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Abstract

This paper considers the penalized least squares estimators with convex penalties or regu-
larisation norms. We provide sparsity oracles inequalities for the prediction error for a general
convex penalty and for the particular cases of Lasso and Group Lasso estimators in a regression
setting. The main contributions are that our oracle inequalities are established for the more
general case where the observations noise is issued from probability measures that satisfy a
weak spectral gap (or Poincaré) inequality instead of gaussian distributions, and five easier
to verify bounds on compatibility. We Illustrate our results on a heavy tailed example and a
sub gaussian one; we especially give the explicit bounds of the oracle inequalities for these two
special examples.

Introduction

High-dimensional statistical models have been thoroughly studied in recent research and literatures.
In particular, penalized Least Square (LS) estimators have been proposed and extensively investi-
gated; for example the `1 norm penalized estimator LASSO and its extensions. A common feature
of these estimators is the fact that the penalty is a norm satisfying some specific decomposability
conditions. As shown in [5], the two main ingredients of the analysis are based on the restricted
eigenvalue compatibility property, and the empirical process bounding the stochastic error. With
this approach, several techniques have been proposed for a unified treatment of LS estimators with
decomposable penalties, a wide overview can be found in [13, 15, 8]. Classical results were derived
via oracle inequalities depending on unspecified compatibility parameters. On the other hand the
penalties (and thus, the estimators) depend on the distribution with which the oracle inequality
holds. To overcome these problems, a tentative for a general solution were achieved by the small
ball method see for instance [10, 12]. Under gaussian noise, many results have been established for
the sparsity oracle inequalities for LASSO estimators in different situations: (1) the fixed design
case [5, 4, 3, 1, 9, 6, 8] (2) results based on confidence level tied to the tuning parameter see for
instance [5, 9, 6, 8] (3) in the case where the noise are i.i.d. sub-gaussian see for example [3]. For
instance, in [3, 14], sparsity oracle inequalities for the Lasso estimators are obtained in random
design regression especially when all entries of the design matrix are i.i.d. standard gaussian in-
dependent of the observations errors. In this work, we consider the classical general framework of
regression model. Using the same notations as in [1, 8] it is expressed by the following :

Y = f + ξ. (1)

We assume in this paper that the distribution of the noise random vector ξ satisfies a weak spectral
gap inequality. Following the definition and notations in [2, 7], a probability measure µ satisfies a
weak spectral gap (or a weak Poincaré) inequality if there exists a function γ : (0,+∞) −→ R+

such that every local function h : M −→ R satisfies for all s > 0 the inequality:

V arµ(h) ≤ γ(s)

∫
|∇h|2 dµ+ sOsc(h)2 (2)
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Where Osc(h) = suph − inf h is the total oscillation of the function h. We place ourselves in
high-dimensional statistics setting, by considering a design matrix X ∈ Rn×p with p >> n. We
consider to generalise, to Hilbert spaces, the following classical estimation problem of f by Xβ̂
where:

β̂ ∈ arg min
β∈Rp

‖Y− Xβ‖2n + F (β). (3)

The empirical norm ‖·‖n is defined by ‖u‖2n = 1
n

∑n
i=1 u

2
i and F : Rp → R+ is a convex penalty

function, being the l1 norm for the Lasso case for example.
The main result of this paper, is to derive oracle inequalities for the prediction error of the

penalized estimator β̂ solution of (3) under the assumption that the noise random vector ξ in (1)
follows a probability measure that satisfies a weak spectral gap inequality [2]. Our result is based
on the so-called compatibility constant defined as follows.

µc0(β) = inf
{
µ > 0 : ‖Pβu‖ ≤ µ ‖Xu‖n , ∀u :

∥∥P⊥β u∥∥ ≤ c0 ‖Pβu‖}
where P is an operator verifying a decomposability condition; as an example we use orthogonal
projector for LASSO application. Without loss of generality, we illustrate our result on regression
model (1) where the noise vector ξ follows a heavy tailed distribution expressed as the product

measure of dµα(t) =
α(1 + |t|)−1−α

2
dt for α > 2 which satisfies a weak spectral gap inequality

with γ(s) = cα(s/n)−2/α, s ∈ (0, 1/4) [2, 7, Example 8]. Furthermore, in the LASSO setting,
we establish an explicit lower bound for the compatibility constant depending on the sparsity s

and κ the maximal correlation between columns of X; namely µc0(β) ≤ s

1− κs
. We then provide

the explicit oracle inequality;
∥∥∥Xβ̂ − f

∥∥∥2

n
− ‖Xβ − f‖2n ≤

32
(
(2pcαn)1/α +

√
nā
)2
s

n(1− 2
√
κs)2

. The main

difference from works known in litterature is that our oracle inequalities are obtained under non-
gaussian distribution satisfying the weak Poincaré inequality, and our compatibility bounds are
easier ton handle than in [4, 3, 1] . Indeed, in contrast to classical results, we provide an explicit
upper bound of the compatibility constant in the oracle inequality for Lasso and group Lasso
estimator.

2 Statement of the problem and preliminary results

Let H be a Hilbert space with inner product 〈·, ·〉 and its corresponding norm ‖·‖H. Let B a
closed convex subset of H. We will be interested in a regression problem as in (1) where f ∈ Rn
is an unknown deterministic mean and ξ ∈ Rn is a random noise vector. Let P be the probability
distribution of ξ satisfying a weak spectral gap inequality with function γ defined in (2). We focus

on estimates of f having the form Xβ̂ where β̂ ∈ B is data determined like in (3). The matrix X
represents a linear operator from H → Rn. We aim to investigate the prediction performances of
the estimator β̂ defined as the solution of the problem minimization :

β̂ ∈ arg min
β∈B

‖y− Xβ‖2n + F (β) (4)

where F : H → R+ is a convex penalty function.

2.1 Preliminary results

We expose here, two propositions giving the key ingredients for the proof of our main result. The
first proposition, based on convexity argument and some simple algebra, provide a deterministic
bound of the prediction error in terms of ‖Xβ − f‖2n up to an additional random term.

Proposition 2.1. If β̂ is a solution of the minimization problem (4), Then β̂ satisfies, for all β
∈ B and for all f ∈ Rn,∥∥∥Xβ̂ − f

∥∥∥2

n
− ‖Xβ − f‖2n ≤

2

n
ξTX(β̂ − β) + F (β)− F (β̂)−

∥∥∥X(β̂ − β)
∥∥∥2

n
(5)

Proof. The proof mainly relies on the sub-differentials and optimality condition of convex functions
and some simple algebra. For details and a complete proof see for instance [1, Proposition 3.2].
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The second proposition provides an upper bound of the random quantity 1
nξ

TX(β̂ − β) that
holds with large enough probability.

