then the probability to assign the machine ( ) l M σ to the location l L is high. In the opposite case, if γ is close to 1

M

  , from 1 M to 2 M , and finally from 2 M to the unload station. A solution in DGT is represented by the sequence of transportation tasks that is assigned to each vehicle. The objective of DGT is to determine the best possible scheduling of transportation tasks.

Fig. 5 .

 5 Fig. 5.Gantt charts for the QAP-optimal and the best assignments on the instance Ex21.

Fig. 7 .

 7 Fig. 7. The 9-locations machine layout, used for FJSP-BU instances.

Table 1 .

 1 Shortest

				path travel times matrix
	between locations.			
		L1	L2	L3	L4	L5
	L1	0	6	8	10	12
	L2	12	0	6	8	10
	L3	10	6	0	6	8
	L4	8	8	6	0	6
	L5	6	10	8	6	0

Table 2 .

 2 Probability 

Table 2

 2 

	summarizes the obtained
	probabilities by applying (Eq. 1) with	2

Table 3 .

 3 Relative performance of ACS with regards to the setting of γ . γ

		0.1	0.2	0.3	0.4	0.5
	gap	9.43% 9.25% 9.25% 6.42% 4.53%
	γ	0.6	0.7	0.8	0.9	1.0
	gap	4.53% 3.77% 3.77% 3.40% 1.13%

Table 4 .

 4 The QAP-optimal assignments and the loaded vehicle travel distance.

	InstancesQAP Assign Cost	InstancesQAP Assign Cost
	Ex11	(2,4,LU,1,3) 182	Ex61	(LU,1,2,3,4) 156
	Ex12	(1,3,4,2,LU) 114	Ex62	(LU,1,2,3,4) 60
	Ex13	(4,LU,1,3,2) 140	Ex63	(LU,1,2,3,4) 84
	Ex14	(3,2,4,1,LU) 214	Ex64	(2,3,4,1,LU) 168
	Ex21	(LU,1,2,3,4) 144	Ex71	(2,3,4,LU,1) 186
	Ex22	(1,2,3,4,LU) 60	Ex72	(LU,1,2,3,4) 84
	Ex23	(LU,1,2,3,4) 84	Ex73	(LU,1,2,3,4) 112
	Ex24	(3,4,LU,2,1) 156	Ex74	(3,4,LU,2,1) 204
	Ex31	(4,LU,1,2,3) 152	Ex81	(LU,1,2,3,4) 164
	Ex32	(1,2,3,4,LU) 66	Ex82	(LU,1,2,3,4) 60
	Ex33	(LU,1,2,3,4) 98	Ex83	(LU,1,2,3,4) 84
	Ex34	(1,2,3,LU,4) 166	Ex84	(1,2,3,LU,4) 160
	Ex41	(1,3,2,LU,4) 172	Ex91	(1,2,4,LU,3) 146
	Ex42	(3,LU,4,1,2) 96	Ex92	(4,LU,3,1,2) 60
	Ex43	(LU,1,2,3,4) 140	Ex93	(1,2,4,LU,3) 84
	Ex44	(4,1,3,2,LU) 200	Ex94	(1,2,4,3,LU) 148
	Ex51			

Table 5 .

 5 Comparison of best, QAP-optimal and worst assignments for the makespan criterion. InstancesBest

Assign C best C QAP C worse InstancesBest Assign C best C QAP C worse

  

