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Abstract. In this paper we address the problem of simultaneous scheduling of machines and 
vehicles in flexible manufacturing systems. The studied problem is a job shop where the jobs 
have to be transported between the machines by automatic guided vehicles. In addition to the 
processing of jobs, we consider transportation aspect as an integral part of the optimization 
process. To deal with this problem, we propose a new solution representation based on vehicles 
rather than machines. Each solution can thus be evaluated using a discrete event approach. An 
efficient neighbouring system is then described and implemented into three different 
metaheuristics: iterated local search, simulated annealing and their hybridisation. Computational 
results are presented for a benchmark of 40 literature instances. New upper bounds are found for 
11 of them, showing the effectiveness of the presented approach. 

Keywords: Job-Shop Problem, Metaheuristics, Neighbouring Systems, Flexible Manufacturing Systems, Automated 

Guided Vehicles. 
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1. Introduction 

A Flexible Manufacturing System (FMS) can be described as follows: FMS consists of several machine tools 

along with part and tool handling devices such as robots, arranged so that it can handle any family of parts for which 

it has been designed and developed. These systems require a high investment but they have a high potential. As 

result, scheduling of FMS has been extensively investigated during the last three decades. 

This paper is devoted to the study of the classical job shop problem where transportation times are considered. It 

is classified as a max| , |
kl kl

JR t t C′  problem according to the | |α β γ –notation introduced by Graham et al. (1979) 

and extended by Knust (1999) for transportation problems. J indicates a job shop, R indicates that we have a limited 

number of identical vehicles (robots) and all jobs can be transported by any of the robots. 
kl

t  indicates that we have 

job-independent, but machine-dependent loaded travel times. 
kl

t′  indicates that we have machine-dependent empty 

travel times. The objective function to minimize is the makespan maxC . Several authors note the necessity to 

carefully plan the interactions between process and transportation activities (Raman et al. (1986), Ulusoy et al. 

(1993), Knust (1999)). Unfortunately, the resulting problem is quite difficult to solve. We have to deal with two NP-

hard problems simultaneously: the job-shop scheduling problem (Lenstra and Rinnooy Kan, 1979) and the vehicle 

scheduling problem, which is similar to a pick up and delivery problem (Lenstra and Rinnooy Kan, 1981). 

Additionally, problems with transportation times are NP-hard since they are a generalization of classical NP-hard 
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shop problems. More precisely, concerning the job shop, Knust (1999) writes: “The classical job shop problems 

max2 ||J C  and max3 | 1 |
ij

J p C=  are both strongly NP-hard, which implies that only very restrictive special cases 

with transportation times may be polynomially solved”. 

As consequence, exact methods are mainly used for the study of simple or particular FMS, with strict 

assumptions. Thus, Blazewicz et al. (1991) study a FMS in which identical parallel machines are laid out in loop. 

Raman et al. (1986) present a MIP (Mixed Integer Programming) formulation of this problem but with the 

unrealistic assumption that the vehicles come back to the load/unload (LU) station after each achieved transport. 

Bilge and Ulusoy (1995) propose a MIP formulation raising this constraint on the vehicles. According to the 

authors, the resulting model is intractable in practice, because of its nonlinearity and its size. 

Approximated methods are well adapted to study most of the FMS, but within an offline framework. 

Nevertheless, many works are dedicated to simplified forms of this problem. There are essentially two kinds of 

simplifications. The first ones consist in defining dispatching rules for the vehicles, for example described and 

studied by Egbelu and Tanchoco (1984) and Le Anh and De Koster (2005). These rules allow to determine how 

AGVs move for a given scheduling of machines. The second ones are the restriction of the material handling system 

at only one AGV. As illustration, Soylu et al. (2000) and Hurink and Knust (2002) propose respectively neural 

networks and tabu search approaches. Finally, few works are undertaken on the job shop with transportation. Ülusoy 

and Bilge (1993) and Bilge and Ülusoy (1995) propose an iterative method based on the decomposition of the 

master problem into two subproblems. Ülusoy et al. (1997) propose a genetic algorithm for this problem. 

Abdelmaguid et al. (2004) describe a hybrid method composed of a genetic algorithm for the scheduling of 

machines and a heuristic for the scheduling of vehicles. 

For online scheduling of such systems, simulation is often the only available tool. Discrete event simulation is 

used for various purposes: for example to improve the AGV design process (Gobal and Kasilingam, 1991), to 

compare the vehicles on-line dispatching rules (Egbelu and Tanchoco, 1984) or to test the problems of collision 

between the vehicles (Revielotis, 2000). 

Nuhut (1999), Qiu et al. (2002) and Le Anh and De Koster (2006) present more complete surveys of the job 

shop problem with transportation. 

For this problem, most of the (small) instances considered in this paper remains today unsolved. Ganesharajah et 

al. (1998) note that due to the intractability of the joint scheduling problem, the literature contains mainly heuristic 
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approaches. In this paper, we propose a new effective metaheuristic approach for the offline max| , |
kl kl

JR t t C′  

problem. 

This paper is articulated as follows. In Section 2 we present a problem formulation and we propose a new 

solution representation based on vehicles. In Section 3 we show how feasible solutions can be evaluated using a 

discrete event approach. Section 4 is devoted to the description of an efficient neighbouring system. The 

metaheuristics implemented are described in Section 5 and some computational results can be found in Section 6. 

2. The job-shop problem with transportation: formulation and solution representation 

In this section we introduce the job shop problem with transportation using the Brucker’s notations (2001), we 

present the chosen solution representation and we discuss its advantages and its drawbacks. 

2.1. Problem formulation 

In a job shop scheduling problem, we have a set { }1, ,
n

J J J= …  of n independent jobs that have to be processed 

without preemption on a set { }0 1, , ,
m

M M M M= …  of 1m +  machines ( 0M  represents the load / unload or LU 

station from which jobs enter and leave the system). Each job 
i

J J∈  consists of a sequence of 
i

n  operations 
ij

o . 

Let us note { }, 1, ,i ij iO o j n= = …  the set of operations of job 
i

J , and 
1

n

i

i

O O
=

=∪  the set of 
1

n

i

i

o n
=

=∑  operations. 

There is a machine { }0 ,...,ij m
M Mµ ∈  and a processing time 

ij
p  associated with each operation 

ij
o . Additionally, a 

vehicle has to transport a job whenever it changes from one machine to another. We have a given set { }1, k
V V V= …  

of k vehicles. We assume that transportation times are only machine-dependant. ( ),i jt M M  and ( ),i jt M M′  

indicate respectively the loaded travel time and the empty travel time from machine 
i

M  to machine 
j

M  

( , 0,...,i j m= ). Vehicles can handle at most one job at a time. 

The objective function is the minimizing time required to complete all jobs or makespan. 

