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Abstract. The IBC (Knowledge Base Integration) project addresses an
issue of ontology-based data integration. It aims at combining data resid-
ing in different actors (aircraft, drone, satellite...) during an air mission
scenario and providing users with a unified view of all available data, in
a communication constrained environment. We describe the solution we
have implemented based on mediation. We use rule languages to process
queries using an OWL2 domain ontology and RDF triples to store data.
We also give a performance analysis of our prototype.

1 Introduction

Within the MMT (Man Machine Teaming!) program launched by DGA (Direc-
tion Générale de ’Armement) and animated by Dassault Aviation and Thales, the
IBC (Knowledge Base Integration) project is part of the "Virtual Assistant and Smart
Cockpit" axis and focuses on the management of multiple knowledge and databases
in a non-centralized environment. The study is about accessing and exploiting data
from distributed platforms during coalition air operations. In the field of ontology-
based data access (OBDA), this is the issue of ontological mediated query answering
(OMQA) [4] in a distributed context, i.e. how to obtain answers to a query built using
many data sources through the use of an ontology in a distributed environment. In
the military air mission context, user queries are asked by actors involved in an air
mission (fighter jets, drones, satellites, ...). Each actor can be viewed as a data source.
The system must face the constraints of being able to generate real time answers to
queries, with possible communication interruptions (either voluntarily or involuntar-
ily) and limited storage capacities. In this paper, we propose a solution, its theoretical
principle and its implementation.

In section 2, we present the architecture, followed by its components in section 3.
Sections 4 and 5 give insights on performances and related works. We then conclude.

1. Cf. https://man-machine-teaming.com
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2 Mediator crowd architecture

The proposed distributed architecture is a mediator crowd. It is a special mediation
in which each actor is a mediator and is able to process queries with its own data and
send subqueries, if needed, to other data sources to complete the answers. Classically,
mediation, a.k.a. virtual data integration, does not require to materialize (i.e. copy)
data from an actor to another one in order for the latter to answer queries using data
of the former (cf. chapter 9 of [2]). Figure 1 illustrates this.
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FiG. 1: Mediator crowd architecture on the example of a fictitious air mission with 3
actors (aircraft al, satellite a2 and drone a3) who defend the Larzac plateau against a
invasion led by 6 enemies (el to e6). On the bottom left, al sends the query rewritings
to all actors. On the bottom right, al gets back results and computes the answers.

In figure 1, assuming al, a2, and a3 share the same air mission ontology, but
have their own data, the issue is the following: how can al answer queries using the
ontology, its own data and also a2’s and a3’s data? An example of a query could be
to identify al’s enemies. As illustrated in figure 1, the principle of a mediation crowd
is the following. Thanks to the mediator components (see figure 2), al first rewrites
the query into subqueries, called rewritings, each one corresponding to some distant
actor. Then these rewritings are sent to the corresponding actors (including al itself).
All actors processes their rewritings, thereafter sending the intermediate results to al.
At last, al builds the final answers using rewriting results from all actors.
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3 Mediator components

As shown in figure 2, we now detail mediator components: the ontology, containing
the domain knowledge and the mappings, facts (i.e. data) specific to each source and
stored as RDF triples in RDF triple stores, and the query rewriting algorithm.

Ontology Fact base

- Common vocabulary for syntactic ' Stored facts (i.e. data) for
interoperability the data source schema

* Domain knowledge in the form of Rasdicaces

rules (expressed with the common
vocabulary) Reasoning algorithms

°  Mappings between domain knowledge = Query evaluation by query
and data source schemas -
rewriting

Fi1G. 2: The components of each mediator.

3.1 Ontology and mappings

The chosen mediation approach provides actors with an ontology describing the
military air mission domain, giving a common terminology of concepts and properties
such as "mission plan", "is enemy of" or "detectable by radar" and axioms describing
some of their relationships. Actors use these to express their queries. The used mod-
eling language is OWL22, as it is the reference language in ontology modeling. To
be used in the rewriting process, OWL2-modeled knowledge is then translated into
so-called skolemized rules (see section 3.2)). In addition to the domain ontology, each
actor has its own vocabulary, called "data source schema', to structure the storage of
its own data.

