L Deroussi 
email: deroussi@moniut.univ-bpclermont.fr
  
M Gourgand 
  
N Tchernev 
  
  
A simple metaheuristic approach to the simultaneous scheduling of machines and automated guided vehicles

Keywords: Job-Shop Problem, Metaheuristics, Neighbouring Systems, Flexible Manufacturing Systems, Automated Guided Vehicles Job-Shop Problem, Metaheuristics, Neighbouring Systems, Flexible Manufacturing Systems, Automated Guided Vehicles

In this paper we address the problem of simultaneous scheduling of machines and vehicles in flexible manufacturing systems. The studied problem is a job shop where the jobs have to be transported between the machines by automatic guided vehicles. In addition to the processing of jobs, we consider transportation aspect as an integral part of the optimization process. To deal with this problem, we propose a new solution representation based on vehicles rather than machines. Each solution can thus be evaluated using a discrete event approach. An efficient neighbouring system is then described and implemented into three different metaheuristics: iterated local search, simulated annealing and their hybridisation. Computational results are presented for a benchmark of 40 literature instances. New upper bounds are found for 11 of them, showing the effectiveness of the presented approach.

Introduction

A Flexible Manufacturing System (FMS) can be described as follows: FMS consists of several machine tools along with part and tool handling devices such as robots, arranged so that it can handle any family of parts for which it has been designed and developed. These systems require a high investment but they have a high potential. As result, scheduling of FMS has been extensively investigated during the last three decades. (1979) and extended by [START_REF] Knust | Shop-Scheduling Problems with Transportation[END_REF] for transportation problems. J indicates a job shop, R indicates that we have a limited number of identical vehicles (robots) and all jobs can be transported by any of the robots. kl t indicates that we have job-independent, but machine-dependent loaded travel times. kl t′ indicates that we have machine-dependent empty travel times. The objective function to minimize is the makespan max C . Several authors note the necessity to carefully plan the interactions between process and transportation activities [START_REF] Raman | Simultaneous scheduling of machines and material handling devices in automated manufacturing[END_REF], [START_REF] Ulusoy | Simultaneous scheduling of machines and automated guided vehicles[END_REF], [START_REF] Knust | Shop-Scheduling Problems with Transportation[END_REF]). Unfortunately, the resulting problem is quite difficult to solve. We have to deal with two NPhard problems simultaneously: the job-shop scheduling problem [START_REF] Lenstra | Computational complexity of discrete optimization problems[END_REF] and the vehicle scheduling problem, which is similar to a pick up and delivery problem [START_REF] Lenstra | Complexity of vehicle routing and scheduling problems[END_REF].

Additionally, problems with transportation times are NP-hard since they are a generalization of classical NP-hard at only one AGV. As illustration, [START_REF] Soylu | A self-organising neural network approach for the single AGV routing problem[END_REF] and [START_REF] Hurink | Tabu A tabu search algorithm for scheduling a single robot in a job-shop environment[END_REF] propose respectively neural networks and tabu search approaches. Finally, few works are undertaken on the job shop with transportation. Ülusoy and Bilge (1993) and [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in a FMS[END_REF] propose an iterative method based on the decomposition of the master problem into two subproblems. Ülusoy et al. (1997) propose a genetic algorithm for this problem. [START_REF] Abdelmaguid | A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF] describe a hybrid method composed of a genetic algorithm for the scheduling of machines and a heuristic for the scheduling of vehicles.

For online scheduling of such systems, simulation is often the only available tool. Discrete event simulation is used for various purposes: for example to improve the AGV design process [START_REF] Gobal | A simulation model for estimating vehicle requirements in automated guided vehicle systems[END_REF], to compare the vehicles on-line dispatching rules [START_REF] Egbelu | Characterisation of automated guided vehicle dispatching rules[END_REF] or to test the problems of collision between the vehicles [START_REF] Revielotis | Conflict resolution in AGV systems[END_REF]. [START_REF] Nuhut | Scheduling of Automated Guided Vehicles[END_REF], [START_REF] Qiu | Scheduling and routing algorithms for AGVs: a survey[END_REF] and Le [START_REF] Le-Anh | A review of design and control of automated guided vehicle systems[END_REF] present more complete surveys of the job shop problem with transportation.

For this problem, most of the (small) instances considered in this paper remains today unsolved. [START_REF] Ganesharajah | Design and Operational Issues in AGV-Served Manufacturing Systems[END_REF] This paper is articulated as follows. In Section 2 we present a problem formulation and we propose a new solution representation based on vehicles. In Section 3 we show how feasible solutions can be evaluated using a discrete event approach. Section 4 is devoted to the description of an efficient neighbouring system. The metaheuristics implemented are described in Section 5 and some computational results can be found in Section 6.

The job-shop problem with transportation: formulation and solution representation

In this section we introduce the job shop problem with transportation using the Brucker's notations (2001), we present the chosen solution representation and we discuss its advantages and its drawbacks.

Problem formulation

In a job shop scheduling problem, we have a set

{ } 1 , , n J J J = …
of n independent jobs that have to be processed without preemption on a set

{ } 0 1 , , , m M M M M = … of 1 m + machines ( 0
M represents the load / unload or LU station from which jobs enter and leave the system). Each job

i J J ∈ consists of a sequence of i n operations ij o . Let us note { } , 1, , i ij i O o j n = = …
the set of operations of job i J , and

1 n i i O O = = ∪ the set of 1 n i i o n = = ∑ operations.
There is a machine

{ } 0 ,..., ij m M M µ ∈
and a processing time ij p associated with each operation ij o . Additionally, a vehicle has to transport a job whenever it changes from one machine to another. We have a given set ). Vehicles can handle at most one job at a time.