	Ex11	(2,4,LU,1,3) 98 98 118 Ex61	(3,4,LU,2,1) 123 129 154
	Ex12	(LU,1,3,4,2) 82 84 101 Ex62	(LU,1,2,3,4) 102 102 142
	Ex13	(LU,3,4,1,2) 91 92 104 Ex63	(LU,1,2,3,4) 105 105 154
	Ex14	(4,1,2,LU,3) 114 119 150 Ex64	(1,2,3,LU,4) 132 135 199
	Ex21	(3,4,LU,2,1) 106 116 136 Ex71	(2,3,4,LU,1) 124 124 164
	Ex22	(LU,1,2,3,4) 82 86 124 Ex72	(LU,1,2,3,4) 86 86 149
	Ex23	(LU,1,2,3,4) 89 89 131 Ex73	(LU,1,2,3,4) 93 93 160
	Ex24	(1,2,3,LU,4) 118 120 176 Ex74	(1,2,3,LU,4) 138 141 218
	Ex31	(4,1,LU,2,3) 114 117 138 Ex81	(LU,1,2,3,4) 167 167 179
	Ex32	(1,2,3,4,LU) 89 89 125 Ex82	(LU,1,2,3,4) 155 155 179
	Ex33	(LU,1,2,3,4) 96 96 133 Ex83	(LU,1,2,3,4) 155 155 183
	Ex34	(1,2,3,LU,4) 121 121 177 Ex84	(1,2,3,LU,4) 165 165 228
	Ex41	(1,3,2,LU,4) 123 123 145 Ex91	(1,2,4,LU,3) 115 115 147
	Ex42	(3,LU,4,1,2) 94 94 120 Ex92	(LU,3,1,2,4) 97 99 132
	Ex43	(LU,1,2,3,4) 102 102 128 Ex93	(1,2,4,LU,3) 101 101 142
	Ex44	(1,2,3,LU,4) 140 142 185 Ex94	(1,4,3,LU,2) 125 126 181
	Ex51		

Table 6 .

 6 Comparison of local search and Ant colony system.

		C best C QAP		LS		ACS		Time (s)
	Instances			Min Max Avg Min Max Avg	
	Ex12	82	84	82	82 82.0	82	84	82.2	250
	Ex13	91	92	92	92 92.0	91	92	91.1	250
	Ex14	114 119 114 114 114.0 114 115 114.3	250
	Ex21	106 116 106 116 110.2 106 106 106.0	430
		82	86	86	86 86.0	86	86	86.0	430
	Ex24	118 120 120 120 120.0 120 120 120.0	430
	Ex31	114 117 114 114 114.0 114 116 114.4	420
	Ex44	140 142 142 142 142.0 140 140 140.0	420
	Ex51	94	97	94	97 94.3	94	94	94.0	250
	Ex52	73	74	74	74 74.0	73	74	73.8	250
	Ex61	123 129 129 129 129.0 123 125 124.0	500
	Ex64	132 135 135 135 135.0 133 134 133.1	500
	Ex74	138 141 141 142 141.8 136 141 137.9	680
	Ex92	97	99	99	99 99.0	97	97	97.0	330
	Ex94	125 126 126 126 126.0 126 127 126.1	330
	Ex101	148 153 152 152 152.0 149 151 150.2	570
	Ex104	158 159 159 159 159.0 159 159 159.0	570
	gap		2.87%		1.81%			0.78%	

Table 8 .

 8 Evaluation of the "QAP optimal" assignment for the makespan criterionWe apply ACS on the FMS-flexible job shop instances. The results obtained are summarized in table 9, which is similar to the table 8. The grey-colored cells indicate that ACS has found a better assignment than the QAP-optimal assignment

	Instances	Min Max Avg Time
	FJSP-BU11 138 138 138.0 50
	FJSP-BU21 112 112 112.0 30
	FJSP-BU31 126 128 126.4 35
	FJSP-BU41 114 116 114.2 40
	FJSP-BU51	94	96 95.2	20
	FJSP-BU61 140 142 140.8 45
	FJSP-BU71 108 112 110.0 70
	FJSP-BU81 182 182 182.0 50
	FJSP-BU91 140 142 140.6 30
	FJSP-BU101 174 178 175.2 50
			4.36%	
	5.4. Application of ACS	

Table 9 .

 9 Optimization by ACS.

	Instances	Min Max Avg Time
	FJSP-BU11	134	136 134.8 400
	FJSP-BU21	110	112 110.8 210
	FJSP-BU31	116	118 117.2 230
	FJSP-BU41	108	112 110.0 260
	FJSP-BU51	90	90	90.0 110
	FJSP-BU61	136	138 136.8 300
	FJSP-BU71	106	112 109.2 470
	FJSP-BU81	174	175 174.8 350
	FJSP-BU91	136	138 136.4 210
	FJSP-BU101	170	174 171.2 400
	Gap			0.93%
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