2.2. Representation of the search space 

It is well known that the efficiency of metaheuristics highly depends on finding a suitable representation of the 

search space. For that a new solution representation is introduced, based on vehicles rather than on machines. Each 

operation 
ij

o O∈  requires a transportation task we will note � ijo , and we propose to schedule the set �O  of 
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transportation tasks on the material handling system. In the following of this paper, we will designate by operations 

the members of O, and by transportation tasks (or tasks) the members of �O . Let us give in more details the link 

between O and �O . 

Each operation ijo  requires the transportation of job 
i

J  from the previous machine that is defined in its 

sequence of operations ( 0M  if 1j =  or 1ij
µ −  if 1j > ) to the machine 

ij
µ . So a transportation task � ijo  is associated 

with each operation 
ij

o . Moreover, when the processing of a job is completed, a vehicle has to transport it to the 

unload station 0M . So we consider an additional task � 1iino +  for each job. To find again a link between operations 

and tasks, a fictitious operation 1iino +  is added to the sequence of each job. Obviously, we have 1 0iin Mµ + =  and 

1 0
iinp + = . We give in table 1 an example of a feasible representation for jobset 1 (see the appendix section for the 

jobsets definition). 

Table 1. A feasible schedule for jobset 1 with three vehicles 
Vehicle Task schedule 

AGV1 �
11o  �

31o  �
22o  �

14o  �
23o  �

52o   

AGV2 �
21o  �

42o  �
13o  �

32o  �
33o    

AGV3 �
41o  �

12o  �
51o  �

43o  �
24o  �

34o  �
53o  

 

We will indicate by �( )ijv o V∈  the vehicle that complete the task � ijo . �( )ijoλ  represents the position of the task 

�
ijo  in the schedule. For example, in the table 1 we have �( )13 2v o V=  and �( )13 3oλ = . 

2.3. Advantages of the proposed solution representation 

The proposed representation has major differences with those of the literature. (Ülusoy et al., 1997) represent a 

schedule by a chromosome in which each gene has two data: the operation to be completed and the vehicle at which 

this operation is assigned. The solution given in table 1 is represented by the chromosome 

[ ( )11 1,Vσ , ( )21 2,Vσ , ( )41 3,Vσ ,…, ( )52 1,Vσ , ( )34 3,Vσ , ( )53 3,Vσ ]. The tasks assigned to one vehicle (for example 

11 31 22 14 23, , , ,σ σ σ σ σ , and 52σ  for vehicle 1) are transported according to the order given by the chromosome. 

However, the same solution can also be represented by the chromosome 

[ ( )11 1,Vσ ,…, ( )52 1,Vσ , ( )21 2,Vσ ,…, ( )33 2,Vσ , ( )41 3,Vσ ,…, ( )53 3,Vσ ], and by many others. As a consequence, one 

schedule can be represented by many chromosomes, which define an equivalence class. Our representation consists 
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in working with the set of equivalence class representatives. The immediate consequence is that the search space is 

significantly reduced, and thus probably easier to explore. 

(Abdelmaguid et al., 2004) get round this difficulty by using a chromosome in which only the order of the 

operations is mentioned. Thus, the chromosome [ 11 21 41 52 34 53, , ,..., , ,σ σ σ σ σ σ ] indicates the order in which the 

operations must be treated. A heuristic assigns successively each task to the ‘best’ vehicle (the chosen criterion is 

the vehicle that will carry out this task as soon as possible). The authors came back thus to the classical job-shop 

problem max||J C , integrating dynamically the transportation times into the makespan evaluation. The advantage is 

that the number of solutions is considerably reduced. Nevertheless, we can notice that vehicle assignments are 

locally optimal, but not necessarily globally. 

The use of metaheuristics implies that many solutions must be considered. Such approach requires a makespan 

evaluation with a computationally fast evaluation subroutine. We present it in the next section. 

3. Solutions evaluation 

The makespan evaluation is described in algorithm 1 using a discrete event approach. ( )ijT σ  (respectively 

�( )ijT σ ) indicates the completion time of the operation 
ij

σ  (respectively the transportation task � ijσ ). We use the 

notion of available task, which can be defined as follows: 

A transportation task is said to be available at a given time t if and only if it has not been carried out yet and it 

satisfies one of the two following conditions: 

-  It is associated to the first operation of the job sequence, 

-  The previous operation (if it exists) in the job sequence is completed at time t. 

The available tasks correspond in fact to the transports that can be effectively accomplished at a given moment. 

We can notice the following remarks about algorithm 1: 

(a) At the initial state, the only available tasks � ijσ  are those for which 1j =  (corresponding to the first operation 

defined in the sequence of the job 
i

J ). 

(b) A new event is created if the following transportation task of the vehicle 
l

V  is available (its previous 

corresponding operation has been already completed). 
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(c) The task � ijσ  has been just completed. This means that the task � 1ijσ +  (if it exists) becomes an available one. A 

vehicle waiting for this task can now accomplish it, and an event is created. Notice that if tasks � ijσ  and � 1ijσ +  are 

carried out by the same vehicle, this event has been already created in the case (b). 

Algorithm 1: Makespan evaluation 
// Initialization 

For each task � �
ij Oσ ∈  Do 

 �( )ijT σ = +∞  

End For 

// Creation of the initial events 

For each vehicle 
lV V∈  Do 

 If the first task (a) � ijσ  of 
lV  is an available one Then 

  Compute �( )ijT σ  and create event �( ), ijl
V T σ 
 

 

 End If 

End For 

// Main loop 

While it exists some events �( ), ijl
V T σ 
 

 with �( )ijT σ < +∞  Do 

Choose the next event �( ), ijl
V T σ 
 

 and compute ( )ijT σ  

If the next task � i jσ ′ ′  of lV  exists and is available Then (b) 

 Compute �( )i jT σ ′ ′  and create event �( ), i jl
V T σ ′ ′ 
 

 

End If 

If the task � 1ijσ +  exists and is the next task of a vehicle 
l l

V V′ ≠  Then (c) 

 Compute �( )1ijT σ +  and create event �( )1, ijl
V T σ + 
 

 

End If 

End While 

 

Completion times must satisfy the following constraints: 

(1) �( ) ( )1 0 1,i i
T t Mσ µ≥ , 

i
J J∀ ∈  

(2) �( ) ( ) ( )1 1,ij ij ij ij
T T tσ σ µ µ− −≥ + , � �

ij Oσ∀ ∈ , 1j >  

(3) �( ) �( ) ( ) ( )2 2 1 1 1 1 2 2 2 2 2 21 1, ,i j i j i j i j i j i j
T T t tσ σ µ µ µ µ− −

′≥ + + , � � �
1 1 2 2,i j i j Oσ σ∀ ∈ , �( ) �( )1 1 2 2i j i jv vσ σ= , 

�( ) �( )2 2 1 1 1i j i jλ σ λ σ= +  (with the convention 0 0i
Mµ = ) 

