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Abstract: Musculoskeletal disorders of the wrist are common in the meat industry. A proof of concept
of a physical human-robot interaction (pHRI)-based assistive strategy for an industrial meat cutting
system is demonstrated which can be transferred to an exoskeleton later. We discuss how a robot can
assist a human in pHRI, specifically in the context of an industrial project i.e for the meat cutting
industry. We developed an impedance control-based system that enables a KUKA LWR robot to
provide assistive forces to a professional butcher while simultaneously allowing motion of the knife
(tool) in all degrees of freedom. We developed two assistive strategies — a force amplification strategy
and an intent prediction strategy - and integrated them into an impedance controller.

Keywords: physical human-robot interaction; assistive robotics; collaborative robots

1. Introduction and Motivation

The agri-food industry, and particularly the meat industry, is one of the most dan-
gerous industries when it comes to employee safety. Among the various occupations,
slaughtering, cutting and meat processing operations require specific dexterity to handle
sharp tools or dangerous machines. However, they also require physical strength to carry
heavy loads such as pallets or carcasses, quarters or muscles of meat, or to perform debon-
ing work tasks and cutting quarters into pieces of meat. Similarly, they require performing
repetitive movements or working in a cold refrigerated room and humid environment.
In fact, accidents at work are common and can occur at any time. Thus, the rate of these
accidents and their frequency are among the highest, among all professions combined.
In addition to work-related accidents, musculoskeletal disorders (MSDs) accounted for
almost 91% of occupational illness cases in 2019 [1], with 842490 days of temporary inter-
ruption of work for all sectors. A study carried out in the Brittany region of France showed
that the agri-food industries are the most risky sectors in terms of MSDs [1]. For instance,
at the French level, 30% of the declared MSDs are recorded in the meat sector.

Not only is this a major problem for employees, it is also a big problem for companies
and society at large. In 2019, compensation for MSDs generated two billion euros in fees
(social security estimate) in France, with an average of more than 21,000 euros for each
MSD stoppage, not counting the daily allowances [2]. In some companies with 10 to
20% absenteeism, MSDs disrupt production and generate additional costs. In the meat
sector, MSDs involve personnel at all stages. Thus, operators involved in meat cutting,
represented by boners, parers and slicers, as well as those located at manufacturing and
packaging stations are affected [3]. MSDs affecting the wrist, hand and fingers represent
approximately 50% of all MSDs in the meat industry.
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The arduousness of tasks related to physical effort, the repeatability of movements
and the agri-food environment (cold, humidity and hygiene) encountered in the meat
sector deters the recruitment of young people, and ultimately few people, trained initially
for this sector, remain there. This difficulty in recruiting or retaining young people leads
to a significant shortage of manpower in these sectors. Technological evolution of certain
workstations which would allow on the one hand a reduction of the arduousness, opening
to the women certain activities which were until now reserved for the men, and on the
other hand a revaluation of the trades, could change the outlook of the individuals in this
sector of activity, give a positive image and promote its attractiveness.

Faced with these findings, the meat sector could soon integrate assistive and cobotic
equipments to encourage companies to improve the quality of life at work of their em-
ployees. Cobotics, also known as collaborative robotics, is a technology that uses robotics,
mechanics, electronics, and cognitive science to assist humans in their tasks. For the meat
sector, the advantages of having cobotics are numerous:

1. Reduction of occupational risks by reducing the arduousness of the operators’ tasks
and improving their working conditions.

2. Overcome a major shortage of skilled labour by reducing the lack of image and
attractiveness, particularly among young people (hardship in low-value jobs, etc.),
which will help maintain or even develop jobs in the sector.

3. Improve the competitiveness of companies by reducing the direct and indirect costs
of work stoppages and by increasing productivity.

4.  Improve the safety of products by reducing the direct handling of products by op-
erators or by integrating cleaning systems (e.g., sterilization of tools online between
each operation).

