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Abstract: A new method for resolved-acceleration control of serial chain manipulators has been
proposed which uses dual quaternion representation of screw-based motion variables, i.e. pose,
velocity and acceleration. The corresponding coupled controller considers both translational
and orientational errors simultaneously for trajectory tracking and utilizes spatial acceleration
to compute the feedforward compensation term for feedback linearization. The proposed coupled
control law was validated on a robotic arm along a pre-defined trajectory. The controller
demonstrated an improved trajectory tracking performance as compared to the conventional
decoupled resolved-acceleration controller which treats translational and orientational error
separately.
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1. INTRODUCTION

Robotic manipulators are often required to follow the de-
sired trajectory composed of position as well as orientation
set points, along with the desired profile of linear and angu-
lar velocities for tighter control and smooth motion. Due to
intuitive ease of trajectory specification and the control of
end-effector interaction with the environment, a task space
controller is often preferred over a joint space controller.
Operational space control (Khatib (1987), Nakanishi et al.
(2008)) and resolved-acceleration control (Caccavale et al.
(1998), Luh et al. (1980)) have been the two preferred
methods for task space control in previous decades. They
differ primarily in their treatment of singularity, apart
from the dynamic formulation.

Traditionally the trajectory tracking strategies in the case
of robotics manipulation involve the decoupling of position
and orientation variables. However, it is desired to strive
for a coupled controller to take into account the inherent
effect of rotation on the translation of a rigid body as
mentioned by Han et al. (2008). The basis of such control
was given by Bullo and Murray (1995), along with a
strategy to deal with coupled trajectory tracking problem
for a rigid body using the homogeneous transformation
matrix (HTM) representation of pose. The difference in the
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Fig. 1. (a) Desired trajectory descrition; (b),(c) Baxter
robot performing trajectory tracking task.

convergence behavior of coupled and decoupled control of
linear and angular terms were reported in Han et al. (2008)
for the motion on SE(2) of a ground omnidirectional robot
they concluded that the coupled treatment is a better
choice when the synergy of position and orientation is
important, i.e. for applications where the position and
orientation setpoints are desired to be achieved simulta-
neously, for instance, robotic welding of a curved surface.

The coupled treatment of position and orientation vari-
ables using spatial dynamics concepts given by Feath-



erstone (2010a,b) and compact representation of screw
displacements using unit dual quaternions (UDQs) are
the motivations for the development of the proposed new
approach of UDQ based resolved-acceleration control. The
interpretation of screw-based dynamics using spatial dy-
namics Featherstone (2010a,b, 2001) led to compact and
more tractable formulations of kinematic and dynamic
equations. The simplicity is evident from the formulations
of the Jacobian and the derivative of the Jacobian for a
kinematic chain as compared to the approach followed by
Bruyninckx and De Schutter (1996).

The UDQ based approach for kinematic modeling of serial
manipulator provides storage and computational advan-
tage, as demonstrated by Özgür and Mezouar (2016).
We also combine the approach given by Featherstone
(2010a,b) for the computation of Jacobian derivative with

the UDQ based kinematic formulation developed by Özgür
and Mezouar (2016). The control law for task-space trajec-
tory tracking by a robotic serial manipulator is based on
the work of Wang and Yu (2013), where UDQ based error
dynamics as derived from the UDQ based dynamics for a
single rigid body for the attitude and position tracking.
In our implementation, we derive the error dynamics of
an end-effector in a desired frame attached to the base of
a manipulator using a slightly different definition of the
UDQ based pose error. Hence it allows for an intuitive
representation of trajectory which is more prevalent in
robotics literature, compared to the error represented in
the body frame in Wang and Yu (2013).

The contributions of this paper can be summarized as:

• Extension of the kinematics developed by Özgür and
Mezouar (2016) for the computation of the derivative
of Jacobian for a serial manipulator using the theory
of spatial dynamics given by Featherstone (2010b).
The proposed approach for the computation of the
Jacobian derivative is computationally advantageous.
• A screw-based resolved-acceleration controller using

UDQ representation to compute the joint torque com-
mands for the end-effector trajectory tracking. The
coupled controller designed for a serial manipulator
to follow the end-effector trajectory treats both orien-
tation and position set-points jointly, thus addressing
the inherent effect of rotational motion on translation
motion.

