
HAL Id: hal-03263525
https://uca.hal.science/hal-03263525v1

Submitted on 17 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Balance-First Sequence-Last Algorithm to design
RMS A Matheuristic with performance guaranty to

balance Reconfigurable Manufacturing Systems
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre

To cite this version:
Youssef Lahrichi, Laurent Deroussi, Nathalie Grangeon, Sylvie Norre. A Balance-First Sequence-
Last Algorithm to design RMS A Matheuristic with performance guaranty to balance Reconfigurable
Manufacturing Systems. Journal of Heuristics, 2021, 27, pp.107-132. �10.1007/s10732-021-09473-1�.
�hal-03263525�

https://uca.hal.science/hal-03263525v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Heuristics manuscript No.
(will be inserted by the editor)

A Balance-First Sequence-Last Algorithm to design
RMS

A Matheuristic with performance guaranty to balance
Reconfigurable Manufacturing Systems

Youssef Lahrichi · Laurent Deroussi ·
Nathalie Grangeon · Sylvie Norre

Received: date / Accepted: date

Abstract The Reconfigurable Transfer Line Balancing Problem (RTLB) is
considered in this paper. This problem is quite recent and motivated by the
growing need of reconfigurability in the new industry 4.0 context. The prob-
lem consists into allocating a set of operations necessary to machine a single
part to different workstations placed into a serial line. Each workstation can
contain multiple machines operating in parallel and the tasks allocated to
a workstation should be sequenced since sequence-dependent setup times be-
tween operations are needed to perform tool changes. Besides, precedence con-
straints, inclusion, exclusion and accessibility constraints between operations
are considered. In this article we propose an efficient matheuristic of type BFSL
(Balance First, Sequence Last). This method is a two-step heuristic with a
constructive phase and an improvement phase. It contains several components
from exact methods (linear programming, constraint generation and dynamic

Y. Lahrichi
LIMOS CNRS UMR 6158, 1 Rue de la Chebarde, 63178 Aubière, FRANCE
Tel.: +33-473-407580
E-mail: youssef.lahrichi.contact@gmail.com

L. Deroussi
IUT d’Allier, LIMOS CNRS UMR 6158, Avenue Aristide Briand, 03100 Montluçon,
FRANCE
Tel.: +33-470-022082
E-mail: laurent.deroussi@uca.fr

N. Grangeon
IUT d’Allier, LIMOS CNRS UMR 6158, Avenue Aristide Briand, 03100 Montluçon,
FRANCE
Tel.: +33-470-022082
E-mail: nathalie.grangeon@uca.fr

S. Norre
IUT d’Allier, LIMOS CNRS UMR 6158, Avenue Aristide Briand, 03100 Montluçon,
FRANCE
Tel.: +33-470-022099
E-mail: sylvie.norre@uca.fr

Click here to access/download;Manuscript;template.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/heur/download.aspx?id=72968&guid=1a6c8a03-9590-4760-8ab9-83c4a89548c0&scheme=1
https://www.editorialmanager.com/heur/download.aspx?id=72968&guid=1a6c8a03-9590-4760-8ab9-83c4a89548c0&scheme=1
https://www.editorialmanager.com/heur/viewRCResults.aspx?pdf=1&docID=4367&rev=1&fileID=72968&msid=d198013c-3fd7-4133-8a1f-3bbdc808a11a

2 Youssef Lahrichi et al.

programming) and metaheuristics (simulated annealing). In addition, we show
that the constructive algorithm approximates the optimal solution when the
setup times are bounded by the processing times and give a approximation
ratio. The obtained results show the effectiveness of the proposed approach.
The matheuristic clearly outperforms a genetic algorithm from literature on
quite large benchmark instances.

Keywords RTLB · Line balancing · Constraint generation · Simulated
annealing · matheuristic · Approximation algorithm

1 Introduction

Nowadays, manufacturers are faced with a highly volatile market bringing
a growing variety in demand. The modern manufacturing system should be
able to be reconfigured to adapt to the new market demand within low cost
and time. Two issues must be tackled: the variability in production size and
the variability in the product specifications. While the first one imposes a
variation in cycle time (period of time that separates the exit of two consecutive
processed products from the production line), the second one is linked to the
set of tasks involved in the production process.

To address this issue, Koren [8] suggested in late 1990s the novel concept
of Reconfigurable Manufacturing System (RMS). The RMS we consider in
this paper is a serial line of workstations, each workstation being equipped
by multiple machines operating in parallel (Fig. 1 represents a RMS with 3
workstations, the first workstation is equipped by 3 machines, the second one
with 2 machines and the third one with 3 machines). Part units are moved
from a workstation to another thanks to a conveyor. The part is delivered then
to the first available machine in a workstation by the gantry.

The RMS can be reconfigured to accommodate a change in production size.
Indeed, the cycle time can be monitored by adding or removing a machine in
a workstation. This property is known as scalability [10]. Besides, RMS offers
a good tradeoff between productivity and flexibility while Dedicated Manu-
facturing System are highly productive but very poorly flexible and Flexible
Manufacturing System highly flexible but very expensive. ([8],[9])

Despite being scalable and profitable, RMS could not address the issue of
variability in product specifications unless they are equipped with machines
that can handle a large set of operations. Mono-spindle head machines can
perform a big set of operations, each machine being equipped with a tool
magazine. A specific tool is needed to perform a specific operation. Thus,
we consider sequence-dependent setup times between operations in order to
account for tool changes in addition to processing times of operations.

Once equipped with mono-spindle head machines, RMS addresses both the
production size and product specifications variability issues: whenever one or
both of these elements come to change, the manufacturer can easily adjust
the production by performing a reconfiguration of the system which can be
seen as a line balancing problem with sequence-dependent setup times and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 3

Fig. 1: Reconfigurable Manufacturing System

multiple parallel machines at each workstation (also called parallel worksta-
tion). Machines are then added or removed from workstations if necessary, and
machines are remotely configured to perform the new sequence of operations.
RMS allows to perform those two steps rapidly and cost-effectively.

The problem dealt with in this paper is called the Reconfigurable Transfer
Line Balancing Problem (RTLB). It considers constraints coming from the
machining industry. We deal with the problem of balancing the line for a
single product. The remainder of the paper is organized as follows: Sect. 2
defines the problem with a small numerical example and an ILP formulation,
Sect. 3 gives the related work on the problem. Sect. 4 gives the general scheme
of the matheuristic, Sect. 5 introduces the construction method and Sect. 6
introduces the improvement method. An experimental study is conducted in
Sect. 7.