(4) ( ) ( )
2 2 1 1 2 2i j i j i jT T pσ σ≥ + , 

1 1 2 2
,i j i j Oσ σ∀ ∈ , 

1 1 2 2i j i jµ µ= , �( ) �( )2 2 1 1i j i jT Tσ σ>  

(5) ( ) ( )ij ij ijT T pσ σ≥ +� , 
ij

Oσ∀ ∈  
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Constraint 1 indicates that each job has to be transported from the loading station to its first machine. Constraint 

2 indicates that a task cannot be completed before its previous corresponding operation has been completed plus the 

loaded travel time between the two machines. Constraint 3 gives the minimal time between two consecutive 

transportation tasks (on the same vehicle). The vehicle makes the empty travel from its last delivery destination to 

its next pick up destination, plus the loaded travel from here to its next delivery destination. Constraint 4 indicates 

that an operation can only begin after all previous operations on the same machine have been completed. Constraint 

5 indicates that an operation cannot begin before the job arrives on the machine. 

Also, the constraint 4 means that the order of operations on a machine is given by the order of arriving 

corresponding tasks on this machine. In other words, machine’s input buffer follows FIFO rule. FIFO is a good 

performing rule (although nothing indicates that it exists an optimal solution satisfying this rule) and has some 

practical applications. This additional assumption allows to simplify the computation of the makespan. Only the 

completion time of the previous operation has to be considered.  

Moreover, we assume that the task schedule follows a no-delay strategy (an event occurs as soon as possible). 

So, the completion times are equal to the minimal value satisfying constraints (1) to (5). The makespan value is 

equal to the latest completion time. 

Some schedules can lead to situations of deadlock. Such situations are presented on the figures 1a (deadlock with 

one vehicle) and 1b (deadlock with several vehicles) for jobset 1. 

The figure 1a shows a deadlock with one vehicle. The task � 33o  cannot be accomplished before the task � 32o . The 

figure 1b shows a deadlock with three vehicles. Each vehicle waits for accomplishing their second task (respectively 

�
32o , � 42o  and �12o ), that another vehicle complete a task scheduled in third position (respectively � 31o , � 41o  and �11o ). 

Vehicles Task schedule 

AGV1 �
11o  �

33o  �
32o  �

14o  �
23o  �

52o   

AGV2 �
31o  �

42o  �
13o  �

41o  �
22o    

AGV3 �
21o  �

12o  �
51o  �

43o  �
24o  �

34o  �
53o  

Figure 1a. Unfeasible solution: deadlock with one vehicle 

Vehicles Task schedule 

AGV1 �
51o  �

32o  �
11o  �

14o  �
23o  �

52o   

AGV2 �
21o  �

42o  �
31o  �

13o  �
33o    

AGV3 �
22o  �

12o  �
41o  �

43o  �
24o  �

34o  �
53o  

Figure 1b. Unfeasible solution: deadlock with several vehicles 
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Deadlock situations are easily detected by our makespan evaluation. Since some tasks cannot be completed, their 

completion time remains infinite, and so the makespan too. 

The presence of unfeasible solutions doesn’t facilitate the good exploration of the search space. However it is not 

the case here, because it was proved that every feasible solution remains reachable from every other feasible 

solution into the restricted subset of feasible solutions (Deroussi, 2002). 

4. Construction of an efficient neighbouring system 

Neighbouring system is an essential component of metaheuristics. The efficiency of a neighbouring system can 

be defined as its faculty to find near optimal solutions in the shortest possible time. In this section, we describe first 

a neighbouring system composed by several basic moves. It is recognized that combining several moves permits to 

improve the quality of the obtained local minima (Mladenovic and Hansen, 1997; Hansen and Mladenovic, 2003). 

Then, a technique is proposed to shrink the neighbourhood size, and so to reduce its exploration at the most 

promising neighbours. To conclude, summarized results are reported showing the efficiency of the proposed 

neighbouring system. 

4.1. Description of the basic moves 

Tian et al. (1999) present some usual basic moves for scheduling problems. Amongst them, we choose exchange 

move and insertion move, because of their effectiveness for shop problems has been proved. 

4.1.1. Exchange move 

This move consists in permuting two beforehand selected tasks. The exchange moves thus defined can be intra-

vehicles (exchanged tasks are on the same vehicle) or inter-vehicles (exchanged tasks are on different vehicles). 

Figure 2 shows an inter-vehicles exchange move. 

Vehicle Task scheduling 

AGV1 �
11o  �

31o  �
22o  �

14o  �
23o  �

52o   

AGV2 �
21o  �

42o  �
13o  �

32o  �
33o    

AGV3 �
41o  �

12o  �
51o  �

43o  �
24o  �

34o  �
53o  

  

Vehicle Task schedule 

AGV1 �
11o  �

31o  �
24o  �

14o  �
23o  �

52o   

AGV2 �
21o  �

42o  �
13o  �

32o  �
33o    

AGV3 �
41o  �

12o  �
51o  �

43o  �
22o  �

34o  �
53o  

Figure 2. Illustration of the exchange move; tasks � 22o  and � 24o  are exchanged 
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The exchange move preserves the number of tasks assigned to each vehicle. It results from the fact that local 

search methods based on this move are strongly dependent on the structure of the initial solution. 

This move allows to generate 
( )1
2

o o −
 neighbours. 

4.1.2. Insertion move 

The insertion move consists in removing a randomly chosen task from the schedule, and then to insert it at a 

randomly chosen location (figure 3). Like the exchange moves, the insertion moves can be intra-vehicles or inter-

vehicles. However, in the case of inter-vehicles moves, the number of tasks assigned to the vehicles may vary. 

Vehicle Task scheduling 

AGV1 �
11o  �

31o  �
22o  �

14o  �
23o  �

52o   

AGV2 �
21o  �

42o  �
13o  �

32o  �
33o    

AGV3 �
41o  �

12o  �
51o  �

43o  �
24o  �

34o  �
53o  

  

Vehicle Task schedule 

AGV1 �
11o  �

31o  �
24o  �

22o  �
14o  �

23o  �
52o  

AGV2 �
21o  �

42o  �
13o  �

32o  �
33o    

AGV3 �
41o  �

12o  �
51o  �

43o  �
34o  �

53o   

Figure 3. Illustration of the insertion move; task � 24o  is inserted at thirst position on AGV1 

The number of solutions that may be generated starting from the same schedule is given by ( )2o o k− + . 

4.2. Neighbourhood reduction 

Neighbourhood reduction consists in selecting, among the set of neighbours of a given solution and according to 

a given criterion, a subset of neighbours containing those that are considered as the a priori most promising ones. 