Proposition 2.2. Let P satisfies a weak spectral gap inequality (2) with a function γ. Let h : H →
[0,+∞[ be a positive homogeneous mapping and let τ > 0. Denote the event :

Ω =

{
sup

u∈H:h(u)≤1

1

n
ξTXu ≤ τ

}
, (6)

and assume it to satisfy P(Ω) ≥ 1
2 . Then, for k ≥ 1, c ≥ 0 and s ∈ (0, 1/4), we have

P
(
∀u ∈ H :

1

n
ξTXu ≤ (τ + k) max (h(u), c ‖Xu‖n)

)
≥ 1− 3Θ(kc

√
n) (7)

where Θ(x) = inf

{
s ∈ (0, 1/4); exp

(
−x

4
√
γ(s)

)
≤ s
}

vanishes when x goes to infinity.

Proof. Define the function f : Rn → R and the subset T ⊂ H as follows :

f(ξ) = sup
u∈T

1

n
ξTXu and T = {u ∈ H : max (h(u), c ‖Xu‖n) ≤ 1} .

It is easy to verify that, for every ξ1, ξ2 ∈ Rn, we have,

|f(ξ1)− f(ξ2)| ≤ 1

c
√
n
‖ξ1 − ξ2‖2

By the concentration inequality [2, theorem 8] and the fact that f is a 1
c
√
n

-Lipschitz function, we

have with probability at least 1− 3Θ(kc
√
n),

sup
u∈T

1

n
ξTXu ≤Med

(
sup
u∈T

1

n
ξTXu

)
+ k

≤Med

(
sup

u∈H:h(u)≤1

1

n
ξTXu

)
+ k,

where Θ(u) = inf

{
s ∈ (0, 1/4); exp

(
−u

4
√
γ(s)

)
≤ s
}

tends to 0 when u tends to infinity. The

notation Med(Z) stands for the median of the random variable Z.

Assume that P

(
sup

u∈H:h(u)≤1

1
nξ

TXu ≤ τ

)
≥ 1/2, then the median of sup

u∈H:h(u)≤1

1
nξ

TXu can be

bounded from above by τ . This implies that, with probability at least 1− 3Θ(kc
√
n),

∀u ∈ H, 1

n
ξTXu ≤ (τ + k) max (h(u), c ‖Xu‖n) ,

this achieves the proof.

2.2 Main assumptions of decomposability and compatibility

Consider the linear operator X : H → Rn defined by the relation:

Xβ = (〈β,X1〉 , · · · , 〈β,Xn〉)T , ∀β ∈ H, (8)

where X1, · · · , Xn are deterministic elements of H. The convex penalty F : H → R is taken
proportional, with a tunning parameter λ > 0, to a regularization norm :

F (β) = λ ‖β‖ .

The estimator β̂ introduced in (4) becomes then :

β̂ ∈ arg min
β∈B

‖Xβ − y‖2n + λ ‖β‖ (9)

Before establishing our main results, we recall two others important ingredients under which oracle
inequalities are obtained namely the decomposability assumptions of the regularization norm and
the compatibility factor.
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• Decomposability assumption and consequences: Let A be a subset of H for which we
associate a linear operator PA : H → H and P⊥A = I − PA where I is the identity operator.

Assumption 2.1. We suppose that there exists a subset A of B such that:

PAA = A, ∀A ∈ A and ‖A‖+
∥∥P⊥AB∥∥ = ‖A+ PA(A−B)‖ , ∀A ∈ A, ∀B ∈ H

The last assumption has been also discussed in [1, Assumption 4.2]. One can see easily that,
for the `1 regularization norm, the decomposability assumption is satisfied when the linear
operator PA is an orthogonal projector. As a consequence of the decomposability assumption
2.1, we have the following triangular property :

Corollary 2.1. The above assumption 2.1 implies the following triangular property:

PAA = A, ∀A ∈ A and ‖A‖ − ‖B‖ ≤ ‖PA(A−B)‖ −
∥∥P⊥AB∥∥ (10)

This corollary has been discussed also in [1, Assumption 4.1]. In the case of `1 regularization
norm, the decomposability assumption and triangular property are defined differently in [8,
paragraph 2.5].

• Compatibility factor assumption

Another main ingredient for the proof of our main result is the compatibility factor [1]. For
any A ∈ H and for any constant c0 ≥ 0, define the following cone in B as follows:

CA,c0 =
{
B ∈ B :

∥∥P⊥AB∥∥ ≤ c0 ‖PAB‖} .
The compatibility factor associated to the cone CA,c0 is the quantity :

µc0(A) = inf {µ > 0 : ‖PAB‖ ≤ µ ‖XB‖n , ∀B ∈ CA,c0} . (11)

On of our main contribution is to provide upper bounds on this compatibility factor, with
easy to verify assumptions.

3 Main results and Oracle inequalities

The next theorem states our main result in the case of distributions verifying the spectral gap
inequality.

Theorem 3.1. Let P satisfies a weak spectral gap inequality with function γ. Assume that assump-
tion 2.1 holds. Let τ > 0 and suppose that Ω defined in (6) satisfies P(Ω) ≥ 1

2 . Let k ≥ 1, c ≥ 0

and λ ≥ 2(τ + k). Then, the estimator β̂ (9) satisfy with probability at least 1− 3Θ(kc
√
n),∥∥∥Xβ̂ − f∥∥∥2

n
≤ inf
β∈A

[
‖Xβ − f‖2n +

(λ+ 2 (τ + k))2

4
µ2
c0(β)

]
+

(λ+ 2(τ + k))2c2

4
(12)

where Θ(u) = inf

{
s ∈ (0, 1/4); exp

(
−u

4
√
γ(s)

)
≤ s
}

goes to 0 when u goes to infinity.