2 Presentation of the problem

2.1 Problem definition

We are given a set of operations necessary to machine a part (product). The
production line considered is a serial line of workstations. Each workstation
is equipped with multiple machines working in parallel. Each product goes
through all the workstations of the line in the order. Each product is pro-
cessed by only one machine at each station. At each cycle time, a new product

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Youssef Lahrichi et al.

arrives on the line on the first workstation, a processed product leaves the line
from the last workstation and in each workstation a product leaves to the next
workstation and is replaced by a product coming from the precedent worksta-
tion. The machines within the same workstation perform the same sequence
of operations and machines from different workstations perform different se-
quences of operations.

The optimization problem considered consists in:

– Assigning the operations to the workstations (Balancing subproblem).
– Sequencing the operations in each workstation (Sequencing subproblem).
– Determining the number of machines in each workstation.

The objective considered is to minimize the overall number of machines used
such that the following constraints are respected:

– The number of workstations must not exceed the maximum number of
workstations.

– The number of operations allocated to a workstation must not exceed the
maximum number of operations per workstation.

– The number of machines in a workstation must not exceed the maximum
number of machines per workstation.

– Precedence constraints must be respected: when an operation i precedes
an operation j, either the workstation to which the operation i is allocated
must be before the workstation to which the operation j is allocated or i
and j are assigned to the same workstation and i is processed before j.

– For each workstation, the workload (the sum of the processing times and
the setup times induced by the sequence allocated to the workstation)
divided by the number of machines allocated to the workstation must not
exceed the cycle time.

– Inclusion constraints must be respected: each constraint links two opera-
tions that must be assigned to the same workstation.

– Exclusion constraints must be respected: they consist in subsets of opera-
tions (called exclusion sets) such that all the operations belonging to the
same subset cannot be assigned to the same workstation. But the opera-
tions of any proper subset of an exclusion set are allowed to be assigned
to the same workstation. We denote by E the set of all exclusion subsets.
For example, suppose we have 4 operations denoted o1, o2, o3, o4 and an
exclusion set {o1, o2, o3}. In this case, it is not acceptable to have o1, o2
and o3 all assigned to the same workstation. However, it is possible to have
o1 and o2 assigned to the same workstation provided o3 is assigned to a
different workstation.

– Accessibility constraints must be respected: each operation i has a subset
Posi of possible part-fixing positions. An accessibility constraint is related
to a workstation. It imposes that all the operations assigned to the same
workstation must have at least one common part-fixing position. For ex-
ample, suppose we have 4 operations denoted o1, o2, o3, o4 and 3 possible
part-fixing positions Pos = {1, 2, 3} such that:

Poso1 = {1, 2}, Poso2 = {1, 2, 3}, Poso3 = {2, 3}, Poso4 = {3}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 5

Operations {o1, o2, o3} could be assigned to the same workstation because
the position 2 is shared by o1, o2 and o3. However operations {o1, o2, o4}
could not be assigned to the same workstation because they share no po-
sition.

The inclusion, exclusion and accessibility constraints come from the ma-
chining industry.

For the rest of the paper, we use the notations presented in Table 1.

Table 1: Table of notations.
n Number of operations

smax Maximum number of workstations
N Set of operations, indexed on {1, 2, . . . , n}
S Set of workstations, indexed on {1, 2, . . . , smax}
P Set of couples (i, j) ∈ N ×N such that

i precedes j (also denoted i << j)
Mmax Maximum number of machines in a workstation
Nmax Maximum number of operations in a workstation
C Cycle time.
di Processing time of operation i.
ti,j Setup time to be considered when

operation i is performed just before
operation j in some workstation

I Set of couples (i, j) ∈ N ×N linked
with an inclusion constraint

E Set of subsets of operations that cannot
be assigned to the same workstation

Pos Set of all possible part-fixing positions.
Posi Subset of possible part-fixing positions for

operation i.

2.2 Example

We illustrate the studied problem with a small instance described by the fol-
lowing data:

– The part requires the execution of 6 operations numbered from 1 to 6
(n = 6).

– Precedence constraints are described by the following:

P = {(1, 3), (3, 4), (3, 5), (2, 3), (4, 6), (5, 6)}

represented by Fig. 2.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Youssef Lahrichi et al.

Fig. 2: Precedence graph.

– At most 3 workstations can be used: smax = 3.
– Processing times are represented in Table 2.

Table 2: Processing times.

i 1 2 3 4 5 6
di 1.5 1 3.5 1.5 2.5 1.5

– Setup times are represented in Table 3.

Table 3: Setup times.

ti,j j = 1 2 3 4 5 6
i = 1 0 0.5 1 1 1

2 1 0 0.5 1 1 1
3 0.5 1 0 1 1 1
4 1 1 1 0 0.5 0.5
5 1 1 1 0.5 0 1
6 1 1 1 1 0.5 0

– Maximum number of operations that could be assigned to a workstation:
Nmax = 3.

– Maximum number of machines that could be hosted by a workstation:
Mmax = 3.

– C = 2.5, cycle time.
– Inclusion and exclusion constraints are given by:

I = {(1, 2)}, E = {{3, 4, 5}}

– Accessibility constraints are given as follows: Pos = {1, 2, 3, 4}, Pos4 =
{1, 2}, Pos5 = {1, 4}, Posi = {1, 2, 3, 4},∀i ∈ {1, 2, 3, 6}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 7

Fig. 3: Example of feasible solution.

A feasible solution is represented in Fig. 3. dd1+d2+t1,2+t2,1
C e = d 4

2.5e = 2, so
2 machines are required for workstation 1. The machines that must be hosted
by the other workstations are indicated in Fig. 3. In this example, the total
number of machines required to process all the operations is 7

2.3 Mathematical formulation

In order to clarify the definition of the problem, we describe the ILP proposed
for the RTLB in [11]. The approach is based on modelling the sequences of
operations assigned to each workstation. It uses the following binary variables:

xi,s,j =

1 If operation i is assigned to workstation s at the jth position of
its sequence.

0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

vs,k =

{
1 If k machines are assigned to workstation s.
0 Otherwise.

zi,i′,s =

1 If operation i is processed just before operation i′ at
workstation s.

0 Otherwise.

wi,s =

1 If operation i is assigned to the last position of the sequence at
workstation s.

0 Otherwise.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Youssef Lahrichi et al.

us,a =

{
1 If part-fixing position a is chosen for workstation s.
0 Otherwise.