In the following section (section 2) the theoretical back-
ground and the design of resolved-acceleration controller
in explained. The derivation of UDQ error dynamics based
control Law is given in section 3. The experimental valida-
tion and related discussions are given in section 4. Section
5 presents the conclusion and discussion about the current
work.

2. THEORY AND PROBLEM FORMULATION

2.1 Resolved-Acceleration Control

The dynamic model of a serial manipulator consisting on
n joints in joint space is given as:

H(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (1)

where H(q) is a symmetric and positive definite inertia
matrix. C(q, q̇) consists of Coriolis and centrifugal terms,

whereas G(q) represents gravity vector. Γ is a vector
of joint driving torques. The joint positions, velocities
and acceleration are represented above with q, q̇, and q̈,
respectively.

Assuming perfect dynamic compensation, the driving
torques can be computed with a new control input as:

Γ = H(q)Ĵ−1(q)(âcmd − ˙̂J(q, q̇)q̇) + C(q, q̇)q̇ + G(q)
(2)

The (âcmd − ˙̂J(q, q̇)q̇) terms actually replaces q̈ in (1)
using following equation relating the joint velocities to the
end-effector velocity, and its derivative:

ω̂ = Ĵq̇ (3)

â = Ĵ · q̈ + ˙̂J · q̇ (4)

The goal of resolved acceleration control is to find the
acceleration command (âcmd) for (2) from the desired
trajectory consisting of desired acceleration, velocity, and
position of end-effector. Note that the dual velocity and
acceleration terms, i.e. ω̂ and â, has different meaning in
the context of this paper, and is explained in the next
section.

2.2 Mathematical and Theoretical Preliminaries

In this section, the concepts required for subsequent for-
mulation are given. It includes: the meaning of mathe-
matical notations used; relevant background related to the
dual-quaternions; the formulation of screw-based forward
and inverse kinematics concepts proposed in Özgür and
Mezouar (2016); and, concepts and formulations related
to the spatial acceleration.

Notations: Dual quaternions and dual vectors have been
notated with bold characters with hat, e.g. x̂ and ŝ, re-
spectively. Dual numbers have been named with variables

with hats (e.g. θ̂), whereas dual number arrays have been

notated with underlined bold characters with hats (e.g. θ̂).
Arrays of real number variables are named using under-
lined bold characters (e.g. θ) and vectors and quaternions
are notated with bold characters (e.g. l and q respectively).

Quaternions: A Quaternion is a 4-tuple consisting of a
scalar and a vector part and is defined as:

q = s+ v = s+ (v1̂i + v2̂j + v3k̂) (5)

A pure quaternion q has zero as the scalar component and
is defined as q = q1i + q2j + q3k. Quaternion product is
given as:

q1 · q2 = (s1s2 − vT1 v2) + (s1v2 + s2v1 + v1 × v2) (6)

Dual Quaternions: A dual quaternions is an 8-tuple and
consists of quaternions as their real and dual parts:

x̂ = qr + εqd = (sr + vr) + ε(sd + vd) (7)

where ε is the dual number element, such that ε2 = 0, and
ε 6= 0. The classical conjugate of dual quaternion, used for
transforming poses, is given as:

x̂∗ = q∗r + εq∗d = sr − vr + ε(sd − vd) (8)

Dual quaternion product is given as:

x̂a · x̂b = (qr1 + εqd1) · (qr2 + εqd2) (9)

= qr1 · qr2 + ε(qr1 · qd2 + qd1 · qr2) (10)



If the product of a dual quaternion with its classical
conjugate has unity norm represented with a dual number,
x̂ · x̂∗ = ‖x̂‖2 = 1 + ε0, it is defined as a unit dual
quaternion.