Consequently, it is expected that reduction allows to accelerate the neighbourhood exploration. 

We propose to determine the most promising neighbours by considering only (exchange or insertion) moves in 

which the chosen tasks are completed in a close interval of time. The implemented neighbourhood reduction is 

described in figure 4. 

1. Choose a task � 1 1i jσ . 

2. Determine �( )1 1 1i jT σ −  and �( )1 1 1i jT σ + , respectively the completion times of the 

preceding and following tasks of � 1 1i jσ , according to the sequence of job 
iJ . 

3. Choose the second task �
2 2i jσ  among the tasks such as 

�( ) �( ) �( )1 1 2 2 1 11 1i j i j i jT T Tσ σ σ− +≤ ≤  

Figure 4. Description of the neighbourhood reduction. 
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Once the first operation � 1 1i jσ  is chosen, the only moves considered are insertions or exchanges, for which the 

second operation � 2 2i jσ  will satisfy �( ) �( ) �( )1 1 2 2 1 11 1i j i j i jT T Tσ σ σ− +≤ ≤  with the following convention: 

-  �( )10 0iT σ =  if 
1 1i jσ  is the first operation in the sequence of 

1i
J , 

-  �( )1 1 2i nT σ + = +∞  if 
1 1i jσ  is the last operation in the sequence of 

1i
J . 

4.3. Summary of the results 

We build a neighbouring system by considering two basic moves with a reduction of the neighbourhood size. In 

this section, we verify the efficiency of this neighbouring system. For this, we compute the average value of 1000 

executions of each of the 40 instances that compose our benchmark test. One execution consists in a local search 

method, starting from a randomly generated feasible solution (using the stochastic alternative of the construction 

heuristic described in section 5.1.). The duration of an execution is evaluated by counting the calls of the makespan 

evaluation. The results obtained are summarized in Table 2. The column ‘Average cost’ indicates the average cost of 

the obtained local minima. The column ‘Number of evaluations’ gives the average number of makespan 

computations necessary for obtaining a local minimum. 

Table 2. Fast comparison of neighbouring systems 
 Average cost Number of evaluations 

Exchange move 135.99 1629 
Reduced exchange move 135.84 516 
Insertion move 131.07 3872 
Reduced Insertion move 132.76 778 
Combined reduced moves 125.82 1822 

 

First, we can notice that the neighbourhood reduction significantly improves the behaviour of local search 

methods. Thus, for the exchange move, a local minimum is obtained three times more quickly with the same quality 

of local minima. For the insertion move, time is divided by a factor of 5, while a weak loss of quality (1.2%) is 

noted. 

Concerning the combination of reduced basic moves, the quality of the local minima is improved by 7.5% 

compared to the exchange move, and this in a similar duration. The improvement of quality compared to the 

insertion move is 4% with a time divided by 2. So, the combination of reduced moves allows to improve the quality 

of local minima. Our objective is now to include this neighbouring system into several metaheuristics, and to 

evaluate the efficiency of their behaviour. 
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5. Description of the resolution methods 

We focus in this section on the resolution methods used. We present first the construction heuristic we have 

developed, and then the metaheuristics according to the Blum and Roli (2003) formulation. 

5.1. Construction heuristic 

This greedy heuristic use the available tasks earlier defined. The basic principle is to successively schedule each 

available task by assigning it to a vehicle. When a task � ijσ  is completed, the set of the available tasks is updated, by 

replacing � ijσ  by its successor � 1ijσ + , if it exists. The algorithm 2 describes the construction heuristic. 

Algorithm 2: Construction heuristic 

Let �{ }1, 1,...,iD i nσ= =  be the initial set of available tasks 

While D ≠ ∅  Do 

Choose a task � ij Dσ ∈ , 

Assign � ijσ  to a vehicle k K∈ , 

Let �{ }: / ijD D σ= , 

If it exist let �{ }1: ijD D σ += ∪  

End While 

 

Two alternatives are given for the choice of the task � ijσ  and the vehicle k. The first alternative (the stochastic 

one) builds a random feasible solution, while the second alternative (the deterministic one) tries to build a good 

feasible solution. 

-  the task is randomly chosen in D  and is accomplished by a randomly chosen vehicle, 

-  the selected task is the one corresponding to the job having the largest remaining processing time (LPT rule) 

and the chosen vehicle is the one that will accomplish this task in the shortest time. 

5.2. Iterated local search methods 

Iterated Local Search methods (ILS) were the subject of interesting development (Lourenço et al., 2003). The 

principle algorithm of ILS is described in algorithm 3. 

The method that we have implemented is one of the simplest forms of ILS. The initial solution 

(GenerateInitialSolution) is given by the construction heuristic (deterministic alternative) described in the previous 

section. The local search (LocalSearch) is a variable neighbourhood descent (VND) composed by the reduced 

exchange and insertion moves. To perturb a solution (perturbation), three successive exchange moves are applied, 
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while making sure that each of them preserves the feasibility of the current solution. The acceptance criterion 

(ApplyAcceptanceCriterion) consists in accepting the new local minimum *s
′  if and only if it is better or equal than 

*s  (Best Walk Criterion). The stopping criterion is a maximum number of iterations arbitrarily fixed at 1000. 

Algorithm 3 Iterated local search methods (ILS) 

0s ← GenerateInitialSolution() 
*s ← LocalSearch( 0s ) 

While stopping criterion is not met Do 

s′ ← Perturbation( *,s history ) 
*s
′ ← LocalSearch( s′ ) 
*s ← ApplyAcceptanceCriterion( * *, ,s s history

′ ) 

End While 

5.3. Simulated annealing 

Simulated annealing (SA) is recognized to be one of the oldest metaheuristic (Kirkpatrick et al., 1983). Its 

principle algorithm is given in algorithm 4. 

Algorithm 4 Simulated annealing (SA) 
s ← GenerateInitialSolution() 

0T T←  

While stopping criterion is not met Do 
Randomly choose s′  in the neighbourhood of s  

If s′  is better than s  Then 

s s′←  

Else 

s s′←  according to a probability ( ), ,p T s s′  

End If 

Update(T ) 
End While 

 

We recall that our main goal is to verify the efficiency of the proposed neighbouring system. As consequence, no 

study of the parameters space has been investigated, and we choose an empirical tuning of parameters. This choice 

is based on a basic cooling schedule; the temperature decreases at each iteration (as suggested first by Lundy and 

Mees, 1986) following a geometric law. This allows to determine the other parameters by considering some simple 

rules (Van Laarhoven and Aarts, 1987) as indicated just below. 