We consider the objective of minimizing the number of machines used:

Min

smax∑
s=1

Mmax∑
k=1

k.vs,k (1)

under the constraints: (2-16).

smax∑
s=1

Nmax∑
j=1

xi,s,j = 1,∀i ∈ N (2)

n∑
i=1

xi,s,j ≤ 1,∀s ∈ S, ∀j ∈ {1, . . . , Nmax} (3)

n∑
i=1

xi,s,j+1 ≤
n∑

i=1

xi,s,j ,∀s ∈ S, ∀j ∈ {1, . . . , Nmax − 1} (4)

Mmax∑
k=1

vs,k = ys,∀s ∈ S (5)

ys+1 ≤ ys,∀s ∈ {1, . . . , smax − 1} (6)

0 ≤
smax∑
s=1

Nmax∑
j=1

(Nmax.(s− 1) + j)(xi′,s,j − xi,s,j),∀(i, i′) ∈ P (7)

n∑
i=1

Nmax∑
j=1

di.xi,s,j +

n∑
i=1

n∑
i′=1

ti,i′ .zi,i′,s ≤ C.
Mmax∑
k=1

k.vs,k,∀s ∈ S (8)

xi,s,j + xi′,s,j+1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′, 0 ≤ j < Nmax,∀s ∈ S (9)

xi,s,j −
∑

i′∈N ;i′ 6=i

xi′,s,j+1 ≤ wi,s,∀i ∈ N, ∀s ∈ S,∀j ∈ {1, . . . , Nmax − 1} (10)

xi,s,Nmax
≤ wi,s,∀i ∈ N, ∀s ∈ S (11)

wi,s + xi′,s,1 ≤ 1 + zi,i′,s,∀(i, i′) ∈ N2, i 6= i′,∀s ∈ S (12)

smax∑
s=1

Nmax∑
j=1

s.xi,s,j =

smax∑
s=1

Nmax∑
j=1

s.xi′,s,j ,∀(i, i′) ∈ I (13)

∑
i∈ES

Nmax∑
j=1

xi,s,j ≤ |ES| − 1,∀ES ∈ E,∀s ∈ S (14)

∑
a∈Pos

us,a ≤ 1,∀s ∈ S (15)

Nmax∑
j=1

xi,s,j −
∑

a∈Posi

us,a ≤ 0,∀i ∈ N, ∀s ∈ S (16)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 9

The set of constraints (2) ensures that each operation is assigned to exactly
one workstation at a unique position of its sequence. (3) ensures that at each
workstation at most one operation is assigned in each position of the sequence.
(4) ensures that at each workstation no operation is assigned at a position
j + 1 unless some operation is assigned at the position j. (5) ensures that
only one number of machines is chosen for every used workstation. (6) ensures
that no workstation is used unless its precedent workstation is also used. (7)
ensures that precedence constraints are satisfied. (8) ensures that the cycle
time is not exceeded at any workstation. (9) ensures that if operation i is
followed by operation i′ at workstation s then zi,i′,s is set to 1. Constraints
(10) and (11) ensure that wi,s is set to 1 whenever operation i is positioned
at the last occupied position in the sequence of workstation s. (12) ensures
that if operation i is positioned at the last occupied position in the sequence
of workstation s and operation i′ is positioned at the first position in the
sequence of workstation s then zi,i′,s = 1 and consequently the setup time ti,i′

is considered in (8). (13) ensures that inclusion constraints are satisfied while
(14) insures that exclusion constraints are satisfied. (15) and (16) ensure that
accessibility constraints are satisfied.

3 Related work

Academically, the RTLB problem could be seen as an assembly line balancing
problem. Those problems have been well studied in the literature [1]; how-
ever those considering parallel machines or sequence dependent setup times
have rarely been considered. The originality of the problem comes from the
consideration of both elements.

The problem is a generalisation of the Simple Assembly Line Balancing
problem which is known to be NP-Hard [13]. Few papers deal with the RTLB
problem, it has been first introduced in [4] where a MIP approach was intro-
duced. Another ILP was lately suggested in [11].

An exact method was suggested in [2]: it uses a set partitioning model
coupled with a constraint generation algorithm.

In [6], an ant colony optimization algorithm was suggested for the problem.
Every ant creates a workstation and adds operations to it as long as it is
possible. The ants should decide whether to put an operation over another in
the current workstation. This is done thanks to probability distribution given
by pheromone trails.

In [3], a greedy construction algorithm is suggested to give a solution. There
is no guaranty however that the algorithm will give a feasible solution. Its idea
is to try to add operations from a list of candidate operations to the current
workstation as long as it is possible. Once the workstation is full, another
workstation is created, and the process is repeated until all operations are
assigned.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Youssef Lahrichi et al.

Since the greedy algorithm could output a solution that exceeds the number
of workstations authorized, a second phase is developed to merge workstations
if possible.

In [5], a GRASP approach is introduced. Starting solutions are generated
using the greedy random heuristic of [3] then a local search is performed using
4 neighbourhoods:

– Move a subset of operations from a workstation to another.
– Merge one or more workstations.
– Move operations from most loaded workstations to less loaded worksta-

tions.
– Optimize the subsequence of operations in each workstation (using heuris-

tics and a MIP).

In [2], a genetic algorithm is suggested. A chromosome is coded as a giant
sequence of all operations and a heuristic decoder is suggested to build a
solution. Classical crossover operators for the TSP are used as well as the
following mutation operators:

– Swap 2 operations.
– Insert an operation into a different position.

Unfortunately, exact methods of the literature fail to solve instances of in-
dustrial size. Besides, no resolution method guaranties the feasibility of the
solution for large scale instances. To solve the problem, 2 subproblems must
be solved jointly: the balancing subproblem and the sequencing subproblem.
Therefore, resolution methods for the problem can be categorized within 3
classes:

– BFSL (Balance-First, Sequence-Last): The balancing subproblem is solved
first then the sequencing subproblem.

– SFBL (Sequence-First, Balance-Last): The sequencing subproblem is solved
first then the balancing subproblem.

– Integrated approaches: The balancing subproblem and the sequencing sub-
problem are solved in the same time.

This paper investigates a sequential approach of type BFSL.

4 The matheuristic general scheme

The proposed matheuristic (MATH-BFSL) is a two-phase heuristic: a con-
struction phase (I-BFSL: Iterated BFSL) and an improvement phase. The
general scheme of this method is given in Fig. 4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 11

Fig. 4: General scheme of the proposed matheuristic

Within each of these phases, a solution is generated, that is denoted by s
for the construction phase, and by s′ for the improvement phase. The same
idea is applied for the generation of s and s′. First, we solve the balancing
subproblem, which consists in allocating the operations to the workstations.
Then, for each workstation, the assigned operations must be sequenced in order

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Youssef Lahrichi et al.

to minimize the sum of the setup times, and therefore the number of machines
required to satisfy the cycle time constraint.

An acceptance criterion is defined at the end of the improvement phase, in
order to choose which of the two solutions will be kept for the next iteration.
Moreover, we indicate in Fig. 4 which components come from the field of math-
ematical programming, and which ones come from the field of metaheuristics.