{ } 1 , k V V V = … of k vehicles.
The objective function is the minimizing time required to complete all jobs or makespan.

Representation of the search space

It is well known that the efficiency of metaheuristics highly depends on finding a suitable representation of the search space. For that a new solution representation is introduced, based on vehicles rather than on machines. 

Advantages of the proposed solution representation

The proposed representation has major differences with those of the literature. (Ülusoy et al., 1997) represent a schedule by a chromosome in which each gene has two data: the operation to be completed and the vehicle at which this operation is assigned. The solution given in table 1 is represented by the chromosome [ ( ) , , , , σ σ σ σ σ , and 52 σ for vehicle 1) are transported according to the order given by the chromosome.

11 1 ,V σ , ( ) 21 2 ,V σ , ( ) 41 3 ,V σ ,…, ( ) 52 1 ,V σ , ( ) 34 3 ,V σ , ( ) 53 
However, the same solution can also be represented by the chromosome [ ( )

11 1 ,V σ ,…, ( ) 52 1 ,V σ , ( ) 21 2 ,V σ ,…, ( ) 33 2 ,V σ , ( ) 41 3 ,V σ ,…, ( ) 53 3 ,V σ ],
and by many others. As a consequence, one schedule can be represented by many chromosomes, which define an equivalence class. Our representation consists in working with the set of equivalence class representatives. The immediate consequence is that the search space is significantly reduced, and thus probably easier to explore. [START_REF] Abdelmaguid | A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles[END_REF] get round this difficulty by using a chromosome in which only the order of the operations is mentioned. Thus, the chromosome [ 11 21 41 52 34 53 , , ,..., , , σ σ σ σ σ σ ] indicates the order in which the operations must be treated. A heuristic assigns successively each task to the 'best' vehicle (the chosen criterion is the vehicle that will carry out this task as soon as possible). The authors came back thus to the classical job-shop problem max || J C , integrating dynamically the transportation times into the makespan evaluation. The advantage is that the number of solutions is considerably reduced. Nevertheless, we can notice that vehicle assignments are locally optimal, but not necessarily globally.

The use of metaheuristics implies that many solutions must be considered. Such approach requires a makespan evaluation with a computationally fast evaluation subroutine. We present it in the next section.

Solutions evaluation

The makespan evaluation is described in algorithm 1 using a discrete event approach. ( ) ij T σ (respectively ( ) ij T σ ) indicates the completion time of the operation ij σ (respectively the transportation task ij σ ). We use the notion of available task, which can be defined as follows:

A transportation task is said to be available at a given time t if and only if it has not been carried out yet and it satisfies one of the two following conditions:

-It is associated to the first operation of the job sequence, -The previous operation (if it exists) in the job sequence is completed at time t.

The available tasks correspond in fact to the transports that can be effectively accomplished at a given moment.

We can notice the following remarks about algorithm 1:

(a) At the initial state, the only available tasks ij σ are those for which 1 j = (corresponding to the first operation defined in the sequence of the job i J ).

(b) A new event is created if the following transportation task of the vehicle l V is available (its previous corresponding operation has been already completed).

(c) The task ij σ has been just completed. This means that the task 1 ij σ + (if it exists) becomes an available one. A vehicle waiting for this task can now accomplish it, and an event is created. Notice that if tasks ij σ and 1 ij σ + are carried out by the same vehicle, this event has been already created in the case (b).

Algorithm 1: Makespan evaluation // Initialization For each task ij O σ ∈ Do ( ) ij T σ = +∞ End For // Creation of the initial events For each vehicle l V V ∈ Do If the first task (a) ij σ of l
V is an available one Then

Compute ( ) ij T σ and create event ( )

, ij l V T σ     End If End For // Main loop
While it exists some events ( )

, ij l V T σ     with ( ) ij T σ < +∞ Do
Choose the next event ( )

, ij l V T σ     and compute ( ) ij T σ If the next task i j σ ′ ′ of l V exists and is available Then (b)
Compute ( )

i j
T σ ′ ′ and create event ( )

, i j l V T σ ′ ′     End If If the task 1 ij σ + exists and is the next task of a vehicle l l V V ′ ≠ Then (c)
Compute ( )

1 ij T σ + and create event ( ) 1 , ij l V T σ +    

End If End While

Completion times must satisfy the following constraints:

(1)

( ) ( ) 1 0 1 , i i T t M σ µ ≥ , i J J ∀ ∈ (2) ( ) ( ) ( ) 1 1 , ij ij ij ij T T t σ σ µ µ - - ≥ + , ij O σ ∀ ∈ , 1 j > (3) ( ) ( ) ( ) (
)

2 2 1 1 1 1 2 2 2 2 2 2 1 1 , , i j i j i j i j i j i j T T t t σ σ µ µ µ µ - - ′ ≥ + + , 1 1 2 2 , i j i j O σ σ ∀ ∈ , ( ) ( ) 1 1 2 2 i j i j v v σ σ = , ( ) ( ) 2 2 1 1 1 i j i j λ σ λ σ = + (with the convention 0 0 i M µ = ) (4) ( ) ( ) 2 2 1 1 2 2 i j i j i j T T p σ σ ≥ + , 1 1 2 2 , i j i j O σ σ ∀ ∈ , 1 1 2 2 i j i j µ µ = , ( ) ( ) 2 2 1 1 i j i j T T σ σ > (5) ( ) ( ) ij ij ij T T p σ σ ≥ + , ij O σ ∀ ∈
Constraint 1 indicates that each job has to be transported from the loading station to its first machine. Constraint 2 indicates that a task cannot be completed before its previous corresponding operation has been completed plus the loaded travel time between the two machines. Constraint 3 gives the minimal time between two consecutive transportation tasks (on the same vehicle). The vehicle makes the empty travel from its last delivery destination to its next pick up destination, plus the loaded travel from here to its next delivery destination. Constraint 4 indicates that an operation can only begin after all previous operations on the same machine have been completed. Constraint 5 indicates that an operation cannot begin before the job arrives on the machine.

