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Abstract

Credit Default Swap (CDS) levels provide a market appreciation of companies’ default risk.

These derivatives are not always available, creating a need for CDS approximations. This paper

offers a simple, global and transparent CDS structural approximation, which contrasts with

more complex and proprietary approximations currently in use. This Equity-to-Credit formula

(E2C), inspired by CreditGrades, obtains better CDS approximations, according to empirical

analyses based on a large sample spanning 2016-2018. A random forest regression run with this

E2C formula and selected additional financial data results in an 87.3% out-of-sample accuracy in

CDS approximations. The transparency property of this algorithm confirms the predominance

of the E2C estimate, and the impact of companies’ debt rating and size, in predicting their CDS.
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1 Introduction

The ability to accurately apprehend companies’ credit risk is at the core of financial profes-

sionals’ concerns and an extensive branch of literature is dedicated to this matter (e.g. Merton,

1974; Black and Cox, 1976; Vasicek, 1987; Finger et al., 2002). Since the mid-nineties, the

uncertainty regarding an obligor’s capacity to fulfill its contractual duty can be insured by a

derivative, the Credit Default Swap. However, not all firms have actively traded CDS, leading to

the development of estimations. Merton (1974) was the first to define a relationship between a

company’s probability of default and its capital structure. He used the option pricing framework

to relate the three balance sheet segments, i.e. asset, debt and equity. Black and Cox (1976)

added the possibility for a default to occur prior to maturity. But numerous approximations

were developed in the private sector when these derivatives started to be traded. For obvious

reasons, many of these models are highly proprietary and are not accessible to researchers.

Despite being developed by practitioners, the CreditGrades model (Finger et al., 2002) is

available for use to everyone. This formula relies on companies’ asset values dynamic modeled

with a diffusion process and a default barrier that can be crossed prior to maturity as in Black

and Cox (1976). Overall, academics have focused on strengthening the definitions of some

variables of the CreditGrades model to improve its accuracy. For instance Zhou (2001b) takes

into account market changes using a jump-diffusion process. Sepp (2006) makes the model even

more complex assuming that the firm’s asset value process follows a double-exponential jump-

diffusion and that the variance of the firm’s assets return is stochastic. Another extension of

the CreditGrades model, using implied (and not historical) volatilities to take into account both

equities volatilities and leverage, is proposed by Stamicar and Finger (2006). More recently,

Escobar et al. (2012) have offered a multivariate extension of the CreditGrades model under the

assumption of stochastic variance and correlation among the companies’ assets. Credit Default

Swap is a topic of interest in much recent operational research literature (Guarin et al., 2011;

Tomohiro, 2014; Cont and Minca, 2016; Chalamandaris and Vlachogiannakis, 2018; Koutmos,

2018; Irresberger et al., 2018), but in practice, models for traded CDS spreads tend not to be

popular among portfolio managers. Although the aforementioned models provide very close

approximations (e.g. Imbierowicz and Cserna, 2008), they remain prohibitively complex.

In this paper, our aim is to develop an intuitive, accurate and open-access instrument to

approximate CDS spreads, intended for use by credit market practitioners or as a reliable

proxy for researchers. We first provide an elementary formula, called Equity-to-Credit (E2C

henceforth), comparable to the CreditGrades model in terms of accuracy. We then further

improve the precision of this straightforward formula using machine learning tools, which have
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become more prevalent in the financial sector.

The first contribution of this paper is the development of a concise and broad-based ap-

proximation assessing credit spreads. The Equity-to-Credit formula which we develop is a

pared-down elementary equation inspired by RiskMetrics Group’s CreditGrades model (Finger

et al., 2002). The formula relies on two main mathematical concepts: the reflection principle

and Gauss’s inequality. The probability of default is based on the reflection principle and its

symmetrical property. Its upper bound is specified with Gauss’s inequality which is a refine-

ment of Chebyshev’s inequality, converted to a conservative equality following Roy’s “principle

of safety first” (Roy, 1952). We obtain a simple and transparent credit approximation which

only depends on leverage, equity volatility and standard debt recovery parameters, assessed on

a conservative setting and CreditGrades parameterization.

We then use the CreditGrades model as a comparative basis to empirically assess the E2C

formula’s reliability in the second part of this paper. More specifically, both models’ results

are confronted to the actual CDS. The E2C formula proves to be more correlated and a better

regressor than the alternative model. In addition, a comparison is performed gathering data

by buckets of senior unsecured debt rating and industrial sectors. The analysis is done with

medians and truncated means, both proving in favor of the E2C formula. Consistently with the

existing literature, our 2016-2018 sample confirms that structural models generally underpre-

dict actual CDS spreads. Rodrigues and Agarwal (2011) reach the same conclusions for three

structural models including the CreditGrades model. Moreover, we notice that both the E2C

and the CreditGrades models yield lesser underestimations for riskier companies’ spreads, in

line with Teixeira (2007). Notably, the E2C returns closer estimates for the financial sector

where CreditGrades, and Merton models more generally, are traditionally poor.

By construction, some parameters influencing credit spreads are missing from structural

models such as our E2C. Therefore, our second contribution in this paper is an improvement

of our CDS approximation accuracy, taking into account selected complementary features. We

suggest the use of a supervised learning algorithm which allows the treatment of a multivariate

universe, composed of the E2C and a limited number of chosen variables. The E2C formula

being only based on equity information, a credit derivatives index is set as a time-specific

independent variable. Company-specific variables are then added, such as credit ratings, size,

industrial sector, and geographical location.