5 Construction phase: I-BFSL

The construction phase is a two-step iterative method piloted by a constraint
generation algorithm:

– Balancing generation: The first step consists in solving the line balancing
problem without consideration of the sequence-dependent setup times. In
this case, the decisions to make are which operations to assign to which
workstation and how much machines are needed in each workstation. We
solve this problem thanks to an ILP.

– Operations sequencing: In the second step, we consider sequence-dependent
setup times. This implies the decision of sequencing the operations in each
workstation taking as input the solution of the first step. The sequencing
problem is optimally solved thanks to a dynamic programming algorithm.

– Constraint generation: Due to the consideration of sequence-dependent
setup times in the second step, the load of the workstations increases.
This can result in exceeding the maximum number of machines authorized
in some workstation. For this reason, constraints are iteratively generated
and added to the model of the first step. Those constraints aim at forbid-
ding solutions where the maximum number of machines authorized in the
workstations is exceeded.

Each of the 3 previous points are explained separately in the following 3 sub-
sections.

5.1 Balancing generation

The model of the RTLB, described in Sect. 2, cannot be used to solve medium
to large size instances. We propose to use a relaxed version in which the se-
quence of operations in each workstations is not take into account. As a conse-
quence, variables xi,s,j of the RTLB model becomes xi,s since we don’t need to
deal with the position in the sequence. Moreover, the variables zi,i′,s and wi,s

are no longer useful. All the constraints that use these variables are modified
and we propose a simplified model described below. Because the setup times
are not considered, the total completion time computed for each workstation
may be significantly inferior to the real value. In order to give a better lower

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 13

bound, we consider for each operation i a setup time tmin
i equal to the smallest

setup time to or from operation i:

tmin
i = Min(Minj∈N,j 6=i{ti,j},Minj∈N,j 6=i{tj,i})

And so a better lower bound for workstation s is given for the total completion
time by the formula:

– If at least 2 operations are assigned to workstation s:∑
i∈N

(di + tmin
i).xi,s

– If only one operation is assigned to workstation s:∑
i∈N

di.xi,s

A setup time tmin
i is considered for an operation i in a workstation s only if

operation i is assigned to s and if another operation different from i is also
assigned to s. For this reason, we consider a variable x̃i,s to decide whether an
operation i is assigned to workstation s with another operation.

We use the following decision variables:

xi,s =

{
1 If operation i is assigned to workstation s.
0 Otherwise.

ys =

{
1 If at least one operation is assigned to workstation s
0 Otherwise.

vs,k =

{
1 If k machines are assigned to workstation s.
0 Otherwise.

us,a =

{
1 If position a is chosen for workstation s.
0 Otherwise.

w̃s =

{
1 If at least 2 operations are assigned to workstation s.
0 Otherwise.

x̃i,s =

1 If operation i is assigned to workstation s and i is not the only
operation assigned to workstation s.

0 Otherwise.

We consider the objective of minimizing the number of machines used:

Min

smax∑
s=1

Mmax∑
k=1

k.vs,k (17)

under the constraints:

smax∑
s=1

xi,s = 1,∀i ∈ N (18)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Youssef Lahrichi et al.

Mmax∑
k=1

vs,k = ys,∀s ∈ S (19)

n∑
i=1

xi,s ≤ ys.Nmax,∀s ∈ S (20)

ys+1 ≤ ys,∀s ∈ S − {smax} (21)
smax∑
s=1

s.xi,s ≤
smax∑
s=1

s.xi′,s,∀(i, i′) ∈ P (22)

2.w̃s ≤
n∑

i=1

xi,s,∀s ∈ S (23)

n∑
i=1

xi,s − 1 ≤ w̃s.Nmax,∀s ∈ S (24)

xi,s + w̃s ≤ x̃i,s + 1,∀i ∈ N, ∀s ∈ S (25)

x̃i,s ≤
n∑

i′=1,i6=i′

xi′,s,∀i ∈ N, ∀s ∈ S (26)

x̃i,s ≤ xi,s,∀i ∈ N, ∀s ∈ S (27)

n∑
i=1

(di.xi,s + tmin
i .x̃i,s) ≤ C.

Mmax∑
k=1

k.vs,k,∀s ∈ S (28)∑
s∈S

s.xi,s =
∑
s∈S

s.xi′,s,∀(i, i′) ∈ I (29)∑
i∈ES

xi,s ≤ |ES| − 1,∀ES ∈ E,∀s ∈ S (30)∑
a∈Pos

us,a ≤ 1,∀s ∈ S (31)

xi,s −
∑

a∈Posi

us,a ≤ 0,∀i ∈ N, ∀s ∈ S (32)

(18) ensures that each operation is assigned to exactly one workstation. (19)
ensures that only one number of machines is chosen for every used workstation.
(20) ensures that the maximum number of operations to be allocated to a
workstation is respected. (21) ensures that no workstation is used unless its
precedent workstation is also used. (22) ensures that precedence constraints are
satisfied. (23) and (24) ensure that w̃s = 1 if and only if at least 2 operations
are assigned to workstation s. (25)-(27) ensures that x̃i,s = 1 if and only if at
least 2 operations including i are assigned to workstation s. (28) ensures that
the cycle time is not exceeded in any workstation. (29) ensures that inclusion
constraints are satisfied. (30) ensures that exclusion constraints are satisfied.
(31) and (32) ensure that accessibility constraints are satisfied.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 15

5.2 Operations sequencing

From balancing generation, we are given the assignment of operations to the
workstations, we are now concerned with sequencing the operations in every
workstation.

The sequencing problem is an ATSP (Asymmetric Travelling Salesman
Problem) where operations represent cities and setup times distances between
cities. However, we must consider precedence constraints within the same work-
stations, the problem induced is an ATSP with precedence constraints some-
times referred to in the literature as the Precedence Constrained Travelling
Salesman Problem (PCTSP) as stated in [12].

To solve this problem we consider the well-known Held and Karp algorithm
[7]. The resulting algorithm is of complexity within O(m2.2m) where m is the
number of cities. We apply this algorithm to every workstation. The number
of operations in each workstation is limited to Nmax therefore the complexity
is within O(N2

max.2
Nmax). Even for large industrial instances Nmax rarely ex-

ceeds 15 which make the approach reasonable to use (for Nmax = 15 we have
N2

max.2
Nmax = 7, 372, 800).