Also, the constraint 4 means that the order of operations on a machine is given by the order of arriving corresponding tasks on this machine. In other words, machine's input buffer follows FIFO rule. FIFO is a good performing rule (although nothing indicates that it exists an optimal solution satisfying this rule) and has some practical applications. This additional assumption allows to simplify the computation of the makespan. Only the completion time of the previous operation has to be considered.

Moreover, we assume that the task schedule follows a no-delay strategy (an event occurs as soon as possible).

So, the completion times are equal to the minimal value satisfying constraints (1) to ( 5). The makespan value is equal to the latest completion time.

Some schedules can lead to situations of deadlock. Such situations are presented on the figures 1a (deadlock with one vehicle) and 1b (deadlock with several vehicles) for jobset 1.

The figure 1a shows a deadlock with one vehicle. Deadlock situations are easily detected by our makespan evaluation. Since some tasks cannot be completed, their completion time remains infinite, and so the makespan too.

The presence of unfeasible solutions doesn't facilitate the good exploration of the search space. However it is not the case here, because it was proved that every feasible solution remains reachable from every other feasible solution into the restricted subset of feasible solutions [START_REF] Deroussi | Heuristiques, métaheuristiques et systèmes de voisinage : application à des problèmes théoriques et industriels de type TSP et ordonnancement[END_REF].

Construction of an efficient neighbouring system

Neighbouring system is an essential component of metaheuristics. The efficiency of a neighbouring system can be defined as its faculty to find near optimal solutions in the shortest possible time. In this section, we describe first a neighbouring system composed by several basic moves. It is recognized that combining several moves permits to improve the quality of the obtained local minima [START_REF] Mladenovic | Variable Neighborhood Search[END_REF][START_REF] Hansen | Variable Neighborhood search[END_REF].

Then, a technique is proposed to shrink the neighbourhood size, and so to reduce its exploration at the most promising neighbours. To conclude, summarized results are reported showing the efficiency of the proposed neighbouring system. et al. (1999) present some usual basic moves for scheduling problems. Amongst them, we choose exchange move and insertion move, because of their effectiveness for shop problems has been proved.

Description of the basic moves

Tian

Exchange move

This move consists in permuting two beforehand selected tasks. The exchange moves thus defined can be intravehicles (exchanged tasks are on the same vehicle) or inter-vehicles (exchanged tasks are on different vehicles).

Figure 2 shows an inter-vehicles exchange move.

Vehicle

Task scheduling AGV1 This move allows to generate ( )

1 2 o o - neighbours.

Insertion move

The insertion move consists in removing a randomly chosen task from the schedule, and then to insert it at a randomly chosen location (figure 3). Like the exchange moves, the insertion moves can be intra-vehicles or intervehicles. However, in the case of inter-vehicles moves, the number of tasks assigned to the vehicles may vary. o is inserted at thirst position on AGV1

Vehicle Task scheduling AGV1

The number of solutions that may be generated starting from the same schedule is given by ( )

2 o o k -+ .

Neighbourhood reduction

Neighbourhood reduction consists in selecting, among the set of neighbours of a given solution and according to a given criterion, a subset of neighbours containing those that are considered as the a priori most promising ones.

Consequently, it is expected that reduction allows to accelerate the neighbourhood exploration.

We propose to determine the most promising neighbours by considering only (exchange or insertion) moves in which the chosen tasks are completed in a close interval of time. The implemented neighbourhood reduction is described in figure 4.

1.

Choose a task 1 1 i j σ .

2.

Determine ( )

1 1 1 i j
T σ -and ( )

1 1 1 i j
T σ + , respectively the completion times of the preceding and following tasks of 1 1 i j σ , according to the sequence of job i J .

3.

Choose the second task 2 2 i j σ among the tasks such as ( ) ( ) ( ) Once the first operation 1 1 i j σ is chosen, the only moves considered are insertions or exchanges, for which the second operation 2 2 i j σ will satisfy ( ) ( ) ( )

1 1 2 2 1 1 1 1 i j i j i j T T T σ σ σ - + ≤ ≤
1 1 2 2 1 1 1 1 i j i j i j T T T σ σ σ - + ≤ ≤
with the following convention:

-( )

1 0 0 i T σ = if 1 1 i j
σ is the first operation in the sequence of

1 i J , - ( 
)

1 1 2 i n T σ + = +∞ if 1 1 i j
σ is the last operation in the sequence of 1 i J .

Summary of the results

We build a neighbouring system by considering two basic moves with a reduction of the neighbourhood size. In this section, we verify the efficiency of this neighbouring system. For this, we compute the average value of 1000 executions of each of the 40 instances that compose our benchmark test. One execution consists in a local search method, starting from a randomly generated feasible solution (using the stochastic alternative of the construction heuristic described in section 5.1.). The duration of an execution is evaluated by counting the calls of the makespan evaluation. The results obtained are summarized in First, we can notice that the neighbourhood reduction significantly improves the behaviour of local search methods. Thus, for the exchange move, a local minimum is obtained three times more quickly with the same quality of local minima. For the insertion move, time is divided by a factor of 5, while a weak loss of quality (1.2%) is noted.