An adjoint operation for dual quaternions (Wang and Yu
(2013)) is defined as:

Ad(nx̂m)x̂a = nx̂m · x̂a · nx̂∗m (11)

where nx̂∗m is the classic dual quaternion conjugate of
nx̂m. If x̂a was a directed line represented using a unit
dual vector or a motion screw ∈ M6 represented with
dual vectors, and nx̂m represented the transformation
from frame m to frame n, the adjoint operation given in
(11), will transform the corresponding element ∈M6 from
frame m to n.

A v̂ecx̂ operation is defined for pure dual quaternions
(dual quaternions with zero scalar parts in both real and
dual components) which extracts the vectors from the
dual quaternion product if applied to another pure dual
quaternion. This operation is similar to the cross product
operation for spatial vectors with motion basis (i.e. vectors
∈ M6). For instance, if x̂ = qr + εqd was a spatial
vector representing a dual vector ∈M6 (note that we have
reduced the dimension from 8 to 6 for x̂× operation by
eliminating the scalar part, for the sake of explanation),
x̂× (cross product operation) is given by Featherstone
(2010a) as:

x̂× =

(
qr× 0
qd× qr×

)
(12)

Pose of a frame is represented using UDQ as:

x̂ = exp

(
θ̂

2
· ŝ

)
= cos

(
θ̂

2

)
+ ŝ sin

(
θ̂

2

)
(13)

=

(
cos

(
θ

2

)
+ l sin

(
θ

2

))
(14)

+ ε

(
−d

2
sin

(
θ

2

)
+ l

d

2
cos

(
θ

2

)
+m sin

(
θ

2

))
(15)

where θ̂ ∈ D is a dual angle and ŝ ∈ D3×1 is a directed
line represented using unit dual vector.

θ̂ = θ + ε d, ŝ = l+ ε m (16)

where θ is a rotation around the screw axis, d is translation
along the same axis, l is the unit direction vector of the
screw axis, and m (= p × l) is the moment of this screw
axis with respect to the origin of the reference frame, and
p is any point lying on the screw axis.

Serial Manipulator Kinematics: For a serial kinematic
chain, let x̂c0 be the initial end-effector configuration, and

θ̂0 be the initial joint configuration such that:

θ̂0 =
[
θ̂10 θ̂20 · · · θ̂n0

]T ∈ Dn×1 (17)

The end-effector pose x̂c corresponding to the new joint
configuration θ̂ is obtained by multiplying the successive
screw displacements caused by the intermediate joints
between the base frame and the end-effector link, starting
from the link to the base and ending at the joint closest
to the end-effector.

x̂c = δ̂1 · δ̂2 · · · · · δ̂n · x̂c0 (18)

δ̂i = exp

(
θ̂i
2
· ŝi0

)
where

θ̂i = ∆θi for revolute joints,

θ̂i = ε ∆di for prismatic joints.

In (18), ŝi0 refers to the unit dual vector representing the

initial configuration of the joint screw, and δ̂i represents
the screw displacement of link i relative to the link (i− 1)
resulting from the motion of the previous joint.

The end-effector screw-velocity or spatial velocity (Feath-
erstone (2010a)) represented as a pure dual quaternion, is
obtained by adding the twist cause by the intermediate
joints. The screw-based Jacobian is given as:

ω̂ =

[
ω
vc/b0

]
= Ĵ

˙̂
θ (19)

= [̂s1 ŝ2 · · · ŝn]
˙̂
θ

where
˙̂
θ =

[
˙̂
θ1

˙̂
θ2 · · · ˙̂

θn

]T
∈ Dn×1

In (19), vc/b0
represents the linear velocity of a point

attached to the end-effector, which is instantaneously
coincident with the origin of the base frame. It will be
hereafter notated as v0.

The current unit dual vector of joint screw (̂si) for the
ith joint, can be obtained from its initial value ŝi0 , by
transforming it using the total displacement caused by the
previous (i− 1) joints, using the adjoint operation.