We suppose we are placed in some workstation to which m operations are
assigned. We number the operations from 1 to m. We want to construct a
tour starting from operation 1 and returning to 1 passing by all the operations
such that precedence constraints are respected and such that the total sum
of setup times over the tour is minimized. We put T = {1, . . . ,m}. Given a
subset U ⊂ T such that 1 ∈ T and an operation i such that i ∈ U and i > 1,
the idea is to use the following dynamic programming formula:

c(U, i) = Minj∈U−{i}(c(U − {i}, j) + tj,i) (33)

where c(U, i) is the minimum cost of a path going from 1 to i and passing
by each operation of U − {1, i} exactly once. We recall that tj,i is the setup
time from operation j to operation i. The dynamic programming formula is
initialized as follows:

c(U, 1) = +∞;∀U ⊂ T such that 1 ∈ U and |U | ≥ 2 (34)

c({1}, 1) = 0 (35)

To take precedence constraints into consideration, we must put:

c(U, i) = +∞;∀(U, i) such that i ∈ U and i has a successor in U (36)

(33)-(36) give the dynamic programming formula in order to compute all the
c(U, i),∀(U, i) such that i ∈ U . We do not use a recursive function to avoid
the computation of the same c(U, i) several times. We compute C(U, i), i ∈ U
starting from the sets U such that |U | = 2 to |U | = m (increasing cardinality).
We then compute the cost of the optimal solution as follows:

c∗ = Minj∈N−{1}(c(N, j) + dj,1) (37)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Youssef Lahrichi et al.

This guaranties the optimality and the feasibility of the solution. The al-
gorithm is depicted in Algorithm 1.

Algorithm 1 Dynamic programming sequencing algorithm
INPUT: An instance of the RTLB problem. A subset T of m operations numbered from 1
to m.
OUTPUT: A sequence of the operations of T minimizing the sum of the setup times.

1: c({1}, 1) = 0
2: for k = 2 to n do
3: for U ⊂ T such that |U | = k and 1 ∈ U do
4: c(U, 1) = +∞
5: for i ∈ U such that i > 1 do
6: if i has a successor in S then
7: c(U, i) = +∞
8: else
9: c(U, i) = Minj∈S−{i}(c(U − {i}, j) + dj,i)

10: end if
11: end for
12: end for
13: end for
14: c∗ = Minj∈T−{1}(c(T, j) + dj,1)
15: Decode the solution of cost c∗ to build an optimal sequence.

5.3 Constraint generation

We denote by ILP(C) the ILP mentioned in balancing generation (Subsect. 5.1)
under the set of constraints C (initially C = (18)− (32)).

After solving the ILP from balancing generation, the sequence-dependent
setup times are taken into consideration by running the dynamic programming
algorithm from operations sequencing in each workstation. Since sequence-
dependent setup times were not taken into consideration in balancing gen-
eration, we can end up with a solution exceeding the maximum number of
machines allowed in some workstation after operations sequencing. To tackle
this issue, constraints are iteratively added to C. Those constraints aim at
forbidding the assignment of the set of operations leading to the violation of
the Mmax constraint to the same workstation. More formally, let us denote by
sol the solution obtained after applying balancing generation and operations
sequencing. If sol is feasible then the construction phase is finished and the
improvement phase starts. If sol violates the Mmax constraint in a worksta-
tion where the set of operations Ũ is assigned then we iterate throw balancing
generation by adding the following constraints to the ILP:∑

u∈Ũ

xu,s −
∑

u∈N−Ũ

xu,s ≤ |Ũ | − 1,∀s ∈ S (CŨ)

All in all, I-BFSL is a constraint generation algorithm. It is depicted in Al-
gorithm 2. In the beginning only constraints (18)-(32) are considered. If we

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 17

end up with an unfeasible solution, then constraints CŨ cutting the unfeasible
solution are iteratively generated:

Algorithm 2 I-BFSL
INPUT: An instance of RTLB.
OUTPUT: s : A feasible solution.

1: Initialize the set of constraints: C := (18)− (32)
2: Solve the ILP of balancing generation: s = solve[ILP(C)]
3: Run Algorithm 1 of operations sequencing in each workstation (s is modified)
4: while s is not feasible do
5: for all Ũ set of operations assigned to a workstation where the Mmax constraint is

violated do
6: C = C ∪ CŨ
7: end for
8: Solve the ILP of balancing generation: s = solve[ILP(C)]
9: Run Algorithm 1 of operations sequencing in each workstation (s is modified)

10: end while

Theorem 1 I-BFSL terminates and outputs a feasible solution within a finite
number of iterations.

Proof In the worst case, I-BFSL forbids all sets Ũ that leads to exceeding the
maximum number of machines Mmax. It has then at most as many iterations as
the number of sets Ũ it forbids plus one (this number is bounded by the number
of combinations of at most Nmax elements among n). The solution outputted
is feasible since all the constraints except Mmax constraint were taken into
consideration in the balancing generation step and the Mmax constraint is
considered in the constraint generation.

Theorem 2 I-BFSL is a 2-approximation algorithm if we assume that:

ti,j ≤ min(di, dj) ∀(i, j) ∈ N2 (38)

Proof The solution outputted by the algorithm is feasible and its overall cost
(denoted c) is given by the cost of the solution outputted by the balancing gen-
eration (denoted c1) plus the number of machines added following operations
sequencing due to the consideration of setup times (denoted m), i.e c = c1+m.
Besides we have: c1 ≤ c∗ where c∗ denotes the optimal solution of the RTLB
balancing problem. Thanks to (38) we have m ≤ c1 because the number of
setup times for each workstation is less or equal to the number of operations.
Then the workload induced by the setup times in each workstation is less or
equal to the workload induced by the operations times. Those two inequations
(c1 ≤ c∗, m ≤ c1) finally give:

c ≤ 2.c∗

which shows the approximation ratio.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Youssef Lahrichi et al.

Even if both subproblems (balancing and sequencing) are solved to opti-
mality in I-BFSL, the given solution is not guaranteed to be optimal because
the two subproblems are not solved jointly. For this reason, an improving
method is suggested after I-BFSL.

6 Improvement phase

Once we have computed a solution with I-BFSL, we suggest to improve it by
means of an adaptive simulated annealing [14]. We first describe the encod-
ing scheme of a solution in Subsect. 6.1, then the neighbourhood systems in
Subsect. 6.2 and the scheme of the metaheuristic in Subsect. 6.3.

6.1 Solution encoding

A solution is encoded as a list of workstations. Each workstation is encoded
by the sequence of operations assigned to it. More formally, a solution s with
p workstations is represented as a p−tuple:

s = (s1, s2, . . . , sp)

where sk is the sequence of operations allocated to workstation k. If q opera-
tions are allocated to workstation k, then sk is represented as follows:

sk = (s1k, s
2
k, . . . , s

q
k)

where sik is the ith operation allocated to workstation k.

6.2 Neighbourhood systems

We use 3 neighbourhood operators:

– V1 Insertion (of an operation from a workstation to another workstation).
– V2 Merger (of two workstations).
– V3 Split (of one workstation to two workstations).

The insertion, merger and split moves are described in (respectively) Algorithm
3, Algorithm 4 and Algorithm 5.