Concerning the combination of reduced basic moves, the quality of the local minima is improved by 7.5% compared to the exchange move, and this in a similar duration. The improvement of quality compared to the insertion move is 4% with a time divided by 2. So, the combination of reduced moves allows to improve the quality of local minima. Our objective is now to include this neighbouring system into several metaheuristics, and to evaluate the efficiency of their behaviour.

Description of the resolution methods

We focus in this section on the resolution methods used. We present first the construction heuristic we have developed, and then the metaheuristics according to the [START_REF] Blum | Metaheuristics in combinatorial optimisation: overview and conceptual comparison[END_REF] formulation.

Construction heuristic

This greedy heuristic use the available tasks earlier defined. The basic principle is to successively schedule each available task by assigning it to a vehicle. When a task ij σ is completed, the set of the available tasks is updated, by replacing ij σ by its successor 1 ij σ + , if it exists. The algorithm 2 describes the construction heuristic.

Algorithm 2: Construction heuristic Let { } 1, 1,..., i D i n σ = =
be the initial set of available tasks

While D ≠ ∅ Do Choose a task ij D σ ∈ , Assign ij σ to a vehicle k K ∈ , Let { } : / ij D D σ = , If it exist let { } 1 : ij D D σ + = ∪

End While

Two alternatives are given for the choice of the task ij σ and the vehicle k. The first alternative (the stochastic one) builds a random feasible solution, while the second alternative (the deterministic one) tries to build a good feasible solution.

-the task is randomly chosen in D and is accomplished by a randomly chosen vehicle, -the selected task is the one corresponding to the job having the largest remaining processing time (LPT rule)

and the chosen vehicle is the one that will accomplish this task in the shortest time.

Iterated local search methods

Iterated Local Search methods (ILS) were the subject of interesting development [START_REF] Lourenço | Iterated local search[END_REF]. The principle algorithm of ILS is described in algorithm 3.

The method that we have implemented is one of the simplest forms of ILS. The initial solution (GenerateInitialSolution) is given by the construction heuristic (deterministic alternative) described in the previous section. 

End While

Simulated annealing

Simulated annealing (SA) is recognized to be one of the oldest metaheuristic [START_REF] Kirkpatrick | Optimisation by simulated annealing[END_REF] 

End While

We recall that our main goal is to verify the efficiency of the proposed neighbouring system. As consequence, no study of the parameters space has been investigated, and we choose an empirical tuning of parameters. This choice is based on a basic cooling schedule; the temperature decreases at each iteration (as suggested first by [START_REF] Lundy | Convergence of an annealing algorithm[END_REF] following a geometric law. This allows to determine the other parameters by considering some simple rules [START_REF] Van Laarhoven | Simulated Annealing: Theory and Applications[END_REF] as indicated just below.

An initial solution is randomly generated by the construction heuristic (stochastic alternative). In order that the final solution be independent from the starting point, the initial temperature must be hot enough. So, The parameter T that simulates the temperature is initialised with 0 5 T = (We have then a probability of 0.5 for accepting a deterioration of the current solution of (cold enough to consider that the probability for accepting a worse transition is null). As mentioned above, the temperature is a geometric sequence of common ratio f T . f T is calculated so as to make a given number of iterations, which is calculated so that the same time has passed for ILS and SA methods. The probability of accepting a worse transition is given by the Boltzmann factor exp E T

∆   -     .
Thus tuned, experimental behaviour of simulated annealing is proven to be quite good.

Hybrid method simulated annealing / local search

This hybrid method consists in applying the simulated annealing, but on the (very restricted) subspace of local minima rather than to the whole space of solutions. This technique was initially proposed by [START_REF] Martin | Combining simulated annealing with local search heuristics[END_REF] and [START_REF] Desai | SALO: Combining simulated annealing and local optimisation for efficient global optimisation[END_REF]. By analogy with GLS methods ('Genetic Local Search'), we will use the term of SALS ('Simulated Annealing Local Search') to indicate this method. The principle algorithm of SALS is contained into algorithm 3, in which the acceptance criterion is defined by the SA rules.

The adjustments are the same ones as for simulated annealing, except for the choice of the common ratio f T , which is calculated so as to carry out 1000 iterations (the same ones as for ILS method).

Experiments and computational results

After the description of the benchmark test, we present the results obtained by metaheuritics. A comparison with the literature results is provided in the third part of this section.

Description of the benchmark test

We use the benchmark test suggested by [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in a FMS[END_REF]. It is composed of 40 instances. All of them are made up of one LU station, four machines and two vehicles. The loading/unloading times are neglected compared to the transportation times. Empty moves and transportation moves are supposed to spend the same amount of time.

These instances are generated according to ten jobsets, combined with four different topologies for the workshops (see appendices A and B). Topologies are assumed to be representative of existing systems, and the jobsets include between 5 and 8 jobs, and between 13 and 21 operations to be scheduled. The name given to the instances is composed by the prefix 'Ex', followed of two numbers representing respectively the jobset and the topology. Thus, Ex53 indicates the instance generated by jobset 5 and topology 3.