ŝi = Ad(bδ̂T(i−1)
)ŝi0 (20)

bδ̂T(i−1)
can be obtained as:

bδ̂T(i−1)
= δ̂1 · δ̂2 · · · · · δ̂i−1 (21)

Note that in the case of the first joint, i.e. ŝ1, the dual
vector of the corresponding joint screw is constant with
respect to the reference frame. However, the first link
closest to the base frame will move due to the motion of
the first joint.

Spatial Acceleration: A brief discussion about spatial
acceleration is provided here to relate our control approach
to traditional controllers. All the terms are given in the
base frame of the robot.

Spatial acceleration is the derivative of screw velocity and
defines a helicoidal vector field Featherstone (2001).

â = ˙̂ω =

[
ω̇
v̇0

]
(22)

The angular acceleration ˙̂ω of a body in conventional
sense and spatial dynamics is the same. However, the
linear acceleration of a point attached to the body is quite
different in both paradigm.

Let âc/b0 = ω̇ + ε ac/b0 represents the conventional
acceleration of a frame c/b0 rigidly attached to the end-
effector and instantaneously coincident with the origin of
the base frame. The linear acceleration ac/b0 is related to

the linear part of spatial acceleration (v̇0) as :



ac/b0 = v̇0 + ω × v0 (23)

Note that the dual part of âc/b0 , i.e. ac/b0 is not a

derivative of vc/b0
(i.e. vc0). In fact, ac/b0 ”refers to

the acceleration of an individual body-fixed point at the
moment when it happens to be passing through the origin”
Featherstone (2001).

The conventional dual acceleration with the linear accel-
eration of a general point i.e. origin of a frame on the end-
effector, say c, can be obtained from spatial acceleration
(ac/b0) as follows:

âc =

[
ω̇c

ac

]
=

[
ω̇

ac/b0 + ω̇ ×
−→
OC + ω × (ω ×

−→
OC)

]
(24)

3. DERIVATION OF CONTROL LAW

3.1 UDQ based Pose Error

Given two poses, i.e. current (x̂c) and desired (x̂c), both
expressed in a static base frame, there are four possible
permutations for error computation. The error UDQ used
in our formulation is:

x̂e = x̂d · x̂∗c = bx̂c→d (25)

The screw axis related this error choice represents a screw
displacement vector directed from the current frame c to
the desired frame d (expressed in the base frame b). It
means if we transform the error screw axis derived from
x̂e, from the base frame to the current frame using Ad(bx̂∗

c)
:

cŝe = Ad(bx̂∗
c)

bŝe = Ad(cx̂b)
bŝe (26)

and then postmultiply the corresponding UDQ (obtained
using (13)) to the current frame pose x̂c, we will get the
desired pose:

x̂c · exp

(
cθ̂e
2

· cŝe

)
= x̂d (27)

The same interpretation can also applied for obtaining
orientation error in a desired frame when using unit
quaternion representation.

3.2 Control Law Design:

In this section we derive the error dynamics similar to
Wang and Yu (2013) for the attitude and position tracking
problem of a rigid body using feedback linearization.
Taking the derivative of the error UDQ given in (25) we
obtain:

˙̂xe = ˙̂xd · x̂∗c + x̂d · ˙̂x
∗
c (28)

Now, it has been proved in Han et al. (2008) that:

˙̂x =
1

2
ω̂ · x̂ (29)

where ω̂ is the screw velocity of the body, whose pose is
represented using x̂. The conjugate is given as:

˙̂x
∗

= −1

2
x̂∗ · ω̂ (30)

Hence (28) can be rewritten as:

˙̂xe =
1

2
x̂e · ω̂e (31)

where

ω̂e = Ad(x̂∗
e)
ω̂d − ω̂c (32)

Taking the derivative of (32), we obtain:

˙̂ωe = Ȧd(x̂∗
e)
ω̂d +Ad(x̂∗

e)
˙̂ωd − ˙̂ωc (33)

After expanding the involved terms and using the property
of UDQs, we obtain:

˙̂ωe = Ad(x̂∗
e)

