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Abstract   The aim of this chapter is to 
show the interest of considering scheduling 
problems for the design improvement of 
Flexible Manufacturing Systems (FMS). The 
problem occurs when we wish to reconsider 
the design of an FMS by evaluating its 
functioning using a low-level model. The 
experimental results we have obtained show 
that, in many cases, a simple reorganization 
of the production cells can improve the 
overall productivity of an FMS. This 
problem is known in the literature as the 
machine assignment problem. The low-level 
evaluation model we have considered 
permits to synchronize the handling material 
system with the production tools, in order to 
minimize the time required for the 
production of a given set of jobs 
(makespan). We propose a hybridized 
solution approach that combines different 
optimization strategies: integer linear 
programming, metaheuristics and discrete 
event approaches. Integer linear 
programming is used for elaborating an 
initial machine assignment (an optimal one 
for the high-level model). New machine 

assignments are constructed by ants, and 
evaluating thanks to a low-level model 
evaluation. The latter is a black box 
optimization subroutine that combines 
iterated local search and discrete event 
approach. 
 
Keywords: Flexible Manufacturing 
Systems, Scheduling Problem, Machine 
Assignment Problem, Hybrid methods. 
 
1. INTRODUCTION 
 
Flexible Manufacturing systems (FMS) are 
highly automated production systems in 
which a set of numerically-controlled 
machine tools is linked together by a 
material handling system. One of the most 
popular handling system is automated 
guided vehicles (AGV). FMS become more 
and more popular because of their high 
productivity and flexibility. On the other 
hand, FMS are expansive to build and 
complicated to design. As explained by 
Bhattacharya et al. (2008), the process 
design of an FMS consists of a set of crucial 



decisions that have to be made carefully. 
FMS have been studied by numerous 
researchers during the last decades. These 
studies can be classified into three main 
categories: facility layout problem, guide-
path design and vehicle scheduling. 
The facility layout problem (FLP) concerns 
the placement of the facilities into the plant 
area in order to minimize the cost of total 
material flow between facilities. This 
problem is usually modelled by a quadratic 
assignment problem (QAP) (see (Drira et 
al., 2006) for a survey). For a given facility 
layout, the guide path design includes the 
flow-path layout, the location of the pick up 
and drop areas (P/D), and the fleet size. 
Lastly, vehicle scheduling concerns the 
scheduling of jobs on the machines, the 
AGV dispatching rules and the solution of 
conflicts between AGVs. We can distinguish 
offline scheduling and online scheduling. In 
the offline situation, all transportation 
requests are assumed to be known in 
advance. The vehicle routes between 
machines are calculated offline before the 
vehicles take them. In the online situation, 
the path between two machines is 
dynamically determined as a function of the 
state of the system. (Ganasharajah et al., 
1998; Le Anh & De Koster, 2006) propose 
comprehensive surveys of the two last 
topics. 

Although design problems are closely 
related, they have traditionally been tackled 
separately because of their computational 
intractability (Kim & Goetschalckx, 2005). 
The authors propose a heuristic for the 
concurrent determination of the block 
layout, the P/D points and the guide path 
between P/D points, but they only consider 
the minimization of the loaded vehicle travel 
distance. Several authors have noticed the 
relevance of minimizing the total vehicle 
travel distance (Sun & Tchernev, 1996; 
Ganasharajah et al., 1998; Asez-Vaziri et 
al., 2007). In the latter, the authors claim 

that “the main costs of an AGV system are 
the investment cost in the fleet of the 
vehicles, the electricity consumption, and 
the wasted material handling capacity due to 
AGV battery re-charging times. These are 
all functions of the total required loaded and 
empty travel distances”. In (Asez-Vaziri et 
al., 2007; 2008) the authors consider the 
empty vehicle travels for designing flow 
path and P/D location in the special case of 
unidirectional loop layout. They conclude 
their study by noting that the ignorance of 
empty travel may lead to the design of 
layouts that are far from optimal. 

In this chapter, we consider the machine 
layout problem in FMS environment of type 
job shop or flexible job shop. The problem is 
to assign machines to locations within a 
given layout arrangement such that a given 
performance measure is optimized. Several 
authors (El Baz, 2004; Ray & Sarker, 2008) 
work on the machine assignment problem 
for different categories of layouts (flow-line, 
multi-line, closed loop). The first paper 
focuses on the machine assignment problem, 
while the two others include also the job 
assignment problem. Nevertheless, all these 
authors minimize the total costs of the 
material flow (the sum of transport costs and 
machining costs for the two last papers) and 
they propose evolutionary algorithms to 
solve their problem. The objective pursued 
in this paper is different. We want to show 
that the solution obtained by solving the 
design problem (tactical level or high-level 
model) is not necessarily the best solution 
when we consider scheduling problems 
(operational level or low-level model). 

The remainder of this chapter is 
organized as follows. In the first section, we 
detail the studied problem and we introduce 
some notations. The next section gives a 
description of the proposed solution 
approach. This approach is applied to FMS 
of job shop type and flexible job shop type. 



Finally, we conclude and propose some 
perspectives. 
 
2. DESCRIPTION OF THE PROBLEM 
AND NOTATIONS 
 
In this section, we give more details about 
the studied problem and we introduce the 
notations used in the remainder of the 
chapter. 
 
2.1. Problem definition 
 
The problem under consideration consists in 
the simultaneous solution of machine layout 
problem, scheduling of AGVs and 
scheduling of machines in an FMS 
environment. We consider a given layout 
arrangement where the entire shop floor is 
divided into a number of locations. We 
assume that all the locations are of equal 
area. Any machine could be assigned to any 
location, with no compatibility restriction. 
These locations are linked together by a 
guide path network, as shown in figure 1. 
The arrows indicate if the arcs are 
unidirectional or bidirectional. The value on 
each arc indicates the travel time (or 
distance) when a vehicle moves along the 
section. Table 1 gives the shortest path 
between any two locations. The FMS is of 
flexible job shop type. Each job consists of a 
set of operations that must be processed in 

the given order. Each operation needs to be 
processed during a given amount of time on 
a given type of machines. A type of machine 
characterizes a subset of the machines 
(identical or not). Each machine can handle 
at most one operation at a time. Each job has 
to be transported from an origin machine to 
a destination machine by AGV. The problem 
is to determine the assignment of machines 
to locations, which minimizes the 
completion time of a given set of jobs 
(makespan). The calculation of the 
makespan requires synchronization between 
the production tools and the material 
handling system. Each of these two 
problems, when examined separately, is NP-
hard. It is, according to the best of our 
knowledge, the first time that the makespan 
criterion is used to tackle design problems in 
FMS environments. 