We notice that the moves are performed in such way that:

– For V1, V2 and V3: precedence and inclusion constraints are respected.
– For V3: exclusion constraints are respected.

If the obtained solution does not respect the other constraints then a new
solution is generated (Algorithm 6).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 19

Algorithm 3 Principle algorithm for insertion move
INPUT: s A feasible solution of the RTLB problem.
OUTPUT: s′ A random neighbour of s with respect to insertion move

1: Select randomly and uniformly an operation i (the workstation of i is called the source
workstation).

2: Select randomly and uniformly a destination workstation. This workstation is chosen
between the last workstation containing an operation that precedes i and the first work-
station containing an operation j such that i precedes j.

3: Move the operation i and all the operations that are linked by an inclusion constraint
with operation i from the source workstation to the destination workstation.

4: Run the sequencing algorithm (Algorithm 1) in the source and destination workstations.

Algorithm 4 Principle algorithm for merger move
INPUT: s A feasible solution of the RTLB problem.
OUTPUT: s′ A random neighbour of s with respect to merger move

1: Select randomly and uniformly a source workstation.
2: Select randomly and uniformly a destination workstation. This workstation is chosen

between the last workstation containing an operation that precedes an operation of the
source workstation and the first workstation containing an operation j that is preceded
by an operation from the source workstation.

3: Move all the operations of the source workstation to the destination workstation.
4: Delete the source workstation.
5: Run the sequencing algorithm (Algorithm 1) in the destination workstation.

Algorithm 5 Principle algorithm for split move
INPUT: s A feasible solution of the RTLB problem.
OUTPUT: s′ A random neighbour of s with respect to insertion move

1: Select randomly and uniformly an operation i (The workstation of i is called S).
2: Partition the workstation S into 2 workstations S1, S2: Beginning with the first operation

of S, if an operation j is placed before i it is placed with all its inclusive operations in
S1, otherwise it is placed in S2.

3: Run the sequencing algorithm (Algorithm 1) in the two resulting workstations (S1 and
S2).

6.3 Simulated annealing

We use an adaptive simulated annealing algorithm to improve the solution re-
turned by I-BFSL. The general scheme of the improvement method is depicted
in Algorithm 6. In Algorithm 6, Cost(X) stands for the number of machines
used by the solution X.

The adaptive aspect is derived from the following: a random neighbourhood
system is chosen among {V1, V2 ,V3} according to the following probability
distribution {p1 = w1

w1+w2+w3
, p2 = w2

w1+w2+w3
, p3 = w3

w1+w2+w3
} where w1, w2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Youssef Lahrichi et al.

Algorithm 6 Adaptive simulated annealing algorithm
INPUT: X A feasible solution of the RTLB problem given by I-BFSL.
OUTPUT: Best A local optimal solution of the RTLB problem.

1: Best := X
2: Initialise the temperature T and the weights w1, w2 and w3

3: while Stop condition of outer loop is not met do
4: while Stopping condition of inner loop is not met do
5: repeat
6: Select randomly a neighbourhood system Vi, i ∈ {1, 2, 3} with probability pi =

wi
w1+w2+w3

7: Generate randomly and uniformly a candidate solution Y : Y = Vi(X)
8: until Y is feasible
9: if Cost(Y) ≤ Cost(X) then

10: Accept: X = Y
11: if Cost(Y) < Cost(Best) then
12: Best := X
13: Increase the weight wi of Vi
14: end if
15: else
16: Accept with probability exp(−Cost(Y)−Cost(X)

T
): X = Y

17: end if
18: end while
19: Decrease the temperature T
20: end while

and w3 are weights associated respectively with V1, V2 and V3. Each time a
neighbourhood system Vi gives a strictly improving solution, wi is relatively
increased.

The initialization of the different parameters (temperature and weights),
the temperature cooling procedure, the weights update, and the stopping con-
ditions are discussed in the experimentation section.

7 Experimental results

We describe in this section the experimentation being held on a 16Go RAM
i7-4790 CPU to evaluate our resolution method. The algorithms were imple-
mented with JAVA 8. IBM’s CPLEX (v12.7.0) was used to solve the ILP from
the construction phase.

We compare our resolution method with a resolution method suggested
from literature: a genetic algorithm that uses either an heuristic or a MIP
chromosome decoder [2]: it could also be seen as a matheuristic. The authors
did mention on the paper the given objective value for each instance and
provided us with the instances sets. The comparison is consequently done by
running MATH-BFSL on the same sets of instances:

A1-A15 are instances with 200 operations, they are described in [2]. Those
are large-scale problem instances with:

– Number of operations: n = 200
– Maximum number of workstations: smax = 25

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 21

– Maximum number of operations per workstation: Nmax = 10
– Maximum number of machines per workstation: Mmax = 5
– Cycle time: C = 50
– Processing times: di ∈ [1, 10]
– Setup times: ti,j ∈ [0, 2]
– Number of precedence constraints: 50 ≤ |P | ≤ 70
– Number of inclusion and exclusion sets: 7 ≤ |I|, |E| ≤ 15
– Number of possible part-fixing positions: |Pos| = 7.

The different parameters are determined experimentally:

– Initial temperature is set to 10 and the decreasing scheme is as follows:{
T = T − 0.0036 If T > 1
T = T − 0.0004 Otherwise.

– Initial weights w1, w1, w3 are set to 1 and they are increased by adding one if
the associated neighbourhood system yields a neighbour strictly improving
the best recorded solution.

– We perform δ iterations for each temperature. Experiments are done with
different values of δ, δ = 1, 20, 50, 100.

7.1 Construction phase

Table 7 shows the results of I-BFSL (construction phase) for A1-A15 instances.
We use the following notations in the table:

– ILP((18)-(32)): denotes the number of machines of the solution returned by
the ILP from I-BFSL in the last iteration. The best solution out of 1200”
is taken from the linear programming solver (CPLEX).

– I-BFSL: denotes the number of machines of the solution returned by I-
BFSL.

Table 4: Initial solutions given by I-BFSL

Instance ILP((18)-(32)) I-BFSL

A1 24 42
A2 27 30
A3 31 37
A4 24 35
A5 23 42
A6 22 44
A7 23 46
A8 37 38
A9 34 39
A10 26 42
A11 32 37
A12 38 41
A13 23 45
A14 35 36
A15 36 38

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Youssef Lahrichi et al.

We notice from Table 7 that I-BFSL is able to find a feasible solution for
all the instances within 1300”. The solution given after balancing generation
(S1) is sometimes much smaller than the solution returned after balancing
generation then operation sequencing (S2).

7.2 Improvement phase

Going from the initial solution given by I-BFSL, the improvement phase is run
with different values of δ (number of iterations for each temperature): δ = 1
(Table 8), δ = 20 (Table 9), δ = 50 (Table 10) and δ = 100 (Table 11).