Proof. Let us consider the positive simple function h(u) = ‖u‖. Combining the two inequalities
from proposition 2.1 and proposition 2.2, we get with probability at least 1− 3Θ(kc

√
n)∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ 2 (τ + k) max (‖u‖ , c ‖Xu‖n) + λ ‖β‖ − λ

∥∥∥β̂∥∥∥− ‖Xu‖2n ,
where u = β̂ − β. For the rest of the proof we distinguish tree cases :

Case 1. β ∈ A is such that ‖u‖ < c ‖Xu‖n. This will imply that,∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ 2(τ + k)c ‖Xu‖n + λ ‖β‖ − λ

∥∥∥β̂∥∥∥− ‖Xu‖2n
using the triangle inequality λ ‖β‖ − λ

∥∥∥β̂∥∥∥ ≤ λ ∥∥∥β̂ − β∥∥∥ and ‖u‖ < c ‖Xu‖n imply,
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∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ 2(τ + k)c ‖Xu‖n + λc ‖Xu‖n − ‖Xu‖

2
n

≤ (2(τ + k) + λ)c ‖Xu‖n − ‖Xu‖
2
n

using inequality 2ab ≤ a2 + b2 we obtain,∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤

(2(τ + k) + λ)2c2

4
+ ‖Xu‖2n − ‖Xu‖

2
n

≤ (2(τ + k) + λ)2c2

4
. (13)

Thus inequality (12) is satisfied.

Case 2. β ∈ A is such that ‖u‖ > c ‖Xu‖n. Then,∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ 2(τ + k) ‖u‖+ λ ‖β‖ − λ

∥∥∥β̂∥∥∥− ‖Xu‖2n (14)

Assumption 2.1 with A = β and B = β̂ allow to write,

‖β‖ −
∥∥∥β̂∥∥∥ ≤ ∥∥∥Pβ(β − β̂)

∥∥∥− ∥∥∥P⊥β β̂∥∥∥ ,
and the triangle inequality implies,∥∥∥β̂ − β∥∥∥ =

∥∥∥Pβ(β̂ − β) + P⊥β (β̂ − β)
∥∥∥

≤
∥∥∥Pβ(β̂ − β)

∥∥∥+
∥∥∥P⊥β (β̂ − β)

∥∥∥ .
Combining the last two inequalities and (14), we obtain∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ (λ+ 2(τ + k)) ‖Pβu‖ − (λ− 2(τ + k))

∥∥P⊥β u∥∥− ‖Xu‖2n . (15)

Case 2.1. β ∈ A is such that ‖u‖ > c ‖Xu‖n and (λ+ 2(τ + k)) ‖Pβu‖ < (λ− 2(τ + k))
∥∥∥P⊥β u∥∥∥.

In view of inequality (15) we get, ∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ 0

and ∥∥∥Xβ̂ − f∥∥∥2

n
≤ ‖Xβ − f‖2n (16)

Which implies that inequality (12) holds

Case 2.2. β ∈ A is such that ‖u‖ > c ‖Xu‖n and (λ− 2(τ + k))
∥∥∥P⊥β u∥∥∥ < (λ+ 2(τ + k)) ‖Pβu‖.

Then u belongs to the cone Cβ,c0 =
{
u ∈ H :

∥∥∥P⊥β u∥∥∥ ≤ c0 ‖Pβu‖} where c0 = λ+2(τ+k)
λ−2(τ+k) . We

use the compatibility factor associated to Cβ,c0 ,

µc0(β) = inf
{
µ > 0 : ‖Pβu‖ ≤ µ ‖Xu‖n , ∀u ∈ H : 0 ≤ (λ+ 2 (τ + k)) ‖Pβu‖ − (λ− 2 (τ + k))

∥∥P⊥β u∥∥} ,
so that ‖Pβu‖ ≤ µc0(β) ‖Xu‖n. This and inequality (15) yield,∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤ (λ+ 2 (τ + k)) ‖Pβu‖ − ‖Xu‖2n

≤ (λ+ 2 (τ + k))µc0(β) ‖Xu‖n − ‖Xu‖
2
n .

Using the obvious inequality 2ab < a2 + b2∥∥∥Xβ̂ − f∥∥∥2

n
− ‖Xβ − f‖2n ≤

(λ+ 2 (τ + k))2

4
µ2
c0(β) + ‖Xu‖2n − ‖Xu‖

2
n

≤ (λ+ 2 (τ + k))2

4
µ2
c0(β). (17)

This achieves the proof of inequality (12).
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In the following we describe direct applications of proposition 2.2 and theorem (3.1), by in-
vestigating two examples of distributions verifying the spectral gap inequality (2). The first one
is issued from the heavy tailed family obtained from the product of the probability distribution

dµα(t) = α(1+|t|)−1−α

2 dt. The second example is from the sub-exponential family as a product of

measures of the form, dνr = dre
−|t|rdt, ∀ r ∈ (0, 1).

• A heavy tailed example: We consider on Rn, the distribution P issued from the product
probability measure of

dµα(t) =
α(1 + |t|)−1−α

2
dt for α > 2. (18)

This measure satisfies a weak spectral gap inequality with,

γ(s) = cα

( s
n

)−2/α

, for s ∈ (0,
1

4
)

For more details see discussions in [2, example 8]. Let h : H → [0,+∞[ be a positive
homogeneous mapping and let τ > 0. Assume that the event Ω defined in (6) satisfies

P(Ω) ≥ 1
2 . Then, there exists constants t0(α) > e and C(α) such that tc

√
n

n
1
α
≥ t0(α) and by

applying, proposition 2.2 for c ≥ 0, we have:

P
(
∀u ∈ H :

1

n
ξTXu ≤ (τ + t) max (h(u), c ‖Xu‖n)

)
≥ 1− 1

2
C(α)

 log( tc
√
n

n
1
α

)

tc
√
n

n
1
α

α

.

We deduce then, by appying theorem 3.1 that the estimator β̂ (9) satisfy with probability at

least 1− 1
2C(α)

(
log( tc

√
n

n
1
α

)

tc
√
n

n
1
α

)α
∥∥∥Xβ̂ − f∥∥∥2

n
≤ inf
β∈A

[
‖Xβ − f‖2n +

(λ+ 2 (τ + t))2

4
µ2
c0(β)

]
+

(λ+ 2(τ + t))2c2

4
(19)

• A sub-exponential example: In this case, we consider P as the product of the probability
measure,

dνr = dre
−|t|rdt for r ∈ (0, 1). (20)

This measure satisfies also a weak spectral gap inequality with:

γ(s) = kr

(
log(

2n

s
)

)(2/r)−s

, s ∈ (0, 1/4)

For more details see for instance [2, example 9]. Let h : H → [0,+∞[ be a positive homoge-
neous mapping and let τ > 0. We suppose that Ω satisfies P(Ω) ≥ 1

2 . Then, for k ≥ 0, c ≥ 0
and r ∈ (0, 1), we have

P
(
∀u ∈ H :

1

n
ξTXu ≤ (τ + k) max (h(u), c ‖Xu‖n)

)
≥ 1−5 exp

(
−crkc

√
n

max ((kc
√
n)r, log n)

1/r−1

)
where cr is a constant depending only on r. In particular, for a fixed ε, a large n, and k
verifying k ≥ cr(log 10