If the FMS is of job shop type, each 
machine is the single representative of its 
type. It is a special case of the FMS flexible 
job shop problem, for which an operation 
could be achieved by several machines. 
Thus, it will raise the question of the choice 
of the machine that will achieve this 
operation. Finally, we won’t consider in this 
chapter the FMS flow shop scheduling. 
Indeed, for this kind of FMS, the guide path 
layout is often designed with an inner loop. 
In this case, the machine assignment 
problem is less relevant. 

Fig. 1. An illustration of a layout with 5 locations1 and its related travel time matrix. 
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Table 1. Shortest path travel times matrix 
between locations. 

 L1 L2 L3 L4 L5 
L1 0 6 8 10 12 
L2 12 0 6 8 10 
L3 10 6 0 6 8 
L4 8 8 6 0 6 
L5 6 10 8 6 0 

 
2.2. Notations 
 
In the remainder of this paper, we will use 
the following notations: 
• { }1, , nJ J J= ⋯  the set of n  

independent jobs, 
• { }1, , mL L L= ⋯  the set of m  locations, 

• { }1, , tT T T= ⋯  the set of t  types of 

machine, 
• { }1, , mM M M= ⋯  the set of m  

machines (including the load / unload 
machines), 

• � �, 1,tm t t∈  the number of machines 

of type tT , 

• { }1, ,
k

V V V= ⋯  the set of k  vehicles, 

• jα  the number of operations of job 

jJ J∈ , 

• { }, 1,j
ji jO o i α= ∈� �
� �� 	  the set of 

operations of job jJ J∈ , 

• 0jo  a fictitious load operation of job 

jJ J∈  

• 
j

j

J J

O O
∈

= ∪  the set of all the operations 

which must be performed, 

• { }( )0

j

j
j

J J

O O o+

∈

= ∪∪  the set of all 

operations plus the fictitious ones, 

• ( )( ) � �( )1 ,, ,..., 1, ji

ji

m

ji ji ji mp p t µ

µ
µ ∈ ×ℕ , 

respectively the type 
ji

Tµ  of machine 

and the 
ji

mµ -tuple of processing times 

required for the operation jio O+∈ . 

The ith value in the tuple corresponds to 
the ith machine of type 

ji
Tµ  given by 

the natural order of the machines. By 
convention, 0jµ  is the type of the 

loaded stations and 0 0j mp =  for 

0
1,

j
m mµ∈� �
� �� 	 .  

• 
1 if machine  is of type 

0 otherwise
m t

mt

M T
τ = 


 

• ( )
1 2 1 2

2,l l l lt t′ ∈ℕ  respectively the loaded 

and empty travel times between 
locations 1l  and 2l . 

In the important peculiar case of identical 
machines for each type, these notations can 
be simplified by replacing 

( )( ) � �( )1 ,, ,..., 1, ji

ji

m

ji ji ji mp p t µ

µ
µ ∈ ×ℕ  with 

( ) � �( ), 1,ji jip tµ ∈ ×ℕ . 

 
3. THE SOLUTION APPROACH 
 
We present in this section the proposed 
solution approach. The general framework is 
summarized in figure 2. We propose first a 
formulation of our problem for the 
minimization of loaded vehicle travels as a 
quadratic assignment problem (QAP). The 
machine assignment obtained by the solution 
of this QAP is used to define a TSP-like 
problem on which we will apply Ant Colony 
System. The goal of ACS is to build 
diversified machine assignments, which are 
correlated to the initial assignment. These 
randomly constructed machine assignments 
are evaluated using a black-box optimization 
algorithm derived from a previous work 
(Deroussi et al., 2008). 



Fig. 2. The proposed solution approach. 
 
3.1. Determination of the initial 
solution 
 
The location of machines can be determined 
by minimizing the total loaded vehicle travel 
distance. The general case of the FMS 
flexible job shop scheduling problem is first 
investigated. A quadratic 0-1 integer 
formulation is proposed for this problem. 
The peculiar case of the FMS job shop 
scheduling problem is then considered as a 
simplification of the general case. 
 
Quadratic 0-1 integer formulation for 
the FMS flexible job shop 
 
The problem of finding the machine 
assignment that minimizes the total loaded 
vehicle travel distance, in the case of FMS 
flexible job shop problem, can be formulated 
as follows: 

Minimize 
1 2 , 1 1 2

1 21 1

 
j i ji

ji

m m

l l o l o l
o O l l

t y y
−

∈ = =
∑∑∑  (1) 

Subject to � �
1

1, 1,
m

ml
m

x l m
=

= ∈∑   (2) 

 � �
1

1, 1,
m

ml
l

x m m
=

= ∈∑   (3) 

 
1

1,
ji

m

o l ji
l

y o O+

=
= ∈∑   (4) 

 
1

ji ji

m

o l m ml
m

y xµτ
=

≤∑ , jio O+∈ ,  

   � �1,l m∈  (5) 

with 
1 if  is assigned to 

0 otherwise
m l

ml

M L
x

= 


, � �1,m m∈ , 

� �1,l m∈ , 

1 if operation  is assigned to  

0 otherwiseji

ji l
o l

o L
y


= 


, 

jio O+∈ , � �1,l m∈ . 