An initial solution is randomly generated by the construction heuristic (stochastic alternative). In order that the 

final solution be independent from the starting point, the initial temperature must be hot enough. So, The parameter 

T  that simulates the temperature is initialised with 0 5T =  (We have then a probability of 0.5 for accepting a 

deterioration of the current solution of ( )0 ln 2T ×  at the beginning of the cooling schedule). The stopping 
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temperature is arbitrarily fixed at 310
a

T −=  (cold enough to consider that the probability for accepting a worse 

transition is null). As mentioned above, the temperature is a geometric sequence of common ratio 
f

T . 
f

T  is 

calculated so as to make a given number of iterations, which is calculated so that the same time has passed for ILS 

and SA methods. The probability of accepting a worse transition is given by the Boltzmann factor exp
E

T

∆ 
− 
 

. 

Thus tuned, experimental behaviour of simulated annealing is proven to be quite good. 

5.4. Hybrid method simulated annealing / local search 

This hybrid method consists in applying the simulated annealing, but on the (very restricted) subspace of local 

minima rather than to the whole space of solutions. This technique was initially proposed by (Martin and Otto, 

1996) and (Desai and Patil, 1996). By analogy with GLS methods (‘Genetic Local Search’), we will use the term of 

SALS (‘Simulated Annealing Local Search’) to indicate this method. The principle algorithm of SALS is contained 

into algorithm 3, in which the acceptance criterion is defined by the SA rules. 

The adjustments are the same ones as for simulated annealing, except for the choice of the common ratio 
f

T , 

which is calculated so as to carry out 1000 iterations (the same ones as for ILS method).  

6. Experiments and computational results 

After the description of the benchmark test, we present the results obtained by metaheuritics. A comparison with 

the literature results is provided in the third part of this section. 

6.1. Description of the benchmark test 

We use the benchmark test suggested by (Bilge and Ülusoy, 1995). It is composed of 40 instances. All of them 

are made up of one LU station, four machines and two vehicles. The loading/unloading times are neglected 

compared to the transportation times. Empty moves and transportation moves are supposed to spend the same 

amount of time. 

These instances are generated according to ten jobsets, combined with four different topologies for the 

workshops (see appendices A and B). Topologies are assumed to be representative of existing systems, and the 

jobsets include between 5 and 8 jobs, and between 13 and 21 operations to be scheduled. The name given to the 

instances is composed by the prefix ‘Ex’, followed of two numbers representing respectively the jobset and the 

topology. Thus, Ex53 indicates the instance generated by jobset 5 and topology 3. 
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Moreover, we will consider two criteria for the objective function: 

-  C1: to minimise the exit time of the last job of the system, 

-  C2: to minimise the completion time of the last job (makespan). 

The C2 criterion is used in the literature and we consider it for comparison purpose. The C1 criterion takes into 

account, in the optimisation process, the return of the vehicles to the unloading station at the end of the schedule. Let 

us notice that there is a close link between these two criteria. Indeed, they both seek to minimise the completion time 

of the last task carried out. C1 criterion consider all the tasks � �{ }, 1.. , 1.. 1ij i
O i n j nσ ∈ = = + , while C2 consider only 

the tasks corresponding to non-fictitious operations � �{ }, 1.. , 1..ij i
O i n j nσ ∈ = = . It will be expected that C1 would be 

more difficult, since it considers more tasks, and it is thus of higher combinatorial. 

Although these instances are of relatively low size (13-21 tasks to be scheduled for C2 and 18-27 tasks for C1), 

they remain very difficult to solve. To date, few instances were solved in an exact way, and the best published lower 

bounds are of poor quality (Ulusoy et al., 1997). 

The best known solutions are summarised in table 3. They will be useful mainly as comparative data for the 

results that we present. Programs are written in language C, and tested on a Pentium 4, 3.4 GHz. CPU times is 

between one and four seconds per algorithm execution. 

Table 3. Best known upper bound for the benchmark test 
 Criterion   Criterion 

Instances C1 C2  Instances C1 C2 

Ex11 114 96  Ex61 129 118 
Ex12 90 82  Ex62 102 98 
Ex13 98 84  Ex63 105 103 (104) 
Ex14 140 103  Ex64 151* 120 

Ex21 116 100 (102)  Ex71 133* 111 (115) 
Ex22 82 76  Ex72 86 79 
Ex23 89 86  Ex73 93 83 (86) 
Ex24 134 108  Ex74 161 126 (127) 

Ex31 121 99  Ex81 167 161 
Ex32 89 85  Ex82 155 151 
Ex33 96 86  Ex83 155 153 
Ex34 148 111  Ex84 178 163 

Ex41 138 112  Ex91 127* 116 (117) 
Ex42 100 87 (88)  Ex92 106 102 
Ex43 102 89  Ex93 107 105 
Ex44 163 121 (126)  Ex94 149 120 (122) 

Ex51 110 87  Ex101 153 147 
Ex52 81 69  Ex102 139 135 (136) 
Ex53 89 74  Ex103 140* 138 (141) 
Ex54 134 96  Ex104 183 159 

Values between brackets give the previously best published upper bound (C2 criterion only) 
The * symbol means that these upper bounds have been obtained beside the experiments described in this paper 
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6.2. Comparison of the studied methods 

Table 4 contains the results obtained by the deterministic construction heuristic for each instance and each 

criterion. Column ‘res’ indicates the makespan obtained, while the column ‘%’ gives the relative gap compared to 

the best known upper bound (table 3). 

Table 4. Results obtained with the construction heuristic 
 C1 C2   C1 C2 

Instances res % res %  Instances res % res % 

Ex11 152 33.33 114 18.75  Ex61 175 35.66 138 16.95 
Ex12 106 17.78 90 9.76  Ex62 136 33.33 122 24.49 
Ex13 110 12.24 88 4.76  Ex63 147 40.00 124 20.39 
Ex14 174 24.29 124 20.39  Ex64 213 41.06 143 19.17 

Ex21 154 32.76 136 36.00  Ex71 200 50.38 140 26.13 
Ex22 122 48.78 118 55.26  Ex72 136 58.14 110 39.24 
Ex23 134 50.56 128 48.84  Ex73 149 60.22 111 33.73 
Ex24 202 50.75 160 48.15  Ex74 258 60.25 160 26.98 

Ex31 158 30.58 120 21.21  Ex81 203 21.56 197 22.36 
Ex32 108 21.35 94 10.59  Ex82 181 16.77 177 17.22 
Ex33 116 20.83 96 11.63  Ex83 185 19.35 183 19.61 
Ex34 190 28.38 134 20.72  Ex84 252 41.57 219 34.36 

Ex41 194 40.58 156 39.29  Ex91 170 33.86 141 21.55 
Ex42 150 50.00 127 45.98  Ex92 139 31.13 125 22.55 
Ex43 161 57.84 131 47.19  Ex93 144 34.58 127 20.95 
Ex44 227 39.26 175 44.63  Ex94 211 41.61 154 28.33 

Ex51 146 32.73 112 28.74  Ex101 208 35.95 184 25.17 
Ex52 103 27.16 92 33.33  Ex102 184 32.37 180 33.33 
Ex53 117 31.46 100 35.14  Ex103 195 39.29 182 31.88 
Ex54 172 28.36 134 39.58  Ex104 249 36.07 199 25.16 

The construction heuristic provides a mean deviation from the value of the best known solution of 36% for the 

C1 criterion and of 28% for the C2 criterion. These results clearly show the relative weakness of the heuristic, and 

the necessity of improving the obtained solutions with metaheuristics. 