Its intelligibility and its ability to handle reasonable sample sizes were the main reasons

driving our choice of the random forest regression algorithm (Breiman, 2001). The purpose is

to average multiple randomly bootstrapped decision trees (“bagging”, in Breiman, 1996) built
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with subsets of the features randomly chosen at each node. Once the hyper-parameters are

tuned, the algorithm is parallelized to decrease computation time. The main result is an 87.3%

out-of-sample accuracy which emphasizes the power of this machine learning algorithm and our

database to approximate CDS spreads.

In addition, this algorithm’s choices are easily accessible through the transparency of its

decisions at each split, displaying the feature it chooses in order to reduce the error. This allows

us to evaluate each feature’s contribution in predicting the CDS spreads, using two methods.

First, we measure the improvement brought by a specific selected variable at each node. Then,

the importance of the variable is measured by how much it decreases the model accuracy when

this feature is randomly permuted. This two-pronged evaluation confirms that our E2C formula

is the main variable selected by the decision trees when approximating the CDS. Additionally,

it underlines the next best source of improvements as the company’s credit rating and its size.

The remainder of this paper is organized as follows. In the next section, we present the

main steps to build our E2C formula. We then confirm that the accuracy provided by the E2C

is at least as good as its closest parent’s. Finally, the approximation accuracy is improved using

random forest regressions on the E2C and other independent variables.

2 The E2C Formula

In this section, we present the main steps to build the E2C formula, leading to an elementary

CDS approximation equation. The stock price St is defined as an additive stochastic process,

such that:

St = S0 + δzt
√
t

We assume that the stock price St varies by a random amount of standard deviation δ per time

unit. Where δ stands for a level of volatility and zt a symmetric standard random variable: zt

has zero mean and unit variance but is not necessarily assumed a normal distribution. Hence,

the expected value and the variance of the stock price process are E[St] = S0 and Var(St) =

δ2t.

Once the prices’ path model is defined, we derive the probability for a bankruptcy to occur.

In this kind of model, the failure happens if the stock price reaches a certain level. For obvious

economic reasons, it is set at zero. Therefore, we look for the probability that a stock price

reaches zero at any time t prior to a certain maturity T .

IP(Default | t ≤ T ) = IP(minSt ≤ 0 | t ≤ T )
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Knowing that the process starts at S0 > 0, the probability of reaching St = 0 at any time

0 < t < T is measured. According to the reflection principle (Lévy, 1940, see Figure 1 below),

if the zero value is reached before T , each possible path ending positively has a symmetric

counterpart ending negatively from this point until T . In other words, if the drift is null, the

number of all paths reaching zero is exactly twice the number of paths terminating below zero.

Figure 1: Reflection Principle

Hence,

IP(minSt ≤ 0 | t ≤ T ) = 2IP(ST ≤ 0)

= 2IP(S0 + δzT
√
T ≤ 0)

= 2IP(zT ≤
−S0
δ
√
T

)

According to zt symmetry:

IP(minSt ≤ 0 | t ≤ T ) = IP(| zT |≥
S0

δ
√
T

) (1)

The idea above is closely related to the barrier concept introduced by Black and Cox (1976)

which assesses the first time a firm’s asset value drops below a certain time-dependent barrier.

To define this probability boundary and for simplicity, we note X a random variable corre-

sponding to zT . The boundary could be estimated with Chebyshev’s well-known over-conservative

inequality (1867), IP(|X − µ| ≥ kσ) ≤ 1

k2
. However, a lesser-known refinement developed by

Gauss (1821) (or more recently, in Perks, 1947) allows to sharpen Chebyshev’s boundary by

a
4

9
factor on the condition that X is unimodal with a mode µ. This assumption is correct

regarding our model with E[X] = µ = 0. Applying Gauss’s inequality to our main equation 1,

we get:

IP(| zT |≥
S0

δ
√
T

) ≤ 4δ2T

9S2
0
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For simplicity and economic sense, we get rid of the inequality operator based on the paper of

Roy (1952). Following his “principle of safety first” and a conservative objective, we maximize

our upper bound. It has a financial sense therefore to conclude:

IP(Default | t ≤ T ) =
4δ2T

9S2
0

Dividing this probability by the time horizon, we define the hazard rate h.

h =
IP(Default | t ≤ T )

T
=

4δ2

9S2
0

(2)

Using R as the asset specific recovery rate, we model the credit approximation as:

C = (1−R) · h = (1−R) · 4δ2

9S2
0

(3)

Next, we derive a closed-form expression for the volatility parameter δ based on the Credit-

Grades assumptions, and focusing on the downside evolution of the stock price. In fact, in this

asymmetric approach which is presented in Appendix A, the above equation 3 is still valid with

a “downside delta” δST≤S0 , and is justified by reconsidering the Gauss inequality on only one

side of the distribution.

Much research has been done on the link between bankruptcies, assets, debts and equities,

notably by Merton (1974) and Black and Cox (1976). A company defaults if a certain level of

insolvency is reached. In line with the assumption of the CreditGrades approach, we apprehend

this level, or default barrier, as the remaining amount of the firm’s assets in the case of default,

corresponding to the recovery value received by the debt holders. We note this amount L̄D,

where L̄ is the average recovery on the debt and D the firm’s debt-per-share.

To keep the simplest expression consistent with the definition of L̄ (such that the asset value

V = L̄D when S = 0), we write V = S + L̄D. With σS being the equity volatility, the equity

and asset volatilities are related as follows:

δ = σSS = σV V = σV (S + L̄D)

Then, as such δ is not constant, we anchor it by emphasizing its downside boundary values:

• At t = 0, V = S0 + L̄D, therefore,

δt=0 = σV (S0 + L̄D)

• If the default occurs, S = 0 thus, V = L̄D, hence,

δS=0 = σV L̄D
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And we retain for δ the average of these values, using the geometric average as we are dealing

with magnitudes. In addition, it is indifferent whether the average is squared or the squared

values are averaged.