ε )(log n)
1
r−1, we have:

P
(
∀u ∈ H :

1

n
ξTXu ≤

(
τ +

k

c
√
n

)
max (h(u), c ‖Xu‖n)

)
≥ 1− ε

2

In this example, the estimator β̂ given by the minimisation problem (9) satisfy with proba-

bility at least 1− 5 exp

(
−crkc

√
n

max((kc
√
n)r,logn)

1/r−1

)
,

∥∥∥Xβ̂ − f∥∥∥2

n
≤ inf
β∈A

[
‖Xβ − f‖2n +

(λ+ 2 (τ + k))2

4
µ2
c0(β)

]
+

(λ+ 2(τ + k))2c2

4
. (21)
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In particular, for λ ≥ 2(τ + k
c
√
n

), then with probability at least 1− ε
2 ,

∥∥∥Xβ̂ − f∥∥∥2

n
≤ inf
β∈A

‖Xβ − f‖2n +
(λ+ 2

(
τ + k

c
√
n

)
)2

4
µ2
c0(β)

+
(λ+ 2(τ + k

c
√
n

))2c2

4

4 Application to the classical LASSO and group LASSO

We use the same notations as in [1]; we denote |.|q for the `q norm of a finite dimensional vector,
1 ≤ q ≤ ∞. The support of β will be denoted supp(β) = {j : βj 6= 0}. If (ej)j=1,··· ,p is the
canonical basis of Rp, then βS will denote the orhtogonal projection of β onto the linear span of
{ej : j ∈ S} for S ⊂ {1, · · · , p}.

4.1 Application to LASSO

In this case H = B = Rp equipped with the Euclidean norm ‖.‖H = |.|2 . The penalty function is

given by ‖.‖ the `1 norm. Then the estimator β̂ defined in (9) is the LASSO estimator

β̂ ∈ arg min
β∈Rp

‖Xβ − y‖2n + λ |β|1 (22)

where λ > 0 is a tuning parameter. For β ∈ Rp, we consider the decomposability conditions with
Pβ , the orthogonal projection operator onto the linear span of {ej : j ∈ supp(β)}. Following a
similar argument as in [1] or [3, 8], one can show, using the duality between `1 and `∞ norms, that
for LASSO setting the set Ω defined in (6), becomes:

Ω =

{
sup

u∈Rp:|u|1≤1

1

n
ξTXu ≤ τ

}
=

{
sup

u∈Rp:|u|1≤1

1

n
(XT ξ)Tu ≤ τ

}
=

{
1

n

∣∣XT ξ∣∣∞ ≤ τ}
In the following we recall that, in the LASSO setting, the assumption 2.1 holds for the orthog-

onal projector operator.

4.2 Upper bound of the compatibility factor

In this section we state a close form for the upper bound of the compatibility factor µc0(β). For
this purpose, we need the following results:

Lemma 4.1. In the LASSO setting we have the following:

1. For the orthogonal projector operator Pβ, the assumption‘2.1 is satisfied.

2. The compatibility factor can be expressed as follows:

µc0(β) =
λ− a
λ+ a

sup
u∈Rp:|P⊥β u|1≤c0|Pβu|1

c0 |Pβu|1 −
∣∣∣P⊥β u∣∣∣

1

‖Xu‖n
(23)

where a = 2(τ + t) and c0 = λ+a
λ−a .

3. We assume the empirical norm of the columns Xej are normalized(ie. ‖Xej‖n = 1,∀ 1 ≤
j ≤ p), and we write κ = sup

1≤i 6=j≤p

|〈Xei,Xej〉|
n , the maximal correlation between columns in

X ∈ Rn×p. For all u ∈ Rp, we have:

‖Xu‖2n ≥ |u|
2
2 − κ |u|

2
1 .

Proof. We use a similar argument as in [3, 1] to verify the decomposability assumptions 2.1.

1. For β ∈ Rp, by definition Pβ = Proj{ej:j∈supp(β)} where supp(β) = {j : βj 6= 0}, we have

Pββ =

p∑
j=1

βjProj{ej:j∈supp(β)}ej =

p∑
j=1

βjej1{j∈supp(β)} =
∑

j∈supp(β)

βjej = β

7



consider β́ =
∑p
j=1 β́jej . We have,

|β|1 −
∣∣∣β́∣∣∣

1
=

∣∣∣∣∣∣
∑

j∈supp(β)

βjej

∣∣∣∣∣∣
1

−

∣∣∣∣∣∣
p∑
j=1

β́jej

∣∣∣∣∣∣
1

=
∑

j∈supp(β)

|βj | −
∑

j∈supp(β)

∣∣∣β́j∣∣∣− ∑
j∈suppc(β)

∣∣∣β́j∣∣∣
using the triangular inequality

∑
j∈supp(β) |βj | −

∑
j∈supp(β)

∣∣∣β́j∣∣∣ ≤∑j∈supp(β)

∣∣∣(β − β́)j

∣∣∣, we

have
|β|1 −

∣∣∣β́∣∣∣
1
≤
∣∣∣Pβ(β − β́)

∣∣∣
1
−
∣∣∣P⊥β β́∣∣∣

1

2. Taking c0 = λ+a
λ−a and we recal that:

µc0(β) = inf
{
µ > 0 : |Pβu|1 ≤ µ ‖Xu‖n , ∀u ∈ Rp :

∣∣P⊥β u∣∣1 ≤ c0 |Pβu|1}

Using the fact that
1

c0

∣∣P⊥β u∣∣1 ≤ |Pβu|1 ≤ µ ‖Xu‖n ⇒
c0 |Pβu|1 −

∣∣∣P⊥β u∣∣∣
1

c0 ‖Xu‖n
≤ µ. We can

write, µc0(β) = inf

µ > 0 :
1

c0
×
c0 |Pβu|1 −

∣∣∣P⊥β u∣∣∣
1

‖Xu‖n
≤ µ, ∀u ∈ Rp :

∣∣P⊥β u∣∣1 ≤ c0 |Pβu|1
.

which implies equality (23).

3. A simple algebric shows the result as follows:

‖Xu‖2n =
1

n
〈u,XTXu〉

=
1

n

∑
1≤i,j≤p

〈Xei,Xej〉uiuj

=

p∑
i=1

‖Xei‖2nu2
i +

∑
1≤i 6=j≤p

〈Xei,Xej〉
n

uiuj

≥ |u|22 − κ
p∑
i=1

∑
j 6=i

|uj ||ui|

≥ |u|22 − κ |u|
2
1 .