The metaheuristics results are presented in tables 5 (columns ‘ILS’, ‘SA’ and ‘SALS’ gives the results of the 

corresponding method, while the column ‘Time’ indicates the CPU time in seconds for one algorithm execution). 

Table 5a contains results for C1 criterion and Table 5b for C2 criterion. Values in bold type indicate that the 

corresponding method has found the best known upper bound. Furthermore, because SA and SALS are stochastic 

algorithms, 10 replications are carried out for each instance so as to limit the random influence on the results. Tables 

5 give the results obtained by the best replication. 

In a general way, the results obtained are homogeneous. As an example, the three methods give the same results 

for 34 of the 40 instances tested for the C1 criterion. In addition, ILS, SA and SALS find the best known upper 

bound respectively for 35, 37 and all instances. More scattered results are obtained for C2 criterion (the best known 

upper bound is reached respectively 22, 28 and 36 times by ILS, SA and SALS). It seems that the additional tasks 

make effectively the instances harder to solve. 
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Table 5a. Comparison of the three studied metaheuristics (C1 criterion) 
Instances ILS SA SALS Time (s)  Instances ILS SA SALS Time (s) 

Ex11 114 114 114 1.3  Ex61 130 129 129 2.7 

Ex12 90 90 90 1.4  Ex62 102 102 102 2.5 

Ex13 98 98 98 1.4  Ex63 106 105 105 2.6 

Ex14 140 140 140 1.3  Ex64 151 151 153 2.6 

Ex21 118 118 116 2.3  Ex71 134 137 135 3.9 

Ex22 82 82 82 2.3  Ex72 90 86 86 4.0 

Ex23 90 90 89 2.2  Ex73 98 93 93 3.7 

Ex24 138 136 134 2.1  Ex74 167 163 161 3.8 

Ex31 121 121 121 2.2  Ex81 167 167 167 3.0 

Ex32 89 89 89 2.2  Ex82 155 155 155 2.4 

Ex33 96 96 96 2.1  Ex83 155 155 155 2.4 

Ex34 149 148 148 2.1  Ex84 178 178 178 3.3 

Ex41 138 138 138 2.1  Ex91 129 129 129 1.9 

Ex42 102 100 100 2.2  Ex92 106 106 106 1.9 

Ex43 106 104 102 2.1  Ex93 107 107 107 1.9 

Ex44 164 163 163 2.3  Ex94 149 150 149 1.9 

Ex51 110 110 110 1.3  Ex101 156 153 153 3.3 

Ex52 81 83 81 1.4  Ex102 140 139 139 3.1 

Ex53 89 89 89 1.4  Ex103 141 141 141 3.0 

Ex54 134 136 134 1.3  Ex104 187 184 183 3.3 

Table 5b. Comparison of the three studied metaheuristics (C2 criterion) 
Instances ILS SA SALS Time (s)  Instances ILS SA SALS Time (s) 

Ex11 96 96 96 1.3  Ex61 118 118 118 2.5 

Ex12 82 82 82 1.2  Ex62 98 98 98 2.3 

Ex13 84 84 84 1.3  Ex63 103* 103* 103* 2.4 

Ex14 103 103 103 1.3  Ex64 120 120 120 2.5 

Ex21 100* 100* 100* 2.1  Ex71 111* 111* 111* 3.9 

Ex22 76 76 76 2.0  Ex72 79 79 79 3.8 

Ex23 86 86 86 2.0  Ex73 84* 83* 83* 3.6 

Ex24 108 108 108 2.1  Ex74 126* 126* 126* 3.9 

Ex31 99 99 99 2.0  Ex81 161 161 161 2.6 

Ex32 85 85 85 1.9  Ex82 151 151 151 2.3 

Ex33 86 86 86 1.9  Ex83 153 153 153 2.3 

Ex34 111 111 111 2.1  Ex84 163 163 163 2.9 

Ex41 112 112 112 2.1  Ex91 116* 116* 116* 1.8 

Ex42 88 88 87* 2.1  Ex92 102 102 102 1.8 

Ex43 89 89 89 2.1  Ex93 105 105 105 1.8 

Ex44 121* 125* 121* 2.0  Ex94 120* 120* 120* 1.8 

Ex51 87 87 87 1.3  Ex101 148 147 147 3.0 

Ex52 69 69 69 1.3  Ex102 135* 135* 135* 2.9 

Ex53 74 74 74 1.3  Ex103 139* 139* 138* 2.9 

Ex54 96 96 96 1.3  Ex104 160 159 159 3.1 

The * symbol indicates new upper bounds. 

In order to have more information about the robustness of SA and SALS, we give in table 6 the best, the worst 

and the average of all the replications for the two criteria. 

We can notice that most of the execution of SALS leads to very good solutions (on average, a replication is at 

0.34% of the best obtained replication for the C2 criterion, and 0.96% for the C1 criterion), while the results of SA 

are more scattered (we obtain respectively 1.47% for C2 and 2.67% for C1). If the best replications of SALS and SA 

are close (respectively 108.48 against 108.63 for C2 criterion, 124.00 against 124.38 for C1), there is a significant 

difference about their average replication (108.85 against 110.23 for C2 criterion, 125.19 against 127.70 for C1) 
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So, we can conclude that SALS is an effective method for the studied problem. In the next section, we compare 

it with methods proposed in the literature. 