Hence,

δ2ST≤S0
= σ2V (S0 + L̄D)L̄D

And, as

σV = σS
S0

(S0 + L̄D)

We get:

δ2ST≤S0
= σ2SS

2
0

L̄D

(S0 + L̄D)

where
L̄D

S0 + L̄D
is the ratio “debt to enterprise market value” of the company, also known as

the Market-Adjusted Debt (MAD) ratio. The final credit approximation1 is computed replacing

this result in equation 3.

C = (1−R) · 4

9
· L̄D

S0 + L̄D
· σ2S0

(4)

The above formula is thereafter referred to as the Equity-to-Credit (E2C) formula. The E2C is

computed using both market and balance sheet inputs – on the one hand the current stock price

and its volatility, and on the other hand the company’s debt-per-share. The debt-per-share D

is computed following the CreditGrades method, further detailed in Appendix A. With regard

to the volatilities, for each company, both historical and implied ones are extracted for different

maturities. The historical volatilities are computed over 30, 60, 120, 200, 260 and 360 days

and the implied volatilities correspond to 3, 6, 12, 18 and 24 months options maturities. After

a few tests, we retain the implied volatilities for strikes of put options “out of the money” by

0.5 standard deviation. For robustness, the E2C’s volatility parameter is defined as the median

of all the above available volatilities. In general, recovery rates of traded CDS are set at 0.4

corresponding to the developed market average. However, being conservative, we set it at 0.3,

as some practitioners do and as it is commonly attributed to emerging markets. After some

empirical tests, the RiskMetrics team chose an L̄ of 0.5 for their model. Hence, knowing that

the CreditGrades parameterization is relevant for our equation, we calibrate our model with

R = 0.3 and L̄ = 0.5.

1The hazard rate is null when the debt is null, which is another property from the use of a geometric average.
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The equation presented in this section is very intuitive as the variables’ impact is consistent

with market specialists’ expectations. This credit spread approximation is an increasing function

of the debt and the corresponding stock volatility. On the other end, when the share value

increases, the spread value decreases.

3 E2C and CreditGrades Models Comparison

3.1 Data and Softwares

Our panel data sample is a blend of market and fundamental reports information over 308 listed

companies from 27 countries (of which 12 are gathered in a single Eurozone group)2. Each

company belongs to one of the following ten major sectors: basic material, communications,

consumer cyclical, consumer non-cyclical, energy, financial, industrial and utilities3. The data

set spans weekly, every Friday over three years (i.e. 155 dates), from 2016-02-03 until 2018-12-28,

and is based entirely on Bloomberg L. P. data.

Data preparation and handling is entirely conducted in Python 3.6 (Python Software Foun-

dation, 2016), relying on the packages “numpy” by Van Der Walt et al. (2011), “pandas” by

McKinney (2010) and for visual outputs on “matplotlib” by Hunter and Dale (2007). Linear re-

gressions are performed with Stata 13.0 (2013). Moreover, we use “sci-kit learn” by Pedregosa

et al. (2011) for the random forest and the “randomForest” R package by Liaw and Wiener

(2002) to confirm the results.

3.2 Basic Analysis

Based on the data sample defined above, we compare the two CDS spreads approximations ob-

tained by our E2C formula, i.e. equation 4, and the CreditGrades version defined by RiskMet-

rics Group. This version requires the use of the Cumulative Normal distribution and logarithm

functions, and an additional parameter λ which stands for the standard deviation of the global

recovery rate (λ = 0.3 according to the RiskMetrics paper, 2002). To convert the CreditGrades

survival probabilities to spreads, we define the maturity t = 5 years. All other parameters

are set as those defined previously for the E2C. We analyze the 5-year CDS against the E2C

2Country (number of Firms per Country) list: Australia (14), Canada (5), Denmark (2), Eurozone (78), Great

Britain (22), Hong Kong (6), India (3), Japan (22), Malaysia (1), New Zealand (2), Norway (2), Singapore (1),

South Korea (8), Sweden (3), United States (139).

3Technology and diversified sectors are not displayed, they only respectively count 8 and 2 companies on

average.
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equation defined above, and against the CreditGrades estimate (1−R) · hCG, where hCG is the

hazard rate implied by CreditGrades (described in Appendix B).

According to the descriptive tables available in Appendix B, the E2C and CreditGrades

outputs are relatively close to one another and more importantly to the 5-year CDS. Both

approximations have a lower median and are slightly more volatile than the actual CDS. A

comparative table of the quality of the CDS approximations at a country level produced by each

of these models is available in Table B.2. Moreover, the E2C’s density function shape is closer to

the CDS, as it is more right-skewed and leptokurtic than the one obtained with CreditGrades.

We also notice, for all curves, a higher heterogeneity between companies than within. Finally,

we compute the averages of each firm’s correlation over time and of each date’s correlation over

all firms. In both correlation tables, E2C is highly correlated to CreditGrades with a coefficient

around 90%. Above all, E2C is more correlated to the 5-year CDS than CreditGrades between

companies and through time. Across the board, our approximation shows conclusive results.

We further study the predictivity of these equations with econometric techniques. According

to the appropriate testing4, we handle both regressions (CDS onto E2C and onto CreditGrades)

with fixed-effects models. Thus, both company-specific characteristics and time must be taken

into account. In the summarized results below (Table 1), we highlight the R2, and in particular

the R2 − within along with the fixed-effects model.