In this paper, we propose the development of a proof-of-concept assistive strategy
implemented through a collaborative robot in meat cutting tasks in order to reduce the
musculoskeletal disorders on the wrist of human operators working in the meat industry.
The developed impedance control strategy enables a KUKA LWR robot to provide assistive
forces to a professional butcher while simultaneously allowing motion of the knife (tool)
in all degrees of freedom. Previous robotic systems for autonomous meat handling [4]
required one or several robots for performing very specific meat cutting operations. For in-
stance, the ARMS system [5-7] was based on the separation of beef shoulder muscles,
the GRIBBOT system [8] was applied to chicken breast fillet harvesting while the DEXDEB
system [9,10] was useful for ham deboning. Therefore these robotic systems could not be
reused for other meat handling tasks since the quality of their cut was not enough for other
types of meat pieces. The new proposed robotic system (called Exoscarne) works on the
principle of pHRI (physical Human-Robot Interaction) to solve this lack of generalization.
From one side, the expertise of the skilled butcher is kept since the cutting trajectory is
defined by the human operator, who is holding the tool at the same time as the robot.
From the other side, the robot carries the load of the tool and increases the cutting force
when touching the meat so that the effort applied by the human is smaller. This system re-
sults in a greater flexibility for different meat cutting tasks and can adapt itself to on-the-fly
decisions made by the user.

Therefore, our new Exoscarne system, which will be described in the next sections
(see Section 3 for its software components and Section 4 for its hardware components), is
able to:

1.  Compensate the weight of the cutting tool.

2. Permit the user to move the tool in all 6 degrees of freedom.

3. Permit impedance shaping according to the operation being performed by the user.

4. Provide assistive forces during the meat cutting operations as per the user’s conve-
nience.

5. Allow the user to perform the operations autonomously.
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2. Background on Robot Assistance

One of the primary motivations of using robots for pHRI is their ability to share
physical loads with their human partners. When the physical load of an object is shared or
when the object is manipulated for a task, a natural division of effort between the human
and the robot occurs. For example, load sharing can be for human-robot cooperative
manipulation [11] or during rehabilitation [12]. Mortl et al. [13] proposed effort sharing
policies for load sharing of an object by a human and multiple robots.

Some researchers focused on the larger question of selection of an “assistance strategy’
for a pHRI task. Dumora et al. [14] considered large object manipulation tasks in pHRI and
proposed a library of robot assistances. Medina et al. [15] proposed a dynamic strategy
selection between model-based and model-free strategies. The strategy selection is based
on the concept of disagreement between the human and the robot, which in turn depends
on the interaction force.

In the literature, the only example of load sharing of tool for a cooperative pHRI
task, similar to meat cutting, was in [16] in which the author used a robot for assistive
welding by supporting the weight of the welding equipment. In fact, most existing IADs,
“Intelligent Assist devices” (i.e., active cobotics systems for human assistance) [17], are used
in the automotive industry for the quasi-static collaborative transportation of heavy loads
(e.g., motors, doors ...). However, these solutions are not suitable for the meat industry [18]
since they can only assist through specific directions in the work-space [19] (while meat
cutting requires complex 6D trajectories), they do not integrate safety solutions for handling
dangerous tools (such as the knife for meat cutting) and they do not take into account the
important dynamic non-linear effects of the meat cutting operations [20]. To the best of our
knowledge, there is no prior pHRI related work which uses a robot for assisting a human
for cutting meat by taking into account not only a classical force amplification strategy
(such as in [20]) but also an intent prediction module in order to reduce the final forces to
be applied by the human operator.

3. Methodology
3.1. pHRI Assistive Strategies

The main interaction controllers for pHRI are impedance and admittance control (see
Section 3.2 for their mathematical definition). Controller stability issues are common with
admittance control [21,22]. When a human holds the tool at the end-effector, it results in
a coupled system that can lose stability if the human operator stiffens his arm muscles,
leading to robot vibrations. Hence for this task we chose impedance control. Investigating
the stability issues of admittance control is a field in itself and there are several heuristic
methods in the literature [20]. Impedance control was possible as the robot had a torque
sensor in each joint, enabling torque control. Admittance control is preferred with robots
that have only position control, by using an external FT sensor. As the task involved motion
in the cartesian space hence we used the cartesian impedance controller that is explained
later. We devised two assistive strategies:

1.  Force amplification strategy

In this strategy we amplify the forces applied by the user on the knife’s handle (see
Section 4 for the experimental setup), detected by the FT sensor and input to our control
scheme. The control diagram is shown in Figure 1. The appropriate parameter # has to be
determined, as explained in Section 5.3.

2.  Intent prediction strategy

In this strategy we predict the forces to be applied by the user using RNN-LSTM
networks explained in Section 3.3. The control diagram is shown in Figure 2.
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Figure 1. Impedance controller diagram with amplification module for the force amplification strat-
egy.
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Figure 2. Impedance controller diagram with intent prediction module for intent prediction strategy.