˙̂ωd − ˙̂ωc + v̂ecω̂cAd(x̂∗
e)
ω̂d (34)

Now ˙̂ωc can be substituted with the following acceleration
command (âcmd) for feedback linearisation:

âcmd = 2K̂p · ln x̂e + K̂v · ω̂e + v̂ecω̂cAd(x̂∗
e)
ω̂d

+Ad(x̂∗
e)

˙̂ωd (35)

Substituting âcmd in (34), we obtain the following error
dynamics:

˙̂ωe + K̂vω̂e + 2 K̂p ln x̂e = 0 (36)

where the expression (2 ln x̂e) refers to the product of dual
angle and unit dual vector pertaining to the axis of the
screw (see (13)),

ln x̂e =
1

2
θ̂e · ŝe (37)

The details of obtaining the screw parameters from a
dual quaternion can be found in Özgür and Mezouar
(2016). The asymptotic stability of equilibrium point
(ln(x̂e), ω̂e) = (0̂, 0̂) for the above system has been proven
in Wang and Yu (2013) for an appropriate choice of the

gains K̂p and K̂v. Therefore, the end-effector motion
will eventually converge to the desired trajectory for the
control command obtained in (35). The two equilibria
problem for dual quaternion has been discussed in Wang
and Yu (2013), where the system (36) has two identical

equilibria at x̂e = (Î .0̂)and(−Î .0̂), which was resolved by
multiplying the error UDQ with −1 to make the scalar
part of the real quaternion positive.

The âcmd obtained in (35) can be used in (2) to compute
the joint torque commands for the manipulator. Note that

the dual angle θ̂i used in (19) is converted to qi in (4),
depending on the type of joint (see (17)).

3.3 Formulation of Jacobian Derivative:

In order to compute the driving torque command in (2),
from the control law âcmd obtained in (35), the compu-

tation of Jacobian derivative ( ˙̂J) is required. Derivative
of the Jacobian of a serial robotic manipulator can be
obtained as in Featherstone (2010b), assuming a joint
screw axis ŝi given as a dual vector is fixed on the child
link i, and noting that ŝi ∈M6:

˙̂J =
[
˙̂s1 ˙̂s2 · · · ˙̂sn

]
= [v̂ecω̂1

ŝ1 v̂ecω̂2
ŝ2 · · · v̂ecω̂n

ŝn] (38)

where ω̂i represents the screw velocity of an ith link, and
can be computed from the twists effected by the joints
between the base frame and the ith link (see (19)).

4. EXPERIMENTAL VALIDATION

The controller obtained in section 3.2 was validated in on
one of the redundant arms of Baxter dual arm collabo-
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Fig. 2. Pose error (Desired − Current) plot for the cou-
pled ( ) and decoupled ( ) controller with optimally
tuned gains.
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Fig. 3. Velocity error (Desired − Current) plot for the
coupled ( ) and decoupled ( ) controllers with opti-
mally tuned gains.

rative robot (Robotics (2017)). The joint inertia matrix,
Coriolis and centrifugal torques, and the gravity torques
were obtained using KDL library Smits et al. (2011),
and q̇ was provided by the Baxter ROS interface. The
presented implementation does not address redundancy
resolution for the extra joint in the used robotic arm, and
the starting configuration of the manipulator was carefully
chosen to avoid the effects of null space motion on the
tracking task. The complete implementation along with
the instructions to repeat the experiments and reproduce
the results discussed in this section can be obtained from
the source 1 .

Table 1. Root mean square error (RMSE) and
standard deviation (StD) of position (Pos)
and orientation (Orient) errors for the coupled
controller with optimal gain, and decoupled

controller with the same and optimal gain.

Controller Coupled Decoupsame Decoupopt

RMSEOrient (rad.) 0.1852 0.3436 0.2748

StDOrient (rad.) 0.0718 0.1553 0.1119

RMSEPos (m) 0.0089 0.0066 0.0049

StDPos (m) 0.0026 0.0021 0.0013

1 https://github.com/rohitChan/ifacWC2020
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The controller performance was compared with the control
law used in Caccavale et al. (1998), where the transla-
tional and orientational components of the trajectory were
treated separately. The Jacobian of the manipulator and
the derivative of this Jacobian for the quaternion based
controller were obtained from the KDL library since the
corresponding terms obtained in (19) and (38) are screw-
based.