4In both cases, panel (fixed-effects) models are chosen over pooled OLS. The null hypothesis of homoscedas-

ticity of the Breusch and Pagan Lagrangian multiplier test is rejected. Then, we perform a test of overidentifying

restrictions (similar to Hausman test, with H0 : cov(Xi,t, vi) = 0) on our model which includes time-variant

variables. The result indicates that the fixed-effects model should be preferred over the random-effects model.
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CDS 5y CDS 5y

E2C 0.637∗∗∗

(203.81)

CrdGrd 0.671∗∗∗

(162.29)

constant 58.16∗∗∗ 44.41∗∗∗

(103.7) (61.26)

N 47476 47476

R2-within 0.468 0.358

R2-between 0.796 0.618

R2-overall 0.692 0.543

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: Goodness-of-Fit of fixed effect model using E2C and CreditGrades

With an R2 over 10 points of percentage above the CreditGrades regression, the E2C formula

is shown to approximate the CDS with globally more reliability than CreditGrades.

3.3 Rating and Sectorial Analyses

Finally, we focus on two universes in which firms’ repartition is overall well balanced: unsecured

senior debt ratings and industrial sectors. The E2C results are compared, along with those of

CreditGrades, to the actual CDS spreads using two methods. The basic averages being exposed

to outliers, we firstly choose to compare their medians. The second method compares the

truncated means, where averages are computed after having dropped the extreme 10% top and

bottom points. For the sake of visualization, we summarize our results below in Figures 2 and 3.

3.3.1 Debt Rating Comparison

Our dataset is composed of senior unsecured debt ratings provided by Standard & Poor’s and

Moody’s. Unfortunately, their rating scales are different, and their ratings for specific firms and

dates might be different. This issue is overcome through the following guidelines: if both agen-

cies provide the same grades (based on the comparison scale in Santos, 2008), the corresponding

grade is chosen; if only one agency gives a grade, this grade is selected; and if the grades are

different, still being conservative, the worst one is kept. Our sample includes no AAA grades
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and too few AA, therefore we group them in a global A bucket. Furthermore, too little data

for firms rated below B is available in our sample, so we remove them for this comparison.

Figure 2: Comparisons between original 5y CDS, E2C and CreditGrades approximations in

terms of senior unsecured debt rating
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In all cases, the E2C formula provides a closer median to the CDS than CreditGrades, with

the exception of the double-B grade for which E2C and CreditGrades medians are almost alike.

Regarding the truncated mean, E2C is indubitably better for the single B and comparable

for single A and triple-B. These positive results are strengthened by the measures of accuracy

shown in Appendix B, Table B.5. Additionally, we find that these structural models do not

underestimate spreads for riskier companies (cf. Teixeira, 2007).

3.3.2 Industrial Sector Comparison

The firms are classified among ten major sectors (introduced in the above data section, 3.1).

The sectoral comparisons are displayed below based on the same metrics.
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Figure 3: Comparisons between original 5y CDS, E2C and CreditGrades approximations in

terms of industrial sectors
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Except for utilities and financial, we reach the same conclusions as Rodrigues and Agarwal

(2011)5, Lardic and Rouzeau (1999) and Eom et al. (2004) who emphasized that structural

models generally underpredict the observed credit spreads, at least for low levels of risks. Indeed,

it is hard to define and calibrate a meaningful process for the firms’ asset values (Schönbucher,

2003). Those are generally modeled following continuous diffusion paths, and thus are prevented

from reaching the default barrier in very short time-spans, as may conceivably occur in reality.

Zhou’s work (1997; 2001a) overcame this issue by introducing a jump-diffusion process, at the

cost of further complexity (cf. Section 1). In addition, credit spreads bear residual agency and

covenant risks, which are not shared by equity. Regarding the median, it is clear that in every

case, the E2C formula approximates the CDS spreads at least as well as CreditGrades. The

E2C approximations are clearly superior for basic materials, communications, consumer cyclical

5Their study includes the CreditGrades model.
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and non-cyclical, energy and industrial. Almost identical conclusions are reached computing the

truncated mean. E2C results are unquestionably better for basic materials, communications,

industrial, utilities and financial. The latter is particularly interesting as it is a key sector where

CreditGrades, and more generally “Merton” models, are traditionally poor. These encouraging

charts are confirmed by the measures of accuracy shown in Table B.6 of Appendix B. We now

know, at least with these samples, that our simple estimation is at least as good as CreditGrades

in almost all of the above cases.

After the positive statistics of section 3.2, the above detailed analysis in terms of rating

and sector confirms the satisfactory level of accuracy of the E2C formula with regards to the

CreditGrades model. We therefore provide credit market practitioners with an equation which

is slightly better than its closest parent, the CreditGrades model, while surpassing it in terms

of intuitiveness and clarity.

The period studied in this paper (2016-2018) was overall characterized by low volatilities

and highly expansive monetary policies, limiting our assessment of the E2C formula’s reaction

to changes in the volatility regime. However, we performed an OLS analysis at dates of higher

volatility within our data sample. We chose to match the lower bound of the 3-month VIX

volatility index6 during the 2007-2008 financial crisis, which was at 20%; a threshold7 exceeded

20 times out of our 155 dates (i.e. 6078 observations). The results available in Table B.7

(Appendix B) show a stable accuracy for E2C even when the market is more volatile8.

4 Approximation Improved by Random Forests

4.1 Sample Construction

The previous positive results give us ground to use and test our approximation further. More

precisely, we look to improve our CDS approximation using the simple E2C formula and some

additional input variables, and the actual CDS spreads are thereafter used as labels to train

supervised learning algorithms. As usual, the original sample is split between training and test

sets; and the results are checked with traditional error-squared metrics.