Let us denote ζ =
|P⊥β u|1
|Pβu|1 . Using the expression (23) of the compatibility factor, inequaltiy of

lemma 4.1, homogeneity of `1 norm and equality |u|1 = |Pβu|1 +
∣∣∣P⊥β u∣∣∣

1
= (1 + ζ) |Pβu|1, we get

the following upper bound for the compatibility factor:

µc0(β)2 ≤ (λ− a)2

(λ+ a)2
sup

0≤ζ≤c0
sup

|P⊥β u|1=ζ|Pβu|1
|u|2=1

(c0 − ζ)2

1− κ(1 + ζ)2 |Pβu|21
|Pβu|21 (24)

In the following proposition we give, for a fixed ζ, the value of the supremum of the right hand
side of inequality (24).

Proposition 4.1. Fix ζ ∈ (0, 1). For every β ∈ Rp such that |supp(β)| = |{j : βj 6= 0}| = s for
some integer 1 ≤ s ≤ p, we have:

sup
|P⊥β u|1=ζ|Pβu|1

|u|2=1

|Pβu|1 =

√
s(p− s)

p− s+ ζ2s
.

8



Proof. The proof relies on constrained optimization and Lagrange multiplier methods. Assume
uj > 0 and that the support of β constitutes the first s coordinates. The lagrangien of u ∈
Rp, ν1 ∈ R, ν2 ∈ R :

L(u, ν1, ν2) =

s∑
j=1

uj − ν1

 p∑
j=1

u2
j − 1

− ν2

 p∑
j=s+1

uj − ζ
s∑
j=1

uj


Differentiating L(u, ν1, ν2) with respect to uj , 1 ≤ j ≤ p yields

∂jL = 1− 2ν1uj − ν2

(
1{j>s} − ζ1{j≤s}

)
= 0

⇐⇒ 2ν1uj = 1− ν2

(
1{j>s} − ζ1{j≤s}

)
(25)

Let s̃ = # {j ≤ s | uj 6= 0} and p̃− s = # {s+ 1 ≤ j ≤ p : uj 6= 0}. Then the constraints give
the following equations:{

|u|22 = 1∣∣∣P⊥β u∣∣∣
1
= ζ |Pβu|1

⇐⇒
{

(2ν1)2 = s̃(ν2ζ + 1)2 + p̃− s(ν2 − 1)2

p̃− s(ν2 − 1) = −ζs̃(ν2ζ + 1)

Combining the two equalities (25) and (2ν1)2 = s̃(ν2ζ + 1)2 + p̃− s(ν2 − 1)2, we get

u2
j =

(ν2ζ + 1)2

(2ν1)2
= (s̃+

ζ2s̃2

p̃− s
)−1, j ≤ s,

we then deduce the objective function |Pβu|1

|Pβu|1 =
s̃√

s̃+ ζ2s̃2

p̃−s

=

√
s̃p̃− s

p̃− s+ ζ2s̃
.

The map, (s̃, p̃− s) 7−→ s̃p̃−s
p̃−s+ζ2s̃

= ( ζ2

p̃−s
+ 1

s̃ )−1 is maximal for s̃ = s and p̃− s = p− s.

We give an upper bound of µc0(β) for all s-sparse vector β ∈ Rp under condition on the matrix
X from the following proposition.

Proposition 4.2. For β ∈ Rp s-sparse(ie.|supp(β)| ≤ s) and κ the maximal correlation between

two columns of matrix X, under the condition κs(1 + c0)2 ≤ 1 +
c20s
p−s , we have:

µc0(β)2 ≤ s

1− κs
(26)

Proof. By proposition 4.1 and inequality (24), we get the following upper bound of the compatibility
factor,

µc0(β)2 ≤ (λ− a)2

(λ+ a)2
sup

0≤ζ≤c0

(c0 − ζ)2s(p− s)
(p− s) + ζ2s− κ(1 + ζ)2s(p− s)

.

The upper bound of the function ζ 7−→ (c0−ζ)2s(p−s)
(p−s)+ζ2s−κ(1+ζ)2s(p−s) is finite if the denominator is positif

when ζ = c0 namely under the condition κs(1 + c0)2 ≤ 1 +
c20s
p−s .

4.3 Appliaction to special distributions

In this section we establish explicit oracle inequalities for the tow examples of heavy tailed and
sub-exponential distributions discussed bellow. In order to show the main results we need to find,
for each distribution family, τ such that P(Ω) > 1/2.

Lemma 4.2. Let X be a deterministic matrix ∈ Rn×p, the we have:

1. Suppose that the probability distribution P is issued from the product of(18). In this case if

τ ≥
(2pcαn)1/α ‖Xej‖n +

√
nā

√
n

where ā = t0(α) +

∫ ∞
t0(α)

C(α)

(
log(t)

t

)α
dt. Then P(Ω) ≥ 1/2.

9



2. Suppose that the probability distribution P is issued from the product of(20), then if

τ ≥ ln(20p)

cr
max

(
ln(20p)

cr
, log(n)

)1/r−1 ‖Xej‖n√
n

+ b̄

where b̄ =

∫ ∞
0

10 exp

(
−crk

max (kr, log n)
1/r−1

)
dt and cr is a quantity depending only on r.

then P(Ω) ≥ 1/2

Proof. Define f : Rn → R by :

f(z) =
1

n
(Xej)T z

Then, for every z1, z2 ∈ Rn, |f(z1)− f(z2)| ≤ ‖Xej‖n√
n
|z1 − z2|2. Therefore, f is a Lipschitz

function with Lipschitz constant
‖Xej‖n√

n
.

1. By the concentration inequality [2] applied to (18), there exists constants t0(α) > e and C(α)
such that for all t > t0(α),

P

(∣∣∣∣ 1n (Xej)T ξ −Med[
1

n
(Xej)T ξ]

∣∣∣∣ ≥ tn
1
α ‖Xej‖n√

n

)
≤ ϕ(t)

where ϕ(t) = C(α)
(

log(t)
t

)α
. Replacing median by mean, we have

P

(∣∣∣∣ 1n (Xej)T ξ − E
(

1

n
(Xej)T ξ

)∣∣∣∣ ≥ tn
1
α ‖Xej‖n√

n
+ ā

)
≤ ϕ(t)

where ā = t0(α)+

∫ ∞
t0(α)

C(α)

(
log(t)

t

)α
dt. We know that E

(
(Xej)T ξ

)
=
∑n
i=1 xijE(ξi) = 0.