The objective function minimizes the 
sum of the loaded travel times (1). 
Constraints (2) and (3) indicate respectively 
that each location receives exactly one 
machine, and that each machine is assigned 
to exactly one location. Constraints (4) 
indicate that each operation is assigned to 
exactly one location. Constraints (5) indicate 
that one operation can be assigned to a 
location if and only if this location receives 
a machine of the appropriate type. 

 
 
 

Best assignment 

- Mathematical solver 

- Heuristic 

QAP 

Ant Colony System 
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event simulation  

(section 3.2) 
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VSP + FJSP 

Initialization 

Initial assignment 

Generation of assignments 

Evaluation of assignments 



Peculiar case of the FMS job shop 
 
In the case of FMS job shop scheduling 
problem, variables 

jio ly  become useless 

(operations are automatically located on the 
suitable machine). The previous model can 
be simplified as indicated below: 

Minimise  
, 1, ,

1 1
i j ij

ij

m m

ll l l
o O l l

t x xµ µ−′ ′
′∈ = =

∑∑∑  (1') 

Subject to  � �
1

1, 1,
m

ml
m

x l m
=

= ∈∑  (2) 

  � �
1

1, 1,
m

ml
l

x m m
=

= ∈∑  (3) 

The objective function is rewritten by 
using the variables mlx  (we recall that in the 

job shop context, jiµ  designs indifferently 

the machine or the type). Constraints (2) and 
(3) are identical to those of the first model. 

This is the Koopmans & Beckman 
formulation for the QAP (1957), in which 
the coefficients of the cost matrix are all 
equal to 1. 

Obviously, the quadratic problem 
formulated in the general case is NP-hard 
because the QAP is a special case of this 
problem. It can be solved exactly, if its size 
allows it, by mathematical solvers, or solved 
approximately by heuristic approaches. 

The main objective of this chapter is not 
to optimally solve the QAP. Nevertheless, 
the solution of this problem is interesting for 
many reasons. Firstly, we want to show that 
the optimal solution of the QAP is not 
necessarily those that leads to the most 
efficient machine assignment. Secondly, we 
can expect that this optimal solution (or an 
approximate solution when the optimal 
solution is out of reach) is a good 
assignment. This knowledge can be useful 
for finding better assignments. In the 
remainder of this chapter, we will use the 
misnomer term of "QAP-optimal 
assignment" for defining the solution of the 

QAP, even if the problem is not optimally 
solved. 
 
3.2. The assignment generation 
 
Let us first justify the choice of a complex 
paradigm for generating new assignments. 
Starting with the QAP-optimal assignment, 
we try to iteratively improve it by evaluating 
the makespan criterion. It is necessary to 
generate new machine assignments. A 
simple way consists to modify a solution by 
the application of a basic move (for example 
the exchange of two machines) and to 
implement a local search technique. The 
drawback of this approach is that we cannot 
guarantee that it allows to reach the optimal 
machine assignment. Another simple way is 
to generate the assignments randomly. 
Obviously, each assignment is then 
reachable. The drawback of this approach is 
that we don’t exploit the knowledge of the 
QAP optimal assignment, which is a good 
assignment. It is the reason why we use an 
ant colony system (ACS) approach for 
generating new solutions. Each assignment 
has a non null probability to be chosen, and 
this probability is higher for the assignments 
that are close to the QAP optimal 
assignment. We can notice that using this 
approach, different ants can construct the 
same assignment that will be evaluated 
several times. Far to be a problem, this 
means that the most promising assignments 
(the closest ones to the QAP optimal 
assignment) are evaluated several times, 
exactly as if we execute several runs and we 
keep the best evaluation. 
In ACS, ants progressively build random 
solutions, guiding themselves with the 
pheromone information. We first recall how 
ACS is applied to the traveling salesman 
problem (TSP) in the literature. In a second 
time, we propose an original way to use the 
QAP-optimal assignment in order to define a 



TSP-like problem on which ACS will be 
applied. 
 
Ant Colony System for the Traveling 
Salesman Problem 
 
Ant Colony System is a cooperative learning 
algorithm that was first introduced by 
Colorny et al., 1991. Dorigo & 
Gambardella, (1997) describe how this 
approach can be applied to the traveling 
salesman problem (TSP). 

Let G be a complete graph in which the 
vertices are the cities. The edges ( ),r s  are 

valued by a cost function ( ),r sδ  (which 

can represent a distance or a time between r 
and s), and by a desirability function ( ),r sτ  

which represents the pheromone rate on this 
edge. The general principle of the ACS 
algorithm is that each ant builds a solution 
(an Hamiltonian cycle in the TSP context). 
Let’s assume that an ant is in city r. It 
chooses its next city s among those which 
have not yet been visited. For that, the ant 
takes into account the cost of the travel and 
the pheromone rate between r and s.  

The probability with which ant k in city r 
chooses to move to city s is given by (Eq. 1) 
(this state transition rule is called random-
proportional rule in Dorigo & Gambardella, 
(1997)). 
 

( )
( ) ( )

( ) ( )
( )

( ), ,
if 

, ,,

0 otherwise
k

k

k
u J r

r s r s
s J r

r u r up r s

β

β

τ η
τ η

∈


∈

= 



∑  

(Eq. 1) 
 

where τ  is the pheromone, 1η δ=  is 

the inverse of the distance ( ),r sδ , ( )kJ r  is 

the subset of cities that remain to be visited 
by ant k located in city r, β  is a parameter 

which determines the relative importance 
between pheromone and distance. 

Each time an ant ends the construction of 
its tour, a local updating rule (Eq. 2) is 
applied to change the pheromone level.  
 

( ) ( ) ( ) 0, 1 ,r s r sτ ρ τ ρτ← − +  (Eq. 2) 

 
where 0 1ρ< < , and 0τ  is the initial 

level of pheromone. 
An iteration of ACS ends when all ants 

have constructed their solution. A global 
updating rule (Eq. 3) is then applied using 
the globally best solution found since the 
beginning of the trial. 
 