We suppose that the major part of the CDS approximation should be explained by the

E2C formula, which is based on equity information. But CDS are evolving on a different

6Which is steadier than the VIX index.

7As robustness check, the volatility analysis was performed for 1.5σ above the mean and at the 75% quantile,

obtaining the same results.

8Table B.7 (Appendix B) provides corresponding results for CreditGrades as well.
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market and thus are not only company-dependent but also correlated to the overall credit

market. Therefore, we add the most liquid Investment Grade CDS index, the IG CDX9, which

evolves through time but is not company-dependent. The default likelihood of a debtor is

qualitatively and quantitatively assessed by a credit rating agency and disclosed with a credit

rating grade. Obviously, the grade level should have an impact on the corresponding CDS

spread. Companies’ size should also matter, being related to a level of importance and liquidity

and linked to a stability concept, thus being integrated in CDS levels. This latter independent

variable is measured by the market capitalization. It is worth noting that debt ratings and size

are company-specific but not strongly time-dependent. Finally, companies’ industrial sectors

and geographical locations10 are included as easily accessible additional variables which satisfy

the same criteria.

Before running our algorithms, we perform light features engineering. According to LeCun

(2012), “to efficiently perform a basic machine learning algorithm, it is fundamental to pre-

process the data, reduce dimensions and extract hand-crafted, domain specific features”. First,

points with one or more missing data are removed (8% of our data sample), leaving 47,476

observations. Incidentally, random forests are generally robust to numerical instabilities, so

there is no need to remove multicollinearity and features with little variance. There is also no

need for monotone functions such as centering, scaling or Box-Cox transformations, to which

random forests are invariant. The second step in feature engineering concerns the handling of

three non-numeric polytomous variables, i.e. countries, industrial sectors, and debt ratings. We

perform a label encoding for the unsecured debt ratings, which are an ordinal variable. However,

countries and industrial sectors are plain non-ordinal categorical values, which we handle with

one-hot encoding11 (if countries and industrial sectors were converted through label encoding,

artificial relationships between the values would be enforced, whereas creating dummy variables

dilutes the features’ strength). After a short presentation of our metrics, we run the algorithms

on 4 independent variables and 23 dummy variables.

The in-sample set is built by randomly removing 20% of the companies and 20% of the

dates. This method leaves us with an out-of-sample standing for 36% of the whole dataset. The

9As robustness check, the Itraxx & HY CDX indexes and the VIX 3-month volatility index were set as

independent variables; various combinations led to similar results.

10The currencies stands as proxy for geographical locations.

11As usual, for each binary variable group, the dummies with the fewest observations (here, “CTRY MYR”

and “INDUSTRIES DIVERSIFIED”) are removed.
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approximation accuracy is assessed using a well-known econometric measure, the R-squared12.

Other distance-related metrics, such as the relative absolute and squared errors, deliver the

same conclusions.

4.2 Random Forest Regressions

4.2.1 Algorithm Description

An efficient algorithm minimizes both the bias and the variance. Generally, decision trees deliver

a low bias but are, by construction, prone to overfit. Therefore, ensemble methods (Opitz

and Maclin, 1999) running multiple trees are appropriate for relevant predictions. Specifically,

we choose a meta-algorithm called bootstrap aggregating (or “bagging”, in Breiman, 1996)

which builds multiple trees from a training set’s sample, randomly drawn with replacement.

Bagging contributes to reducing the variance and avoiding overfitting. In the process known

as random forest algorithm, developed by Breiman (2001), this property is reinforced by the

random selection, at each node, of a subset of the features used for splitting. Earlier work

on random forests had also been launched at Bell Laboratories by Ho (1995, 1998). This

random subset might slightly increase the bias along with the decrease in variance (bias-variance

tradeoff).

Random forests have recently been used within the fields of economics and finance (Nyman

and Ormerod, 2016; Khaidem et al., 2017; Tanaka et al., 2016; Behr and Weinblat, 2017; Yeh

et al., 2012). The validity of the use of random forests among a wide choice of learning algorithms

has been studied, and confirmed, by Fernandez-Delgado et al. (2014). Brummelhuis and Luo

(2017) further verify this use in the context of CDS proxy construction.

Even though recent machine learning research is more oriented toward deep learning algo-

rithms (Badrinarayanan et al., 2017; Sun et al., 2018; Sangineto et al., 2018), recent papers

in applied machine learning have shown that the outputs of deep learning and ensemble based

methods are comparable, at least for reasonable sample sizes. An argument in favor of deep

learning is its marginally better accuracy (Ahmad et al., 2017) although random forests have

in some cases outperformed neural networks (Liu et al., 2013; Rodriguez-Galiano et al., 2015;

Krauss et al., 2017). However, our own priority in this paper is to keep our methods as simple

and above all as understandable as possible, leading us to strongly lean in favor of random

forests. Beyond performing an internal cross-validation, random forests require less parameter

tuning (Ahmad et al., 2017). As far as transparency goes, random forests are also preferable to

12R2(y, ŷ) = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

18



neural networks, which are often considered to be black boxes (although see Shwartz-Ziv and

Tishby, 2017, for a recent improvement).

While random forests are generally run with unpruned classification and regression trees

(CARTs, in Breiman et al., 1984), limiting the trees’ depth is an option. This has no negative

impact in terms of overfitting, and has the positive result of contributing to faster computation.

Consequently, we set a maximum depth to the trees, and choose to run them in parallel for

further speed. The following is a brief explanation of the random forest algorithm, based on

the notations of Hastie et al. (2009). At step 1(b), we shortly present a decision trees algorithm.

1. for b= 1 to B:

(a) draw a bootstrap subset from the original dataset.