We deduce then that, for all t > t0(α),

P

(∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≥ tn

1
α ‖Xej‖n√

n
+ ā

)
≤ C(α)

(
log t

t

)α
It follows that,

P

(
max

j=1,...,p

∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≥ tn

1
α ‖Xej‖n√

n
+ ā

)
≤

p∑
j=1

P

(∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≥ tn

1
α ‖Xej‖n√

n
+ ā

)

≤ pC(α)

(
log t

t

)α
and

P

(
max

j=1,...,p

∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≤ tn

1
α ‖Xej‖n√

n
+ ā

)
≥ 1− pC(α)

(
log t

t

)α
≥ 1− pcα

tα

This probability is greater than 1/2 if t ≥ (2pcα)1/α and then,

τ ≥
(2pcαn)1/α ‖Xej‖n +

√
nā

√
n

2. The concentration inequality [2, example 9] applied to (20), leads to,

P
(∣∣∣∣ 1n (Xej)T ξ −Med[

1

n
(Xej)T ξ]

∣∣∣∣ ≥ k ‖Xej‖n√
n

)
≤ 10 exp

(
−crk

max (kr, log n)
1/r−1

)

10



Replacing median by mean, we have

P
(∣∣∣∣ 1n (Xej)T ξ − E

(
1

n
(Xej)T ξ

)∣∣∣∣ ≥ k ‖Xej‖n√
n

+ b̄

)
≤ 10 exp

(
−crk

max (kr, log n)
1/r−1

)

where b̄ =

∫ ∞
0

10 exp

(
−crk

max (kr, log n)
1/r−1

)
dt. Since E

(
(Xej)T ξ

)
= 0, we have,

P
(∣∣∣∣ 1n (Xej)T ξ

∣∣∣∣ ≥ k ‖Xej‖n√
n

+ b̄

)
≤ 10 exp

(
−crk

max (kr, log n)
1/r−1

)

We deduce that

P
(

max
j=1,...,p

∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≥ k ‖Xej‖n√

n
+ b̄

)
≤

p∑
j=1

P
(∣∣∣∣ 1n (Xej)T ξ

∣∣∣∣ ≥ k ‖Xej‖n√
n

+ b̄

)

≤ 10p exp

(
−crk

max (kr, log n)
1/r−1

)

and

P
(

max
1≤j≤p

∣∣∣∣ 1n (Xej)T ξ
∣∣∣∣ ≤ k ‖Xej‖n√

n
+ b̄

)
≥ 1− 10p exp

(
−crk

max (kr, log n)
1/r−1

)

if kr ≥ log(n), this probability is greater than 1/2. If k ≥
(

ln(20p)
cr

)1/r

, this implies that

τ ≥
(

ln(20p)
cr

)1/r ‖Xej‖n√
n

+ b̄. Otherwise if kr ≤ log(n), this probability is greater than 1/2 if

k ≥ (log n)
1/r−1 ln(20p)

cr
, then we have τ ≥ (log n)

1/r−1 ln(20p)
cr

‖Xej‖n√
n

+ b̄.

Combining equation (19) of theorem 3.1, proposition 4.2 and lemma 4.2, we have an oracle
inequality for the Lasso estimator with tuning parameter that can be explicitly lower bounded in
the case of the heavy tailed and the sub-exponential examples discussed above.

Theorem 4.1. Assume that ξ  P where P is the n-fold product of dµα(t) =
α(1 + |t|)−1−α

2
dt and

that X is deterministic and all the diagonal elements of the matrix 1
nX

TX are equal to 1. Let κ the
maximal correlation between two columns of matrix X. Let p ≥ 2, α > 2, cα > 0 and s ∈ {1, . . . , p}.
Consider the Lasso estimator β̂ defined by (22) with tunning parameter

λ ≥
4
(
(2pcαn)1/α +

√
nā
)

(1− 2
√
κs)
√
n

where ā = t0(α) +

∫ ∞
t0(α)

C(α)

(
log(t)

t

)α
dt.

Then, with probability at least 1− cα
2(((2pcαn)1/α+

√
nā)
√
s)
α

n

, we have

∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

32
(
(2pcαn)1/α +

√
nā
)2
s

n(1− 2
√
κs)2

Proof. Let the matrix X ∈ Rn×p be deterministic such that ‖Xej‖n = 1 and c2 =
s

1− κs
. Let λ

such that κs(1 + c0)2 ≤ 1 +
c20s

p− s
where c0 =

λ+ a

λ− a
, we get λ =

a

1− 2
√
κs

where a = 2(τ + t).
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With τ = t =
(2pcαn)1/α +

√
nā√

n
, we have a =

4
(
(2pcαn)1/α +

√
nā
)

√
n

. By lemma 4.2 P(Ω) ≥ 1/2.

Using theorem 2 we obtain :∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

2

4

(
4t+

4t

1− 2
√
κs

)2
s

1− κs

≤ 2

4
× 64t2 (1−

√
κs)

2

(1− 2
√
κs)

2 × s

1− κs

≤ 32t2s

(1− 2
√
κs)

2

We have a similar result for the sub-exponential example that we state in the following theorem.

Theorem 4.2. Assume that ξ  P where P is the n-fold product of dνr = dre
−|t|rdt for r ∈ (0, 1)

and that X is deterministic and all the diagonal elements of the matrix 1
nX

TX are equal to 1. Let κ
the maximal correlation between two columns of matrix X. Let p ≥ 2 and s ∈ {1, . . . , p}. Consider

the Lasso estimator β̂ defined by (22) with tunning parameter

λ ≥
4

(
ln(20p) max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)
(1− 2

√
κs)
√
ncr

Then, with probability at least 1−5 exp


−
√
s

(
ln(20p) max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)
max

((
ln(20p) max( ln(20p)

cr
,log(n))

1/r−1
+
√
ncr b̄

cr
√

(1−κs)

√
s

)r
, log(n)

)1/r−1

,

we have

∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

32

(
ln(20p) max

(
ln(20p)
cr

, log(n)
)1/r−1

+ cr
√
nb̄

)2

s

nc2r(1− 2
√
κs)2

where b̄ =

∫ ∞
0

10 exp

(
−crk

max (kr, log n)
1/r−1

)
dt and cr is a quantity depending only on r.

Proof. We use the same technique as for theorem 4.1. Let λ such that κs(1 + c0)2 = 1 ≤ 1 +
c20s

p− s
where c0 =

λ+ a

λ− a
, we get λ =

a

1− 2
√
κs

where a = 2(τ + t).