Comparison of the studied methods

Table 4 contains the results obtained by the deterministic construction heuristic for each instance and each criterion. Column 'res' indicates the makespan obtained, while the column '%' gives the relative gap compared to the best known upper bound (table 3). The construction heuristic provides a mean deviation from the value of the best known solution of 36% for the C1 criterion and of 28% for the C2 criterion. These results clearly show the relative weakness of the heuristic, and the necessity of improving the obtained solutions with metaheuristics.

The metaheuristics results are presented in tables 5 (columns 'ILS', 'SA' and 'SALS' gives the results of the corresponding method, while the column 'Time' indicates the CPU time in seconds for one algorithm execution).

Table 5a contains results for C1 criterion and Table 5b for C2 criterion. Values in bold type indicate that the corresponding method has found the best known upper bound. Furthermore, because SA and SALS are stochastic algorithms, 10 replications are carried out for each instance so as to limit the random influence on the results. Tables 5 give the results obtained by the best replication.

In a general way, the results obtained are homogeneous. As an example, the three methods give the same results

for 34 of the 40 instances tested for the C1 criterion. In addition, ILS, SA and SALS find the best known upper bound respectively for 35, 37 and all instances. More scattered results are obtained for C2 criterion (the best known upper bound is reached respectively 22, 28 and 36 times by ILS, SA and SALS). It seems that the additional tasks make effectively the instances harder to solve. In order to have more information about the robustness of SA and SALS, we give in table 6 the best, the worst and the average of all the replications for the two criteria.

We can notice that most of the execution of SALS leads to very good solutions (on average, a replication is at 0.34% of the best obtained replication for the C2 criterion, and 0.96% for the C1 criterion), while the results of SA are more scattered (we obtain respectively 1.47% for C2 and 2.67% for C1). If the best replications of SALS and SA are close (respectively 108.48 against 108.63 for C2 criterion, 124.00 against 124.38 for C1), there is a significant difference about their average replication (108.85 against 110.23 for C2 criterion, 125.19 against 127.70 for C1) On the figure 5a, the unloading station LU allows to point out, for each job, its exit date of the system. The schedule of the vehicles (AGV1 and AGV2) gives the origin machine, the destination machine, and, if non-empty, the transported job.

Conclusion and further works

In this paper, we propose a new effective representation solution for the job-shop problem with transportation. A powerful neighbouring system is described and implemented with three different metaheuristics. The results obtained clearly show the relevance of this approach. Whatever the method used, the presented results are always better or at least equal to those of the literature. one of these methods, SALS, combines robustness with quality, and is a particularly efficient method for this problem.

Also, we propose a new criterion for the solution evaluation, which allows to extend the literature benchmark test with more challenging instances.

Many perspectives can be drawn from this work.

Concerning the studied problem, the benchmark test proposed by [START_REF] Bilge | A time window approach to simultaneous scheduling of machines and material handling system in a FMS[END_REF] seems out-of-date, and it would have to be extended by more difficult instances. Concurrently to this extension, and paradoxically, the exact resolution of most of these instances an always topical orientation research.

The consideration of online dispatching rules leads to define a more difficult makespan evaluation, which can require the use of discrete event simulation. Combining simulation with optimization methods can be a very interesting perspective to our work.

Lastly, the methods used in this paper are trajectory metaheuristics. The fact of carrying out several replications, and of keeping in memory the solution obtained by the best of them, can be seen like the use of a population method, in which the individuals are private of any possibility of communicating. Restoring this possibility (by using a population method, like a genetic algorithm) may allow to improve the results proposed in this paper. 

Appendixes

  This paper is devoted to the study of the classical job shop problem where transportation times are considered. the | | α β γ -notation introduced by Graham et al.

  schedule. For example, in the table 1 we have ( )

o

  Figure 1b. Unfeasible solution: deadlock with several vehicles

Figure 2 .

 2 Figure 2. Illustration of the exchange move; tasks 22 o and 24 o are exchanged

Figure 3 .

 3 Figure 3. Illustration of the insertion move; task 24o is inserted at thirst position on AGV1

Figure 4 .

 4 Figure 4. Description of the neighbourhood reduction.

  Figures5a and 5b. Gantt charts of the new best known solutions for Ex71 instance (C1 and C2 criteria). The two Gantt charts show the machining of the 8 jobs (numbered from A to H) on the machines (numbered from M1 to M4). On the figure5a, the unloading station LU allows to point out, for each job, its exit date of the system. The schedule of the vehicles (AGV1 and AGV2) gives the origin machine, the destination machine, and, if non-empty, the transported job.

  note that due to the intractability of the joint scheduling problem, the literature contains mainly heuristic approaches. In this paper, we propose a new effective metaheuristic approach for the offline

	| , | kl kl JR t t C ′	max
	problem.	

  of transportation tasks on the material handling system. In the following of this paper, we will designate by operations the members of O, and by transportation tasks (or tasks) the members of O . Let us give in more details the link between O and O .

	Each operation ij o requires the transportation of job i J from the previous machine that is defined in its
	sequence of operations ( 0 M if	1 j = or	1 µ -if ij	1 j > ) to the machine ij µ . So a transportation task ij o is associated
	with each operation ij o . Moreover, when the processing of a job is completed, a vehicle has to transport it to the
	unload station 0 M . So we consider an additional task	1 o + for each job. To find again a link between operations i in
	and tasks, a fictitious operation	1 o + is added to the sequence of each job. Obviously, we have i in	1 µ + = i in	M	0	and
	1 p + = . We give in table 1 an example of a feasible representation for jobset 1 (see the appendix section for the 0 i in
	jobsets definition).					
	Table 1. A feasible schedule for jobset 1 with three vehicles
	Vehicle	Task schedule	
	AGV1					

Each operation ij o O ∈ requires a transportation task we will note ij o , and we propose to schedule the set O

Table 2

 2 

. The column 'Average cost' indicates the average cost of the obtained local minima. The column 'Number of evaluations' gives the average number of makespan computations necessary for obtaining a local minimum.