( ) ( ) ( ) ( ), 1 , ,r s r s r sτ α τ α τ← − + ∆  (Eq. 3) 

 
where 

( ) ( ) ( )1
 if , _

,
0 otherwise

gbL r s gbest solution
r sτ

− ∈∆ = 


0 1α< <  is a parameter and gbL  is the 

length of the best solution encountered so 
far. 

Dorigo & Gambardella (1997) propose 
also the following parameter settings: 

2β = , 0.1α ρ= = , ( ) 1

0 nnnLτ −=  where n is 

the number of cities and nnL  is a rough 

approximation of the optimal value (for 
example obtained by a construction 
heuristic). The number of ants is 10m = . 
The initial level of pheromone is given by 

( ) 0,r sτ τ=  for any pair ( ),r s  of cities. 

The last remark concerns the state transition 
rule called pseudo-random-proportional rule 
(Eq. 1’) in which 0q  is a parameter 

( 00 1q≤ ≤ ). 0q  determines the relative 

importance of exploitation (high values of 

0q ) versus exploration (low values of 0q ). 

The random-proportional rule is obtained 
by fixing 0 0q =  in Eq. 1’. In this chapter, 

we will apply the random-proportional rule 
because we will consider very small 
instances of TSP (between 5 and 13 cities). 



Fig. 3. AP-optimal assignment for the Ex11 instance (section 4.1). 
 
 

( ) ( )
( ) ( ){ }

( )
0arg max , , if 

,
r,s  otherwise

ku J r
k

k

r u r u q q
p r s

p

βτ η
∈

 ≤′ = 


    (Eq. 1’) 
 
Adaptation of ACS for the machine 
assignment problem 
 
By applying the scheme just defined above, 
ants must build a machine assignment. The 
driving principle we support here is to 
employ the QAP-optimal assignment to 
define a TSP. For that, we consider a 
bipartite graph ( ), ,L M E  where the vertices 

are defined by the set of locations L on the 
left side and by the set of machines M on the 
right side. Each edge ( ),l m  for lL L∈  and 

mM M∈  is valued by a distance ( ),l mδ  

defined below. Each ant randomly chooses 
successively the machine that is assigned to 
the location 1L , the machine that is assigned 

to the location 2L , …, the machine that is 

assigned to the location mL . We illustrate 

the different steps of this problem 
transformation on the instance Ex112. The 
reader can refer to the table 4. The QAP-
optimal solution for this instance is 

( )1,2,3,4,5 (2,4,5,1,3)σ = , where ( )l mσ =  

indicates that the machine mM  is located at 

lL  (5 designs here the L/U station). The 

QAP-optimal solution is represented in 
figure 3. We propose to define a distance 
between a location and a machine by the 
formula ( ), lll m tδ ′= , for � �1,l m∈  and 

� �1,m m∈ , where ( )l mσ ′ = . Unfortunately, 

if we consider this definition, we have 

obviously ( )( ), 0l lδ σ = . By applying this 

result at (Eq. 1), we obtain ( )( ), 1kp l lσ = , 

and ants will build invariably the same 
machine assignment. In order to avoid this 
drawback, we propose to take 

( )( )
( )

( )( ), min ,
m l

l l l m
σ

δ σ γ δ
≠

= , where 

0 1γ< ≤  is a parameter. In fact, the setting 
of value for γ  creates a balance between 

intensification and diversification. If γ  is 

close to 0 then the probability to assign the 
machine ( )lMσ  to the location lL  is high. In 

the opposite case, if γ  is close to 1, this 
probability is low. The special case 1γ =  

means that we have equiprobability to assign 

( )lMσ  to the location lL  and to the closest 

location of lL . 

For the considered example, the 
makespan of the QAP-optimal solution has 
been evaluated at 98. So, we can calculate 

( ) 1

0 5*98τ −= , ( ) 151,3 12tδ = = , 

( ) 121,4 6tδ = = , ( ) 131,5 8tδ = =  and 

( )1,2 6δ γ= × .  

2 

2 

2 

2 

2 2 2 

2 2 

2 2 
2 2 2 

1 1 

3 3 
L1/M2 

L2/M4 L3/LU L4/M1 L5/M3 



Table 2. Probability ( ),kp l m  to assign 

machine mM  to location lL  according to γ . 

 ( )1,1kp ( )1,2kp ( )1,3kp ( )1,4kp ( )1,5kp

0.2γ = 0.013 0.920 0.009 0.037 0.021 
0.5γ = 0.058 0.648 0.041 0.162 0.091 
0.8γ = 0.096 0.418 0.067 0.268 0.151 
1.0γ =  0.113 0.315 0.079 0.315 0.177 

 
Table 2 summarizes the obtained 

probabilities by applying (Eq. 1) with 2β =  
for different settings of γ . 

In order to define the best setting for γ , 

a preliminary experiment has been realised 
on the instance Ex21. This instance has been 
chosen because the QAP-optimal 
assignment is not of very good quality. We 
apply ACS in the same conditions, except 
for the setting of γ . For each value of γ , 

five runs have been executed. The table 3 
gives the average results with regards to the 
relative gap to the best known upper bound. 

We can see that higher the value of γ  is, 

better the performance of ACS is. We will 
use in the following 1γ = . Although we 
may obtain better results with 1γ > , we 

prevent this case because it is illogic with 
the definition of ( )1,mδ . This experiment 

seems to show that it is preferable to favour 
diversification for this parameter. 

 
Table 3. Relative performance of ACS with 
regards to the setting of γ . 

γ  0.1 0.2 0.3 0.4 0.5 

gap 9.43% 9.25% 9.25% 6.42% 4.53% 

γ  0.6 0.7 0.8 0.9 1.0 

gap 4.53% 3.77% 3.77% 3.40% 1.13% 

 
3.3. The Assignment evaluation 
 
For evaluating a machine assignment, we 
consider now the simultaneous scheduling of 
machines and vehicles in order to minimize 
the makespan criterion.  