We use the following notations in the tables:

– min: minimum number of machines obtained by the matheuristic over 10
independent runs.

– max: maximum number of machines obtained by the matheuristic over 10
independent runs.

– mean: average number of machines obtained by the matheuristic over 10
independent runs.

– σ: Standard deviation of the number of machines obtained by matheuristic
over 10 independent runs.

– (p1, p2, p3): the probability distribution of the neighbourhood systems after
the run of the metaheuristic.

– GA[2]: Best solution (with the minimum number of machines) obtained by
the genetic algorithm [2] over 10 independent runs.

We notice from Tables 8, 9, 10 and 11 that increasing δ has an impact
on results. Indeed, we notice that when δ increases, the min, max, mean and
standard deviation values get smaller. However, the improvement of results is
at the expense of CPU time. Indeed, experiments with δ = 1 (one iteration for
each temperature) only take 25” of CPU time for each instance while exper-
iments with δ = 100 (100 iteration for each temperature) takes about 3000”
for each instance.

Small values of the standard deviation (usually smaller than 1) illustrate
the robustness of the proposed method.

Table 12 shows the average probability distributions for the neighbourhood
systems after the run of MATH-BFSL. We notice that the initial probability
distribution is (p1, p2, p3) = (1

3 ,
1
3 ,

1
3) then it changes according to the success

of each neighbourhood move.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 23

Table 5: Experimentation with δ = 1

MATH-BFSL

Instance min max mean σ

A1 29.0 33.0 30.7 1.1
A2 28.0 30.0 29.4 0.663
A3 27.0 32.0 29.8 1.33
A4 28.0 30.0 29.2 0.6
A5 29.0 31.0 30.3 0.781
A6 28.0 31.0 29.6 0.917
A7 30.0 32.0 31.6 0.663
A8 30.0 32.0 31.0 0.775
A9 28.0 31.0 29.8 0.872
A10 31.0 35.0 33.0 1.1
A11 29.0 31.0 29.8 0.748
A12 30.0 33.0 31.4 0.917
A13 31.0 32.0 31.4 0.49
A14 29.0 32.0 30.8 0.872
A15 29.0 32.0 30.1 0.831

Table 6: Experimentation with δ = 20

MATH-BFSL

Instance min max mean σ

A1 26.0 29.0 27.9 1.04
A2 26.0 27.0 26.4 0.49
A3 26.0 28.0 26.6 0.663
A4 25.0 27.0 26.1 0.539
A5 26.0 28.0 27.2 0.748
A6 26.0 28.0 26.8 0.6
A7 28.0 29.0 28.3 0.458
A8 27.0 28.0 27.8 0.4
A9 26.0 28.0 26.8 0.6
A10 29.0 31.0 29.8 0.748
A11 26.0 28.0 26.9 0.539
A12 27.0 28.0 27.8 0.4
A13 28.0 29.0 28.7 0.458
A14 27.0 28.0 27.2 0.4
A15 26.0 28.0 27.2 0.6

Table 9: Average probability distributions of neighbourhood systems after the run of MATH-
BFSL

p1, p2, p3

Instance δ = 1 δ = 20 δ = 50 δ = 100

A1 (0.75, 0.16,0.088) (0.76,0.17,0.076) (0.78,0.15,0.075) (0.78,0.14,0.073)
A2 (0.35,0.33,0.33) (0.38,0.33,0.29) (0.39,0.33,0.28) (0.41,0.33,0.26)
A3 (0.49,0.38,0.13) (0.6,0.29,0.1) (0.61,0.29,0.1) (0.61,0.29,0.096)
A4 (0.58,0.26,0.15) (0.64,0.24,0.12) (0.65,0.23,0.12) (0.67,0.21,0.11)
A5 (0.76,0.16,0.081) (0.79,0.14,0.072) (0.78,0.15,0.069) (0.81,0.12,0.067)
A6 (0.77,0.16,0.069) (0.8,0.14,0.061) (0.8,0.14,0.059) (0.8,0.14,0.058)
A7 (0.8,0.14,0.066) (0.82,0.12,0.058) (0.83,0.11,0.056) (0.83,0.11,0.057)
A8 (0.64,0.23,0.13) (0.66,0.23,0.1) (0.69,0.2,0.1) (0.67,0.23,0.1)
A9 (0.57,0.33,0.1) (0.6,0.32,0.085) (0.6,0.31,0.083) (0.61,0.31,0.081)
A10 (0.78,0.11,0.1) (0.8,0.11,0.089) (0.79,0.12,0.086) (0.82,0.094,0.084)
A11 (0.56,0.31,0.13) (0.65,0.25,0.1) (0.65,0.25,0.098) (0.67,0.23,0.095)
A12 (0.54,0.36,0.1) (0.6,0.32,0.082) (0.61,0.31,0.082) (0.63,0.29,0.079)
A13 (0.77,0.16,0.069) (0.8,0.14,0.062) (0.8,0.14,0.059) (0.81,0.13,0.058)
A14 (0.39,0.46,0.16) (0.47,0.41,0.13) (0.45,0.43,0.12) (0.49,0.39,0.11)
A15 (0.51,0.37,0.12) (0.59,0.31,0.099) (0.62,0.29,0.095) (0.6,0.31,0.094)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Youssef Lahrichi et al.

Table 7: Experimentation with δ = 50

MATH-BFSL

Instance min max mean σ

A1 27.0 29.0 27.6 0.8
A2 25.0 27.0 25.9 0.539
A3 25.0 26.0 25.8 0.4
A4 25.0 27.0 25.9 0.539
A5 26.0 27.0 26.4 0.49
A6 25.0 27.0 26.1 0.539
A7 26.0 28.0 27.3 0.64
A8 27.0 28.0 27.3 0.458
A9 26.0 27.0 26.3 0.458
A10 28.0 30.0 29.1 0.539
A11 25.0 27.0 26.3 0.64
A12 26.0 28.0 27.3 0.64
A13 27.0 29.0 28.1 0.539
A14 26.0 28.0 26.5 0.671
A15 26.0 27.0 26.4 0.49

Table 8: Experimentation with δ = 100

MATH-BFSL

Instance min max mean σ

A1 26.0 28.0 26.9 0.539
A2 25.0 26.0 25.6 0.49
A3 25.0 27.0 25.5 0.671
A4 25.0 26.0 25.7 0.458
A5 25.0 27.0 26.3 0.64
A6 25.0 26.0 25.6 0.49
A7 27.0 28.0 27.4 0.49
A8 27.0 28.0 27.2 0.4
A9 26.0 27.0 26.2 0.4
A10 28.0 30.0 28.8 0.6
A11 25.0 26.0 25.4 0.49
A12 27.0 28.0 27.2 0.4
A13 27.0 28.0 27.5 0.5
A14 26.0 27.0 26.4 0.49
A15 25.0 26.0 25.9 0.3