Both Figures 1 and 2 are identical except for the module of their respective assistive
strategies. In the force amplification strategy, the amplification module amplifies the human
user’s force input Fy, at each time step through robot assistance 7 Fj,. In the intent prediction
strategy, a trained RNN-LSTM network takes the human user’s force input Fj, at each time
step to anticipate the user’s input for the next time step F,.; and provides this force via
robot assistance. In both cases the user can haptically sense this assistance being provided
by the robot.

3.2. Impedance Control

The forward kinematics of a robotic manipulator is written as [23]:

x(t) = f(q) @)

where x(t) € R" and q € R" are the pose (i.e., position/orientation) of the end-effector
in the Cartesian space and the joint angle coordinates in the joint space, respectively.
Differential kinematics is obtained by deriving (1) with respect to time:

x(t) = J(9)q @

where J(gq) € R"*" is the Jacobian matrix. Differentiating (2) again results in the accelera-
tion of the end-effector:

() =J(q)g+J(9)qd ®G)

The robot arm dynamics in the joint space is given by :

M(q)ij +C(q,4)d+ G(q) = T—J"(q)F )
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where M(g) € R"*" is the symmetric positive-definite inertia matrix; C(g,§)g € R" is the
Coriolis and Centrifugal forces; G(g) € R" is the gravitational force; T € R" is the vector
of control input; F € " denotes the net force exerted by the robot on the environment at
the end-effector (F = F, — Fext). Otherwise, F, € R" is the force exerted by the robot on
the environment at the end-effector while F.x; € R" is the external force exerted by the
environment on the robot at the end-effector. In our pHRI task, the environment is the
human, specifically the human hand that is in contact with the robot. The robot dynamics
can be written in the Cartesian space as:

My ()% + Cx(q,4)% + Gx(q) =u —F 5)
where
Me(q) = I~ M (@)M(q)] M aq),
Cx(q, D =71""(aq)(C(q.q9) — M@ (9)J@)] )
Gx(q) =T "(q)G(q),u =] "(q)T, F = F, — Foxt

As explained in Section 3.1, the most common interaction controllers for pHRI are
admittance and impedance control. Both controllers are based on a target impedance
model for the robot and they only differ in terms of input and output (see Figures 3 and
4). Therefore, the target robot impedance model can be represented as a mass-damper-
spring system:

My(%g — %)+ Bg(xg — %) + Ky(xg —x) = F; = F (6)

where My, By, K; are the virtual inertia, damping and stiffness of the robot, respectively.
F; is the desired force and x,; can be interpreted as the rest position of this virtual mass-
damper-spring system. For pHRI tasks in which the human touches the robot, the human
limb (arm-+hand) can also be modeled as a mass-damper-spring system:

My, %y, + By, + Ky (x, — xp0) = Fy 7)

where My, By, Kj, are the limb inertia, damping and stiffness respectively and Fj, is the force
applied by the human to the robot. The limb impedance values are not fixed and depend
from person to person, as well as on the task being carried out. x; is the position of the
human wrist in the robot frame and xj,; can be interpreted as the desired target position.
Discussion on the limb impedance parameters or their calculation are not in the purview
of this paper. In fact, the investigation of the limb impedance parameters would have been
necessitated if an admittance controller was used, to tackle the potential controller stability
issues. Since we have used a torque-based impedance controller for our experiments, it
does not face such issues. While real time measurements of limb impedance values could
be used for interpreting the intent of the human operator during the operation, this would
have required attaching EMG sensors on the arms of the human operator, such as in [24],
thereby reducing the practicality of this research for an industrial meat cutting scenario.
In our experiments the human intent is interpreted via the force measurements read by the
FT sensor, while staying comfortable and intuitive for the human operator.

When no assistance strategy is required and we want the robot to freely follow the
motion of the human, we can set K; = 0 or x = x;. This “direct teaching mode” is
essentially based on the elimination of the spring component of the robot impedance model
(“minimum impedance” strategy in Section 5.4) and avoids any restoring forces. If the
human holds the tool rigidly then we can assume that the forces are transmitted completely
to the robot. If the hand is close enough to the end-effector, we can assume that their
positions, velocities and forces are equivalent: x; = xy4, X;, = X and ¥, = X.