In the case of the FMS job shop problem, 
the related problem has been formulated as a 
nonlinear mixed integer programming model 
by Bilge & Ulusoy (1995). It is denoted 

max| , |kl klJR t t C′  following the notation of 

Graham et al. (1979), extended by Knust 
(1999) for transportation problems. J 
indicates a job shop, R indicates that we 
have a limited number of identical vehicles 
and all jobs can be transported by any of the 
vehicles. klt  indicates that we have job-

independent, but machine-dependent loaded 
travel times. klt′  indicates that we have 

machine-dependent empty travel times. The 
objective function to minimize is the 
makespan maxC . This problem is related to 

the Vehicle Scheduling Problem (VSP) for 
the scheduling of vehicles, and to the Job 
Shop Problem (JSP) for the scheduling of 
machines. The difficulty of max| , |kl klJR t t C′  

is the joint consideration of these two NP-
hard problems. 

(Ulusoy et al., 1997; Abdelmaguid et al., 
2004) propose genetic algorithms to tackle 
this problem. (Deroussi et al., 2008) develop 
an iterative local search metaheuristic. The 
authors propose to schedule transportation 
tasks on vehicles. A schedule is evaluated 
using a simple discrete event approach (we 
recall that max| , |kl klJR t t C′  problem is 

offline; traffic congestions or collisions are 
ignored). We will call DGT this 
metaheuristic in the following of this 
chapter. It will be used as a blackbox 
subroutine for the assignment evaluations. 

We introduce now the main principles of 
DGT. Given a machine assignment and a list 
of jobs to produce, then the list of 
transportation tasks is known. For example, 
if a job is processed by the following 
sequence of machines 3 1 2, ,M M M , we will 

define four transportation tasks for this job, 
from the load station to 3M , from 3M  to 

1M , from 1M  to 2M , and finally from 2M  

to the unload station. A solution in DGT is 



represented by the sequence of 
transportation tasks that is assigned to each 
vehicle. The objective of DGT is to 
determine the best possible scheduling of 
transportation tasks. For that, a 
neighborhood is defined for modifying the 
current solution. An evaluation subroutine 
based on discrete events calculates the 
arrival dates of jobs on the machine input 
buffer, and the completion time of each 
operation. The makespan is equal to the 
completion time of the last operation. 

An important advantage can be pointed 
out by using this separation between 
optimization and evaluation. Some 
dispatching rules can be added or removed 
depending on the evaluation model 
requirements. In our case, the studied 
problem is typically at strategic level. This 
means that we will have to work with 
aggregated data. In this condition, 
considering online scheduling rules such as 
traffic constraints probably makes no 
practical sense. So, we can use a relatively 
simple evaluation model. Moreover, it has 
been fairly easy to modify our model for 
evaluating solutions for the FMS flexible job 
shop. When a vehicle starts a transportation 
task, the destination machine must be 
determined according to the type required by 
the job. The following rule is applied; the 
chosen machine is the one that processes the 
job in the shortest time. Except for this 
difference, the evaluation models are exactly 
the same for the two FMS problems. 

DGT is an iterated local search 
algorithm. Unless otherwise stated, 1000 
local searches are executed for each 
evaluation of a machine assignment. 
 
4. COMPUTATIONAL STUDY FOR 
THE FMS JOB SHOP PROBLEM 
 
We propose now to implement the proposed 
solution approach in order to determine 
machine assignments for the FMS job-shop 

problem. The benchmark test is composed 
by instances derived from the literature, and 
described in the first subsection. The main 
objectives of this part are to show that, for 
these toy instances (there are only 120 
possible machine assignments), the solution 
of the QAP is not always the most effective, 
and that ACS is appropriate for searching 
better solutions. We will give in the second 
subsection the QAP-optimal assignments. 
These assignments are optimal for the 
minimisation of the loaded vehicle travel 
distance. The third subsection is devoted to 
the exhaustive enumeration of assignments. 
We will show that the QAP-optimal solution 
is not the most efficient in many cases. We 
finish in the forth subsection by a 
comparison between two methods that 
generate new machine assignments: ACS 
and local search. 

All the experiments in sections 4 and 5 
are executed on a Pentium 4, 3.4 GHz. 
Routines are written in C. 
 
4.1. Benchmark Test 
 
We will adapt the benchmark test initially 
proposed by Bilge & Ulusoy (1995). It is 
composed of 40 instances, built from 4 
layouts (including the layout 1 shown in 
figure 1) and 10 jobsets (jobset 1 is 
illustrated by figure 4). Each layout contains 
5 machines (4 production machines noted 

1M , 2M , 3M , 4M  and a single load / 

unload station noted LU) and two vehicles 
(AGVs). Jobsets contain between 5 and 8 
jobs, and between 18 and 27 operations to 
schedule. The name "Ex_ij" will design the 
instance built from jobset i and layout j. 

Loaded and empty vehicle travels are 
supposed to have the same durations (in 
particular, loaded and unloaded times are 
neglected). So, layout data is simply 
composed of the matrix of the vehicle travel 
times ( ll llt t′ ′′ = ). 



The jobsets give, for each job, the 
sequence of operations that have to be 
processed in the given order (ji Mµ ∈ , 

jip ∈ℕ ). Compared to the initial jobsets, we 

add a fictitious operation at the end of the 
process plan of each job. This additional 
operation takes place on the unload station, 
and have null duration ( ),0LU . It ensures 

that each job physically leaves the system 
after being processed. 

A solution is given by a m-tuple where 
the ith component designs the machine which 
is assigned to the location iL . For example, 

the assignment ( )1 4 3 2, , , ,M M LU M M , or 

( )1,4, ,3,2LU  indicates that 1M  is assigned 

to 1L , 4M  to 2L , and so on. We assume that 

there are no incompatibility issues between 
the machines and the locations. 

Each of these instances contains 5 
machines to assign to 5 locations. Thus, we 
have 5!=120 possible machine assignments. 

The QAP-optimal assignment can be easily 
obtained by exhaustive enumeration. 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2 4

1 3 2
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Fig. 4. Sequence of operations to be 
processed in the given order in jobset 1. 