(b) grow a decision tree Tb using the following process:

i. use a greedy algorithm seeking the splitting feature j among a randomly selected

subset m of the p features (m ≤ p) and split point s that solve:

min
j,s

min
c1,c2

 ∑
i∈R1(j,s)

(yi − c1)2 +
∑

i∈R2(j,s)

(yi − c2)2



where R1(j, s) = {i | xi,j ≤ s}

and R2(j, s) = {i | xi,j > s}

cl = avg (yi | i ∈ Rl(j, s))

ii. once the best fit found, partition the data in two regions (R1, R2)

iii. repeat (i) on each resulting region until a leaf node in all the branches of the

tree is found, or the maximum depth is reached.

2. output the ensemble of trees {Tb}B1 .

Thereafter, the prediction on a new point x from the OS is made using the function:

f̂(x) =
1

B

B∑
b=1

Tb(x).

Random forests require to set at least two hyper-parameters. First of all, we determine the

number B of random trees we want the algorithm to run. While more trees reduce the variance,

we choose B as usual in function of accuracy constrained by the time of computations. Figure 4

summarizes various criteria supporting our decision.
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Thereafter the chosen number of random trees is set at 50. Secondly, we set the m number

of features randomly selected at each node. According to Breiman (2001), having categorical

and dummy variables, m should be set at two or three times int(log2(p) + 1). This parameter

is thus set at 15, a number m additionally confirmed by Figure 5, maximizing the averaged

accuracy while minimizing its variance.

Based on Figure 6 and on the concept that pruning can correct potential remaining over-

fitting, we notice that beyond a sufficient number of nodes the accuracy remains the same. In

addition, it leads to quicker computations. Thus we expand the trees’ depth until 15 nodes.

Figures 4-6: Goodness-of-Fit in function of the number of trees, features and nodes.
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Figure 4: Number of trees stands for the number of bootstrapped random trees
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Figure 5: Number of features stands for the number of features randomly composing the subset

of features tested as splits at each nodes
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Figure 6: Number of nodes defines the trees’ depth

In a nutshell, we launch 50 arbitrary decision trees, each one randomly checking 15 features

at each node and having a 15 nodes depth. With this parameters setting, we end up with an

87.3% out-of-sample R2, see Table 2.13

IS Mean (Std) OoS Mean (Std)

R2 99.2% (0.06%) 87.3% (3.86%)

Table 2: Goodness-of-Fit of averaged random forest regressions

These out-of-sample results are illustrated for 10 companies chosen randomly, see Figure 7.

On these graphs, the black points stand for the 5y CDS benchmarks. The yellow line stands for

the sole E2C on the left-hand side and the predicted results using random forest on all features

on the right-hand side.

13As a comparison, we obtained close results using a gradient boosting regression (Friedman, 2001) – another

algorithm based on decision trees. For the sake of brevity, we do not report these results here. They are, however,

available upon request to the authors.
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Figure 7: Goodness-of-Fit comparison between the sole E2C approximations and the multivari-

ate set-up handled with random forests.
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The graphs on the left-hand side present an already satisfactory approximation of the 5-

year CDS using only the E2C equation. However, it is clear on the right-hand-side graphs that

the use of a random forest algorithm on a multivariate sample (including the E2C) provides a

significantly improved prediction. Training a random forest with these easy-to-access variables

is thus a worthwhile process. As robustness check, we ran the random forest algorithm on the

same multivariate set-up, removing one sector at a time. Similar levels of accuracy were reached

(cf. Appendix C, Table C.1).

4.2.2 Verification of Feature Importance

The use of a random forest algorithm has been justified above with reference to the results

obtained. However, it has an additional property worth noting – its transparency which gives

access to a quantified measure of each variable’s importance. This allows us to assess the

individual contribution of the variables (including the E2C) in the improvement obtained with

the random forest. The contribution of each feature in predicting the response can be assessed

using two methods. Firstly, a method called feature importance, which empirically highlights

whether the trees are frequently consulted by a specific feature weighted by the enhancement

it brings. At each node, the improvement brought by a specific selected variable is computed

comparing the residual sum of squares before and after splitting. In other words, this method

counts, for each tree, the number of times a data sample passes through a node whose decision

is based on a specific feature, times the improvement it carries. Then, the total contribution of

the variable is averaged over all trees. Secondly, we measure the variable importance by how

much it decreases the model accuracy (averaged over all trees) when this feature is randomly
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permuted. More specifically, this method computes, for each feature, the mean square error14

without permutation and compares it to the permuted one. Then, the subtraction is averaged

over all random trees and normalized. For instance, for a feature A, we get:

V I(A) =
1

B

B∑
b=1

R2
b −R2

b,Permuted

R2
b

Shuffling a variable is similar in linear regressions to setting a coefficient as null. Consequently,

we expect important variables’ R2 to be significantly lower in the scrambled cases than in

the genuine ones, leading to a high V I. In addition, this method does not affect the values’

distribution, because variables are just permuted. Moreover, this second metric is useful to

distinguish the importance among correlated variables. We display these features’ importance

measures in the bar charts below, the first method being on the left-hand side. Only the ten

most important variables (according to our measures) are shown in Figure 8.
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Figure 8: Features importance assessment

These bar charts confirm that the E2C is by far the main variable contributing to our

improved approximation of the CDS15. Beyond the E2C, the inclusion of debt ratings and

market capitalizations also clearly improves the model. In a sample with a high heterogeneity

between companies, it is encouraging to observe that the random forest highlights company-

specific variables such as the two listed above.

14As usual, on the out-of-bag samples.