With τ = k =

(
ln(20p) max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)
√
ncr

, we have

a =

4

(
ln(20p) max

(
ln(20p)
cr

, log(n)
)1/r−1

+
√
ncr b̄

)
√
ncr

and by lemma 4.2 we get P(Ω) ≥ 1/2. Using

theorem 3.1 we obtain :∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

2

4

(
4k +

4k

1− 2
√
κs

)2
s

1− κs

≤ 2

4
× 64k2 (1−

√
κs)

2

(1− 2
√
κs)

2 × s

1− κs

≤ 32k2s

(1− 2
√
κs)

2 .
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4.4 Application to Group LASSO in case of the heavy tailed example

In order to shorten the length of the paper, we will discuss, in this sub-section, only the case
where ξ is having a heavy tailed distribution issued from (18). A similar result can be obtained
for the other sub-exponential example. We begin by introducing the notations usually adopted
in literature for the group LASSO as follows : Let G1, · · · , GM be a partition of {1, · · · , p}. We
denote βGk = (βj)j∈Gk and, for every 1 ≤ p <∞, we define the mixed (2, q)-norm and (2,∞)-norm
of β as follows :  |β|2,q =

(∑M
k=1

(∑
j∈Gk β

2
j

)q/2)1/q

|β|2,∞= max
1≤k≤M

|βGk |2

For any β ∈ Rp, we define the regularization norm ‖.‖ as follows :

‖β‖ = |β|2,1 =

M∑
k=1

|βGk |2 (27)

The Group LASSO estimator is a solution of the convex minimization problem

β̂ ∈ arg min
β∈Rp

‖Xβ − y‖2n + λ

M∑
k=1

|βGk |2 (28)

Without loss of generality, we assume, in the following, that the groupsGk have the same cardinality
|Gk| = p/M, k = 1, · · · ,M . Since we consider mainly sparse vectors, it is convenient to define a
generalisation of the support conecept. To any β ∈ Rp, let :

K (β) = {k ∈ {1, · · · ,M} : βGk 6= 0} .

It plays the role of support by block of vector β. As for the LASSO application, we begin by
verifying the decomposability assumptions and we bound the compatibility factor for the heavy
tailed example introduced above.

Lemma 4.3. Consider X is a matrix ∈ Rn×p and β ∈ Rp,

1. the decomposability assumptions‘2.1 are satisfied when Pβ is the orthogonal projection oper-

ator onto the linear span of
{
ej : j ∈

⋃
k∈K (β)Gk

}
.

2. The event Ω defined in (6) takes the following form :

Ω =

{
max

1≤k≤M

1

n

∣∣XTGkξ∣∣2 ≤ τ}
where XGk is the n× |Gk| sub-matrix of X formed by the columns indexed by Gk.

Proof. 1. For β ∈ Rp and Pβ = Proj{ej :j∈⋃k∈K (β)Gk}, We have

Pββ =

p∑
j=1

βjProj{ej :j∈⋃k∈K (β)Gk}ej

=

p∑
j=1

βjej1{j∈⋃k∈K (β)Gk} =
∑

j∈
⋃
k∈K (β)Gk

βjej = β.

Consider β́ =
∑p
j=1 β́jej . We have,

|β|2,1 −
∣∣∣β́∣∣∣

2,1
=

∑
k∈K (β)

|βGk |2 −
M∑
k=1

∣∣∣ ´βGk

∣∣∣
2

=
∑

k∈K (β)

|βGk |2 −
∑

k∈K (β)

∣∣∣ ´βGk

∣∣∣
2
−

∑
k∈K c(β)

∣∣∣ ´βGk

∣∣∣
2
.
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Applying the triangular inequality
∑
k∈K (β) |βGk |2−

∑
k∈K (β)

∣∣∣ ´βGk

∣∣∣
2
≤
∑
k∈K (β)

∣∣∣(β − β́)Gk

∣∣∣
2

=∣∣∣Pβ(β − β́)
∣∣∣
2,1

, we have

|β|2,1 −
∣∣∣β́∣∣∣

2,1
≤
∣∣∣Pβ(β − β́)

∣∣∣
2,1
−
∣∣∣P⊥β β́∣∣∣

2,1
.

2. The event Ω =

{
sup

v∈Rp:|v|2,1≤1

1
nε

TXv ≤ τ

}
become

Ω =

{
sup

v∈Rp:|v|2,1≤1

1

n

M∑
k=1

εTXGkvGk ≤ τ

}

=

 sup
v∈Rp:|v|2,1≤1

1

n

(
(XG1

. . .XGM )
T
ξ
)T  vG1

...
vGM

 ≤ τ
 .

From the duality between `1 and l∞ norms and the mixed (2,∞)-norm, we have,

sup
v∈Rp:|v|2,1≤1

1

n

(
(XG1

. . .XGM )
T
ξ
)T  vG1

...
vGM

 =

∣∣∣∣ 1n (XG1
. . .XGM )

T
ξ

∣∣∣∣
2,∞

= max
1≤k≤M

1

n

∣∣XTGkξ∣∣2 .

We consider now to control the compatibility µc0(β) for any group sparse vector β ∈ Rp which
means that |K (β)| is much smaller than M the number of groups. For this purpose, we will need
the following RE(s) condition introduced in [11, Assumption 3.1].

Assumption 4.1 (RE(s) condition). For any S ⊂ {1, . . . ,M}, let c0 > 0 be a constant and
1 ≤ s ≤ M be an integer that gives an upper bound on the group sparsity of a vector δ, the
following condition holds.

κ2
G(s, c0) = min

{
‖Xδ‖2n
|δS |22

: |S| ≤ s, δ ∈ Rp,
∑
k∈Sc

|δGk |2 ≤ c0
∑
k∈S

|δGk |2

}
> 0, (29)

where Sc denotes the complement of the set of indices S.

In order to apply theorem 3.1, we need to find τ such that P(Ω) > 1/2. The lower bound of τ
is determined in the following lemma.

Lemma 4.4. Let X be deterministic and ξ having a distribution of the form (18) with α > 2 and

denote by ‖XGk‖sp = sup
v∈Rp:
|v|2≤1

|XGkv|2 the spectral norm of matrix XGk and ‖XGk‖Fr =
√
XTGkXGk its

Frobenius norm. Then, set ψ∗sp = max
k=1,...,M

‖XGk‖sp√
n

and ψ∗Fr = max
k=1,...,M

‖XGk‖Fr√
n

. If

τ ≥
(Mcαn)

1
α ψ∗sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗Fr√
n

+ c̄

then P(Ω) ≥ 1/2.