 
4.2. The QAP machine layout 

In table 4, we indicate in column "QAP 
Assign" for each instance, the optimal 
assignment according to the minimization of 
the loaded vehicle travel distances. The 
column "Cost" gives the value of this 
criterion. These QAP-optimal solutions give 
a first machine assignment, which is not 
necessarily optimal when empty vehicle 
travels are also considered. 

 
Table 4. The QAP-optimal assignments and the loaded vehicle travel distance. 

InstancesQAP Assign Cost  InstancesQAP Assign Cost 
Ex11 (2,4,LU,1,3) 182  Ex61 (LU,1,2,3,4) 156 
Ex12 (1,3,4,2,LU) 114  Ex62 (LU,1,2,3,4) 60 
Ex13 (4,LU,1,3,2) 140  Ex63 (LU,1,2,3,4) 84 
Ex14 (3,2,4,1,LU) 214  Ex64 (2,3,4,1,LU) 168 
Ex21 (LU,1,2,3,4) 144  Ex71 (2,3,4,LU,1) 186 
Ex22 (1,2,3,4,LU) 60  Ex72 (LU,1,2,3,4) 84 
Ex23 (LU,1,2,3,4) 84  Ex73 (LU,1,2,3,4) 112 
Ex24 (3,4,LU,2,1) 156  Ex74 (3,4,LU,2,1) 204 
Ex31 (4,LU,1,2,3) 152  Ex81 (LU,1,2,3,4) 164 
Ex32 (1,2,3,4,LU) 66  Ex82 (LU,1,2,3,4) 60 
Ex33 (LU,1,2,3,4) 98  Ex83 (LU,1,2,3,4) 84 
Ex34 (1,2,3,LU,4) 166  Ex84 (1,2,3,LU,4) 160 
Ex41 (1,3,2,LU,4) 172  Ex91 (1,2,4,LU,3) 146 
Ex42 (3,LU,4,1,2) 96  Ex92 (4,LU,3,1,2) 60 
Ex43 (LU,1,2,3,4) 140  Ex93 (1,2,4,LU,3) 84 
Ex44 (4,1,3,2,LU) 200  Ex94 (1,2,4,3,LU) 148 
Ex51 (3,4,2,1,LU) 130  Ex101 (LU,1,2,3,4) 184 
Ex52 (3,4,1,2,LU) 74  Ex102 (LU,2,1,3,4) 84 
Ex53 (4,1,2,LU,3) 98  Ex103 (2,1,3,4,LU) 112 
Ex54 (3,2,4,LU,1) 152  Ex104 (1,3,4,2,LU) 190 



Table 5. Comparison of best, QAP-optimal and worst assignments for the makespan criterion. 

InstancesBest Assign CbestCQAP Cworse InstancesBest Assign CbestCQAP Cworse

Ex11 (2,4,LU,1,3) 98 98 118  Ex61 (3,4,LU,2,1) 123 129 154 
Ex12 (LU,1,3,4,2) 82 84 101  Ex62 (LU,1,2,3,4) 102 102 142 
Ex13 (LU,3,4,1,2) 91 92 104  Ex63 (LU,1,2,3,4) 105 105 154 
Ex14 (4,1,2,LU,3) 114 119 150  Ex64 (1,2,3,LU,4) 132 135 199 
Ex21 (3,4,LU,2,1) 106 116 136  Ex71 (2,3,4,LU,1) 124 124 164 
Ex22 (LU,1,2,3,4) 82 86 124  Ex72 (LU,1,2,3,4) 86 86 149 
Ex23 (LU,1,2,3,4) 89 89 131  Ex73 (LU,1,2,3,4) 93 93 160 
Ex24 (1,2,3,LU,4) 118 120 176  Ex74 (1,2,3,LU,4) 138 141 218 
Ex31 (4,1,LU,2,3) 114 117 138  Ex81 (LU,1,2,3,4) 167 167 179 
Ex32 (1,2,3,4,LU) 89 89 125  Ex82 (LU,1,2,3,4) 155 155 179 
Ex33 (LU,1,2,3,4) 96 96 133  Ex83 (LU,1,2,3,4) 155 155 183 
Ex34 (1,2,3,LU,4) 121 121 177  Ex84 (1,2,3,LU,4) 165 165 228 
Ex41 (1,3,2,LU,4) 123 123 145  Ex91 (1,2,4,LU,3) 115 115 147 
Ex42 (3,LU,4,1,2) 94 94 120  Ex92 (LU,3,1,2,4) 97 99 132 
Ex43 (LU,1,2,3,4) 102 102 128  Ex93 (1,2,4,LU,3) 101 101 142 
Ex44 (1,2,3,LU,4) 140 142 185  Ex94 (1,4,3,LU,2) 125 126 181 
Ex51 (3,2,4,LU,1) 94 97 113  Ex101 (4,LU,2,1,3) 148 153 171 
Ex52 (2,LU,3,4,1) 73 74 96  Ex102 (LU,2,1,3,4) 132 132 158 
Ex53 (4,1,2,LU,3) 81 81 101  Ex103 (2,1,3,4,LU) 135 135 168 
Ex54 (3,2,4,LU,1) 107 107 145  Ex104 (2,1,3,LU,4) 158 159 214 

 
4.3. Exhaustive enumeration of 
machine assignments 
 
As there are only 120 possible machine 
assignments, we propose to evaluate each of 
them according to the makespan criterion 
(using the black-box subroutine DGT). For 
each assignment, 10 runs are realised (this 
represents 1200 calls of DGT for each 
instance). Each instance requires between 40 
and 100 minutes of CPU time (one call of 
the makespan evaluation requires between 2 
and 5 seconds according to the size of the 
instance). We present in table 5 the results 
obtained. The column "Best Assign" gives 
the best obtained machine assignment. Its 
cost is given in column "Cbest". The columns 
"CQAP" and "Cworse" gives respectively the 
best result obtained with QAP-optimal 
assignment and with the worst assignment 
(the latter is given for information only). 