Table 2 .

 2 Fast comparison of neighbouring systems

		Average cost	Number of evaluations
	Exchange move	135.99	1629
	Reduced exchange move	135.84	516
	Insertion move	131.07	3872
	Reduced Insertion move	132.76	778
	Combined reduced moves	125.82	1822

  making sure that each of them preserves the feasibility of the current solution. The acceptance criterion (ApplyAcceptanceCriterion) consists in accepting the new local minimum * s ′ if and only if it is better or equal than Best Walk Criterion). The stopping criterion is a maximum number of iterations arbitrarily fixed at 1000.

	Algorithm 3 Iterated local search methods (ILS)
	0 s ← GenerateInitialSolution()
	* s ← LocalSearch( 0 s )
	While stopping criterion is not met Do
	s′ ← Perturbation( * , s history )
	s ← ApplyAcceptanceCriterion( * * , , s s history

The local search (LocalSearch) is a variable neighbourhood descent (VND) composed by the reduced exchange and insertion moves. To perturb a solution (perturbation), three successive exchange moves are applied, while * s (* s ′ ← LocalSearch( s′ ) * ′ )

  . Its principle algorithm is given in algorithm 4.While stopping criterion is not met DoRandomly choose s′ in the neighbourhood of s If s′ is better than s Then

	Algorithm 4 Simulated annealing (SA)
	s ← GenerateInitialSolution()
	T	←	0 T
			s s′ ←
			Else
			s s′ ← according to a probability ( p T s s′ , ,	)
			End If
			Update( T )

Table 4 .

 4 Results obtained with the construction heuristic

		C1			C2		C1		C2	
	Instances	res	%	res	%	Instances	res	%	res	%
	Ex11	152 33.33 114 18.75	Ex61	175 35.66 138 16.95
	Ex12	106 17.78	90	9.76	Ex62	136 33.33 122 24.49
	Ex13	110 12.24	88	4.76	Ex63	147 40.00 124 20.39
	Ex14	174 24.29 124 20.39	Ex64	213 41.06 143 19.17
	Ex21	154 32.76 136 36.00	Ex71	200 50.38 140 26.13
	Ex22	122 48.78 118 55.26	Ex72	136 58.14 110 39.24
	Ex23	134 50.56 128 48.84	Ex73	149 60.22 111 33.73
	Ex24	202 50.75 160 48.15	Ex74	258 60.25 160 26.98
	Ex31	158 30.58 120 21.21	Ex81	203 21.56 197 22.36
	Ex32	108 21.35	94	10.59	Ex82	181 16.77 177 17.22
	Ex33	116 20.83	96	11.63	Ex83	185 19.35 183 19.61
	Ex34	190 28.38 134 20.72	Ex84	252 41.57 219 34.36
	Ex41	194 40.58 156 39.29	Ex91	170 33.86 141 21.55
	Ex42	150 50.00 127 45.98	Ex92	139 31.13 125 22.55
	Ex43	161 57.84 131 47.19	Ex93	144 34.58 127 20.95
	Ex44	227 39.26 175 44.63	Ex94	211 41.61 154 28.33
	Ex51	146 32.73 112 28.74	Ex101	208 35.95 184 25.17
	Ex52	103 27.16	92	33.33	Ex102	184 32.37 180 33.33
	Ex53	117 31.46 100 35.14	Ex103	195 39.29 182 31.88
	Ex54	172 28.36 134 39.58	Ex104	249 36.07 199 25.16

Table 5a .

 5a Comparison of the three studied metaheuristics (C1 criterion)

	Instances ILS SA SALS Time (s) Instances ILS	SA SALS Time (s)
	Ex11	114	114	114	1.3	Ex61	130	129	129	2.7
	Ex12	90	90	90	1.4	Ex62	102	102	102	2.5
	Ex13	98	98	98	1.4	Ex63	106	105	105	2.6
	Ex14	140	140	140	1.3	Ex64	151	151	153	2.6
	Ex21	118	118	116	2.3	Ex71	134	137	135	3.9
	Ex22	82	82	82	2.3	Ex72	90	86	86	4.0
	Ex23	90	90	89	2.2	Ex73	98	93	93	3.7
	Ex24	138	136	134	2.1	Ex74	167	163	161	3.8
	Ex31	121	121	121	2.2	Ex81	167	167	167	3.0
	Ex32	89	89	89	2.2	Ex82	155	155	155	2.4
	Ex33	96	96	96	2.1	Ex83	155	155	155	2.4
	Ex34	149	148	148	2.1	Ex84	178	178	178	3.3
	Ex41	138	138	138	2.1	Ex91	129	129	129	1.9
	Ex42	102	100	100	2.2	Ex92	106	106	106	1.9
	Ex43	106	104	102	2.1	Ex93	107	107	107	1.9
	Ex44	164	163	163	2.3	Ex94	149	150	149	1.9
	Ex51	110	110	110	1.3	Ex101	156	153	153	3.3
	Ex52	81	83	81	1.4	Ex102	140	139	139	3.1
	Ex53	89	89	89	1.4	Ex103	141	141	141	3.0
	Ex54	134	136	134	1.3	Ex104	187	184	183	3.3

Table 5b .