In admittance control (popularly called position-based impedance control) the input
is the force applied by the environment and the output is displacement/velocity as shown
in Figure 3. In pHRI tasks, the force is applied by the human on the tool at the end-effector
(Fext = Fp,) and it is measured by the FT sensor. The difference between the desired force
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for the robot (F; = F;) and this external force is applied as input to the impedance model
in (6) in order to obtain the desired position for the end-effector x; as output:

My(%q — %) + Bg(tg — %) + Ky(x4 —x) = F; — F, 8

On the contrary, the impedance control (torque-based impedance control) has as
input the end-effector displacement/velocity and the desired force as output, as shown
in Figure 4. In this case, the desired robot impedance model is the same as in (6) but the
difference between the desired robot force and the external/human force is transformed
into joint torques for the robot control.

Fy
Fo  ~F|  pdmittance | Td Iverse {94 Position T
- > Robat
Control Kinematics Control
q
Femt = Fh
Figure 3. Admittance control (position-based impedance control).
F
T4 (artesian | Fy Td
Impedance —-©—> JT forque Robot
Control Control
& Fy T

Figure 4. Torque-based impedance control.

3.3. Long Short-Term Memory Model

For the intent prediction module, we use RNN-LSTM units [25]. RNNs (Recurrent
Neural Networks) are based on processing sequential data, especially temporal data as
they have an internal memory. In fact, they are useful for making predictions using time-
series data [23]. RNNSs can be improved by using what are called LSTM units in order
to solve the vanishing gradient problem (i.e., gradients tend to disappear in RNNs when
backpropagating errors in too long sequences). In fact, each LSTM unit has a special
structure composed by 3 gates to control what information to keep and what to forget so
that more stable errors are backpropagated (see Figure 5):

1.  Aninput gate (i).
2. Anoutput gate (0).
3. Aforget gate (f).

As a result, RNNs with LSTM units are able to learn long-term dependencies within
data sequences that were not possible only with RNNs. Given an input sequence X1, X, ..., X
the LSTM unit maps the input sequence to a sequence of hidden states h1, hy, ..., iy (which
are also the outputs) by passing information through a combination of gates (see Figure 6):

The Input gate (for updating the cell) is:

iy = 0g(WiX + Rihy—1 + b;) )
The Forget gate (for reseting the cell /forgetting) is:

fi = O'g(Wfft + tht—l + bf) (10)
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The Cell candidate (for adding information to the cell) is:
gt = 0c(WgXt + Rghy 1 + bg) (11)

where 0 is the state activation function (here it is the hyperbolic tangent function: o, = tanh(x)).
The Output gate is:
0 = 0g(WoXs + Rohy—1 + b,) (12)

where 0y is the gate activation (here it is the sigmoid function: o(x) = (1+¢7*)71)
The Memory Cell state at timestep £ is:

Ct=fiOc1+itO& (13)

Here © is the Hadamard product (element-wise multiplication of vectors). The mem-
ory cell selectively retains information from previous timesteps by controlling what to
remember via the forget gate f;.

It

Figure 5. A single LSTM unit.

Figure 6. An unrolled Recurrent Neural Network with LSTM units.

The Hidden state (also called Output state) at time step ¢ is :
ht = 01 © oc(ct) (14)

The hidden state is passed as input to the next timestep and thus, it is possible to
stack numerous LSTM units (see Figure 6). W;, W¢, W, are the learnable input weights;
R;,R fr R, are the learnable recurrent weights and b;, b iz be are the learnable bias. By using
memory cells and hidden states, LSTM units are able to retain information. The sigmoid
function is a good activation function for the 3 gates (In, Out and Forget) since it outputs a
value between 0 and 1. However for the memory cell, the values should be able to increase
or decrease (which is not possible with the sigmoid activation function whose output is



Appl. Sci. 2021,1,0

8 of 27

always non-negative). Therefore, the hyperbolic tangent function (tanh) is used as the
activation function for the memory cell.

4. Experimental Setup
4.1. KUKA LWR Robot

The KUKA LWR is a Torque-controlled Flexible Robot with 7 degrees of freedom.
The design and control concepts of the robot have been discussed in [26,27]. There are two
control modes available. The joint position control is implemented at a frequency of 3 kHz
(decentralized control) [28]. Inverse kinematics and the cartesian impedance control mode
run at a frequency of 1 kHz. The KUKA LWR has a torque sensor at each joint that enables
torque control and impedance control. It also has motor side position sensors, as well as
link side position sensors. Due to friction it is difficult for robots to implement torque
control only with motor current commands [28].