We can notice that the QAP-optimal 
machine assignment is not the best one for 
17 of the 40 instances that compose our 
benchmark test (these instances are indicated 
in the table with grey-colored cells). This 
means that for about half of the instances, 
the QAP-optimal machine assignment can 
be improved. However, the QAP-optimal 
assignment is generally of good quality. 
This justifies the choice of QAP assignment 
as initial solution. To conclude, we can 
notice the case of the instance Ex21, for 
which the QAP-optimal solution has a 
makespan of 116 against 106 for the best 
assignment (this represents a relative gap of 
8.62%). We give in figure 5 the Gantt charts 
of these two solutions. Of course, the sum of 
loaded vehicle travel distance is better for 
the QAP-optimal solutions (144 against 
150). On the contrary, the QAP-optimal 
solution is worse when we compare the sum 
of vehicle travel distance (224 against 208).
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Fig. 5. Gantt charts for the QAP-optimal and the best assignments on the instance Ex21. 



4.4. Comparison ACS / optimisation 
method 
 
We focus in this section on the 17 instances 
for which the QAP-optimal assignment can 
be improved. In a preliminary study, we 
firstly apply classical optimization methods 
such as local search (figure 6). 10 runs have 
been executed for each instance in order to 
prevent stochastic variations. The heuristic 
stops after 120 calls at the evaluation 
subroutine DGT (we have a total of 1200 
calls of DGT, the same as for the 
enumeration). The perturbation of a machine 
assignment is a random exchange move. Let 
for example X=(1,3,2,5,4) be a machine 
assignment. If we randomly choose to 
exchange machines 5 and 3, we obtain the 
machine assignment Y=(1,5,2,3,4). We can 
remark that we allow to exchange the same 
machine. This leads to Y=X. In this case, we 
re-evaluate the current best found 
assignment. It is necessary because several 
evaluations of the same assignment can give 
different makespans. 
 

X�XQAP 
Cx�DGT(X) 
While stopping conditions are not met Do 
 Y�Perturbation(X) 
 Cy�DGT(Y) 
 If (Cy<=Cx) Then 
  X�Y 
  Cx�Cy 
 End If 
End While 

Fig. 6. Pseudo-algorithm of the implemented 
local search. 
 

We summarize in table 6 the obtained 
results. The columns "Cbest" and "CQAP" 
indicate the best makespan obtained 
respectively for the best and for the QAP-
optimal assignments. For the local search, 
we have three columns "Min", "Max" and 

"Avg", in which we give respectively the 
result of the best run, of the worst run and 
the average result of the 10 runs. The row 
"Gap" indicates the relative gap of the 
method to the best found evaluation. 

The same information is given for the 
ACS algorithm. 100 iterations are performed 
(with 10 ants). Each run of ACS requires 
1000 calls of the evaluation subroutine DGT 
(against 120 calls for local search). In order 
to give the same time for the two methods, 
we divide the time given for one evaluation 
of a machine evaluation by a factor 8. So, 
the makespan evaluation for a machine 
assignment is of less good quality. We give 
in the column "Time" the approximate 
computational time to execute one run of LS 
and ACS (in seconds). 

We can remark that ACS performs better 
than LS (ACS obtains a global performance 
of 0.78% against 1,81% for LS). LS 
improves the QAP-optimal solution for only 
6 of the 17 instances (grey colored cells), 
and the best assignment is found for 5 
instances (dark grey colored cells). These 
results are relatively disappointing. Two 
reasons can be put forward: 
• the good quality of best QAP 

assignment. For example, for Ex24, 
there is only one better assignment. 
This explains the difficulty to improve 
the initial solution, 

• the exchange move doesn’t seem 
efficient. For Ex13, there are 5 better 
assignments, but none of them can be 
reached from the QAP-optimal 
assignment by an exchange move. 

This last point is particularly worrying. 
This seems to indicate that LS is dependent 
on the landscape of the instance: if it exists a 
better solution in the neighborhood, LS will 
be effective; if not, LS won't be able to 
improve the QAP-optimal solution. It seems 
difficult to define a criterion that allows to 
foresee the landscape of each instance. 

 



 
Table 6. Comparison of local search and Ant colony system. 

 Cbest CQAP LS ACS Time (s) 
Instances   Min Max Avg Min Max Avg  
Ex12 82 84 82 82 82.0 82 84 82.2 250 
Ex13 91 92 92 92 92.0 91 92 91.1 250 
Ex14 114 119 114 114 114.0 114 115 114.3 250 
Ex21 106 116 106 116 110.2 106 106 106.0 430 
Ex22 82 86 86 86 86.0 86 86 86.0 430 
Ex24 118 120 120 120 120.0 120 120 120.0 430 
Ex31 114 117 114 114 114.0 114 116 114.4 420 
Ex44 140 142 142 142 142.0 140 140 140.0 420 
Ex51 94 97 94 97 94.3 94 94 94.0 250 
Ex52 73 74 74 74 74.0 73 74 73.8 250 
Ex61 123 129 129 129 129.0 123 125 124.0 500 
Ex64 132 135 135 135 135.0 133 134 133.1 500 
Ex74 138 141 141 142 141.8 136 141 137.9 680 
Ex92 97 99 99 99 99.0 97 97 97.0 330 
Ex94 125 126 126 126 126.0 126 127 126.1 330 
Ex101 148 153 152 152 152.0 149 151 150.2 570 
Ex104 158 159 159 159 159.0 159 159 159.0 570 

gap  2.87%   1.81%   0.78%  

 
On the contrary, the results obtained with 

ACS are promising. In most cases, ACS 
permits to improve the QAP-optimal 
solution (for 13 of the 17 instances). The 
best known assignment is found for 12 
instances. The most interesting point is that 
ACS appears to be a robust method. The 
standard deviation is very low. We can note 
that a best upper bound has been found for 
the Ex74 instance. 

In the next section, we will study in more 
detail the behaviour of ACS for more 
difficult instances, for which it is impossible 
to enumerate the machine assignments. 
 