 5b Comparison of the three studied metaheuristics (C2 criterion)

	Instances ILS	SA SALS Time (s) Instances ILS	SA SALS Time (s)
	Ex11	96	96	96	1.3	Ex61	118	118	118	2.5
	Ex12	82	82	82	1.2	Ex62	98	98	98	2.3
	Ex13	84	84	84	1.3	Ex63	103* 103* 103*	2.4
	Ex14	103	103	103	1.3	Ex64	120	120	120	2.5
	Ex21	100* 100* 100*	2.1	Ex71	111* 111* 111*	3.9
	Ex22	76	76	76	2.0	Ex72	79	79	79	3.8
	Ex23	86	86	86	2.0	Ex73	84*	83*	83*	3.6
	Ex24	108	108	108	2.1	Ex74	126* 126* 126*	3.9
	Ex31	99	99	99	2.0	Ex81	161	161	161	2.6
	Ex32	85	85	85	1.9	Ex82	151	151	151	2.3
	Ex33	86	86	86	1.9	Ex83	153	153	153	2.3
	Ex34	111	111	111	2.1	Ex84	163	163	163	2.9
	Ex41	112	112	112	2.1	Ex91	116* 116* 116*	1.8
	Ex42	88	88	87*	2.1	Ex92	102	102	102	1.8
	Ex43	89	89	89	2.1	Ex93	105	105	105	1.8
	Ex44	121* 125* 121*	2.0	Ex94	120* 120* 120*	1.8
	Ex51	87	87	87	1.3	Ex101	148	147	147	3.0
	Ex52	69	69	69	1.3	Ex102	135* 135* 135*	2.9
	Ex53	74	74	74	1.3	Ex103	139* 139* 138*	2.9
	Ex54	96	96	96	1.3	Ex104	160	159	159	3.1
	The * symbol indicates new upper bounds.							

  The transport times to go from any machine to another one is given in the following matrix:

	8.2. Appendix B: The topologies										
	FMS1 LU M1 M2 M3 M4	FMS2 LU M1 M2 M3 M4
	LU	0	6	8	10	12	LU	0	4	6	8	6
	M1	12	0	6	8	10	M1	6	0	2	4	2
	M2	10	6	0	6	8	M2	8	12	0	2	4
	M3	8	8	6	0	6	M3	6	10	12	0	2
	M4	6	10	8	6	0	M4	4	8	10	12	0
	FMS3 LU M1 M2 M3 M4	FMS4 LU M1 M2 M3 M4
	LU	0	2	4	10	12	LU	0	4	8	10	14
	8.1. Appendix A: The jobsets M1	12	0	2	8	10	M1	18	0	4	6	10
	M2	10	12	0	6	8	M2	20	14	0	8	6
	M3	4	6	8	0	2	M3	12	8	6	0	6
	M4	2	4	6	12	0	M4	14	14	12	6	0

For each job, the sequence of machines to be visited is given. The processing time is indicated in brackets. Jobset 1: Jobset 2: Job 1 : M1(8); M2(16); M4(12) Job 1 : M1(10); M4(18) Job 2 : M1(20); M3(10); M2(18) Job 2: M2(10); M4(18) Job 3: M3(12); M4(8); M1(15) Job 3: M1(10); M3(20) Job 4: M4(14); M2(18) Job 4: M2(10); M3(15); M4(12) Job 5: M3(10); M1(15) Job 5: M1(10); M2(15); M4(12) Job 6: M1(10); M2(15); M3(12) Jobset 3: Jobset 4: Job 1: M1(16); M3(15) Job 1: M4(11); M1(10); M2(7) Job 2: M2(18); M4(15) Job 2: M3(12); M2(10); M4(8) Job 3: M1(20); M2(10) Job 3: M2(7); M3(10); M1(9); M3(8) Job 4: M3(15); M4(10) Job 4: M2(7); M4(8); M1(12); M2(6) Job 5: M1(8); M2(10); M3(15); M4(17) Job 5: M1(9);M2(7);M4(8);M2(10);M3(8) Job 6: M2(10); M3(15); M4(8); M1(15) Jobset 5: Jobset 6: Job 1: M1(6); M2(12); M4(9) Job 1: M1(9); M2(11); M4(7) Job 2: M1(18); M3(6); M2(15) Job 2: M1(19); M2(20); M4(13) Job 3: M3(9); M4(3); M1(12) Job 3: M2(14); M3(20); M4(9) Job 4: M4(6); M2(15) Job 4: M2(14); M3(20); M4(9) Job 5: M3(3); M1(9); Job 5: M1(11); M3(16); M4(8) Job 6: M1(10); M3(12); M4(10) Jobset 7: Jobset 8: Job 1: M1(6); M4(6) Job 1: M2(12); M3(21); M4(11) Job 2: M2(11); M4(9) Job 2: M2(12); M3(21); M4(11) Job 3: M2(9); M4(7) Job 3: M2(12); M3(21); M4(11) Job 4: M3(16); M4(7) Job 4: M2(12); M3(21); M4(11) Job 5: M1(9); M3(18) Job 5: M1(10); M2(14); M3(18); M4(9) Job 6: M2(13); M3(19); M4(6) Job 6: M1(10); M2(14); M3(18); M4(9) Job 7: M1(10); M2(9); M3(13) Job 8: M1(11); M2(9); M4(8) Jobset 9: Jobset 10: Job 1: M3(9); M1(12); M2(9); M4(6) Job 1: M1(11); M3(19); M2(16); M4(13) Job 2: M3(16); M2(11); M4(9) Job 2: M2(21); M3(16); M4(14) Job 3: M1(21); M2(18); M4(7) Job 3: M3(8); M2(10); M1(14); M4(9) Job 4: M2(20); M3(22); M4(11) Job 4: M2(13); M3(20); M4(10) Job 5: M3(14); M1(16); M2(13); M4(9) Job 5: M1(9); M3(16); M4(18) Job 6: M2(19); M1(21); M3(11); M4(15)

Moreover, we will consider two criteria for the objective function:

-C1: to minimise the exit time of the last job of the system, -C2: to minimise the completion time of the last job (makespan).