Proof. Define f : Rn → R by :
f(z) =

∣∣XTGkz∣∣2 .
For every z1, z2 ∈ Rn, |f(z1)− f(z2)| ≤

√
nψ∗sp |z1 − z2|2. Therefore, f is a Lipschitz function with

Lipschitz constant
√
nψ∗sp. By the concentration inequality [2, equation 3], there exists constants

t0(α) > e and C(α) such that for all t > t0(α),

P

(
1

n

∣∣XTGkξ∣∣2 ≥ tn
1
αψ∗sp√
n

+Med

(
1

n

∣∣XTGkξ∣∣2)
)
≤ 1

2
ϕ(t)
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where ϕ(t) = C(α)
(

log(t)
t

)α
. Replacing median by mean, we have,

P

(
1

n

∣∣XTGkξ∣∣2 ≥ tn
1
αψ∗sp√
n

+ E
(

1

n

∣∣XTGkξ∣∣2)+ c̄

)
≤ 1

2
ϕ(t)

where c̄ = t0(α) +

∫ ∞
t0(α)

C(α)

(
log(t)

t

)α
dt. As

(
E
(∣∣XTGkξ∣∣22))1/2

≥ E
(∣∣XTGkξ∣∣2) then, for all

t > t0(α), we get,

P

(
1

n

∣∣XTGkξ∣∣2 ≥ tn
1
αψ∗sp√
n

+

(
E
(

1

n2

∣∣XTGkξ∣∣22))1/2

+ c̄

)
≤ C(α)

(
log (t)

t

)α
.

The term
∣∣XTGkξ∣∣22 is a quadratic form which can be writted as :∣∣XTGkξ∣∣22 = ξTXGkXTGkξ

=

n∑
j=1

(XGkXTGk)jjξ
2
j +

n∑
i=1

n∑
j=1
j 6=i

(XGkXTGk)ijξiξj .

Since XGk is deterministic and E(ξ2
j ) = 2

(α−1)(α−2) and E(ξiξj) = 0, we have:

E
(∣∣XTGkξ∣∣22) =

2

(α− 1)(α− 2)

n∑
j=1

(XGkXTGk)jj

=
2

(α− 1)(α− 2)
trace(XGkXTGk)

=
2

(α− 1)(α− 2)
‖XGk‖

2
Fr .

Thus, for all t > t0(α), we obtain,

P

(
1

n

∣∣XTGkξ∣∣2 ≥
(
tn

1
αψ∗sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗Fr√
n

+ c̄

))
≤ 1

2
C(α)

(
log (t)

t

)α
.

If we denote U , P
(

max
k=1,...,M

1
n

∣∣XTGkξ∣∣2 ≥ ( tn 1
α ψ∗sp√
n

+
√

2
(α−1)(α−2)

ψ∗Fr√
n

+ c̄

))
, we will have,

U ≤
M∑
k=1

P

(
1

n

∣∣XTGkξ∣∣2 ≥
(
tn

1
αψ∗sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗Fr√
n

+ c̄

))

≤ 1

2
MC(α)

(
log (t)

t

)α
≤ 1

2

Mcα
tα

.

Using the union bound, we get,

P

(
max

k=1,...,M

1

n

∣∣XTGkξ∣∣2 ≤
(
tn

1
αψ∗sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗Fr√
n

+ c̄

))
≥ 1− 1

2

Mcα
tα

This probability is greater than 1/2 if tα ≥Mcα. We deduce then the desired condition,

τ ≥
(Mcαn)

1
α ψ∗sp√
n

+

√
2

(α− 1)(α− 2)

ψ∗Fr√
n

+ c̄

Combining theorem 4.1 and lemma 4.4, we have an oracle inequality for the Group Lasso
estimator with explicit bounds.
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Theorem 4.3. Let ξ and X satisfying conditions of theorem 4.1. Assume the assumption 4.1 on
the RE(s) condition holds for any group s-sparse vectors β (i.e.,β ∈ Rp such that |K (β)| ≤ s).
The Group Lasso estimator defined by (28) with tuning parameter

λ ≥
4
(

(Mcαn)
1
α ψ∗sp +

√
2

(α−1)(α−2)ψ
∗
Fr +

√
nc̄
)

√
n

satisfies, with probability at least 1− cα (κG(s, c0))
α
n

2
((

(Mcαn)
1
α ψ∗sp +

√
2

(α−1)(α−2)ψ
∗
Fr +

√
nc̄
)√

s
)α ,

∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

32
(

(Mcαn)
1
α ψ∗sp +

√
2

(α−1)(α−2)ψ
∗
Fr +

√
nc̄
)2

s

nκ2
G(s, c0)

.

Proof. Let matrix X ∈ Rn×p be deterministic and β any group s-sparse vectors (i.e., |K (β)| ≤ s).
Assume that RE(s) condition holds, we have

∣∣βK (β)

∣∣
2

= |Pββ|2 ≤
‖Xβ‖n

κG(K (β), c0)

where Pβ = Proj{ej :j∈⋃k∈K (β)Gk}. Using equivalence between mixed (2, 1)-norm and `2 norm,

|δS |2,1 ≤
√
|S| |δS |2, we have:

∣∣βK (β)

∣∣2
2,1

= |Pββ|22,1 ≤ |K (β)| |Pββ|22 ≤
|K (β)|

κ2
G(K (β), c0)

‖Xβ‖2n .

Hence,

µ2
c0(β) ≤ |K (β)|

κ2
G(K (β), c0)

≤ s

κ2
G(s, c0)

Let c2 ≤ s

κ2
G(s, c0)

and τ =
(Mcαn)

1
α ψ∗sp√
n

+
√

2
(α−1)(α−2)

ψ∗Fr√
n

+ c̄, by lemma 4.4 and theorem 4.1, we

have, ∥∥∥Xβ̂ − f
∥∥∥2

n
− ‖Xβ − f‖2n ≤

(λ+ 2(τ + t))2

4
µ2
c0(β) +

(λ+ 2(τ + t))2

4
c2

≤ 2λ2 s

κ2
G(s, c0)

≤
2× 16

(
(Mcαn)

1
α ψ∗sp +

√
2

(α−1)(α−2)ψ
∗
Fr +

√
nc̄
)2

s

nκ2
G(s, c0)

Conclusion

In this paper we discussed penalized least squares estimators with convex penalty or regularisation
norms. We focused on regression model where the observations noise are independent and follow
a probability measure which satisfies a weak spectral gap (or weak Poincaré) inequality. We
established oracle inequalities in probability for the prediction error for the Lasso and Group Lasso
estimators. Our results have been applied to tow example of non gaussian cases; namely a heavy
tailed and a sub-exponential examples. For these cases we explicit the oracle inequalities bounds
in a close form.
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