The Cartesian position and quaternion based control law
was used for comparative validation of the proposed con-
troller was given as follows in Caccavale et al. (1998):

ac = p̈d + KVp
ṗe + KPp

pe

ω̇c = ωd + KVoωe + KPove (39)

where pe refers to the position error of the end-effector
frame for a given desired position pd. ve refers to the vector
part of the error quaternion computed as qe = qd · q∗c ,
from which the orientation error in the base frame can
be derived. ac and ω̇c are used to obtain the combined
acceleration command similar to âcmd, to be used in (2).

Both the controllers were tuned for a stable profile in
velocity and to obtain the best tracking performance. The
proportional and derivative gain, 190 and 6 respectively,
were given in a diagonal matrix form in (35) for the
coupled controller using UDQ. The gains for the decoupled
controller for the position and orientation error were
KPp = KPo = 270 and for the linear and angular
velocity error, KVp = KVo = 7.5 in (39), and the control
loop frequency for both the controllers was set 200 Hz.
Additionally, the conventional decoupled controller was
also tested with the same gain as the one chosen for the
proposed coupled controller for fair assessment of their
performance.

The description of trajectory generation for validation of
the controller has been given in Fig. 1. The end-effector
was desired to rotate around a pre-selected line, defined
the base frame of the robot, while keeping one of its
frame axes always pointing towards the line, thus requiring
both translational and orientation control. The screw
axis corresponding to the line, and taking the rotation
(θtraj(t)) as a cubic function of time were used to obtain
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Fig. 5. Joint Effort plot for the coupled ( ) and de-
coupled ( ) controllers. std dq and std kdl refers to the
standard deviation of the joint efforts for coupled approach
and decoupled approach, respectively.

the desired trajectory of the end-effector. The coefficients
of the polynomial were computed with four boundary
condition: θtrajInit = 0, θtrajF inal = π/2, θ̇trajInit = 0,

θ̇trajF inal = π/2. The θ̈traj(t), θ̇traj(t) and θtraj(t) thus
computed, gave spatial acceleration, spatial velocity and
pose, when multiplied by the given screw axis. The total
duration of the experiment was 18 seconds.

The robot performing the trajectory tracking task can be
seen in Fig. 1, and performance of both the controller for
pose and velocity tracking have been given in Fig. 2 and
3, respectively. The evolution of position and orientation
error norm is given in Fig. 4. The error norm for the
position and orientation tracking for both the controllers
have been summarized in Table 1. The joint efforts given
as an input the joints of the manipulator is given in Fig.
5.

While the coupled controller performance for position
tracking is slightly worse than the traditional decoupled
controller for both the same and optimal gains, the cou-
pled controller performed better in terms of orientation
tracking. The performance is identical in terms of velocity
error as is shown in Fig. 3. The commanded joint torques
were also close in terms of magnitude, however higher os-
cillations in the commanded joint torques can be observed
in Fig. 5 for decoupled controller for joints s0, e0 and w0.

5. CONCLUSION

A new controller for resolved acceleration control of
robotic manipulators was proposed for the trajectory
tracking of the serial robotic manipulator using screw the-
ory and concepts from spatial dynamics. Representation
of the motion variables with dual quaternions allowed
coupled treatment of translational and orientational com-
ponents of trajectory tracking error. A comparison with
a decoupled controller reveals better orientation tracking
while achieving identical performance for the translational
components. However, a more thorough analysis is re-

quired to formulate a better control law that is appropriate
to keep the joint torque bounded for this kind of dynamics.

In addition to that, redundancy resolution is needed to
utilize the additional degrees of freedom for redundant ma-
nipulators, as during the current implementation special
attention was taken during the definition of trajectory.
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