The default coordinate system of the KUKA LWR is Right Handed System for which
det(R) = 1. The dimensions of the robot can be retrieved from the official manufacturer
documentation. Using these dimensions we can obtain the DH parameters (refer Table 1).
To simulate the robot, an alternate form of representation called URDF is shown in Table 2 and
its corresponding 3D model is shown in Figure 7. The Unified Robotic Description Format
(URDF) is an XML file format used in ROS to describe all elements of a robot. The robot
interacts with the external PC through the Fast Research Interface [29] through three
modes—i(a) Joint position control (b) Joint impedance control mode and (c) Cartesian
impedance control mode.

Figure 7. Exoscarne 3D simulated model with the KUKA LWR arm in Home configuration.

Table 1. DH parameters of KUKA LWR 4+ robot.

Joints  d;(m) g;(rad) a; «a;(rad) Gmin Gmax  Tmax(Nm)

n Al 0.3105 m 0 /2 -170 170 176
12 A2 0 g 0 -—m/2 —120 120 176
13 El 0.4 73 0 -m/2 —170 170 100
T4 A3 0 G4 0 /2 ~120 120 100
J5 Ad 0.39 g5 0 /2 ~170 170 100
16 A5 0 g6 0 -m/2 —120 120 38
17 A6 0.078 a7 0 0 ~170 170 38
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Table 2. URDF description of KUKA LWR 4+ robot.

Joints x(m) y(m) z(m) r P y Axis
Al 0 0 0.11 0 0 0 [001] +z axis
A2 0 0 0.2005 0 0 0 [0-10] —y axis
El 0 0 0.2 0 0 0 [001] +z axis
A3 0 0 0.2 0 0 0 [010] +y axis
A4 0 0 0.2 0 0 0 [001] +z axis
A5 0 0 0.19 0 0 0 [0 -10] —y axis
Ab 0 0 0.078 0 0 0 [001] +z axis

To fulfill our objectives we used the cartesian impedance control mode available with
the KUKA LWR robot. The KUKA manual [30] states that the control law for the cartesian
impedance controller is

Temd = ]T(KC(xdesired - xcurrent) + chd) + D(dc) + fdynamics(q/ q, q) (15)

where g € R" is the joint position vector, K; is the stiffness matrix in the end-effector
frame,D is the normalized damping parameter in the end-effector frame,x and x; are the
current and the desired pose of the end-effector respectively in the global frame. The trans-
lational stiffness Ky, K;, K, € [0.01,5000] N/m and rotational stiffness K 2. Kg, Kc, €
[0.01,300] N/m-rad.

The KUKA LWR has an inbuilt external tool calibration functionality. Using this
feature the robot can account for external tool dynamics as well, thereby enabling gravity
compensation for the tool.

In this work we used the KUKA Fast Research Interface (FRI [29]), ROS [31], Kine-
matics and Dynamics library (KDL [32]) , the MATLAB toolbox by Peter Corke (RCV [33]),
and the MATLAB Robotics Toolbox (RTB [34]). For the intent prediction strategy, the high
level program was written in MATLAB and connected to the network via ROS (Robot
Operating System), by using the MATLAB Robotics Toolbox.

4.2. ATI FT Sensors

In order for the robot to provide assistive forces as per user comfort we had to measure
how much forces are being applied by the user. For this, we used two 6-axis ATI Gamma
force-torque sensors (see Figure 8): one mounted below the joystick (sensor B) and another
mounted on the end-effector of the arm (sensor A, see Figure 9). Both FT (Force-Torque)
sensors provide a 6-dimensional wrench in the sensor frame at 1000 Hz.

(a) FT ATI acquisition system (b) FT sensor (c) Internal view (d) Internal view 2

Figure 8. Photos of the force-torque (FT) sensor.
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Figure 9. Attaching the FT sensor A to the KUKA LWR 4+ robot end-effector.