Table 6. Robustness of SA and SALS 
 C1 criterion C2 criterion 

 SALS SA SALS SA 

Instances Min Max Avg Min Max Avg Min Max Avg Min Max Avg 

Ex11 114 116 114.6 114 126 118.6 96 96 96.0 96 97 96.2 
Ex12 90 92 90.2 90 94 91.5 82 82 82.0 82 82 82.0 
Ex13 98 98 98 98 102 99.9 84 84 84.0 84 86 84.8 
Ex14 140 142 141.4 140 148 144.9 103 103 103.0 103 106 104.3 

Ex21 116 120 117.8 118 125 120.7 100 102 100.2 100 107 103.2 
Ex22 82 84 82.2 82 90 83.7 76 77 76.1 76 77 76.1 
Ex23 89 92 89.9 90 94 91.8 86 86 86.0 86 86 86.0 
Ex24 134 140 138.4 136 148 142 108 108 108.0 108 113 108.9 

Ex31 121 128 123.2 121 129 125.8 99 99 99.0 99 106 101.8 
Ex32 89 89 89 89 97 92.6 85 85 85.0 85 86 85.1 
Ex33 96 100 97 96 102 99.5 86 86 86.0 86 86 86.0 
Ex34 148 153 149.9 148 162 155.3 111 112 111.8 111 116 112.8 

Ex41 138 140 138.6 138 144 140.8 112 115 113.2 112 123 117.8 
Ex42 100 104 101.4 100 112 103.3 87 90 88.6 88 95 90.7 
Ex43 102 107 104.7 104 112 107.7 89 93 89.5 89 95 91.5 
Ex44 163 166 164.3 163 175 169.9 121 126 122.7 125 134 128.7 

Ex51 110 110 110 110 118 112.5 87 87 87.0 87 91 88.6 
Ex52 81 81 81 83 86 84.0 69 69 69.0 69 69 69.0 
Ex53 89 91 89.6 89 97 92.2 74 75 74.2 74 76 75.4 
Ex54 134 138 136.2 136 151 141.4 96 97 96.2 96 105 98.6 

Ex61 129 133 131.1 129 137 133.8 118 118 118.0 118 124 120.1 
Ex62 102 105 103.2 102 108 103.9 98 100 98.2 98 98 98.0 
Ex63 105 107 105.6 105 109 107 103 104 103.3 103 105 104.5 
Ex64 153 156 155 151 164 156.8 120 123 120.6 120 130 124.8 

Ex71 135 140 136.4 137 144 140.0 111 114 111.8 111 118 114.4 
Ex72 86 91 89.1 86 94 89.1 79 80 79.3 79 82 80.0 
Ex73 93 98 94.5 93 107 96.9 83 85 83.4 83 90 85.8 
Ex74 161 167 163.7 163 173 168.6 126 128 126.6 126 135 128.9 

Ex81 167 167 167 167 169 167.4 161 161 161.0 161 161 161.0 
Ex82 155 155 155 155 155 155 151 151 151.0 151 151 151.0 
Ex83 155 155 155 155 155 155 153 153 153.0 153 153 153.0 
Ex84 178 179 178.1 178 188 182.6 163 163 163.0 163 163 163.0 

Ex91 129 130 129.4 129 136 132.6 116 117 116.4 116 122 118.0 
Ex92 106 106 106 106 109 107.3 102 102 102.0 102 104 103.0 
Ex93 107 110 107.3 107 110 108.4 105 105 105.0 105 108 106.2 
Ex94 149 151 149.7 150 159 152.8 120 123 121.8 120 126 123.0 

Ex101 153 159 155.7 153 163 158.1 147 151 147.8 147 154 148.5 
Ex102 139 141 139.6 139 142 140.1 135 137 135.2 135 138 135.9 
Ex103 141 143 141.6 141 145 142.4 138 141 139.5 139 144 140.9 
Ex104 183 190 187.0 184 197 192 159 161 159.6 159 167 161.8 

Average 124.00 126.85 125.19 124.38 131.90 127.70 108.48 109.73 108.85 108.63 112.73 110.23 

6.3. Comparison with the literature 

Table 7 summarizes the best results obtained for C2 criterion (the only one studied in the literature): 

(i) by a synthesis of three papers ((Ülusoy and Bilge, 1993), (Bilge and Ülusoy, 1995) and (Ülusoy et al., 

1997)) (B&U), 

(ii) by the genetic algorithm of (Abdelmaguid et al., 2004) (GAA), 
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(iii) by our hybrid metaheuristic SALS. 

A performance criterion indicates, for each method, the relative gap compared to the best published upper bound 

(indicated in bold type). The new upper bounds we have obtained are marked with the * symbol. 

Table 7. Summary of the literature results (C2 criterion) 
Inst. B&U GAA SALS  Inst. B&U GAA SALS 

Ex11 96 0.00 96 0.00 96 0.00  Ex61 121 2.54 118 0.00 118 0.00 
Ex12 82 0.00 82 0.00 82 0.00  Ex62 98 0.00 98 0.00 98 0.00 
Ex13 84 0.00 84 0.00 84 0.00  Ex63 104 0.00 104 0.00 103* -0.96 
Ex14 103 0.00 103 0.00 103 0.00  Ex64 123 2.50 120 0.00 120 0.00 

Ex21 104 1.96 102 0.00 100* -1.96  Ex71 118 2.61 115 0.00 111* -3.48 
Ex22 76 0.00 76 0.00 76 0.00  Ex72 85 7.59 79 0.00 79 0.00 
Ex23 86 0.00 86 0.00 86 0.00  Ex73 88 2.33 86 0.00 83* -3.49 
Ex24 113 4.63 108 0.00 108 0.00  Ex74 128 0.79 127 0.00 126* -0.79 

Ex31 105 6.06 99 0.00 99 0.00  Ex81 161 0.00 161 0.00 161 0.00 
Ex32 85 0.00 85 0.00 85 0.00  Ex82 151 0.00 151 0.00 151 0.00 
Ex33 86 0.00 86 0.00 86 0.00  Ex83 153 0.00 153 0.00 153 0.00 
Ex34 113 1.80 111 0.00 111 0.00  Ex84 163 0.00 163 0.00 163 0.00 

Ex41 116 3.57 112 0.00 112 0.00  Ex91 117 0.00 118 0.85 116* -0.85 
Ex42 88 0.00 88 0.00 87* -1.14  Ex92 102 0.00 104 1.96 102 0.00 
Ex43 91 2.25 89 0.00 89 0.00  Ex93 105 0.00 106 0.95 105 0.00 
Ex44 126 0.00 126 0.00 121* -3.97  Ex94 123 0.82 122 0.00 120* -1.64 

Ex51 87 0.00 87 0.00 87 0.00  Ex101 150 2.04 147 0.00 147 0.00 
Ex52 69 0.00 69 0.00 69 0.00  Ex102 137 0.74 136 0.00 135* -0.74 
Ex53 75 1.35 74 0.00 74 0.00  Ex103 143 1.42 141 0.00 138* -2.13 
Ex54 97 1.04 96 0.00 96 0.00  Ex104 164 3.14 159 0.00 159 0.00 

 

These results clearly show the superiority of SALS. Our method always finds a result at least as good as those so 

far published. Moreover, new upper bounds are found for 11 of the 40 instances. SALS finds better solutions than 

B&U for 23 instances, and than GAA for 13 instances. The improvements are sometimes significant; a solution of 

cost 111 is obtained against 115 for Ex71 instance, that is to say a relative gain of 3.6 % (figure 5 shows, using a 

Gantt chart representation, the solutions obtained for Ex71 with each of the two criteria). 

Still more than quality of the solutions obtained, it is the frequency of obtaining the best results which is most 

impressive, and this in extremely reasonable computing times for an optimisation problem (about a few seconds). 