Initially, the neighbourhood systems have the same probability to be chosen
in the balancing perturbation. Table 12 shows that the neighbourhood system
V1 has the greatest probability to be chosen then V2. The probability of V3
is close to 0. Since in our algorithm the probabilities are only increased if the
neighbourhood system yields a neighbour strictly improving the best recorded
solution, the table shows that neighbourhood system V1 then V2 are the most
efficient for improving a solution. V3 almost never improves a solution, its
purpose is above all to introduce diversity into the search process.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 25

Table 10: Comparison between the matheuristic, the genetic algorithm of the literature and
the linear relaxation lower bound

GA (min) I-BFSL MATH-BFSL (min)

Instance δ = 1 δ = 20 δ = 50 δ = 100

A1 33 42 29 26 27 26
A2 33 30 28 26 25 25
A3 31 37 27 26 25 25
A4 29 35 28 25 25 25
A5 32 42 29 26 26 25
A6 32 44 28 26 25 25
A7 34 46 30 28 26 27
A8 31 38 30 27 27 27
A9 30 39 28 26 26 26
A10 32 42 31 29 28 28
A11 30 37 29 26 25 25
A12 31 41 30 27 26 27
A13 33 45 31 28 27 27
A14 31 36 29 27 26 26
A15 33 38 29 26 26 25

Table 13 compares the performance of the suggested matheuristic with
the genetic algorithm from literature [2]. In this last, only the minimum cost
over 10 independent runs is reported. Therefore, we report the min over 10
independent runs for MATH-BFSL for different values of δ.

Table 13 gives a clear advantage to MATH-BFSL compared to the genetic
algorithm of the literature [2]. Indeed, the construction phase (I-BFSL) usually
gives a solution of cost superior to the one of the genetic algorithm but this
solution is rapidly improved with the improvement phase (MATH-BFSL). The
results of the genetic algorithm are already outperformed with δ = 1 which
runs in 25”. With δ = 100 (3000”), the improvement is even more drastic com-
pared to literature and approaches 20% for some instances. Besides, even the
max of MATH-BFSL is lower than the min of GA for some instances. However,
we must say that this very advantageous results are obtained at the expense of
CPU time. Indeed, the genetic algorithm runs in 900”whereas the constructive
phase (I-BFSL) runs in 1200” and the improvement phase CPU time varies
from 25” (for δ = 1) to 3000” (for δ = 100) as shown in Table 14. MATH-BFSL
has a greater CPU time than the genetic algorithm from literature because it
embeds several components from mathematical programming (integer linear
programming, constraint generation and dynamic programming). These com-
ponents are an important source of the good performance of the proposed
method. Table 14 reports the average CPU times of the algorithms.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Youssef Lahrichi et al.

Table 11: Averge approximate CPU times on A1-A15 instances

Algorithm Average approximate CPU time

I-BFSL 1300”
Improvement phase of MATH-BFSL with δ = 1 25”
Improvement phase of MATH-BFSL with δ = 20 1000”
Improvement phase of MATH-BFSL with δ = 50 1700”
Improvement phase of MATH-BFSL with δ = 100 3000”
Genetic algorithm from literature [2] 900”

8 Conclusion and perspectives

Matheuristics are efficient optimization procedures that take advantage simul-
taneously of the accuracy of exact methods and the scalability of heuristics. We
suggested in this article a matheuristic with feasibility and performance guar-
anty. The proposed method lies on a constructive phase and an improvement
phase. It contains several components from exact methods (linear program-
ming, constraint generation and dynamic programming) and metaheuristics
(simulated annealing). The experiments show that the approach outperforms
a genetic algorithm from literature.

Several directions could be taken following this research:

– Investigating the symmetric approach (Sequence First, Balance Last) that
consists of balancing the line given an overall sequence of all operations
could constitute a promising track of research.

– Studying multiple products in the multi-model context raises a rebalancing
problem and could be an interesting direction for future research.

Acknowledgements The authors acknowledge the support received from the Agence Na-
tionale de la Recherche of the French government through the program ”Investissements d
Avenir”(16-IDEX-0001 CAP 20-25).

References

1. Battäıa, O., Dolgui, A.: A taxonomy of line balancing problems and their solution
approaches. International Journal of Production Economics 142(2), 259 – 277 (2013)

2. Borisovsky, P.A., Delorme, X., Dolgui, A.: Genetic algorithm for balancing reconfig-
urable machining lines. Computers & Industrial Engineering 66(3), 541 – 547 (2013).
Special Issue: The International Conferences on Computers and Industrial Engineering
(ICC&IEs) - series 41

3. Essafi, M., Delorme, X., Dolgui, A.: Balancing lines with CNC machines: A multi-start
ant based heuristic. CIRP Journal of Manufacturing Science and Technology 2(3),
176–182 (2010)

4. Essafi, M., Delorme, X., Dolgui, A.: Balancing machining lines: a two-phase heuristic.
Studies in Informatics and Control 19(3), 243–252 (2010)

5. Essafi, M., Delorme, X., Dolgui, A.: A reactive grasp and path relinking for balanc-
ing reconfigurable transfer lines. International Journal of Production Research 50(18),
5213–5238 (2012)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Balance-First Sequence-Last Algorithm to design RMS 27

6. Essafi, M., Delorme, X., Dolgui, A., Guschinskaya, O.: A MIP approach for balancing
transfer line with complex industrial constraints. Computers & Industrial Engineering
58(3), 393 – 400 (2010)

7. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Jour-
nal of the Society for Industrial and Applied Mathematics 10(1), 196–210 (1962)

8. Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., Van Brussel,
H.: Reconfigurable manufacturing systems. CIRP annals 48(2), 527–540 (1999)

9. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. Journal of
Manufacturing Systems 29(4), 130 – 141 (2010)

10. Koren, Y., Wang, W., Gu, X.: Value creation through design for scalability of recon-
figurable manufacturing systems. International Journal of Production Research 55(5),
1227–1242 (2017)

11. Lahrichi, Y., Deroussi, L., Grangeon, N., Norre, S.: Reconfigurable transfer line balanc-
ing problem: A new MIP approach and approximation hybrid algorithm. In: MOSIM
2018 (Modélisation et Simulation). Toulouse, France (2018)

12. Salii, Y.: Revisiting dynamic programming for precedence-constrained traveling sales-
man problem and its time-dependent generalization. European Journal of Operational
Research 272(1), 32–42 (2019)

13. Salveson, M.E.: The assembly line balancing problem. The Journal of Industrial Engi-
neering pp. 18–25 (1955)

14. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated annealing: Theory
and applications, pp. 7–15. Springer (1987)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