The C2 criterion is used in the literature and we consider it for comparison purpose. The C1 criterion takes into account, in the optimisation process, the return of the vehicles to the unloading station at the end of the schedule. Let us notice that there is a close link between these two criteria. Indeed, they both seek to minimise the completion time of the last task carried out. C1 criterion consider all the tasks { } , 1.. , 1..

It will be expected that C1 would be more difficult, since it considers more tasks, and it is thus of higher combinatorial.

Although these instances are of relatively low size (13-21 tasks to be scheduled for C2 and 18-27 tasks for C1), they remain very difficult to solve. To date, few instances were solved in an exact way, and the best published lower bounds are of poor quality (Ulusoy et al., 1997).

The best known solutions are summarised in table 3. They will be useful mainly as comparative data for the results that we present. Programs are written in language C, and tested on a Pentium 4, 3.4 GHz. CPU times is between one and four seconds per algorithm execution. Values between brackets give the previously best published upper bound (C2 criterion only)

The * symbol means that these upper bounds have been obtained beside the experiments described in this paper (iii) by our hybrid metaheuristic SALS.

A performance criterion indicates, for each method, the relative gap compared to the best published upper bound (indicated in bold type). The new upper bounds we have obtained are marked with the * symbol.

Table 7. Summary of the literature results (C2 criterion)

Inst. B&U GAA SALS Inst. B&U GAA SALS Ex11 96 0.00 96 0.00 96 0.00 Ex61 121 2.54 118 0.00 118 0.00 Ex12 82 0.00 82 0.00 82 0.00 Ex62 98 0.00 98 0.00 98 0.00 Ex13 84 0.00 84 0.00 84 0.00 Ex63 104 0.00 104 0.00 103* -0.96 Ex14 103 0.00 103 0.00 103 0.00 Ex64 123 2.50 120 0.00 120 0.00 Ex21 104 1.96 102 0.00 100* -1.96

Ex71 118 2.61 115 0.00 111* -3.48 Ex22 76 0.00 76 0.00 76 0.00 Ex72 85 7.59 79 0.00 79 0.00 Ex23 86 0.00 86 0.00 86 0.00 Ex73 88 2.33 86 0.00 83* -3.49 Ex24 113 4.63 108 0.00 108 0.00 Ex74 128 0.79 127 0.00 126* -0.79 Ex31 105 6.06 99 0.00 99 0.00 Ex81 161 0.00 161 0.00 161 0.00 Ex32 85 0.00 85 0.00 85 0.00 Ex82 151 0.00 151 0.00 151 0.00 Ex33 86 0.00 86 0.00 86 0.00 Ex83 153 0.00 153 0.00 153 0.00 Ex34 113 1.80 111 0.00 111 0.00 Ex84 163 0.00 163 0.00 163 0.00 Ex41 116 3.57 112 0.00 112 0.00 Ex91 117 0.00 118 0.85 116* -0.85 Ex42 88 0.00 88 0.00 87* -1.14 Ex92 102 0.00 104 1.96 102 0.00 Ex43 91 2.25 89 0.00 89 0.00 Ex93 105 0.00 106 0.95 105 0.00 Ex44 126 0.00 126 0.00 121* -3.97

Ex94 123 0.82 122 0.00 120* -1.64 Ex51 87 0.00 87 0.00 87 0.00 Ex101 150 2.04 147 0.00 147 0.00 Ex52 69 0.00 69 0.00 69 0.00 Ex102 137 0.74 136 0.00 135* -0.74 Ex53 75 1.35 74 0.00 74 0.00 Ex103 143 1.42 141 0.00 138* -2.13 Ex54 97 1.04 96 0.00 96 0.00 Ex104 164 3.14 159 0.00 159 0.00

These results clearly show the superiority of SALS. Our method always finds a result at least as good as those so far published. Moreover, new upper bounds are found for 11 of the 40 instances. SALS finds better solutions than B&U for 23 instances, and than GAA for 13 instances. The improvements are sometimes significant; a solution of cost 111 is obtained against 115 for Ex71 instance, that is to say a relative gain of 3.6 % (figure 5 shows, using a Gantt chart representation, the solutions obtained for Ex71 with each of the two criteria).

Still more than quality of the solutions obtained, it is the frequency of obtaining the best results which is most impressive, and this in extremely reasonable computing times for an optimisation problem (about a few seconds).

The behaviour of the method lets suggest that the proposed solutions must be for many the optimal ones. This remark still increases the interest of the C1 criterion, which makes the instances more difficult to solve. Even if there are only few additional transports to schedule, we notice that SALS loses in robustness for these 'new' instances (see table 6), and does not systematically find the best solutions (for at least four instances). These results might constitute a new reference for future studies, more able to measure the quality of the methods.