The behaviour of the method lets suggest that the proposed solutions must be for many the optimal ones. This 

remark still increases the interest of the C1 criterion, which makes the instances more difficult to solve. Even if there 

are only few additional transports to schedule, we notice that SALS loses in robustness for these ‘new’ instances 

(see table 6), and does not systematically find the best solutions (for at least four instances). These results might 

constitute a new reference for future studies, more able to measure the quality of the methods. 
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Figures 5a and 5b. Gantt charts of the new best known solutions for Ex71 instance (C1 and C2 criteria). The two 

Gantt charts show the machining of the 8 jobs (numbered from A to H) on the machines (numbered from M1 to M4). 

On the figure 5a, the unloading station LU allows to point out, for each job, its exit date of the system. The schedule 

of the vehicles (AGV1 and AGV2) gives the origin machine, the destination machine, and, if non-empty, the 

transported job. 

7. Conclusion and further works 

In this paper, we propose a new effective representation solution for the job-shop problem with transportation. A 

powerful neighbouring system is described and implemented with three different metaheuristics. The results 

obtained clearly show the relevance of this approach. Whatever the method used, the presented results are always 

better or at least equal to those of the literature. one of these methods, SALS, combines robustness with quality, and 

is a particularly efficient method for this problem. 

Also, we propose a new criterion for the solution evaluation, which allows to extend the literature benchmark 

test with more challenging instances. 

Many perspectives can be drawn from this work. 

Concerning the studied problem, the benchmark test proposed by (Bilge and Ülusoy, 1995) seems out-of-date, 

and it would have to be extended by more difficult instances. Concurrently to this extension, and paradoxically, the 

exact resolution of most of these instances is still today out of reach, and constitutes an always topical orientation 

research. 

The consideration of online dispatching rules leads to define a more difficult makespan evaluation, which can 

require the use of discrete event simulation. Combining simulation with optimization methods can be a very 

interesting perspective to our work. 
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Lastly, the methods used in this paper are trajectory metaheuristics. The fact of carrying out several replications, 

and of keeping in memory the solution obtained by the best of them, can be seen like the use of a population 

method, in which the individuals are private of any possibility of communicating. Restoring this possibility (by 

using a population method, like a genetic algorithm) may allow to improve the results proposed in this paper. 

8. Appendixes 

8.1. Appendix A: The jobsets 

For each job, the sequence of machines to be visited is given. The processing time is indicated in brackets. 

Jobset 1:       Jobset 2: 

Job 1 : M1(8); M2(16); M4(12)    Job 1 : M1(10); M4(18) 
Job 2 : M1(20); M3(10); M2(18)    Job 2: M2(10); M4(18) 
Job 3: M3(12); M4(8); M1(15)    Job 3: M1(10); M3(20) 
Job 4: M4(14); M2(18)     Job 4: M2(10); M3(15); M4(12) 
Job 5: M3(10); M1(15)     Job 5: M1(10); M2(15); M4(12) 
         Job 6: M1(10); M2(15); M3(12) 
 

Jobset 3:       Jobset 4: 

Job 1: M1(16); M3(15)     Job 1: M4(11); M1(10); M2(7) 
Job 2: M2(18); M4(15)     Job 2: M3(12); M2(10); M4(8) 
Job 3: M1(20); M2(10)     Job 3: M2(7); M3(10); M1(9); M3(8) 
Job 4: M3(15); M4(10)     Job 4: M2(7); M4(8); M1(12); M2(6) 
Job 5: M1(8); M2(10); M3(15); M4(17)   Job 5: M1(9);M2(7);M4(8);M2(10);M3(8) 
Job 6: M2(10); M3(15); M4(8); M1(15) 
 
Jobset 5:       Jobset 6: 

Job 1: M1(6); M2(12); M4(9)    Job 1: M1(9); M2(11); M4(7) 
Job 2: M1(18); M3(6); M2(15)    Job 2: M1(19); M2(20); M4(13) 
Job 3: M3(9); M4(3); M1(12)    Job 3: M2(14); M3(20); M4(9) 
Job 4: M4(6); M2(15)     Job 4: M2(14); M3(20); M4(9) 
Job 5: M3(3); M1(9);     Job 5: M1(11); M3(16); M4(8) 
         Job 6: M1(10); M3(12); M4(10) 
 
Jobset 7:       Jobset 8: 

Job 1: M1(6); M4(6)     Job 1: M2(12); M3(21); M4(11) 
Job 2: M2(11); M4(9)     Job 2: M2(12); M3(21); M4(11) 
Job 3: M2(9); M4(7)     Job 3: M2(12); M3(21); M4(11) 
Job 4: M3(16); M4(7)     Job 4: M2(12); M3(21); M4(11) 
Job 5: M1(9); M3(18)     Job 5: M1(10); M2(14); M3(18); M4(9) 
Job 6: M2(13); M3(19); M4(6)    Job 6: M1(10); M2(14); M3(18); M4(9) 
Job 7: M1(10); M2(9); M3(13) 
Job 8: M1(11); M2(9); M4(8) 
 

Jobset 9:       Jobset 10: 

Job 1: M3(9); M1(12); M2(9); M4(6)   Job 1: M1(11); M3(19); M2(16); M4(13) 
Job 2: M3(16); M2(11); M4(9)    Job 2: M2(21); M3(16); M4(14) 
Job 3: M1(21); M2(18); M4(7)    Job 3: M3(8); M2(10); M1(14); M4(9) 
Job 4: M2(20); M3(22); M4(11)    Job 4: M2(13); M3(20); M4(10) 
Job 5: M3(14); M1(16); M2(13); M4(9)   Job 5: M1(9); M3(16); M4(18) 
         Job 6: M2(19); M1(21); M3(11); M4(15) 
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8.2. Appendix B: The topologies 

The transport times to go from any machine to another one is given in the following matrix: 

FMS1 LU M1 M2 M3 M4  FMS2 LU M1 M2 M3 M4 

LU 0 6 8 10 12  LU 0 4 6 8 6 
M1 12 0 6 8 10  M1 6 0 2 4 2 
M2 10 6 0 6 8  M2 8 12 0 2 4 
M3 8 8 6 0 6  M3 6 10 12 0 2 
M4 6 10 8 6 0  M4 4 8 10 12 0 
             
FMS3 LU M1 M2 M3 M4  FMS4 LU M1 M2 M3 M4 

LU 0 2 4 10 12  LU 0 4 8 10 14 
M1 12 0 2 8 10  M1 18 0 4 6 10 
M2 10 12 0 6 8  M2 20 14 0 8 6 
M3 4 6 8 0 2  M3 12 8 6 0 6 
M4 2 4 6 12 0  M4 14 14 12 6 0 
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