5. COMPUTATIONAL STUDY FOR 
FMS FLEXIBLE JOB SHOP PROBLEM 
 
We propose to consider now the FMS 
flexible job shop problem. We describe 
firstly the benchmark test, before we give 
the obtained QAP-optimal solutions. The 

second subsection is dedicated to the 
calculation of the makespan of these QAP-
optimal solutions. The results obtained by 
applying ACS are finally presented before 
we conclude regarding the experimental part 
of this work. 
 
5.1. Benchmark test 
 
We propose a new family of instances 
inspired from the literature. It derives from 
the Bilge & Ulusoy’s instances for the FMS 
job shop problem. These instances have 
been adapted in the following way: it is 
assumed that each production machine is 
duplicated. So we have two identical 
machines of each type, except for the LU 
station. The FMS is composed of 9 
locations. We have modified the layout 1 by 
adding 4 locations, as it is shown in figure 7. 
The transportation time matrix is deduced 
from this modified layout by determining 



Fig. 7. The 9-locations machine layout, used for FJSP-BU instances. 
 
the shortest path between two locations. In 
order to restore the balance between 
transportation times and production times, 
the latter are increased twofold in every 
jobset. We will denote these instances by 
FJSP-BU’i’, where ‘i’ designs the jobset. All 
these instances are solved with 2 vehicles. 
 
5.2. Solution of the QAP 
 
All of these instances have been solved with 
the mathematical solver CPLEX using the 
MIP formulation described in section 3.1. 
For each instance, CPLEX has been stopped 
after 3 hours of computational time. None of 
the ten instances has been optimally solved. 
Nevertheless, the solver gives the best found 
machine assignment when the time is up. 
The obtained results are presented in table 7. 
Despite the fact that the given solutions are 
not proved to be optimal, we will continue to 
call these solutions the "QAP optimal" 
assignments in order to keep homogeneous 
designation in the chapter. These solutions 
are good enough, in order to be used as 
initial assignment. 
 
 
 
 

Table 7. The "QAP-optimal" assignments 
and the loaded vehicle travel distance. 

Instances QAP Assign Cost  
FJSP-BU11 (1,3,8,4,6,LU,5,7,2) 88  
FJSP-BU21 (1,2,4,6,LU,3,7,8,5) 68  
FJSP-BU31 (4,3,5,6,1,8,7,LU,2) 68  
FJSP-BU41 (1,LU,4,7,6,8,5,3,2) 72  
FJSP-BU51 (2,1,6,8,LU,4,3,5,7) 60  
FJSP-BU61 (2,7,LU,5,6,4,8,3,1) 72  
FJSP-BU71 (6,LU,1,7,8,4,2,3,5) 88  
FJSP-BU81 (1,8,LU,6,5,4,7,3,2) 72  
FJSP-BU91 (6,5,1,8,3,4,2,LU,7) 60  
FJSP-BU101 (7,LU,4,2,8,1,6,3,5) 80  

 
5.3. Evaluation of the QAP-optimal 
solutions 
 
We use the evaluation subroutine DGT to 
evaluate the "QAP-optimal" assignments. 
For each instance, 10 runs are completed. 
We present in table 8 the obtained results. 
The columns "Min", "Max" and "Avg" give 
respectively the best, the worst and the 
average makespan. The time in seconds is 
indicated in the column "Time". The row 
"Gap" gives the average relative gap to the 
best known solution. 
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Table 8. Evaluation of the "QAP optimal" 
assignment for the makespan criterion 

Instances Min Max Avg Time 
FJSP-BU11 138 138 138.0 50 
FJSP-BU21 112 112 112.0 30 
FJSP-BU31 126 128 126.4 35 
FJSP-BU41 114 116 114.2 40 
FJSP-BU51 94 96 95.2 20 
FJSP-BU61 140 142 140.8 45 
FJSP-BU71 108 112 110.0 70 
FJSP-BU81 182 182 182.0 50 
FJSP-BU91 140 142 140.6 30 
FJSP-BU101 174 178 175.2 50 

   4.36%  

 
5.4. Application of ACS 
 
We apply ACS on the FMS-flexible job 
shop instances. The results obtained are 
summarized in table 9, which is similar to 
the table 8. The grey-colored cells indicate 
that ACS has found a better assignment than 
the QAP-optimal assignment 
 
Table 9. Optimization by ACS. 

Instances Min Max Avg Time  
FJSP-BU11 134 136 134.8 400  

FJSP-BU21 110 112 110.8 210  

FJSP-BU31 116 118 117.2 230  

FJSP-BU41 108 112 110.0 260  

FJSP-BU51 90 90 90.0 110  
FJSP-BU61 136 138 136.8 300  

FJSP-BU71 106 112 109.2 470  

FJSP-BU81 174 175 174.8 350  

FJSP-BU91 136 138 136.4 210  

FJSP-BU101 170 174 171.2 400  

Gap   0.93%   

 
ACS finds always a better assignment. 

Sometimes, the improvement is significant 
(116 against 126 for the BU31 instance). 
The average results show the efficiency of 
ACS (ACS is at 0.93% of the best found 
solution against 4.36% for the QAP optimal 

solution. It could be expected a significant 
long term benefits in term of productivity, if 
our general approach is applied for this kind 
of FMS. 
 
6. CONCLUSION 
 
We focus in this study on the machine 
assignment problem in flexible 
manufacturing systems environment. We 
show that the simple fact to consider empty 
travel times leads in many cases to the 
design of better layouts. Unfortunately, 
empty travel times are very difficult to 
determine because these times require a 
dynamic evaluation. This leads either to 
consider very simple systems, or to propose 
an elaborated solution approach. We 
propose in this paper a hybrid approach that 
combines integer linear programming, 
metaheuristics and discrete events 
approaches. 

Actually, the link between design 
problems and scheduling problems is not 
sufficiently studied in the FMS literature. It 
constitutes an important research topic, with 
possible industrial spin-offs. 
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