15CreditGrades as substitute for E2C, while providing the same R-squared and being the main feature, is a

less dominant variable in this set-up.
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5 Conclusion

In this paper, we develop an instrument which is both intuitive and accurate to approximate

CDS spreads. It relies on an elementary formula, called E2C, and on random forest regressions

learning from a small data set.

Our first step in reaching this goal is the analysis of the cornerstone concepts driving struc-

tural models for Credit Default Swaps. Most of this analysis is closely related to the Credit-

Grades method, but the specificity of our equation rests on the use of fewer parameters and

a more elementary formula. Upon verification, the E2C provides at least as accurate an ap-

proximation of the CDS as the CreditGrades model does, and in fact outperforms in certain

predictions for firms grouped by debt ratings or industrial sectors.

Furthermore, we provide a protocol using random forest regressions to correct some remain-

ing issues with accuracy found in all models such as the E2C or CreditGrades. This supervised

learning algorithm allows the inclusion of a few additional widely-available financial data as inde-

pendent variables, to complement the E2C. We detail the steps from the sample pre-processing

to the final hyper-parameter setting. The use of the random forest algorithm culminates in an

87.3% out-of-sample accuracy in our CDS approximations. This method remains simple among

non-linear supervised algorithms, and has the added benefit of transparency, which allows an

evaluation of the relative importance of our variables. Beyond confirming the impact of debt

rating and company size on CDS, this transparency highlights the predominance of the E2C as

a reliable predictor among all other variables.

Financial practitioners and researchers have long had to balance precision against trans-

parency in their selection of CDS spreads approximations. The E2C formula we offer in this

paper goes a long way toward resolving that tension; as it generally outstrips the accuracy

of the CreditGrades model while being more intuitive and straightforward. Furthermore, by

conducting random forest regressions on a multivariate universe including our E2C, we obtain

an outstandingly reliable and accessible CDS estimation.

Although our sample covers a large number of companies, industries and countries, we sug-

gest that additional insights may be uncovered with historical data covering a longer time-span.

CDS maturity is also not considered in this paper and is left for future research, possibly start-

ing from the exploration of other mathematical “concentration inequalities” for the formula’s

upper bound.
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Appendices

Appendix A

Modified “one-sided” approach to the Gauss Inequality

A result similar to Gauss’s inequality gives, for any random variable X with a decreasing

density for negative values:

IP(X ≤ q) ≤ 4

9q2
· E
[
X2 | X ≤ 0

]
· IP(X ≤ 0)

Then, from the reflection principle for an unbiased stock evolution from the current price:

IP(minSt ≤ 0 | t ≤ T ) = 2 · IP(ST ≤ 0) = 2 · IP(ST − S0 ≤ −S0)

and

IP(ST ≤ S0) =
1

2

Hence,

IP(Default | t ≤ T ) ≤ 4

9S2
0

· E
[
(ST − S0)2 | ST ≤ S0

]
Expressing the stock evolution in independent steps: ST − S0 =

∑T
t=1 dSt

E

[
(

T∑
t=1

dSt)
2 | ST ≤ S0

]
= E

[
T∑
t=1

E
[
dS2

t | St
]
| ST ≤ S0

]

= E

[
T∑
t=1

σ2St
S2
t | ST ≤ S0

]

= T · E
[
σ2SS

2 | ST ≤ S0
]

= T · δ2ST≤S0

And this last conditional expectation is proxied by the geometric average of the downside

boundary values of a Black-Cox/CreditGrades type model of the firm.
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Debt-per-Share Evaluation

According to CreditGrades, FinD the financial debt amount is determined splitting compa-

nies in two categories, banking and non-banking firms.

• Banking Sector

FinD = Long Term Debt

• Non-Banking Sector

FinD =Long Term Debt+ Short Term Debt+ 0.5 · (Other

Long Term Liabilities+Other Short Term Liabilities)+

0.4 · Future Minimum Operating Lease Obligations

To develop a little further the FinD choice for banks, we highlight that banks deposits are

not part of financial leverage, thus excluded from the debt-per-share. In fine, many financial

statements items should be assessed on a case-by-case basis16, leading to a laborious analysis.

For the sake of simplification, CreditGrades chose to include in its debt-per-share computations

the consolidated Long Term Borrowings. FinD, MinInt the minority interests and PrefEq

the prefered equities are balance sheet data, thus are given in fundamental report currency.

To match with S0 the current stock price and MktCap0 the current market capitalization, we

convert them to the stock price currency. Finally, the debt-per-share is defined as follow:

D =
FinD −MinInt

MktCap0 + PrefEq

S0

Note that MinInt is capped at 50% of FinD, PrefEq is capped at 50% of MktCap and D is

floored at 10% of S. Moreover, the weightings of FinD and the cap and floor levels are inspired

by CreditGrades (2002).

16ST Borrowings, and both Other ST and LT Liabilities contain many other items which in fact should be

weighted 0% into the debt-per-share calculations, ranging from accounts payables and accrued expenses to repos,

securities lending of regulated broker-dealer or securities subsidiaries, ...
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Appendix B

CreditGrades formula

IP(Survival)t = e−hCG·t = Φ

(
−At

2
+
log(d)

At

)
− d · Φ

(
−At

2
− log(d)

At

)
where,

d =
S0 + L̄D

L̄D
· exp

(
λ2
)

A2
t =

(
σS0 ·

S0
S0 + L̄D

)2

· t+ λ2

Descriptive Statistics Tables

Des Stat CDS 5Y E2C CrdGrd

No. of obs. 47476 47476 47476

No. of firms 308 308 308

No. of periods 155 155 155

Mean 137.4 124.5 138.7

Std-overall 230.2 236.5 268.5

Std-between 202.2 202.8 249.4

Std-within 120.3 129.4 107.4

Min 12.9 1.4 0

q(25%) 46 26 1.1

q(50%) 71.6 50.6 18.6

q(75%) 132.3 115.5 135.6

Max 4491.1 4444.9 2246.9

Skew 7.3 5.5 2.9

Kurt 86.3 44.1 9.2

Table B.1: CDS, E2C and CreditGrades Descriptive Statistics
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5y CDS E2C CrdGrd