Mappings are existential rules (see section 3.2) of the form Qo + Qg that link a
query Qg expressed on the data sources schemas to one Qo expressed on the ontology
vocabulary. This is called a global and local as view (GLAV) mapping in the data
integration literature (see chapter 9 of [2] for example). Without loss of expressivity,
mappings can be expressed as rules of the form : Pp < Py, ..., P;, where P is a triple
over the ontology and P, ..., Py is a conjunction of triples over data sources predicates
(i.e. data source schema elements). Each triple has one of the following form: (i) (?z
ibe:pred ?7y) with z and y variables and pred a binary predicate (a property); (ii) (?z
rdf:type pred) with x a variable and pred a unary predicate (a class); (iii) (7« ibc:pred
Y) or (Y ibc : pred ?z) with x a variable, Y a constant and pred a binary predicate.

In a mapping, P;s can refer to the same data source schema or to different ones.
Mappings are essential in the rewriting process (see section 3.2) in order for a query
to be rewritten using only data source predicates. The ontology and the mapping
associated to the example of figure 1 (once translated as rules) are given now ® (ontology
rules R1 to R6 and mappings M1 to M7):

2. See https://www.w3.org/TR/owl2-overview/.
3. We precise here that the ontology shown here is a toy one, for explanation purposes. The real
air mission ontology we have used has been designed by Dassault Aviation and is called SITAC.
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R1: danger(f1(X,Y)) + isDetectableBy(X,Y),isEnemyOf(Y, X).
R2: putInDanger By(X, f1(X,Y)) + isDetectableBy(X,Y),isEnemyOf(Y, X).
R3: isEnemyOf(X,Y) + ally(X),enemy(Y).
R4: isEnemyOf(X,Y) + isEnemyOf(Y, X).
R5: isRadarDetectableBy(X,Y) < isRadarDetectableBy(X, Z),

isRadar DetectableBy(Z,Y).
R6: isDetectableBy(X,Y) < isRadarDetectableBy(X,Y).
M1: enemy(X) < a1_enemy(X),as__enemy(X), as__enemy(X).
M2: isRadarDetectableBy(X,Y') < a1_isRadarDetectable By(X,Y).
M3: ally(X) < a;_ally(X).
M4: isRadar DetectableBy(X,Y) < as_isRadarDetectableBy(X,Y).
M5: ally(X) + az_ally(X).
M6: isRadarDetectableBy(X,Y) < as_isRadarDetectable By(X,Y).
MT7: ally(X) < as_ally(X).
R1 and R2 say that if X is radar detectable by Y, and Y is an enemy of X, then (R1)
there exists something which depends on both X and Y that is a danger, and (R2) X is
put in danger by something which depends on both X and Y. R3 says X is an enemy of
Y if X is an ally and Y an enemy. R4 defines the isEnemyO f predicate to be symetric.
R5 defines isRadar Detectable By to be transitive. R6 says isRadarDetectable By is a
sub-property of isDetectable By. Mapping M1 defines X as an enemy if X is listed as
an enemy for actors aj, ag and as. M2, M4 and M6 say that being radar detectable
by something is the same notion for each actor as for the ontology. M3, M5 and M7
say that being an ally is the same notion for each actor as for the ontology.

3.2 Theoretical framework and query processing algorithm

We have chosen the knowledge representation and reasoning formalism called "exis-
tential rules’ (noted e.r., a.k.a. datalog® [5, 9]) to be the theoretical framework of our
proposal. Indeed: (i) e.r. are the main up-to-date theoretical framework for the study
of OBDA issues, with many important theoretical results [4] and existing reasoning
algorithms [7]; (ii) e.r. generalize the main profiles EL, QL and RL of OWL2* which
allows to benefit from the well-known modeling features of OWL2, and also, after a
translation step, from the theoretical and practical results available for e.r.; (iii) e.r.
allow the expression of more general joins than the main profiles of OWL2, of more
cases of existential variables in the head of rules, and also allow recursive knowledge to
be defined in a very natural way; (iv) rule-based formalisms have proven to be relevant
for query evaluation, with or without ontology (mappings and queries are tradition-
ally represented as rules in the data integration field), and e.r. generalize conjunctive
queries (which are equivalent to SELECT FROM WHERE queries in SQL, or SPARQL
Basic Graph Pattern queries); (v) e.r. can also be equivalently translated as definite
clauses in order to process ontologies as logic programs. E.g. in section 3.1, rules
R1 to R6 and mappings M1 to M7 constitute a logic program. This is of great value
since research in logic programming (noted L.p.) has achieved a few very optimized
interpreters that can be used to reason with ontologies.