The relation between the different frames associated to these sensors (A and B), to the
tool (i.e., tool center point—TCP—or tip of the knife) and the robot world frame O are
shown in Table 3 and visualized in Figure 10. To use the impedance controller all the forces
must be in the same frame. This requires transformation of the sensed forces in the sensor
frame to the end-effector frame of the robot. The equation for transformation of forces from
one frame to another is:

2] - e 205
AMy [“t,JBR EBR||[BMp
0 _tz ty
where [ty] = | t; 0 —ty| or
—t, ty 0
ARy =58T/°Fp (17)

YTCP

ZTCP

XTCP

Figure 10. Visualization of all frames relating the tool -knife- with the FT sensors A/B.
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Table 3. Joystick frames when the robot is in Home configuration. Sensor A is always aligned with
the robot end-effector frame.

Robot World Frame  Sensor A (FT13855)  Sensor B (FT13953) Relation
Xo Xa —Zp Xol| Xall —Zp
Y, Ya Xz Yol| Xall X
Z, Zy Yp Zo|| Zal| YB

4.3. Allen-Bradley Joystick

The joystick (i.e., the knife handle) is an Allen-Bradley 440J-N enabling switch. It has
8 electrical connections and when the joystick switch is pushed or released, combinations
of these 8 connections are activated as shown in Figure 11.

4.2 7.0|
Push 1-2 ®
— 5-6 ]
3-4 @
1-2
Release ¢
3-4

_|_

Pushbutton switch: 1 N.0. contact (Terminal 7-8)

D:o—\o .Z.J\.

(b) Electrical configuration of the 2 joystick buttons. Above:

lateral dead man’s switch (1-6 contacts). Below: upper push-
(a) Joystick pressed button (7-8 contacts).
Figure 11. Allen-Bradley joystick used as the handle of the knife.

The 8 electrical wires from the joystick are connected to an Arduino Uno circuit board
which was then connected to a laptop (see Figure 12 for the complete connection diagram).
The rosserial ROS package and the ros_1ib library is used to integrate the Arduino Uno
with the robot network via ROS.

NN NE

Figure 12. Arduino circuit diagram for connecting the joystick to a laptop.
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By using this joystick, the user will be able to communicate his intention clearly with
regards to the meat cutting operation. See Section 5.2 for a more detailed description of how
the user will use this joystick for a safe and unobtrusive physical human-robot interaction.

4.4. Meat Cutting Equipment

To fully understand the practical issues in implementing the technical aspects of
the project we first performed some meat cutting trials using the robot in the gravity
compensation mode. A special holding tool was developed to accommodate a joystick
which would be held by the user and the cutting tool. The project involved meat operations
on chicken, pork and beef for which special cutting tools were made. The joystick was
an industrial joystick which we customized for the project and it allowed a very natural
and intuitive user interface. The blades are professional butcher blades customized for the
project by machining in the laboratory. A customized pneumatic hanger was developed
for holding the pork vertically. Specific cutting tools and holding apparatus for each meat
product or carcass to cut were devised as shown in Figure 13 below.

(c) Knife (d) Peeler (e) Chicken holder (f) Pork
Figure 13. Exoscarne equipment.

5. Experiments

The complete network diagram is shown in Figure 14. All the PCs of this network
communicate via ROS. The two assistive strategies are implemented in the right laptop,
which recovers FT sensor information from the two middle PCs and sends robot commands
to the left PC.
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|

MATLAB
ROBOTICS
TOOLBOX

Figure 14. Network diagram of the Exoscarne system. From left to right: control box of the KUKA
LWR 4+ robot connected to one PC with FRI/KDL libraries; data acquisition boxes for FT sensors A
and B connected to two PCs and an Arduino board for joystick acquisition connected to a laptop.

We performed experiments to address the following questions:

1. Which FT sensor should be used as a source of input for the control scheme?

2. What should the impedance shaping strategy performed through the joystick buttons
be?

3. What should the amplification factor be for the force amplification strategy?

4. Comparison of the force amplification strategy and the intent prediction strategy.

5.1. Comparison of FT Sensors

As shown in Figure 10, there were two FT sensors on the cutting tool. We wanted to
confirm if 2 FT sensors provide an advantage over a single FT sensor, as well as determine
which FT sensor is better as a source of input for the control scheme.

A piece of thick foam was used as the material to be cut. This foam reproduces the
same type of shearing forces as meat cutting. Two experiments were performed. In the first
one the robot was commanded to apply forces gradually from 0 to 50 N in the Y-direction
of the world frame, which was 