Obs. mean std mean std mean std

Australia 2170 88.9 45.3 34.4 22.6 15.1 27.6

Britain 3402 94.8 89.4 59.6 112.8 44.8 138.8

Canada 775 318.1 275.2 376.5 518.2 373.9 458.1

Denmark 280 88.2 49.6 112.6 70.2 277.4 220

Eurozone 12061 103.2 208.1 102.2 139.1 119.7 194.5

Hong Kong 930 191.9 181.9 63.2 90.8 63.1 134.8

India 465 180 47.4 326.3 193.9 433.3 251.5

Japan 3410 50.9 36.1 110.8 101 147.4 200.6

Malaysia 155 107.3 33.7 46.3 75 46.2 102

New Zealand 310 80.2 33.7 40 31.9 26.7 36.2

Norway 310 41.2 19.1 50 36.2 24.5 47.1

Singapore 155 57.2 9.4 8.2 4.1 0 0

South Korea 1240 73.7 22.7 90.9 57.7 180.1 235.8

Sweden 465 86.2 39 50.1 20.3 18.1 22.5

United States 21348 180.9 284.9 155.4 303 167.3 326

Table B.2: CDS, E2C and CreditGrades Descriptive Statistics by Country

Correl CDS 5Y E2C CrdGrd

CDS 5Y 100% 66.7% 62.3%

E2C 66.7% 100% 92.7%

CrdGrd 62.3% 92.7% 100%

Table B.3: Averaged correlations of CDS, E2C and CreditGrades by Firm

Correl CDS 5Y E2C CrdGrd

CDS 5Y 100% 85% 76.3%

E2C 85% 100% 89.6%

CrdGrd 76.3% 89.6% 100%

Table B.4: Averaged correlations of CDS, E2C and CreditGrades by Date
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RMSE MAPE MASE

Obs. E2C CrdGrd E2C CrdGrd E2C CrdGrd

A 11396 55 132 0.72 1.44 16.1 31.2

BBB 17581 61 124 0.56 1.06 12.9 22.5

BB 5360 98 214 0.47 0.76 9.6 15.2

B 3637 260 265 0.39 0.49 6.2 6.6

Table B.5: CDS, E2C and CreditGrades Accuracy Metrics by Debt Rating

RMSE MAPE MASE

Obs. E2C CrdGrd E2C CrdGrd E2C CrdGrd

Basic Materials 3285 62 89 0.49 0.77 6.2 9

Communication 4907 54 77 0.48 0.78 9.4 12.9

Consumer Cyclical 7232 70 105 0.59 0.99 11.2 16.5

Consumer Non-Cyclical 5616 81 108 0.53 0.88 9.9 11.7

Energy 2227 101 133 0.37 0.68 4.8 5.9

Financial 6346 127 267 0.85 2.06 15.8 34.9

Industrial 4425 51 75 0.61 1.01 7.7 10.4

Utilities 2540 77 154 0.647 1.279 13.8 22.1

Table B.6: CDS, E2C and CreditGrades Accuracy Metrics by Industrial Sector

RMSE: Root Mean-Square Error

MAPE: Mean Absolute Percentage Error

MASE: Mean Absolute Scaled Error

Consistent with section 3.3, we removed the 10% top and bottom points.
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Volatility Regime Tests

Model 1: CDS 5yi,t = β0 + β1E2Ci,t + β2V OLt + β3E2Ci,t ∗ V OLt + εi,t

Model 2: CDS 5yi,t = β0 + β1CrdGrdi,t + β2V OLt + β3CrdGrdi,t ∗ V OLt + εi,t

Where V OLt is a dummy variable, defined as 1 if VIX 3-month volatility index ≥ 20.

Model 1

CDS 5y CDS 5y

E2C 0.8097∗∗∗ 0.8096∗∗∗

(326.36) (289.22)

VOL 1.8482

(0.93)

E2C*VOL -0.0002

(-0.04)

constant 36.5921∗∗∗ 36.3731∗∗∗

(55.19) (51.13)

N 47476 47476

R2 0.6917 0.6917

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Model 2

CDS 5y CDS 5y

CrdGrd 0.6319∗∗∗ 0.6163∗∗∗

(237.69) (212.11)

VOL -6.3372∗

(-2.58)

CrdGrd*VOL 0.0922∗∗∗

(12.83)

constant 49.7583∗∗∗ 50.6751∗∗∗

(61.92) (59.21)

N 47476 47476

R2 0.5434 0.5451

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table B.7: Goodness-of-Fit of OLS models of volatility regime tests
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Appendix C

Random Forests Robustness Tests

In-Sample Out-of-Sample

Removed Sector Remaining Obs. mean (%) std (%) mean (%) std (%)

Basic Materials 41753 99.3 0.06 84 7.16

Communication 39990 99.2 0.07 87 3.55

Consumer Cyclical 36795 99.4 0.05 85.6 5.26

Consumer Non-Cyclical 39129 99.2 0.08 85.1 6.51

Energy 43245 99.3 0.07 86.9 4.54

Financial 37791 99.3 0.07 87.5 4.33

Industrial 40328 99.3 0.06 86 4.91

Utilities 42780 99.2 0.07 85.9 4.37

Table C.1: Random forests robustness tests with removal of industrial sectors
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