4. EL, QL and RL profiles are restrictions of OWL2 allowing decidable and tractable reasoning.
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Query 1 posed by al: Who is an enemy ?
i.e. q(X) € enemy(X)

Only one mapping used:

enemy(X) € al_ (X), a2_t y(X), a3_ y(X).
[a2_enemy | Answer:
el 1. Sending to a2 (e1)

e2 \ a2_enemy(X)

5. sending to itself
al_enemy(el)

2. getting : ‘

3. sending to a3

e 50 a3_enemy(el),
X=e3, and
X=ed a3_enemy(e2),
- a3_enemy(e3)
and aS_enemy(e4)I _
(— /
_— -~y
\ = FExTTEm
~ el 4. getting : _— s 25
- —_— e2 e3_enemy(el) : TRUE 6
6. getting : e3 a3_enemy(e2) : FALSE

a3_enemy(e3) : FALSE

al_enemy(el) : TRUE e4
a3_enemy(e4) : FALSE

Query 2 posed by al: Who is an enemy of al ?
i.e. q(X) € isEnemyOf(al,X)
Ontology rule used:
isEnemyOf(X,Y) € ally(X), enemy(Y).
Mappings used:

| a2 ally Ja2_enemy] -
a1 el 1. Sending to a2 ally(X) € a1_ally(X).
a2 e2 a2_ally(a1) ally(X) € a2_ally(X).
a3 e3 ‘ ally(X) € a3_ally(X).
ed I (X) € a1_ v(X), a2_ y(X), a3_ v(X).
2. getting : Answer:
a2_ally(a1) : TRU 5. Sending (al,e1)
to itself
al_ally(a1) 3. Sending to a3

a3_ally(a1)

4.getting:  PERPM ORI
a3_ally(al) : TRUE a1 el

\ -y cil a2 e5
a2 a3 e6
6. getting : &B c= \ - 7. Processing enemy(Y)
s & ea L - -
a1_ally(a1) : TRUE 3 ge;tlng . as in previous example
=e

Fia. 3: Example of the rewriting process applied to 2 queries. The rewriting process
follows the steps numbered from 1. to 6. for query 1, and from 1. to 8. for query 2.

In the context of e.r., query answering algorithms usually amounts in generating
all possible rewritings of the query using the predicates of the data sources schemas
and then evaluating these rewritings on these sources. This is a top-down or backward
chaining reasoning approach. These rewriting algorithms can be grouped into two cat-
egories. First, there are algorithms that reason on decidable restrictions of e.r. They
usually are ad-hoc to the supported restriction and still remain largely academic. The
second category of algorithms is based on those in the field of l.p. They require trans-
lation of e.r. into defined programs or datalog rules, with Skolem functions in order to
express existential variables. These algorithms are based on first-order logic resolution
(such as SLD-resolution, OLDT-resolution, or SLG-resolution®). They are theoreti-

5. These three resolutions are algorithmic schemes that infer logical consequences from knowledge
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cally undecidable because of some cases of infinite loops. In practice, however, they
can be made decidable, for instance by imposing a maximal execution time. The great
benefit with resolution-based approaches is that they are well-known and optimized
because they have been industrialized for a long time (see all prolog implementations
for example). Thus, we have chosen l.p. as our algorithmic approach. This means
that after modeling the ontology and mappings in OWL2, we translate them into e.r.,
and then translate e.r. into L.p. rules with Skolem functions (a.k.a. datalog rules with
Skolem functions). For instance, function f1 used in the rules R1 and R2 given in
section 3.1 is a Skolem function. The reasoner we have chosen that deals with such
rules is the so-called JENA backward chaining rule engine, which belongs to the JENA
software® and implements a top-down rewriting algorithm based on SLG-resolution.
JENA has also been chosen since it is one of the most popular open source industrial
platforms” to store and query RDF data triples based on the semantic web approach.

Figure 3 shows the rewriting process. Query 1 is posed by al, and rewritten using
M1 into a rewriting that is first sent to a2 which generates 4 possible values for X.
These values are sent as 4 rewritings to a3, and only one is ok for a3. Since it is ok
for al too, then it generates one solution which is el. Query 2 is also posed by al and
rewritten using R3, M1, M3, M5 and M7. Steps 1. and 2. involve actor a2, steps 3
and 4 involve a3, and steps 5. and 6. involve al itself. Last steps, 7. and 8., need
the processing of a rewriting on the same way as query 1 (in 6 steps). These examples
show the rewriting approach doesn’t need to copy all data from all actors in one place,
but instead sends rewritings. This fits well with the context of air missions.

4 Performance Analysis

We have made first experiments on our prototype using a scenario provided by Das-
sault Aviation, the SITAC ontology augmented with specific knowledge and mappings,
and a set of 7 queries. Up to now, we have only been able to test the non-distributed
case in which all data are directly accessible from all actors. It does not change the
way queries are processed (by rewriting them). It only lacks the communication times
and interruptions the distributed architecture may imply. Results are shown in figure
4. First, we have measured execution times for the different steps of query processing:
(1) resource creation in memory (initialization of data structures), (2) reasoner object
creation in memory, (3) assertions (data) loading from the triple store, (4) reasoner
setting, (5) inference time (inference of all query answers, in a backward chaining fash-
ion), and (6) displaying of results. Second, we have measured the number of basic
operations during inference, namely extensional (i.e. data source) predicate accesses
and rule applications (i.e. basic rewriting steps).

Figure 4 shows that executing the JENA engine on the scenario takes less than
1 sec., which fits with the real time constraint. We also see that inference (query
processing) time is around 0.1 sec. The most expensive step is loading the data into

expressed as first-order logic programs. OLDT- and SLG-Resolutions are SLD-Resolution optimiza-
tions. For example, SLG-resolution is the basis of the XSB prolog http://xsb.sourceforge.net/.

6. See https://jena.apache.org/.

7. See the ranking at https://db-engines.com/en/ranking/rdf+store.
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memory. In a real implementation, this step may be achieved once at the beginning of
the mission for data that will not change during the mission. Thus, the data update
mechanism might not be as time-consuming since focused on fewer data.
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(time in ns) accesses
m Query : null samHasForXYZ null m Query : null samHasRadarinMode null m Query : null distanceFromDangerToRafalel null
Query : null ennemySeenByAlly null m Query : null patrol1HasForAutonomy null m Query : null droneHasForXYZ null

m Query : null clearTask null

F1G. 4: Experimentation results based on the JENA backward chaining rule engine.

5 Related works

As in this work, [3, 1] work on the same idea of distributed mediation which amounts
to sending subqueries (or rewritings) to others actors in order to obtain extra final
answers. However, they ground their rewriting mechanism on the Query-SubQuery
(QSQ) algorithm [11], whereas we use SLG-resolution [10]. As QSQ, SLG-resolution
ensures termination when no function are used, but it can also be used with functions
(e.g. Skolem functions) which allows us to use it on translated e.r. QSQNet is a
recent extension of QSQ [6] which also handles functions. We have not chosen to use
it because its implementation seems not mature enough yet (e.g. it lacks some built-in
functions). However, as evoked in [8], no comparative study between QSQ approaches
and SLG-resolution has been proposed so far.

6 Conclusion

We have proposed a mediator crowd architecture that can be used in a military
air mission context. We have justified the use of an OWL2 domain ontology with
RDF data triples and of a top-down rewriting query process relying on the datalog
with Skolem functions rule language. We have shown the JENA rule engine could be
used to implement the whole approach. Yet, some issues remain open, as robustness
(how to deal with communication interruptions?), expressivity (how to add negation
or disjunction in the ontology?), and semantic caching (how to optimize performances
by caching often used queries and the associated rewritings?).
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Résumé

Le projet IBC (Intégration de Bases de Connaissances) s’intéresse & un probléme
d’intégration de données via une ontologie. I vise a combiner des données stockées
chez différents acteurs (avion, drone, satellite, ...) durant une mission aérienne et &
donner aux utilisateurs une vue unifiée de toutes ces données dans un environnement
de communication contraint. Nous décrivons la solution que nous avons implémentée,
basée sur la médiation. On utilise un langage a base de regles pour traiter les requétes
a partir d’'une ontologie du domaine modélisée en OWL2 et de données stockées sous
forme de triplets RDF. Nous donnons aussi une analyse des performances du prototype.
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